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V. F. González-Albuixech1∗, E. Giner1, J. E. Tarancón1, F. J. Fuenmayor1 and
A. Gravouil2

1Centro de Investigación de Tecnologı́a de Vehı́culos - CITV. Dpto. de Ingenierı́a Mecánica y de Materiales. Universitat
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2Laboratoire de Mécanique des Contacts et des Structures (LaMCoS). INSA-Lyon UMR CNRS 5259. 20 avenue Albert
Einstein, F-69621 Villeurbanne, France

SUMMARY

The aim of this study is the analysis of the convergence ratesachieved with domain energy integrals for the
computation of the stress intensity factors (SIF) when solving 2-D curved crack problems with the extended
finite element method (XFEM). Domain integrals, specially theJ-integral and the interaction integral, are
widely used for SIF extraction and provide high accurate estimations with finite element methods. The crack
description in XFEM is usually realized using level sets. This allows to define a local basis associated with
the crack geometry. In this work the effect of the level set local basis definition on the domain integral
has been studied. The usual definition of the interaction integral involves hypotheses that are not fulfilled
in generic curved crack problems and we introduce some modifications to improve the behavior in curved
crack analyses. Despite the good accuracy of domain integrals, convergence rates are not always optimal and
convergence to the exact solution cannot be assured for curved cracks. The lack of convergence is associated
with the effect of the curvature on the definition of the auxiliary extraction fields. With our modified integral
proposal, the optimal convergence rate is achieved by controlling theq-function and the size of the extraction
domain.

KEY WORDS: SIF; curved cracks; domain integrals; interaction integral;J-integral; convergence rate;
level set

1. INTRODUCTION

The analysis of the convergence rates achieved with different domain energy integrals and the

corresponding stress intensity factors (SIFs) when solving problems with curved cracks with

the extended finite element method (XFEM) [1, 2, 3, 4, 5, 6] is still an unresolved issue. The

SIFs characterize the severity of a crack and therefore a good estimation of these factors is

important. It is well known that domain integrals, based on theJ-integral [7, 8] and the interaction
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integral [3, 9, 10, 11] are widely used for SIF extraction and provide high accurate estimations with

finite element methods. However, their application to curved cracks in combination with the XFEM

involves the introduction of certain approximations that can have an influence on the SIF accuracy

and convergence rate.

The XFEM and level set method (LSM) [12, 13] can be used for the analysis of curved cracks

in two dimensions and non-planar cracks in three dimensions[3, 4, 11]. However, it is necessary

to understand the effect of the level set and the local basis definition on the SIF extraction using

domain integrals for problems with curved cracks. In general, building orthogonal level set distance

functions is not possible for curved cracks and therefore the analytically constructed curvilinear

basis [3] does not fulfill the orthogonality condition. However, it is possible to define an orthogonal

basis [11] using only the level set function whose zero value corresponds to the crack face,

together with geometric considerations. Both choices are used in the bibliography, but the lack of a

convergence study does not give an indication about which definition is better. The first goal of this

work is to perform an error convergence study in a curved crack problem and to provide arguments

to choose the basis.

Not all the domain integrals are suitable for the study of curved or non planar cracks [14, 15, 16].

Some domain integral formulations rely on extraction fieldsbased on the first term of the asymptotic

solution for a crack in LEFM. It is important to note that those fields correspond to a straight crack.

As an example, the interaction integral uses explicitly auxiliary fields in its formulation. The solution

fields for curved cracks are not the same as the fields for the straight crack and a generic expression

for this case is not available. The present convergence study also analyzes the influence of different

extractionq-functions for curved crack problems.

The use of the straight-crack auxiliary fields introduces some modifications in the interaction

integral when applied to curved cracks that can be affected by the type of the virtual velocity

function qi. In this work, the influence of different definitions of the virtual velocity functionqi
is also analyzed. However if a small domain extraction is used, the effect of using the straight crack

fields, instead of using the correct curved crack fields, can be minimized [14]. The orthogonality of

the level set basis is also better fulfilled if only a small domain is considered. The disadvantage is

that a high level of refinement is needed when using a small extraction domain.

In summary, several factors can affect the performance of domain integrals when applied to the

analysis of curved cracks using XFEM and level sets. In this work, the influence of these factors is

studied, namely:

• The influence of the basis orthogonality. The domain integral formulation relies on

relationships that accept basis orthogonality to avoid thecontour integration along the crack

faces. However, the basis orthogonality cannot be guaranteed in curved crack problems using

level sets.

• The auxiliary fields used in the interaction integral correspond to the straight crack case.

However, in the literature their application is usually extended to the analysis of curved cracks.

Explicitly, the strain auxiliary field is derived from otherauxiliary fields (either displacement

or stress fields) using relationships that do not hold for curved cracks. An analysis of the

effect of the auxiliary strain field definition is performed in this work to assess the behaviour

of different choices for the auxiliary strain field.
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• In addition, the validity of the reciprocity condition in some of the terms of the interaction

integral when using the straight crack auxiliary fields in curved configurations is also

discussed.

• The path independence of the interaction integral is affected by the former issues.

Consequently, the influence of the virtual velocity function qi and the extraction domain size

in curved crack problems is also analyzed.

2. XFEM

The XFEM is a numerical method that enables a local enrichment of the FE approximation

spaces. The enrichment is realized through the partition ofunity concept. The method is useful

for the approximation of solutions with pronounced non-smooth characteristics in small parts of the

computational domain, for example near discontinuities and singularities. In these cases, standard

numerical methods such as the FEM often exhibit poor accuracy. The essential idea in XFEM is

to use a displacement field approximation that can model any arbitrary discontinuity as the near-

tip asymptotic crack field. As a consequence it is not necessary to modify the mesh to consider a

specific crack; at most, moderate refinement must be introduced around the crack to achieve a good

accuracy in elastic fracture mechanics. The method is basedon the enrichment of the FE model

with additional degrees of freedom (DOFs) that are tied to the nodes of the elements affected by the

crack [1].

Figure 1. Enriched nodes in the X-FEM. Circles: nodes with Heaviside function, two additional DOFs.
Elements affected by this enrichment in yellow. Squares: nodes with crack tip enrichment function, eight

additional DOFs. Elements affected by this enrichment in blue.

Elements that contain at least one enriched node are known asenriched elements (see Fig.1).

Nodes with two additional DOFs (one for each coordinate direction) have shape functions that

multiply the Heaviside functionH(x) (function of unit magnitude whose sign changes across the

crack,H(x) = ±1). This function introduces the discontinuity across the crack faces. Nodes with
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eight additional DOFs are enriched in the two cartesian directions with four crack tip functions

Fα(x) [1]:

[Fα(r, θ), α = 1–4] =

[√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

]

(1)

wherer, θ are the local polar coordinates defined at the crack tip. We note that the span of the above

functions can reproduce the asymptotic displacement fieldsin LEFM, which gives rise to the near-

tip singular behavior in strains and stresses. It is well-documented in the literature [1, 6], and also

verified through our studies that these functions significantly improve the accuracy of the different

SIF extraction.

The displacement approximation for crack modeling in the extended finite element method takes

the form [1]:

uxfem(x) =
∑

i∈I

Ni(x)ui +
∑

i∈J

Ni(x)H(x)ai +
∑

i∈K

[

Ni(x)

4
∑

α=1

Fα(x)biα

]

(2)

whereI is the set of all nodes in the mesh,Ni(x) is the nodal shape function andui is the standard

DOF of nodei (ui represents the physical nodal displacement for non-enriched nodes only). The

subsetsJ andK contain the nodes enriched with Heaviside functionH(x) or crack-tip functions

Fα(x), respectively, andai, biα are the corresponding DOFs.

As in the standard FEM, it is necessary to perform numerical integration over the element domain

to compute the element stiffness matrix. However, the elements that contain the crack include

a displacement discontinuity due to the XFEM formulation. These elements are subdivided into

sub-domains in which the crack is one of the sub-domain boundaries to carry out the numerical

integrations. The algorithm presented in [18] is used to subdivide the elements totally cut by the

crack. The integration on the normal elements or on the sub-domains corresponding to the cut

elements is performed using a normal Gauss-Legendre integration rule. The element affected by

the crack tip is subdivided and integrated using a quasi polar rule introduced in [19]. An example of

a generic subdivision can be observed in Fig.2.

Figure 2. Example of subdivision of elements intersected bya crack for integration purposes.
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3. LEVEL SETS

In addition to the numerical method, a description of the crack geometry is needed. The information

of the crack is introduced through the use of distance functions based on level sets [3, 4, 11]. Two

level sets are used to perform the crack description. They are denoted asφ andψ and can be observed

in the figure3. Theφ level set is called the crack surface level set and its zero value corresponds to

the crack surface. Theψ level set, called front level set, determines the position relative to the crack

tip, which is located at the intersection ofφ = 0 with ψ = 0, and it is desirable that be orthogonal to

the level setφ. In summary, the crack is given by

φ(x) = 0 ψ(x) < 0 −→ defines crack location

φ(x) = 0 ψ(x) = 0 −→ defines crack tip location
(3)

f>0

f<0

y>0
y<0

Figure 3. Example of level sets for the general description of a crack.

The use of level sets for describing the crack has other advantages. First, the evaluation of the

level set at the nodes of the elements allows to select the elements to be enriched. It is achieved

just observing the change of sign of the distance functions in the element. Nodes that need to be

enriched are the nodes which fulfill the conditions4 whereIel is the set of nodes belonging to a

given element [3, 11]:







mini∈Iel (sign(φi(x, y)))maxi∈Iel (sign(φi(x, y))) ≤ 0

maxi∈Iel (sign(ψi(x, y))) < 0
−→ Heaviside enrichment







mini∈Iel (sign(φi(x, y)))maxi∈Iel (sign(φi(x, y))) ≤ 0

mini∈Iel (sign(ψi(x, y)))maxi∈Iel (sign(ψi(x, y))) ≤ 0
−→ Crack tip enrichment

(4)

Moreover the level set distance functionsφ andψ can be used to build a curvilinear local basis

associated with the crack geometry. The general local basisis defined using the normalized gradients

of the level set functions5 as in [3]. The level set local basis defines a natural system of coordinates
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that represents the crack magnitudes. All tensors used are represented in this coordinate system and

the derivatives for curved cracks are built following [15, 16].

e1 =
∇ψ

||∇ψ||

e2 =
∇φ

||∇φ||

(5)

Usually, it is assumed that the level sets are orthogonal in the sense that∇φ∇ψ = 0, but this is not

true for the general case. However we can ensure that the basis vectors are orthogonal if a vector is

built using one level set and the other is made orthogonal to the former, as given in6 following [11].

e1 =
∇ψ

||∇ψ||
e2⊥e1

(6)

In our implementation the values of the level sets are storedat the nodes of the finite element

mesh. The customary element shape functions are used for interpolating within the domain. The

values of the vectors of the local basis, in the description of curved cracks as straight segments

within each element, are computed at each element and averaged at the shared nodes with the

neighboring elements [4, 11]. To some extent, this maintains the curvature and allows toobtain

an approximation to a continuous smooth local basis variation.

Another advantage that arises from the use of level sets and its associated local basis is the

possibility of building polar coordinates at the crack tip,which provide directlyr and θ for the

crack tip enrichment functions1 as given in7. The Heaviside enrichment matches the sign of theφ

level set function. Fig.4 shows an example for the problem analyzed in this work.

r =
√

ψ2 + φ2

θ = tan−1 φ

ψ

(7)

Therefore, use of level sets is necessary, because it enables the computation of the(r, θ)

coordinates for curved cracks, which in turn are necessary for computing the SIFs. Note that for

points located ahead the crack tip it would be easy to compute(r, θ) using a local cartesian reference

system (with origin at the crack tip), but it would not be correct for points behind the crack tip

(for example, points on the curved crack faces). Hence, a curvilinear reference system becomes

necessary and the level sets provide an appropriate system of coordinates.
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Level sets

Figure 4. Level sets for an arc crack. Red and blue lines areφ andψ levels. Green lines representr and
black lines the angleθ as defined in7. The exact crack geometry corresponds to the thick red line.

4. J-INTEGRAL

The J-integral was introduced in [7] and it is one of the most powerful tools available for the

extraction of the SIF, especially in its domain form [8]. However it does not allow the extraction of

the SIF in mixed mode situations. The domain form is given by:

J = −
∫

A

Pij∂jqidΩ (8)

wherePij is the Eshelby’s tensor [20], which is defined as

Pij =
1

2
εklσklδij − σjk∂iuk (9)

whereui is the displacement field,σij is the stress field,δij is the Kronecker’s delta function andqi
is a vector in directione1 with a modulus proportional to a weight functionα(x), which is zero on

the contour of the extraction domainA and one at the crack tip point. For 2D problems the SIFs can

be related to theJ-integral using the expression

J =
K2

I

E∗
+
K2

II

E∗
(10)
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whereE∗ is the modified Young’s modulus defined in terms of material parametersE (Young’s

modulus) andν (Poisson’s ratio) as

E∗ =

{

E plane stress
E

1−ν2 plane strain
(11)

5. INTERACTION INTEGRAL

The interaction integral is used to extract the SIF under mixed-mode situations, [3, 9, 10, 11],

enabling the computation ofKI andKII in 2D problems. To achieve this goal, auxiliary fields are

needed. The interaction integral is derived from the application of theJ-integral to a problem where

two stress fields are involved, resulting in the following decomposition:

J (1+2) = J (1) + J (2) + I (12)

The termI corresponds to the interaction integral and includes the interaction between the two

intervening fields. For straight cracks the interaction integral is:

I = −
∫

A

(σklε
aux
kl δij − σauxkj ∂iuk − σkj∂iu

aux
k )∂jqidΩ (13)

The fields denoted with the superscriptaux are the auxiliary fields. Usually, the auxiliary fields are

selected to be the straight crack fields, allowing the extraction of the different SIF modes. The fields

ui, σij , qi andδij are defined in the same way as in theJ-integral, beingεij the strain field. The use

of the straight crack fields as auxiliary fields to evaluate a curved crack configuration, implies that

13 is not longer valid. The usual expression used to evaluate the domain form of this integral for

curved cracks [1, 3, 11] is:

I =−
∫

A

(σklε
aux
kl δij − σauxkj ∂iuk − σkj∂iu

aux
k )∂jqidΩ

−
∫

A

(∂iσ
aux
kl εklδij − σkl∂liu

aux
k − ∂lσ

aux
kl ∂iuk)qidΩ

(14)

The derivation of the expression14 can be found in [10]. The generic treatment to apply the

interaction integral to curved cracks is presented in [15, 16] and it is also analyzed for theJ-integral

in [17]. It is important to note that all the hypothesis assumed when deriving the above interaction

integral expression, using the straight crack fields as auxiliary fields, should not be accepted directly

for generic curved cracks [10, 14, 15, 16]. However, they are all admitted in [15, 16].

We will justify a proposal of modification of the interactionintegral for curved cracks recalling

its derivation. With no simplifications the general form of the interaction integral is

I =−
∫

A

(

1

2
(εauxkl σkl + εklσ

aux
kl ) δij − σauxkj ∂iuk − σkj∂iu

aux
k

)

∂jqidΩ

−
∫

A

(

1

2
(∂jε

aux
kl σkl + εauxkl ∂jσkl + ∂jεklσ

aux
kl + εkl∂jσ

aux
kl ) δij

)

qidΩ

−
∫

A

(

−∂jσauxkj ∂iuk − σauxkj ∂ijuk − ∂jσkj∂iu
aux
k − σkj∂iju

aux
k

)

qidΩ

(15)
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The first problem arises from the fact that the inner equilibrium equation and the compatibility

equations between strains-displacements of the auxiliaryfields do not hold for a curved crack

studied in curvilinear coordinates, that is

∂iσ
aux
ij 6= 0

(∂liu
aux
j − ∂lε

aux
ij ) 6= 0

(16)

Therefore, the expression13 cannot be used in curved cracks. In addition, the reciprocity

relationship is also assumed in the derivation of14. The reciprocity condition implies that the same

constitutive tensor is used to relate the auxiliary strain field and the auxiliary stress field, i.e.

εauxij σij = εauxij Cijklεkl = Cklijε
aux
ij εkl = σauxkl εkl (17)

If this reciprocity condition is assumed, then the following relationship holds:

1

2
(εauxij σij + εijσ

aux
ij ) = εauxij σij (18)

As a consequence, Eq.14 is obtained as a simplification of Eq.15, as is usually done

in the literature. The terms involved in18 correspond to the interaction strain energy. This

way, the auxiliary fields corresponding to a straight crack are enforced to adjust to a curved

coordinate system. This is the reason why the reciprocity relationship cannot be accepted and the

simplifications18and14should not be used for curved crack problems.

The reciprocity relationship is also used in the derivationof the second integrand of14 from

Eq.15, i.e.

∂iσ
aux
kl εklδij − σkl∂liu

aux
k − ∂lσ

aux
kl ∂iuk (19)

is a simplification of

1

2
(∂jε

aux
kl σkl + εauxkl ∂jσkl + ∂jεklσ

aux
kl + εkl∂jσ

aux
kl ) δij

−∂jσauxkj ∂iuk − σauxkj ∂ijuk − ∂jσkj∂iu
aux
k − σkj∂iju

aux
k

(20)

If the reciprocity relationship is not applied in20, the computation of derivatives of the numerical

approximation near the crack face are required, such as∂jσkl and∂jεkl. The numerical computation

of these derivatives introduce large numerical errors. However, we have verified that the integrand20

has little influence on the final result. Hence, to avoid the introduction of further numerical errors,

we will admit the reciprocity relationship only in the derivation of the simplified expression19.

Therefore, the interaction integral expression that we will use in this work is finally:

I =−
∫

A

(

1

2
(σklε

aux
kl + σauxkl εkl)δij − σauxkj ∂iuk − σkj∂iu

aux
k

)

∂jqidΩ

−
∫

A

(∂iσ
aux
kl εklδij − σkl∂liu

aux
k − ∂lσ

aux
kl ∂iuk) qidΩ

(21)
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5.1. Auxiliary fields

Due to the lack of knowledge of a general expression for the auxiliary fields for curved cracks, the

first terms of the Williams’ asymptotic fields of the LEFM are used as auxiliary fields, using the

definitions stated in7 asθ andr. However, it is important to note that for general curved cracks, the

conditions of compatibility, inner equilibrium and Hooke’s law are not simultaneously verified for

this selection of the auxiliary fields [14, 15, 16]. The auxiliary displacement field is the first term of

the Williams’ series expansion:

uaux1 =
1

2µ

√

r

2π

{

Kaux
I (κ− cos θ) cos

θ

2
+Kaux

II (κ+ 2 + cos θ) sin
θ

2

}

uaux2 =
1

2µ

√

r

2π

{

Kaux
I (κ− sin θ) sin

θ

2
+Kaux

II (κ− 2 + cos θ) cos
θ

2

}
(22)

where

µ =
E

2 (1 + ν)
, κ =

{

3− 4ν plane strain
3−ν
1+ν plane stress

(23)

The auxiliary stress field is:

σaux11 =
Kaux

I√
2πr

[

1− sin
θ

2
sin

3θ

2

]

cos
θ

2
− Kaux

II√
2πr

[

2 + cos
θ

2
cos

3θ

2

]

sin
θ

2

σaux22 =
Kaux

I√
2πr

[

1 + sin
θ

2
sin

3θ

2

]

cos
θ

2
+
Kaux

II√
2πr

cos
θ

2
cos

3θ

2
sin

θ

2

σaux12 =
Kaux

I√
2πr

cos
θ

2
cos

3θ

2
sin

θ

2
+
Kaux

II√
2πr

[

1− sin
θ

2
sin

3θ

2

]

cos
θ

2

The auxiliary field for the strains is also needed. Two possible choices arise to obtain the strain

field. The first choice is based on the enforcement of the constitutive strain-stress relationship [3, 11]

and the strain field is computed from the stress field by applying the Hooke’s law.

εauxij = C−1
ijklσ

aux
kl (24)

The second option is that the strain field can be obtained fromthe derivatives of the displacement

field like in [10, 15, 16], enforcing the strain-displacement relationship:

εauxij = {∇simuaux}ij (25)

In principle, there is no reason to assume that either choiceis the best one. In this paper, we

propose a third option. As neither expression verifies simultaneously the compatibility and inner

equilibrium relationships for the auxiliary fields, an averaged strain field between the two options

can also be considered. The objective is to verify an averaged condition between compatibility and

inner equilibrium relationship. The averaged auxiliary strain field is given by

εauxij =
{∇simuaux}ij + C−1

ijklσ
aux
kl

2
(26)
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The gradients of the auxilary fields in curvilinear coordinates need the inclusion of additional

terms, that involve the Christoffel symbols, related with curvature effects. The detailed

implementation of this derivatives can be found in [15, 16].

5.2. SIF extraction

The well-known relationship between the interaction integral and the SIFs is derived from the

expressions10and12:

I =
2

E∗
(KIK

aux
I +KIIK

aux
II ) (27)

If the SIFs of the auxiliary field are chosen asKaux
I = 1 andKaux

II = 0, then the sought valueKI

is obtained as:

I =
2

E∗
KI (28)

Similarly, if Kaux
I = 0 andKaux

II = 1 then

I =
2

E∗
KII (29)

6. DOMAIN INTEGRAL COMPUTATION IN XFEM

The integrals8, 14, 13 and15 are expressed in domain formulation which uses the virtual velocity

field qi [3, 11]. The equivalent contour formulation is not well suited fornumerical computations in

the finite element framework. As a consequence, the selection of the virtual velocity field needs to

be addressed. The extraction domain is controlled through the use of the virtual velocity field and

the numerical integration is performed within the extraction domain using the integration points at

the element level. The virtual velocity field must be tangentto the crack face and is defined by the

expression:

q = α(φ, ψ)e1 (30)

Note that the domain extraction region and the weight of the integration on the extraction domain

is controlled through the use ofα, which depends on the level set coordinates. The functionα has

to take unit value at the crack tip and zero on the boundary of the extraction domain.

For the sake of simplicity the extraction domain has been selected with a boundary defined by a

circle of radiusR which will depend on the crack curvature radiusRc. The selection of the exact

functional definition forα needs here some discussion. Theα function is evaluated using a finite

element approach, i.e. it is evaluated at nodes and interpolated within the element domain using the

finite element shape functions. We have considered two possibilities for the definition ofα at nodes:

a plateau function and a ramp function.

One of the most usedα functions is the plateau function. It has the advantage thatin the central

regionα is constant and its derivative vanishes (and so does the derivative ofq). This is not strictly

true for curved cracks as the gradient involves the use of curvilinear coordinates and Christoffel
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symbols, leading to nonzero results that depend on the curvature. In any case, we have verified this

is a small quantity. In the central region, the fields corresponding to the singular term dominate and

even with the introduction of the XFEM, enrichment of this central part introduces numerical errors

that suggest to reduce it to a minimum. The exact plateau considered is:

α =







1 if
√

φ2 + ψ2 < R

0 if
√

φ2 + ψ2 ≥ R
(31)

Note that with our implementation Eq.31 corresponds to an integration over a one-element width

ring. The interaction integral for curved cracks15 includes a term which involvesqi. For straight

cracks this term is zero as all the assumptions for the auxiliary fields are fulfilled. For curved crack

problems this term will dominate in the central region if a plateau function is selected. Another

choice for theα function is the ramp function32. However, the ramp function has the drawback of

using information of points close to the crack tip. As theJ-integral has no terms involving explicitly

qi (only its spatial derivative), the use of the ramp function in combination with theJ-integral has

not a large influence as compared to the interaction integral.

α =







1−
√
φ2+ψ2

R
if
√

φ2 + ψ2 < R

0 if
√

φ2 + ψ2 ≥ R
(32)

7. REFERENCE PROBLEM

The problem considered is an arc crack in an infinite plate subjected to equibiaxial stress. The

geometry of the crack is defined by the radiusRc and the angleβ, as shown in Figure5. In this

study we have taken the valuesRc = 1 and twoβ angles,β = π/2 for the main study andβ = π/4

as a further verification. The domain used for the XFEM analyses is a finite portion centered at

the crack tip and defined by a widthw = 2a and a heighth = 4a, wherea = Rc sin (β) is related

to the crack length. The analytical stress field solution andsymmetry conditions are imposed on

the boundary of the finite domain in order to make the model equivalent to the infinite domain

problem. The analytical solution to this problem is given in[21]. This problem is well studied in

the bibliography, e.g. [16, 22]. The following convergence rate study for this reference problem is

carried out using a mesh sequence with regular linear triangular elements with uniform refinement.

The reference solution for the SIFs is:

Kex
I = σ∞ (πa)

1

2

cos
(

β
2

)

1 + sin2
(

β
2

)

Kex
II = σ∞ (πa)

1

2

sin
(

β
2

)

1 + sin2
(

β
2

)

(33)

whereσ∞ is the applied remote load.

The mesh sequence, used for the convergence study, is built using regular triangular elements

with a side length defined by the following series:
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Figure 5. The problem of an arc crack in an infinitely extendedplate subjected to equibiaxial tension

h =

{

2a
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,
2a
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,
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133
,
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,
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,
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193
,
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,
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233
,
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257
,
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323
,
2a

413
,
2a

457
,
2a

513
,
2a

673

} (34)

The first mesh of the sequence can be observed in Figure6. In our model the curved crack

is described as straight segments within each element. Thisintroduces further approximations,

although the associated error is deemed small for sufficiently refined meshes, as the ones used in

this analysis. It is possible to improve the crack description using higher order elements [23], but

this issue has not been considered in this work.
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Figure 6. First mesh of the sequence for the arc-crack problem and enlarged view of the vicinity of the crack
tip. β = π/2.

8. ANALYSIS OF CONVERGENCE RATES

The convergence is studied computing the error in the SIF versus the number of degrees of freedom

of the mesh. The expected optimal convergence rate for the error in the SIF using XFEM with

topological enrichment is0.5 [19, 24, 25, 26, 27].The first study presented here is the effect of the

selection of the level set basis. The extraction domain radius is selected to beR = 0.2Rc. Theα

ramp function32 is used. It is worth noting that we are using an extraction domain andα function

that magnify the errors derived from the basis definition. Two choices of the level set basis are

studied: on the one hand, the basis is formulated directly from the level set definition5. On the

other hand, an orthogonal basis is defined using only one level set and geometric considerations that

ensure orthogonality6. According to Figure7, the latter choice (the orthogonal basis) yields the

correct convergence rate whereas the basis built directly from the level sets does not converge with

the optimum rate. The requirement of orthogonality has alsobeen proposed and recommended by

other authors, e.g. Duflot [11], although a comparative convergence study is not presented in [11].

Once the correct choice for the basis has been evidenced, we move now to the analysis of the

interaction integral. The same extraction domain is used, i.e. α is defined by a ramp function
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ls orthogonal basis, convergence rate s=0.50
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Figure 7. Level sets local basis definition study. Error convergence study on Integral results.

with R = 0.2Rc. Five studies have been carried out considering the different options explained

in previous sections. The different options are: a) auxiliary strain field obtained from auxiliary

displacements25 and usual interaction integral expression14; b) auxiliary strain field obtained

from the auxiliary stress field24 and the usual interaction integral expression; c) auxiliary strain

field defined using the averaged field26 and the usual interaction integral expression; d) auxiliary

strain field obtained from auxiliary displacement field withthe modified interaction integral

formulation21, denoted in the plots as energy term; e) auxiliary averaged strain field with modified

interaction integral, also denoted in the plots as energy term. The effect on the convergence rate for

the error inKI andKII can be observed in Figures8 and9.

The optimum convergence rate is0.5 but none of our studies achieves that rate. It is observed that

the caseεaux obtained fromσaux is more accurate forKI than the other cases, but a sign change

is detected in the approach error shown by the abrupt change in slope (the plotted magnitude is the

absolute value of the error). This sign change is indicativeof convergence to a different solution.

No significant differences can be observed in the behavior for the error inKII. From Figure8 it

can be inferred that the best behavior can be associated withthe use of the averaged auxiliary strain

field and the modified interaction integral expression, since it shows the best convergence rate and

accuracy converging to the exact solution. We remark that this choice is the one that introduces less

assumptions, since the reciprocity relationship is only assumed for the second term in Eq.21 and

it uses an average approximation for the strain auxiliary field to fulfill the inner equilibrium and

compatibility conditions.

In what follows, the effect of the extraction functionα is analyzed: the plateau function defined

in 31 and the ramp function32. This part of the study is performed with both integrals, the

interaction integral and theJ-integral. The same domain extraction radius is used,R = 0.2Rc. The
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Figure 8. Results of the convergence study for the differentinteraction integral definitions for curved cracks.
Convergence of the error inKI.
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Figure 9. Results of the convergence study for the differentinteraction integral definitions for curved cracks.
Convergence of the error inKII.

effect on the convergence rate for the error inKI, KII andJ can be observed in Figures10, 11

and12, respectively. It can be observed that the plateau functiondoes not behave correctly with

the interaction integral, showing a sign change for the error in KI and a negative or almost zero
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convergence for the error inKII. However, both extraction functions show optimal convergence with

theJ-integral. This result is not surprising, because the ramp function leads to good behaviour with

the interaction integral as it has no central region, thus controlling the effect of the approximations

introduced by the auxiliary fields. The good results of theJ-integral combined with the plateau

function are explained because theJ-integral does not involve auxiliary fields and the central region

(plateau) avoids the contribution of the zone near the cracktip to the integral computation.

The bad behaviour of the plateauq-function in combination with the interaction integral can

be explained as follows. When using the plateau function only a ring of elements contributes

to the computation of the first part of the interaction integral (integral with∂jqi as factor). As

these elements are far from the region where the auxiliary straight crack fields are acceptable, the

contribution of this first integral is, in average, worse than when the ramp function is used. In

addition, for the second integral (integral withqi as factor) most of the elements that lie between

the extraction ring and the crack tip are multiplied by 1.0 (the plateau value). Since this second

integral is not zero because we are using auxiliary fields forstraight cracks, the undesired effect of

this straight-crack auxiliary fields is increased. Therefore, convergence with the plateau function is

worse than with the ramp function.
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Figure 10. Effect of the extraction functionα on the convergence. Convergence of the error inKI using the
interaction integral.

Finally, the influence of the size of the extraction domain isstudied. The extraction domain

radiusR is varied betweenR = 0.01Rc andR = 0.9Rc. For the interaction integral, we use the

expression that yields better results (averaged auxiliarystrain field and the modified interaction

integral expression21). The ramp function is used in all cases. Fig.13 presents the calculated

convergence rate as a function of the extraction domain radius. Note that each point in Fig.13 is

obtained with a whole convergence study. In addition, the minimum error achieved in each of these
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Figure 11. Effect of the extraction functionα on the convergence. Convergence of the error inKII using the
interaction integral.

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

N

|e
rr

or
| (

%
)

Integral J

 

 

Plateau function s=0.56

Ramp function s=0.50

Figure 12. Effect of the extraction functionα on the convergence. Convergence of the error inJ using the
J-integral.

convergence studies is presented in Fig.14. The results show that an extraction radius of about 10%

of the curvature radius should be used in order to achieve good convergence rates. Note that a very

small extraction radius would need a highly refined mesh in the vicinity of the crack tip. This is
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indicated in Fig.14by the loss of accuracy for very small radii. Note also that the convergence rates

are close to the expected value of 0.5 for small radii (see Fig. 13). This suggests that the straight

crack auxiliary fields are an acceptable approximation in this region.
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Figure 13. Convergence rates for the error in the SIFs andJ calculated with several extraction radii.
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In order to verify the results, a last example is studied. Thearc crack geometry with a subtended

angle ofβ = π/4 is analyzed using the options that led to the best results in the previous case

β = π/2. These options are: an orthogonal level set basis6, the modified interaction integral

expression21 (with an averaged auxiliary strain field), a rampq-function 32 and an extraction

domain of sizeR/Rc = 0.1. The error convergence rates forKI, KII andJ-integral are shown in

Fig. 15. The convergence rates are close to the optimum value and their behavior is similar to the

β = π/2 case. These results show that our proposal yields a good behaviour in terms of convergence

rates.
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Figure 15. Arc crack withβ = π/4, verification of the results. Convergence rates for the error in the SIFs
andJ with a rampq-function andR/Rc = 0.1.

9. CONCLUSIONS

Several conclusions can be drawn from the present study regarding the application of energy

integrals to curved crack problems. The first is that the domain energy integrals exhibit good

convergence rates when an orthogonal basis is used. If the basis is not orthogonal, then the optimum

convergence rate cannot be assured. An orthogonal basis canbe constructed, for example, using only

the level set which describes the crack surface together with geometric considerations. When using

this orthogonal basis, it has been shown that the convergence rate of theJ-integral is the optimal for

topological enrichment in XFEM.

If the interaction integral is used to extract the SIFs in a curved crack problem, its convergence to

the exact solution cannot be assured, at least not with the optimal convergence rate. The reason is

related to the definition of the auxiliary fields and the assumptions involved in the integral definition.
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We have shown that if the interaction integral is computed without introducing some simplifications

related to the reciprocal relationship, an improvement in the accuracy is observed.

As far as the extraction function is concerned, this should be selected to control the influence of

each term of the interaction integral expression. We can conclude that the use of a function whose

derivative is not zero in the domain around the crack tip (ramp function) provides the best results

with the interaction integral. However, the best accuracy with the J-integral is obtained with a

plateau function but this function does not lead to good results with the interaction integral. In order

to achieve a good convergence rate, a domain extraction sizeless than 10% of the curvature radius

should be used. This also imposes some restrictions on the element size in the vicinity of the crack

tip. Moreover, this introduces limitations on the use of geometrical XFEM enrichment in curved

crack problems.
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