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SUMMARY

The aim of this study is the analysis of the convergence mtkved with domain energy integrals for the
computation of the stress intensity factors (SIF) whenisgl2-D curved crack problems with the extended
finite element method (XFEM). Domain integrals, specidltlg #-integral and the interaction integral, are
widely used for SIF extraction and provide high accurat&regtons with finite element methods. The crack
description in XFEM is usually realized using level setsisTdilows to define a local basis associated with
the crack geometry. In this work the effect of the level sealdasis definition on the domain integral
has been studied. The usual definition of the interactioggiatl involves hypotheses that are not fulfilled
in generic curved crack problems and we introduce some reatldins to improve the behavior in curved
crack analyses. Despite the good accuracy of domain ingeganvergence rates are not always optimal and
convergence to the exact solution cannot be assured foe@eracks. The lack of convergence is associated
with the effect of the curvature on the definition of the aiaxil extraction fields. With our modified integral
proposal, the optimal convergence rate is achieved byalting the g-function and the size of the extraction
domain.

KEY WORDS: SIF; curved cracks; domain integrals; interactintegral;.J-integral; convergence rate;
level set

1. INTRODUCTION

The analysis of the convergence rates achieved with diffedlemain energy integrals and the
corresponding stress intensity factors (SIFs) when sghproblems with curved cracks with
the extended finite element method (XFEM) P, 3, 4, 5, 6] is still an unresolved issue. The
SIFs characterize the severity of a crack and therefore a gstimation of these factors is
important. It is well known that domain integrals, based lva.f-integral [7, 8] and the interaction
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integral 3, 9, 10, 11] are widely used for SIF extraction and provide high ac@iegtimations with
finite element methods. However, their application to cdreeacks in combination with the XFEM
involves the introduction of certain approximations tham tiave an influence on the SIF accuracy
and convergence rate.

The XFEM and level set method (LSM)2, 13] can be used for the analysis of curved cracks
in two dimensions and non-planar cracks in three dimendi®né 11]. However, it is necessary
to understand the effect of the level set and the local badigiton on the SIF extraction using
domain integrals for problems with curved cracks. In gelpéralding orthogonal level set distance
functions is not possible for curved cracks and therefoesahalytically constructed curvilinear
basis B] does not fulfill the orthogonality condition. However, stpossible to define an orthogonal
basis [L1] using only the level set function whose zero value corraegigoto the crack face,
together with geometric considerations. Both choices aegl in the bibliography, but the lack of a
convergence study does not give an indication about whifihitlen is better. The first goal of this
work is to perform an error convergence study in a curvedkcpacblem and to provide arguments
to choose the basis.

Not all the domain integrals are suitable for the study ofedror non planar crackd 4, 15, 16].
Some domain integral formulations rely on extraction fidldsed on the first term of the asymptotic
solution for a crack in LEFM. It is important to note that tledgelds correspond to a straight crack.
As an example, the interaction integral uses explicitlyikary fields in its formulation. The solution
fields for curved cracks are not the same as the fields for taigkt crack and a generic expression
for this case is not available. The present convergence silsd analyzes the influence of different
extractiong-functions for curved crack problems.

The use of the straight-crack auxiliary fields introducesisamadifications in the interaction
integral when applied to curved cracks that can be affectethb type of the virtual velocity
function ¢;. In this work, the influence of different definitions of thetuial velocity functiong;
is also analyzed. However if a small domain extraction isludee effect of using the straight crack
fields, instead of using the correct curved crack fields, eminimized [L4]. The orthogonality of
the level set basis is also better fulfilled if only a small domis considered. The disadvantage is
that a high level of refinement is needed when using a smaleion domain.

In summary, several factors can affect the performance wofaio integrals when applied to the
analysis of curved cracks using XFEM and level sets. In tlagkwthe influence of these factors is
studied, namely:

e The influence of the basis orthogonality. The domain integoamulation relies on
relationships that accept basis orthogonality to avoidctirgour integration along the crack
faces. However, the basis orthogonality cannot be guagdrnitecurved crack problems using
level sets.

e The auxiliary fields used in the interaction integral copeesd to the straight crack case.
However, in the literature their application is usuallyended to the analysis of curved cracks.
Explicitly, the strain auxiliary field is derived from othauxiliary fields (either displacement
or stress fields) using relationships that do not hold fovedrcracks. An analysis of the
effect of the auxiliary strain field definition is performatthis work to assess the behaviour
of different choices for the auxiliary strain field.
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e In addition, the validity of the reciprocity condition ins® of the terms of the interaction
integral when using the straight crack auxiliary fields imved configurations is also
discussed.

e The path independence of the interaction integral is aftedby the former issues.
Consequently, the influence of the virtual velocity funatig and the extraction domain size
in curved crack problems is also analyzed.

2. XFEM

The XFEM is a numerical method that enables a local enrichroérthe FE approximation
spaces. The enrichment is realized through the partitionndf concept. The method is useful
for the approximation of solutions with pronounced non-sthaharacteristics in small parts of the
computational domain, for example near discontinuities singularities. In these cases, standard
numerical methods such as the FEM often exhibit poor acguiidte essential idea in XFEM is
to use a displacement field approximation that can model drijyrary discontinuity as the near-
tip asymptotic crack field. As a consequence it is not necggeamodify the mesh to consider a
specific crack; at most, moderate refinement must be intextlamund the crack to achieve a good
accuracy in elastic fracture mechanics. The method is basdtie enrichment of the FE model
with additional degrees of freedom (DOFs) that are tied ¢éonthdes of the elements affected by the
crack [].

Figure 1. Enriched nodes in the X-FEM. Circles: nodes wittagide function, two additional DOFs.
Elements affected by this enrichment in yellow. Squareslesawith crack tip enrichment function, eight
additional DOFs. Elements affected by this enrichmentirebl

Elements that contain at least one enriched node are knownrahed elements (see Fib).
Nodes with two additional DOFs (one for each coordinatedtioa) have shape functions that
multiply the Heaviside functior# (x) (function of unit magnitude whose sign changes across the
crack, H (x) = £1). This function introduces the discontinuity across theckrfaces. Nodes with
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eight additional DOFs are enriched in the two cartesianctivas with four crack tip functions
Fo(x) [1]:

0 0 0 0
[Fo(r,0), a =1-4] = |\/rsin 2 /T cos 2 \/F5111551119, \/Fcos§sin€ @

wherer, 6 are the local polar coordinates defined at the crack tip. e that the span of the above
functions can reproduce the asymptotic displacement fieldEFM, which gives rise to the near-
tip singular behavior in strains and stresses. It is wetitnhoented in the literaturel] 6], and also
verified through our studies that these functions signiflgamprove the accuracy of the different
SIF extraction.

The displacement approximation for crack modeling in thereded finite element method takes
the form [1]:

Uxfern (X) = Z Ni(x)u; + Z Ni(x)H (x)a; + Z

€L i€J S

Ni(x) > Fa (x)bml )
a=1

whereZ is the set of all nodes in the mesH;(x) is the nodal shape function amg is the standard

DOF of nodei (u; represents the physical nodal displacement for non-egdlicitodes only). The

subsets7 and K contain the nodes enriched with Heaviside functid(x) or crack-tip functions

F,(x), respectively, and,, b;, are the corresponding DOFs.

As inthe standard FEM, it is necessary to perform numernitabiration over the element domain
to compute the element stiffness matrix. However, the efdsnthat contain the crack include
a displacement discontinuity due to the XFEM formulatiohe$e elements are subdivided into
sub-domains in which the crack is one of the sub-domain batesl to carry out the numerical
integrations. The algorithm presented i8] is used to subdivide the elements totally cut by the
crack. The integration on the normal elements or on the subaihs corresponding to the cut
elements is performed using a normal Gauss-Legendre aitegrrule. The element affected by
the crack tip is subdivided and integrated using a quasrpola introduced in]9]. An example of
a generic subdivision can be observed in Rig.

N\

ixai;\aix <IN\
DSAN AN AN AN ZAN

N

Figure 2. Example of subdivision of elements intersected byack for integration purposes.
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3. LEVEL SETS

In addition to the numerical method, a description of thekigeometry is needed. The information
of the crack is introduced through the use of distance fonstbased on level set3, (4, 11]. Two
level sets are used to perform the crack description. Thegi@moted ag andy and can be observed
in the figure3. The¢ level set is called the crack surface level set and its zdi@varresponds to
the crack surface. The level set, called front level set, determines the positaative to the crack
tip, which is located at the intersection@t 0 with ¢» = 0, and it is desirable that be orthogonal to
the level sets. In summary, the crack is given by

0 (x) <0 — defines crack location 3)
0 ¥(x) =0 — defines crack tip location

<0 T T T - - -
¢<0 ;

Figure 3. Example of level sets for the general descripticam aack.

The use of level sets for describing the crack has other adges. First, the evaluation of the
level set at the nodes of the elements allows to select theegles to be enriched. It is achieved
just observing the change of sign of the distance functiarthé element. Nodes that need to be
enriched are the nodes which fulfill the conditichsvhere¢ is the set of nodes belonging to a
given element3, 11]:

min,e et (SIGN(P3 (2, y))) max;e rer (Sign(ei(z,y))) <0
max;e e (Sign(v;(z,y))) < 0

— Heaviside enrichment

(4)

minge et (SIGN(i (2, y))) max;e er (SigN(¢i(, y))) <0

minge et (SIGN(1i (2, y))) maxie e (SigN(Yi(2, y))) <0

— Crack tip enrichment

Moreover the level set distance functiongnd can be used to build a curvilinear local basis
associated with the crack geometry. The general local sadé&sined using the normalized gradients
of the level set functionS as in 3]. The level set local basis defines a natural system of coatels
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that represents the crack magnitudes. All tensors use@presented in this coordinate system and
the derivatives for curved cracks are built followirlgh| 16].

e = vy
W
|| V]|
LYo ©)
27 Vel

Usually, it is assumed that the level sets are orthogonhkisénse that V) = 0, but this is not
true for the general case. However we can ensure that the \msdbrs are orthogonal if a vector is
built using one level set and the other is made orthogonakddarmer, as given ifi following [11].

_ W
vyl (6)

egLel

€1

In our implementation the values of the level sets are statedtie nodes of the finite element
mesh. The customary element shape functions are used &paating within the domain. The
values of the vectors of the local basis, in the descriptibnuoved cracks as straight segments
within each element, are computed at each element and &aekeetgthe shared nodes with the
neighboring elementsi| 11]. To some extent, this maintains the curvature and allowsht@in
an approximation to a continuous smooth local basis varniati

Another advantage that arises from the use of level setstanasgociated local basis is the
possibility of building polar coordinates at the crack tighich provide directlyr andé for the
crack tip enrichment functionkas given in7. The Heaviside enrichment matches the sign ofithe
level set function. Figd shows an example for the problem analyzed in this work.

r= /wQ + ¢2

(7

0 = tan™* ¢

Therefore, use of level sets is necessary, because it en#tidecomputation of thér,0)

coordinates for curved cracks, which in turn are necessargdmputing the SIFs. Note that for
points located ahead the crack tip it would be easy to com(pLi¢ using a local cartesian reference
system (with origin at the crack tip), but it would not be @mtr for points behind the crack tip
(for example, points on the curved crack faces). Hence, dlimear reference system becomes
necessary and the level sets provide an appropriate sy$tevomlinates.
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Figure 4. Level sets for an arc crack. Red and blue linespaard levels. Green lines represeniand
black lines the anglé as defined irY. The exact crack geometry corresponds to the thick red line.

4. J-INTEGRAL

The J-integral was introduced in7] and it is one of the most powerful tools available for the
extraction of the SIF, especially in its domain forj.[However it does not allow the extraction of
the SIF in mixed mode situations. The domain form is given by:

A
whereP;; is the Eshelby’s tensoR[)], which is defined as
1
P = 55k10kl5z‘j — 0jk0;ug 9)

whereu; is the displacement field; is the stress fieldy;; is the Kronecker’s delta function ang

is a vector in directior; with a modulus proportional to a weight functiefx), which is zero on

the contour of the extraction domaihand one at the crack tip point. For 2D problems the SIFs can
be related to thg-integral using the expression

KK

10
=t T (10)

J
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where E* is the modified Young's modulus defined in terms of materiabpeetersty (Young's
modulus) and (Poisson’s ratio) as

(11)

B E plane stress
plane strain

5. INTERACTION INTEGRAL

The interaction integral is used to extract the SIF undereaghimode situations3[ 9, 10, 11],
enabling the computation df; and K, in 2D problems. To achieve this goal, auxiliary fields are
needed. The interaction integral is derived from the apgibio of the.J-integral to a problem where
two stress fields are involved, resulting in the followingdposition:

JUD = g0 4 g@ 41 (12)

The termI corresponds to the interaction integral and includes tteraction between the two
intervening fields. For straight cracks the interactioegnal is:

I=-— / (ok1€R) " 0ij — oy g — ok Ojug"™)0;q;dS (13)
A

The fields denoted with the superscript are the auxiliary fields. Usually, the auxiliary fields are
selected to be the straight crack fields, allowing the ektvaof the different SIF modes. The fields
u;, 045, ¢; andg;; are defined in the same way as in théntegral, being:;; the strain field. The use
of the straight crack fields as auxiliary fields to evaluateiaved crack configuration, implies that
13is not longer valid. The usual expression used to evaluae@dmain form of this integral for
curved cracksT, 3, 11] is:

I =- / (O’kl€%1x5ij — O'Z}Lzaiuk — okjaiui“””)ajqidQ

2 (14)

— / (81'013?15]@[52']' — oklaliu%“”” — 810,‘jfx8iuk)qidﬂ
A

The derivation of the expressiait can be found in10]. The generic treatment to apply the
interaction integral to curved cracks is presented i 16] and it is also analyzed for théintegral
in [17]. It is important to note that all the hypothesis assumedmderiving the above interaction
integral expression, using the straight crack fields adianxfields, should not be accepted directly
for generic curved crackd ], 14, 15, 16]. However, they are all admitted id$, 16).

We will justify a proposal of modification of the interactiamegral for curved cracks recalling
its derivation. With no simplifications the general form bétinteraction integral is

1
I = — / <§ (6%“30'161 -+ EklO'ZZw) 51’]’ — O’Z}“Caiuk — kaaiuzw> 8jqidﬂ
A

1
- /A <§ (Ojer“om +ep 00k + Ojeriony™ + 0o ) 5ij) ¢;dQ (15)

— / (—5‘jo,‘€‘;*5‘¢uk — O'zju aijuk — 6‘jokj5‘iuzu — kaaiju%”*) qde
A
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The first problem arises from the fact that the inner equtitorequation and the compatibility
equations between strains-displacements of the auxifialgs do not hold for a curved crack
studied in curvilinear coordinates, that is

Do #0
(Buud™ — e ™) # 0

(16)

Therefore, the expressiob3 cannot be used in curved cracks. In addition, the reciprocit
relationship is also assumed in the derivatiod4fThe reciprocity condition implies that the same
constitutive tensor is used to relate the auxiliary stratdfand the auxiliary stress field, i.e.
auxr .

i oig = €5 Cijriert = Criijei; e = o epl (17)

3 ij

If this reciprocity condition is assumed, then the follog/irelationship holds:

1 - . .
5(5?]?“’0’1‘]‘ + Eijo'iajyd’) = Eg;“’o'ij (18)

As a consequence, Ed4 is obtained as a simplification of Ed5, as is usually done
in the literature. The terms involved ih8 correspond to the interaction strain energy. This
way, the auxiliary fields corresponding to a straight craok enforced to adjust to a curved
coordinate system. This is the reason why the reciproclgtiomship cannot be accepted and the
simplifications18 and14 should not be used for curved crack problems.

The reciprocity relationship is also used in the derivatiérine second integrand df4 from
Eq.15 i.e.

aiO'ZszEkl(sij - O’klaliuiuz - 810’2}”81'11,]6 (19)
is a simplification of

% (0jen“om +ep 000 + 0jeroy'™ + €110505,,"") 0i; 20)
—aja,‘j;*‘”aiuk — U,Z;”aijuk — 001 0;up"” — o1 0iup™”

If the reciprocity relationship is not applied &9, the computation of derivatives of the numerical
approximation near the crack face are required, suéh@ag andd;cy;. The numerical computation
of these derivatives introduce large numerical errors. élex, we have verified that the integréaz(l
has little influence on the final result. Hence, to avoid theottuction of further numerical errors,
we will admit the reciprocity relationship only in the deation of the simplified expressio®.
Therefore, the interaction integral expression that wéwsié in this work is finally:

1
[ =— / <§(O'kl€%“£ —+ O'Zlux{:‘kl)(sij — O’Z}“Caiuk — O’kjaiuzux> 8jqidﬂ
A

(21)
— / (aiagf‘”skléij — Uklaliuzuw — aldgluwaiuk) q,-dQ
A
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5.1. Auxiliary fields

Due to the lack of knowledge of a general expression for thdiay fields for curved cracks, the
first terms of the Williams’ asymptotic fields of the LEFM arsed as auxiliary fields, using the
definitions stated i asf andr. However, it is important to note that for general curvedksathe
conditions of compatibility, inner equilibrium and Hookdaw are not simultaneously verified for
this selection of the auxiliary fieldd 4, 15, 16]. The auxiliary displacement field is the first term of
the Williams’ series expansion:

1 0 0
uf"t = — - K™ (k — cosf)cos = + K" (k+ 2 + cos#) sin =
2p '\ 27 2 (22)
aux ]‘ r Kaux ( . 9) . 9 + Kaux ( 2 + 9)
u = — — K — S1n S1n — — COS COS —
5 20\ 27 | 1 S1 5 I K S 3
where
E 3—4v plane strain
= ) - 3y (23)
2(1+v) T plane stress
The auxiliary stress field is:
o Kpue 1 0 . 30 6 Kour 94 0 301 . 0
ag = — S1ln —S1in — | COS — — COS — COS — | S1n —
H V2rr 27 2 2 2 2 2 2
o Kpue 45 0 . 30 0 N Kgue .0
a. = SN — SIn — | COS — COS — COS — S1n —
22 V2rr 27 2 2 \Vomr 22 2
a0 B0 O KR L0 80 G
g = COS — COS — Ss1n — — Sl — S1n — | COS —
12 Vorr 2 2 2 \2nr 27 2 2

The auxiliary field for the strains is also needed. Two pdssihoices arise to obtain the strain
field. The first choice is based on the enforcement of the itatige strain-stress relationshi,[11]
and the strain field is computed from the stress field by applifie Hooke’s law.

e = Cigmoii” (24)

The second option is that the strain field can be obtained fhenderivatives of the displacement
field like in [10, 15, 16], enforcing the strain-displacement relationship:

extt = {vsimuaux}ij (25)

ij

In principle, there is no reason to assume that either chisitke best one. In this paper, we
propose a third option. As neither expression verifies siamalously the compatibility and inner
equilibrium relationships for the auxiliary fields, an aaged strain field between the two options
can also be considered. The objective is to verify an averagadition between compatibility and
inner equilibrium relationship. The averaged auxiliangst field is given by
{Vsimu®™®}i; + C};ﬁﬂ%i”

auxr __ 7,

iJ 2

(26)

e
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The gradients of the auxilary fields in curvilinear coordesaneed the inclusion of additional
terms, that involve the Christoffel symbols, related within@ture effects. The detailed
implementation of this derivatives can be found15,[16].

5.2. SIF extraction

The well-known relationship between the interaction inégnd the SIFs is derived from the
expressiond0and12;

2 w
1= E(K|K|“”+K”K,‘f“”) (27)

If the SIFs of the auxiliary field are chosen&§"* = 1 andK{** = 0, then the sought valug|
is obtained as:

2
= 28
[=K (28)
Similarly, if K*** = 0 andK{** = 1 then
I= iK (29)
= gt

6. DOMAIN INTEGRAL COMPUTATION IN XFEM

The integrals3, 14, 13and15 are expressed in domain formulation which uses the virtakmoity
field ¢; [3, 11]. The equivalent contour formulation is not well suited farmerical computations in
the finite element framework. As a consequence, the setecfithe virtual velocity field needs to
be addressed. The extraction domain is controlled throhgluse of the virtual velocity field and
the numerical integration is performed within the extractdomain using the integration points at
the element level. The virtual velocity field must be tangerthe crack face and is defined by the
expression:

q = a(p,P)er (30)

Note that the domain extraction region and the weight of tihegiration on the extraction domain
is controlled through the use of which depends on the level set coordinates. The functibas
to take unit value at the crack tip and zero on the boundargeéktraction domain.

For the sake of simplicity the extraction domain has beeecsetl with a boundary defined by a
circle of radiusk which will depend on the crack curvature radids. The selection of the exact
functional definition fora: needs here some discussion. Thé&nction is evaluated using a finite
element approach, i.e. it is evaluated at nodes and ineggablvithin the element domain using the
finite element shape functions. We have considered twolpitigss for the definition ofx at nodes:

a plateau function and a ramp function.

One of the most used functions is the plateau function. It has the advantageithtte central
regiona is constant and its derivative vanishes (and so does theatige ofq). This is not strictly
true for curved cracks as the gradient involves the use ofillwgar coordinates and Christoffel
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symbols, leading to nonzero results that depend on the wwevdn any case, we have verified this
is a small quantity. In the central region, the fields coreesjing to the singular term dominate and
even with the introduction of the XFEM, enrichment of thisitral part introduces numerical errors
that suggest to reduce it to a minimum. The exact plateaudenres is:

1 if\/¢2+4¢2 <R

o = (31)

0 if V92 =R
Note that with our implementation EG1 corresponds to an integration over a one-element width
ring. The interaction integral for curved cracks includes a term which involveg. For straight
cracks this term is zero as all the assumptions for the awyifields are fulfilled. For curved crack
problems this term will dominate in the central region if atghu function is selected. Another
choice for then function is the ramp functioB2. However, the ramp function has the drawback of
using information of points close to the crack tip. As thintegral has no terms involving explicitly
q; (only its spatial derivative), the use of the ramp functiorcombination with the/-integral has
not a large influence as compared to the interaction integral

s yETE<r )

0 if /&2 + 02 >R

7. REFERENCE PROBLEM

The problem considered is an arc crack in an infinite platgestid to equibiaxial stress. The
geometry of the crack is defined by the radidsand the angle3, as shown in Figuré. In this
study we have taken the valuBs = 1 and twog angles;s = /2 for the main study angd = /4
as a further verification. The domain used for the XFEM aredyis a finite portion centered at
the crack tip and defined by a width= 2« and a height. = 4a, wherea = R, sin (5) is related
to the crack length. The analytical stress field solution syidmetry conditions are imposed on
the boundary of the finite domain in order to make the modelvadgnt to the infinite domain
problem. The analytical solution to this problem is giverj2d]. This problem is well studied in
the bibliography, e.g.1[6, 22]. The following convergence rate study for this referenocabfem is
carried out using a mesh sequence with regular linear tulanglements with uniform refinement.
The reference solution for the SIFs is:

K" = 0 (Ta 5O (2§)
1 +sin® (%) (33)
Ko — g (mayt —5(2)
T T T 1 + sin? (g)

whereo, is the applied remote load.
The mesh sequence, used for the convergence study, is buif tegular triangular elements
with a side length defined by the following series:
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Figure 5. The problem of an arc crack in an infinitely extenplede subjected to equibiaxial tension

|
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23372577 3237 4137 4577 513’ 673

The first mesh of the sequence can be observed in Figuhe our model the curved crack
is described as straight segments within each element. iftisduces further approximations,
although the associated error is deemed small for suffigieetined meshes, as the ones used in
this analysis. It is possible to improve the crack desaiptising higher order element&3, but
this issue has not been considered in this work.
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Figure 6. First mesh of the sequence for the arc-crack pmobled enlarged view of the vicinity of the crack
tip. 8 = w/2.

8. ANALYSIS OF CONVERGENCE RATES

The convergence is studied computing the error in the Sisusgthe number of degrees of freedom
of the mesh. The expected optimal convergence rate for tioe ier the SIF using XFEM with
topological enrichment i8.5 [19, 24, 25, 26, 27].The first study presented here is the effect of the
selection of the level set basis. The extraction domairusd selected to b& = 0.2R... Thea
ramp function32is used. It is worth noting that we are using an extraction @ioranda function
that magnify the errors derived from the basis definitionoTehoices of the level set basis are
studied: on the one hand, the basis is formulated direabyfthe level set definitio®. On the
other hand, an orthogonal basis is defined using only onédevand geometric considerations that
ensure orthogonalitg. According to Figure?, the latter choice (the orthogonal basis) yields the
correct convergence rate whereas the basis built directhy the level sets does not converge with
the optimum rate. The requirement of orthogonality has b&sn proposed and recommended by
other authors, e.g. DufloL]], although a comparative convergence study is not predémfé 1].
Once the correct choice for the basis has been evidenced,ove now to the analysis of the
interaction integral. The same extraction domain is us&d,d is defined by a ramp function



CONVERGENCE OF DOMAIN INTEGRALS IN 2-D CURVED CRACKS PROBINES WITH THE XFEM 15
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Figure 7. Level sets local basis definition study. Error @mgence study on Integral results.

with R = 0.2R... Five studies have been carried out considering the diffepptions explained
in previous sections. The different options are: a) auxilistrain field obtained from auxiliary
displacement®5 and usual interaction integral expressibfy b) auxiliary strain field obtained
from the auxiliary stress fiel@4 and the usual interaction integral expression; c) auxilgrain
field defined using the averaged figld and the usual interaction integral expression; d) auyiliar
strain field obtained from auxiliary displacement field witte modified interaction integral
formulation21, denoted in the plots as energy term; e) auxiliary averagathdield with modified
interaction integral, also denoted in the plots as enengy.t&€he effect on the convergence rate for
the error inK, and K, can be observed in Figur@and9.

The optimum convergence rateli$ but none of our studies achieves that rate. It is observed tha
the case®** obtained froms*“* is more accurate fok; than the other cases, but a sign change
is detected in the approach error shown by the abrupt changjepe (the plotted magnitude is the
absolute value of the error). This sign change is indicativeonvergence to a different solution.
No significant differences can be observed in the behaviothf® error inK7;. From Figure8 it
can be inferred that the best behavior can be associatedheitiise of the averaged auxiliary strain
field and the modified interaction integral expression, sibhshows the best convergence rate and
accuracy converging to the exact solution. We remark thaicthoice is the one that introduces less
assumptions, since the reciprocity relationship is onguased for the second term in E2 and
it uses an average approximation for the strain auxiliang fie fulfill the inner equilibrium and
compatibility conditions.

In what follows, the effect of the extraction functianis analyzed: the plateau function defined
in 31 and the ramp functior32. This part of the study is performed with both integrals, the
interaction integral and thé-integral. The same domain extraction radius is ugee; 0.2R... The
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Figure 8. Results of the convergence study for the differgataction integral definitions for curved cracks.
Convergence of the error iR7.
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Figure 9. Results of the convergence study for the differgataction integral definitions for curved cracks
Convergence of the error if.

effect on the convergence rate for the erroriip K;; andJ can be observed in Figuré®), 11
and 12, respectively. It can be observed that the plateau functimes not behave correctly with
the interaction integral, showing a sign change for therdmds; and a negative or almost zero
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convergence for the error ;. However, both extraction functions show optimal convargewith
the J-integral. This result is not surprising, because the rammgtion leads to good behaviour with
the interaction integral as it has no central region, thugrodling the effect of the approximations
introduced by the auxiliary fields. The good results of thintegral combined with the plateau
function are explained because théntegral does not involve auxiliary fields and the centeglion
(plateau) avoids the contribution of the zone near the ctipdlo the integral computation.

The bad behaviour of the plategtfunction in combination with the interaction integral can
be explained as follows. When using the plateau functiory @enking of elements contributes
to the computation of the first part of the interaction intddintegral withd;q; as factor). As
these elements are far from the region where the auxiliagygstt crack fields are acceptable, the
contribution of this first integral is, in average, worserthahen the ramp function is used. In
addition, for the second integral (integral withas factor) most of the elements that lie between
the extraction ring and the crack tip are multiplied by 1l@e(plateau value). Since this second
integral is not zero because we are using auxiliary fieldsti@ight cracks, the undesired effect of
this straight-crack auxiliary fields is increased. Theref@onvergence with the plateau function is
worse than with the ramp function.

SIF mode I
10" } 1
= L0
9\_/ 10 E
S
S
Q
107} 1
—O— Plateau function
—&— Ramp function s=0.38
107

10* 10° 10°

N

Figure 10. Effect of the extraction functienon the convergence. Convergence of the errdtjrusing the
interaction integral.

Finally, the influence of the size of the extraction domairstisdied. The extraction domain
radius R is varied betweerk = 0.01R. and R = 0.9R.. For the interaction integral, we use the
expression that yields better results (averaged auxibtmgin field and the modified interaction
integral expressior21). The ramp function is used in all cases. Fig presents the calculated
convergence rate as a function of the extraction domaimusadiote that each point in Fig3 is
obtained with a whole convergence study. In addition, the&imiim error achieved in each of these
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SIF mode II
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Figure 11. Effect of the extraction functienon the convergence. Convergence of the errdtijnusing the
interaction integral.
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Figure 12. Effect of the extraction functianon the convergence. Convergence of the errof irsing the
J-integral.

convergence studies is presented in Eiy.The results show that an extraction radius of about 10%
of the curvature radius should be used in order to achievd goovergence rates. Note that a very
small extraction radius would need a highly refined mesh énwilinity of the crack tip. This is
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indicated in Fig14 by the loss of accuracy for very small radii. Note also thatdbnvergence rates
are close to the expected value of 0.5 for small radii (see Fj This suggests that the straight

crack auxiliary fields are an acceptable approximationigrgion.

Convergence rate

l T T T T T T
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Figure 13. Convergence rates for the error in the SIFs/acalculated with several extraction radii.
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Figure 14. Minimum absolute error (%) achieved in each ofctvevergence studies of Figj3.
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In order to verify the results, a last example is studied. dittecrack geometry with a subtended
angle of 3 = 7/4 is analyzed using the options that led to the best resultiénptevious case
B = /2. These options are: an orthogonal level set bésithe modified interaction integral
expressior21 (with an averaged auxiliary strain field), a ranpgunction 32 and an extraction
domain of sizerR/R. = 0.1. The error convergence rates &, Ki; and J-integral are shown in
Fig. 15. The convergence rates are close to the optimum value aircbeteavior is similar to the

B = w/2 case. These results show that our proposal yields a goodibeha terms of convergence
rates.

s1F and J for arc crack with § = /4.

10" t :
QP
= 10 E
=
o
3
10t :
—©— SIF mode I error, convergence rate s=0.51
—&— SIF mode II error, convergence rate s=0.37
J-integral error, convergence rate s=0.51
10° 4 = - 7
10 10 10 10

N

Figure 15. Arc crack withs = = /4, verification of the results. Convergence rates for therémohe SIFs
and.J with a rampg-function andr/R. = 0.1.

9. CONCLUSIONS

Several conclusions can be drawn from the present studydiegathe application of energy
integrals to curved crack problems. The first is that the doneaergy integrals exhibit good
convergence rates when an orthogonal basis is used. If fiibanot orthogonal, then the optimum
convergence rate cannot be assured. An orthogonal badie camstructed, for example, using only
the level set which describes the crack surface togethérgeibmetric considerations. When using
this orthogonal basis, it has been shown that the conveegeaite of the/-integral is the optimal for
topological enrichment in XFEM.

If the interaction integral is used to extract the SIFs inved crack problem, its convergence to
the exact solution cannot be assured, at least not with ttimalconvergence rate. The reason is
related to the definition of the auxiliary fields and the agstioms involved in the integral definition.
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We have shown that if the interaction integral is computetiout introducing some simplifications
related to the reciprocal relationship, an improvemenh@dccuracy is observed.

As far as the extraction function is concerned, this shoeldddected to control the influence of
each term of the interaction integral expression. We cawclode that the use of a function whose
derivative is not zero in the domain around the crack tip rdomction) provides the best results
with the interaction integral. However, the best accuradt whe J-integral is obtained with a
plateau function but this function does not lead to goodltesvith the interaction integral. In order
to achieve a good convergence rate, a domain extractiomesizehan 10% of the curvature radius
should be used. This also imposes some restrictions oneheeel size in the vicinity of the crack
tip. Moreover, this introduces limitations on the use of metrical XFEM enrichment in curved
crack problems.
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