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Abstract

In this work, we present a new approach to solve linear elastic crack problems in

plates using the so-called Proper Generalized Decomposition (PGD). In contrast

to the standard FE method, the method enables to solve the crack problem in an

efficient way by obtaining a single solution in which the Poisson’s ratio ν and the

plate thickness B are non-fixed parameters. This permits to analyze the influence of

ν and B in the 3D solutions at roughly the cost of a series expansion of 2D analyses.

Computationally, the PGD solution is less expensive than a full 3D standard FE

analysis for typical discretizations used in practice to capture singularities in 3D

crack problems. In order to verify the effectiveness of the proposed approach, the

method is applied to cracked plates in mode I with a straight-through crack and a

quarter-elliptical corner crack, validating J-integral results with different reference

solutions.

Key words: Proper Generalized Decomposition; finite element method; cracked

plate; corner singularity.
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1 INTRODUCTION

The elastic analysis of three dimensional cracks in plates has been extensively

considered in the fracture mechanics literature. Early analytical approaches

for 3D crack problems were provided by the pioneering works of Hartranft

and Sih (1969, 1970), Sih (1971), Benthem (1977), Bažant and Estenssoro

(1979) and other more recent, such as Zhu (1990), Leung and Su (1996), etc.

As the computational capabilities evolved during the last decades, the ana-

lytical studies were soon complemented by an increasing number of numerical

works using the finite element method (FEM) (e.g. Newman and Raju, 1983;

Nakamura and Parks, 1988; Leung and Su, 1995, 1996; Kwon and Sun, 2000,

etc.). All these studies show that a triaxial stress state arises in the vicinity

of the crack front within the body, even for an in-plane loaded cracked plate.

As in other stress concentration problems of elasticity, the triaxial stress state

is ultimately due to different Poisson contractions that exist within the solid,

and therefore the Poisson’s ratio ν plays an essential role in the analysis of 3D

crack problems.

The existence of the so-called vertex or corner singularity at the intersection

of the crack front with the traction-free lateral surfaces is another inherent

feature of the 3D crack problem. This phenomenon is accompanied by the

loss of stress triaxiality as the traction-free lateral surfaces are approached

(loss of constraint). The extent of the influence of the corner singularity and

loss of constraint regions have a strong influence on the crack propagation

profile and fracture toughness (Bažant and Estenssoro, 1979; Pook, 1994, 2000;

Heyder et al., 2005) and leads to the distinction between the surface and inner

regions (Broek, 1986; Anderson, 2005), usually assimilated in a non-rigorous

way as two-dimensional plane stress and plane strain states. The extent of

these regions depends largely on the a/B ratio (being a the crack length and B
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the plate thickness). Therefore, the plate thickness B also plays an important

role in the analysis of 3D cracked plates.

To the authors’ knowledge, no closed-form solution for a 3D crack in a finite

thickness plate has been reported to date and many FE studies can be cur-

rently found pursuing a better understanding of the 3D crack elastic fields

(e.g. Leung and Su, 1995, 1996; Kwon and Sun, 2000; Giner et al., 2010).

In this work, we present a new numerical approach to solve cracked plates

in an efficient way by obtaining a single solution in which the Poisson’s ra-

tio ν and the plate thickness B are non-fixed parameters. To this end, the

numerically approximated solution for the displacement field is of the form

u(x, y, z, ν, B). Using the proposed method, it is possible to obtain a numer-

ical solution for a cracked plate problem with a single analysis that can be

particularized for any ν and B by simple post-processing, thus providing an

efficient tool for the numerical analysis of these problems. The method makes

use of the Proper Generalized Decomposition (PGD), proposed by Chinesta

and co-workers (Ammar et al., 2006, 2007; Bognet et al., 2011) that has re-

cently been applied to many fields of physics and engineering. In this method,

the sought displacement field u(x, y, z, ν, B) is written as a series expansion of

function products. The formulation proposed here uses a 2D discretization for

a given plane times a 1D discretization in the normal direction. In addition,

independent functions of ν and B are included in the tentative solution to

be converged. An iterative process is then carried out by which the necessary

terms of the series expansion are added in order to attain the required accu-

racy. As a result a 3D problem including two additional coordinates is solved

at roughly the cost of a series expansion of 2D analyses. The PGD solution is

computationally less expensive than a full 3D standard FE analysis for typical

discretizations used in practice to capture singularities in 3D crack problems.

From the numerical point of view, this is the first time that the PGD is suc-

cessfully applied to problems with singularities (both the classical in-plane
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Williams singularity and the corner singularity).

The essentials of the PGD and the formulation for its application to a fracture

problem are given in Section 2. A numerical verification of the results of the

method as compared to standard finite element solutions and other reference

solutions is provided in Section 3 through the analysis of cracked plate configu-

rations. The results show the usefulness and efficiency of the method, enabling

to capture the corner singularity behaviour in very good agreement with the

results predicted by Benthem (1977) and the numerical solutions provided

by Dimitrov et al. (2001). Previously, the analysis of this corner singularity

with the standard finite element method has posed difficulties in some works

reported in the literature due to its elusive character unless a high degree

of refinement is considered. The interested reader can refer to the excellent

historical review presented in Kwon and Sun (2000) and the comprehensive

work by Schnack et al. (2011). Finally, the method is applied to a quarter-

elliptical corner crack in a plate and some results regarding the convergence

of the method are presented.

2 FUNDAMENTALS OF THE PGD

2.1 Overview of the method

Proper Generalized Decompositions (PGDs) were proposed recently to alle-

viate the solution of complex models encountered in science and engineering.

The PGD is based on the use of separated representations and, in fact, dif-

ferent kind of separated representations can be envisaged. Ladevèze (1999)

proposed in the eighties separating space and time in the solution of non-

linear transient thermo-mechanical models within the framework of the LATIN

paradigm. Thus, if u(x, t) represents such a solution, it was searched under
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the separated form:

u(x, t) ≈
n
∑

i=1

Xi(x) · Ti(t) (1)

This separated representation was extensively considered in Ladevèze’s works,

see Ladevèze (2009, 2010) and the references therein.

We can notice that instead of solving a space problem at each time step, as

classically carried out when using standard incremental time integrations, a

reduced number of space problems, scaling with n, must be solved for com-

puting the space functions Xi(x) and the same number of one-dimensional

problems for computing the time functions Ti(t). Because the computing ef-

fort for solving the one-dimensional problems is negligible when compared to

the one required for solving a space problem, the computing time savings are

impressive when the time step becomes very small.

About twenty years later, the space-time separated representation was gener-

alized for solving efficiently multidimensional models that arise from the fine

description of materials within a kinetic theory approach (Ammar et al., 2006,

2007). Later, it was applied for alleviating the computational complexity when

addressing 3D models defined in degenerated domains, in which at least one

of its characteristic dimensions is much smaller that the other ones. This is

typically the case when calculating 3D solutions of problems defined in plate

or shell geometries. In elasticity, when plate and shell theories apply, they al-

low to reduce the dimensionality from 3D to 2D. However, in some cases fully

3D solutions are preferred due to the existence of either 3D effects close to

the plate edges or situations where the Saint-Venant principle fails and conse-

quently 3D effects are present everywhere in the plate. Moreover, in the case

of inelastic behavior, the 3D solution is in most of cases mandatory.

In that context, Bognet et al. (2011) proposed an in-plane-out-of-plane sepa-

rated representation for computing full 3D solutions while keeping a computa-

tional cost close to that of 2D solutions. The proposed separated representation
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of a generic field is then

u(x, y, z) ≈
n
∑

i=1

Xi(x) · Zi(z) (2)

where x = (x, y) ∈ Ω ⊂ R2 and z ∈ [0, B], being B the plate thickness.

We note that such a decomposition requires the solution of a number of 2D

problems, number that scales with n, for computing functions Xi(x), and

the same number of 1D problems involving functions Zi(z). Thus, even when

considering very fine descriptions of functions Zi(z), the impact in the total

computing time remains moderate, in comparison with a fully 3D solution per-

formed using standard discretization techniques. The computational savings

are evidenced in Fig. 1, where the computation time of different analyses for a

plate problem using the PGD method with a 2D + 1D discretizations is com-

pared to the time of standard 3D FE analyses using 3D solid elements. When

the number of degrees of freedom (DOF) in the thickness direction is greater

than 10-15, the computational cost of the PGD is less than the standard 3D

FEM cost. The difference between both methods increases very rapidly as the

number of DOFs of the in-plane and thickness discretizations increases.
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Fig. 1. Comparison of computational costs for different discretizations when solving
a plate problem using the PGD approach and the standard 3D FEM.

6



Therefore, the use of the PGD method for the analysis of plates can be rec-

ommended when performing detailed analysis of through-thickness variations,

such as interlaminar stresses in composite laminates or the study of the out-

of-plane variations in cracked plates, as in the present work. Moreover, the

PGD can incorporate the parametric study of some material and geometric

parameters in a single analysis, treating them as additional coordinates. This

will result in additional cost reductions not considered in Fig. 1.

In this work, this approach is extended to cracked plates and, in addition, the

separated representation is generalized for including material parameters and

geometric dimensions, which are treated as extra-coordinates. The resulting

problem becomes multidimensional but thanks to the separated representation

the curse of dimensionality can be circumvented, and the general parametric

solution is computed only once and in a very efficient way.

Since the 3D nature of the elastic fields in a plate problem with a straight-

through crack is essentially dependent on the Poisson’s ratio ν and the plate

thickness B, the proposed PGD approximation to the solution is solved in-

troducing ν and B as extra-coordinates. The components of the displacement

field uj are searched under the following separated approximation, in a fashion

similar to that presented in Chinesta et al. (2011a):

uj(x, y, z, ν, B) ≈
n
∑

i=1

ui
j,xy(x, y) · ui

j,z(z) · ui
j,ν(ν) · ui

j,B(B) (3)

where the second subscript refers to each of the separated functions. It is

convenient to express this approximation in vector form as follows:
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u(x, y, z, ν, B) =


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≈
n
∑

i=1

ui
xy(x, y) ◦ ui

z(z) ◦ ui
ν(ν) ◦ ui

B(B)

(4)

where the symbol “◦” is used to denote the so-called entry-wise, Hadamard

or Schur multiplication for vectors (component-by-component multiplication).

The approximated solution (4) enables the computation for different values

of ν and B in just a single analysis. In other problems of engineering, this

capability has been successfully applied for on-line analysis, optimization or

inverse analysis even on deployed platforms as proven in Bognet et al. (2011);

Ghnatios et al. (2012).

2.2 Formulation of the PGD as applied to cracked plates

In what follows, we present the essentials of the PGD formulation as applied

to solve the cracked plate problem. For additional details concerning the sep-

arated representation constructor the interested reader can refer to Chinesta

et al. (2010, 2011b) and the references therein. We start from the weak form

of a linear elastic problem in continuum solid mechanics:

∫

Ω
ε(δu)TDε(u) dΩ =

∫

Ω
δuTb dΩ +

∫

∂ΩN

δuTt d∂Ω (5)

where Ω is the domain of the problem to be solved, subjected to Dirichlet

boundary conditions on a region ∂ΩD and Neumann boundary conditions with

surface tractions t on ∂ΩN, such that ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ⊘.

ε denotes the engineering strain vector, D is the elastic stiffness constitu-
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tive matrix, b represents the external body forces per unit volume and δu is

any virtual variation of the displacement field u that is compatible with the

prescribed boundary conditions on ∂ΩD.

In the formulation of the PGD, we assume that the displacement field is ap-

proximated by (4). This approximated solution is generated by adding new

terms (or modes). Let us assume that we already know the first n modes of

the approximated solution and we are interested in adding a new term n + 1:

u(x, y, z, ν, B) ≈
n
∑

i=1

ui
xy(x, y) ◦ ui

z(z) ◦ ui
ν(ν) ◦ ui

B(B)

+ Qxy(x, y) ◦ Rz(z) ◦ Sν(ν) ◦ TB(B) =

= un + Qxy(x, y) ◦ Rz(z) ◦ Sν(ν) ◦ TB(B)

(6)

where Qxy, Rz, Sν , TB are unknown terms of the separated functions uxy,

uz, uν , uB for that mode, respectively. Since the first n modes are already

determined at this stage, the admissible variation of the displacement field is:

δu(x, y, z, ν, B) = δ (Q(x, y) ◦ R(z) ◦ S(ν) ◦ T(B)) . (7)

Substituting into the weak form (5) and omitting the symbol “◦” in subsequent

equations for the sake of compactness:

∫

Ω
ε(δ(QRST))TDε(QRST) dΩ =

−
∫

Ω
ε(δ(QRST))TDε(un) +

∫

Ω
(δ(QRST))Tb dΩ +

∫

∂ΩN

(δ(QRST))Tt d∂Ω

(8)

where the first term on the right hand side of the equation corresponds to the

contribution of the first n modes already available, being un the summation
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of these n modes given in (6).

On the other hand, the engineering strain vector involves the first derivatives

of u and when applied to the new mode to be found yields:
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(9)

The superscripts indicate the corresponding components of the displacement

field and the second subscripts denote the customary derivatives with respect

to the spatial coordinates. Upon substitution into (8) and after routine algebra,

the terms can be grouped for each of the separated variables, arriving to an

expression of the form:

∫

xy
δQu1

xy,xQ
u1

xy,xdxdy ·
∫

z
δRu1

z Ru1

z dz ·
∫

ν
δSu1

ν D11(ν)Su1

ν dν ·
∫

B
δT u1

B T u1

B dB + . . . =

−
∫

Ω
ε(δ(QRST))TDε(un) +

∫

Ω
(δ(QRST))Tb dΩ +

∫

∂ΩN

(δ(QRST))Tt d∂Ω

(10)

Note that the elements of the stiffness matrix, Dij, depend on the Poisson’s

ratio and, therefore, D11 has been grouped in the corresponding integral in

(10).

The solution for the sought functions Qxy, Rz, Sν and TB is searched by

iteration using the fixed point method, due to both its easy of implementation
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and good convergence properties. Assume that an initial guess is given for the

functions Rz, Sν and TB and their contribution for each summand on the left

hand side of (10) is termed α1, α2, etc. Then, an estimation for Qxy can be

obtained by solving a standard weak form on Qxy:

α1

∫

xy
δQu1

xy,xQ
u1

xy,xdxdy + . . . =

−
∫

Ω
ε(δ(Q)RST)TDε(un) +

∫

Ω
(δ(Q)RST)Tb dΩ +

∫

∂ΩN

(δ(Q)RST)Tt d∂Ω

(11)

In this work, this weak form is solved numerically in the 2D domain (x, y) by

using a 2D finite element approximation, after introducing the corresponding

discretization. Once the estimation for Qxy is available, the functions Rz,

Sν and TB are, in turn, estimated analogously. Note that these functions are

solved in their corresponding 1D spaces using 1D finite element discretizations

and, therefore, their numerical approximation is computationally inexpensive.

The process is repeated iteratively until convergence of the n + 1 mode of

the displacement approximation (6), i.e. until ||un+1 − un|| < ǫ, where ǫ is a

prescribed tolerance.

The convergence of the method was proved for symmetric and positive definite

differential operators in Le Bris et al. (2009) and Ammar et al. (2010). In the

general case, as the one addressed here in which new coordinates have been

introduced, the convergence has been always attained in the numerous tests

carried out until now, including other problems in engineering. However, at

present there is not a mathematical proof of such convergence. To date, con-

vergence of the PGD has been observed for all the general elliptic or parabolic

problems tested, and the technique has also been successfully applied in the

case of hyperbolic equations Huerta (2011); Barbarulo (2012). Thus, from our

numerical experiments reported in Chinesta et al. (2011b), the efficiency and
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robustness of the solvers based on the construction of separated representa-

tions have been verified.

The nonlinear problem involved in each enrichment step can be addressed by

using any appropriate linearization strategy. In Ammar et al. (2006, 2007)

the Newton’s strategy was considered. The simple alternated direction fixed

point algorithm used in this work is efficient and robust despite its simplicity.

Moreover, we have observed that the converged solution does not depend on

the initial guess and the convergence rate does not depend significantly on

that choice. In this work, all the initial guesses are random vectors. Based

in our experience, the best convergence (with respect to the number of fixed

point iterations at a given enrichment step) is actually observed for random

initial guesses which excite all the modes of the operator.

2.3 Computation of the J-integral

The great advantage of obtaining a displacement approximation of the form

u(x, y, z, ν, B) is that a 3D problem plus two additional coordinates is solved

in a single analysis. Postprocessing for given values of the spatial coordinates

and of the parameters ν and B within the range of their domains of definition

is immediate. Therefore, the displacement field at the nodal grid 2D × 1D is

available as in a standard FE solution and the strain and stress fields can also

be derived.

Our objective in the work is to demonstrate the effectiveness of the PGD to

solve a 3D crack in an elastic plate. In general, two types of singularity coexist

in a cracked 3D plate with free boundaries: the classical Williams solution

(r−0.5 singularity) and the corner or vertex singularity. Therefore, we have

provided comparisons to both the Williams solution and the corner singularity

computed by Benthem as a function of the Poisson’s ratio (the latter, for
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the straight-through crack problem only). The comparison of the Williams

solution has been performed in terms of the pointwise J-integral, which is

directly related to the stress intensity factors, and therefore it characterizes

the Williams contribution to the solution. The use of the pointwise J-integral

for a 3D crack problem is widely acknowledged in the literature (e.g. Li et al.,

1985; Newman and Raju, 1983; Nakamura and Parks, 1988).

In this work, we use the J-integral as a scalar functional to measure the qual-

ity of the Williams solution. The J-integral is a quantity of interest in fracture

mechanics that it is defined pointwise at each position of the crack front in

3D problems, J = J(s), where s is a parametric coordinate along the crack

front, see Fig. 2. The computation of J(s) has been performed using an equiv-

alent domain integral, as proposed by Li et al. (1985) and Shih et al. (1986)

(deLorenzi, 1982, 1985, obtained exactly the same result using the concept of

virtual crack extension and a consistent continuum mechanics approach):

J(s) ≈ Jvol =
∆a

Ac

∫

V

(

σij

∂uj

∂x1

− Wδ1i

)

∂q1

∂xi

dV, (12)

where W is the strain energy density, δij is the Kronecker’s delta, ∆a is a

virtual crack extension at a point s of the crack front (see Fig. 2), Ac is the

virtual increment in crack area generated by the virtual crack extension, and

q1 is a continuous weight function that varies between 0 and 1 and scales the

virtual crack extension ∆a within the crack front segment ∆s. The fields are

expressed in the local coordinate system of axes x1, x2, x3 shown in Fig. 2. The

volume of integration V must surround the crack front from one crack face to

the other and its width at the crack front is ∆s. Note that the value of the

volume integral Jvol is indeed an approximation to the pointwise value J(s),

since ∆s is finite. In the context of the standard FEM, it is well known that the

computation of J as a domain (volume) integral is numerically advantageous,

as it becomes unnecessary to capture the details of the singular field near

the crack front. In addition, it tends to provide more accurate results than
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∆a
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rmax

rmin

s V

Fig. 2. Virtual crack extension of a crack front segment ∆s for the application of
the EDI method.

the equivalent contour integral, because it involves information evaluated in a

domain instead of a contour. An important advantage of the method is that,

theoretically, the value of J(s) is independent of the domain chosen, although

discretization errors present in the vicinity of the crack front force to avoid

small domains surrounding the crack front.

The same advantages and recommendations apply when computing J(s) from

a PGD solution. We have performed the integration over V by defining volume

cells that would match the 3D finite elements that could be constructed by

the underlying 2D × 1D nodal grid. In this work, we will only deal with mode

I examples work and hence the pointwise value of the mode I stress intensity

factor KI (SIF) can be calculated using the following expression:

KI(s) =

√

J(s)
E

1 − ν2
(13)

where E is the Young’s modulus and ν the Poisson’s ratio.
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3 NUMERICAL VERIFICATION

In this section, two problems are analyzed to verify the performance of the

PGD to solve cracked plates. The first problem involves a straight-through

crack front, with a discretization that enables to capture the corner singular-

ity with high accuracy at a low computational cost and, at the same time,

providing solutions for a range of ν and B. The convergence of the method

with an increasing number of modes is also evidenced by comparison to a

standard finite element solution. A quarter-elliptical corner crack in a plate

is also solved, showing that the application of the PGD is not limited to

straight-through crack fronts. In this latter case, the validation is restricted

to the Williams part of the solution, since reference solutions for the corner

singularity are not available for this geometry.

3.1 Plate with a straight-through crack

3.1.1 Problem description

Fig. 3 is a sketch of the geometrical model of a plate with a straight-through

crack. It represents a plate of thickness B with a single edge crack of length

a/W = 0.5. The plate is loaded with uniform tension σ. The particular di-

mensions of the model are W = 2, H = 6 [units of length]. As the thickness

B is an independent parameter included in the PGD formulation, it is solved

for the range B/2 ∈ [0.5, 10]. Symmetry conditions are applied on the liga-

ment (plane xz) and on the midplane (parallel to the plane xy). The material

model is linear elastic, with E = 207000 [units of pressure], being ν solved in

the range ν ∈ [0, 0.49] as an independent parameter. Note that the origin of

the global system of reference is located at the intersection of the crack front

and the free surface, where the corner singularity exists.
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Fig. 3. Model of a plate with a single edge crack loaded in tension.

The discretization for the space domain in the xy plane (2D domain) and

in the z direction (1D domain) is shown in Fig. 4. The elements are con-

veniently refined towards the crack tip and towards the crack front corner,

respectively. The 2D discretization is composed of 7031 linear triangular ele-

ments. The mesh was h-adapted by refining a previous 2D analysis to optimize

the 2D discretization (it is plotted in the deformed shape to show the crack

location). The 1D mesh is composed of 42 2-node linear elements. Note that

the equivalent 3D discretization using prisms of triangular base amounts to

295302 elements, which is a large number when compared to the number of

elements in the 2D or 1D discretization. The discretization of the ν and B

spaces is performed using 1D FE discretizations with two-node elements in

increments of 0.01 in the range ν ∈ [0, 0.49] and in increments of 0.1 in the

range B/2 ∈ [0.5, 10] for the B-space. This would correspond to a very large

number of 3D solutions if they were to be solved with a standard FE ap-

proach, since it would be necessary to perform 4800 3D standard FE analyses

to obtain the solutions in the range ν ∈ [0, 0.49] times the range of variation

of B/2 ∈ [0.5, 10] given their respective increments.
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triangular 
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(7031)
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z = 0 z = B/2

Fig. 4. 2D and 1D discretizations of the space domain (x, y) × z.

3.1.2 J-integral along the crack front

In this problem, we have computed J(z) through (12), using an annular q-

function at each location, defined by a ring with rmin = 0.5 · 10−3 and rmax =

4 · 10−3 units, as indicated in Fig. 2. The q-function decays linearly in the z

direction at both sides of the extraction location within the calculation ring

(except at the free surface and midplane locations, where q decays linearly

at one side only). Fig. 5 shows the results obtained for the J-integral along

the crack front, particularized for the case B/2 = 1 and ν = 0.3. Note that

the bottom plot is an enlarged view of the zone near the corner singularity.

It can be observed that J(z) exhibits the expected behaviour reported in the

literature (e.g. Nakamura and Parks, 1988) with a maximum at the midplane

and decaying to zero at the corner point. The PGD solution has been obtained

calculating n = 30 modes for the approximation (4). Note that the PGD

provides virtually the same results as a standard FEM analysis with the same

discretization (295302 linear prisms, about 4.7 · 105 dofs), even in the vicinity

of the corner point, at a much lower computational cost and including in
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the single solution the results for any choice of B and ν in their respective

intervals of variation. In Fig. 5 another FE solution is included as reference

solution, computed with a very refined mesh with more than 2.3 · 106 degrees

of freedom using 20-node hexahedrons and 160 elements along the crack front,

which differs from the PGD solution and the other FE solution mainly due to

the discretization error.
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Fig. 5. Pointwise value of the J-integral along the crack front for the case B/2 = 1
and ν = 0.3. Bottom: enlarged view near the corner point.
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3.1.3 Convergence with number of modes n

Fig. 6 exemplifies the convergence of the PGD solution with the number of

modes n. As the number of modes in the approximation (4) increases, the PGD

solution converges towards the equivalent FE solution obtained with the same

discretization. In other words, the FE solution is the best possible solution

for a given discretization. In our example, sufficient accuracy is attained with

n = 30 modes.

Having fixed B/2 = 1 and ν = 0.3, the solution with a single mode n = 1

corresponds to the approximation u(x, y, z) ≈ uxy(x, y) ◦ uz(z), which means

that the solution of the 2D space domain is fully decoupled from the z direc-

tion. It is very interesting to note that the PGD solution for n = 1 matches

the 2D plane strain solution computed for the 2D domain. In this problem,

the 2D plane strain solution is the only physical solution for which the 2D

solution is independent of the z direction and, as a result, the PGD converges

to it when only a single mode is allowed. Fig. 6 also shows that the successive

addition of modes modify the plane strain solution to account for the corner

singularity effect.

3.1.4 J-integral for different values of the Poisson’s ratio

In this section, we benefit from the single PGD solution for different values

of the material parameter ν. The solution has been found for the range ν ∈

[0, 0.49] using a 1D FE mesh at increments of 0.01 and can be interpolated to

any other value within this interval. Fig. 7 shows five representative solutions.

The case ν = 0 implies that all normal strains are uncoupled (there is no

Poisson’s effect). As a consequence, no corner singularity effect arises and the

J(z) solution is constant along the thickness. For an in-plane loading such the

one applied in this example, there is no strain in the z direction and the case

ν = 0 can be considered a plane strain problem. At the same time, no stress
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Fig. 6. Convergence of the PGD solution with an increasing number of modes. Case
B/2 = 1 and ν = 0.3. Bottom: enlarged view near the corner point.

triaxiality is induced in the crack front vicinity and the solution for ν = 0 can

also be considered a plane stress solution. As a consequence, the case ν = 0 is

the only one for which a truly plane stress solution can exist in the whole 3D

domain, being simultaneously a plane strain solution.

For any ν > 0, the different contractions in the z direction, i.e. differences

in the out-of-plane strain εz, in the most loaded region near the crack front
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(ligament) and the less loaded region (crack face), induce a state of stress

triaxialiaty (σz 6= 0) in the interior region of the plate that must vanish at

the free plate surface. As a consequence, a corner or vertex singularity arises.

Fig. 7 show that, the larger the value of ν, the larger the extent of this effect.

Note that for a typical value ν = 0.3, this effect modifies the distribution of

J in a region of about 40% of the half-thickness measured from the free plate

surface (z = 0).
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Fig. 7. J(z) for different values of the Poisson’s ratio ν. PGD solution. Case B/2 = 1.

Thanks to the refined discretization in the z direction, computationally af-

fordable by the PGD, the zone dominated by the corner singularity has been

conveniently captured. Fig. 8 shows a log-log plot of the value of the stress

intensity factor along the crack front computed through (13). The straight por-

tions of the plots indicate the extent of the corner singularity dominated zone

(about 10% of the half thickness), in agreement with Benthem’s prediction,

who showed that (Benthem, 1977):

K(z) ∝ zλB(ν)+0.5 when z → 0 (14)

where λB are the exponents computed by Benthem that depend on ν. Table 1
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compares the slopes obtained in this work from the PGD solutions and the val-

ues predicted by Benthem, showing a very good agreement. This analysis also

verifies Benthem’s results, obtained under a half-infinite domain hypothesis.

We note in passing that, although these results are accepted in the literature,

they have been questioned in some numerical works due to the lack of enough

FE discretization.
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Fig. 8. Log-log plot for computing slopes from the stress intensity factor solutions
along the crack front, K(z). PGD results for different values of ν. Case B/2 = 1.

ν Log-log slope λB + 0.5

0.15 0.017 0.016

0.30 0.049 0.048

0.40 0.087 0.087

0.45 0.116 0.116

Table 1
Values of the slopes from the PGD solutions shown in Fig. 8 compared to the values
derived from Benthem’s exponents. Case B/2 = 1.
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3.1.5 J-integral for different thicknesses

The formulation for the PGD considered in this work also includes the thick-

ness B as a parameter in the solution. This parameter takes values within

the interval B/2 ∈ [0.5, 10] that is discretized using a 1D FE element mesh

and the corresponding interpolation, thus benefiting from the versatility of

the PGD approach with a single analysis. Fig. 9 shows the variation of the

pointwise J(z) along the crack front for four different thicknesses and ν = 0.3

(results are plotted versus normalized thickness). It can be observed that the

thickness also influences the shape of the J(z) distribution, being B/a the

relevant parameter. The distribution changes from a single maximum at the

midplane for small B/a ratios to a couple of maxima in the vicinity of the free

boundaries for the whole thickness and large B/a ratios. This behaviour is in

good agreement with the study presented in Giner et al. (2010).
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Fig. 9. Pointwise value of the J-integral along the crack front for ν = 0.3 and
different values of B vs. normalized thickness.
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3.2 Plate with a straight-through crack solved with 1D-discretization in the

y-direction

To verify the performance of the PGD with other types of discretizations,

the same problem has been solved with a 2D discretization in the xz plane

combined with a 1D discretization in the y-direction, as shown in Fig. 10. In

this case bilinear quadrilateral elements for the 2D mesh have been used.

4-node
quadrilateral
elements
(1680)

y = 0

y = H

1D-elements
(83)

Fig. 10. 2D and 1D discretizations of the space domain (x, z) × y for the same
problem of Fig. 3.

When applying the PGD technique, this option has the additional difficulty

that a portion of the xz plane must be constrained in the y-direction (ligament)

whereas the crack face must remain free. This has been accomplished by using

a penalty approach to impose the boundary constraint on the ligament region.

Fig. 11 shows the results obtained with this new discretization compared to the

previous results presented in Fig. 5. It can be observed that the discretization

using bilinear quadrilaterals in the xz plane tends to provide good results,

virtually matching the reference solution obtained with a very refined mesh

with 20-node hexahedra.
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Fig. 11. Pointwise value of the J-integral along the crack front for B/2 = 1 and
ν = 0.3. Same results as in Fig. 5 including 2D discretization with quadrilaterals
and 1D discretization in y-direction.

3.3 Plate with a quarter-elliptical corner crack

The possibility of discretizing the crack plane with the 2D discretization, as

verified in the previous section, paves the way for the solution of planar cracks

with curved crack fronts. In this section, a quarter-elliptical corner crack (see

Fig. 12) is modelled using 4-node quadrilaterals in the xz plane plus a 1D

discretization in the y-direction, as shown in Fig. 13. The particular dimensions

of the model are t = 1, a = 0.5, c = 1.25, h = w = 6.25, which correspond

to the ratios a/c = 0.4, a/t = 0.5. The material properties are the same as

in the previous example, with ν = 0.3. A solution to this case was provided

by Newman and Raju (1983) using the standard FEM, which will be taken

here as a reference solution. Newman and Raju’s numerical solution (N&R) is

given with an accuracy of 5% and is valid for ν = 0.3 and for a ratio c/w ≤ 0.2

(c/w is exactly 0.2 in our case). The solution to this problem can also be found

in e.g. Murakami et al. (1987). Newman and Raju (1983) reported some point

values using FE analyses and a fitted equation for a wide range of φ, i.e. the

position angle defined in Fig. 12. These solutions are reproduced in Fig. 14.
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Fig. 12. Geometrical model of a quarter-elliptical corner crack. Convention for mea-
suring the position angle φ.
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Fig. 13. Quarter-elliptical corner crack. 2D and 1D discretizations of the space
domain (x, z) × y.

Fig. 14 also shows the PGD results for the stress intensity factor KI along the

crack front. The PGD results exhibit the same trend as the N&R’s solution,

although the PGD values are slightly greater, lying within the 5% relative

error. Other recent works that solve analogous problems with the FE method

(e.g. González-Albuixech et al., 2011) also yield values above those of the
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N&R’s solutions.

Note that the PGD solution also tends to capture the free boundary effect, ev-

idenced by a decaying value of KI, especially in the neighbourhood of φ = π/2.

The effect at this corner is more manifest because, in this region, the crack

front closely approximates a straight crack front intersecting a free bound-

ary. This effect was also reported in Newman and Raju (1983) for a similar

geometry using several refined meshes.
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Fig. 14. Normalized stress intensity factor solutions along the crack front. PGD
results compared to results given by Newman and Raju (1983).

3.4 Convergence of the numerical solutions

The number of PGD modes to achieve an accurate solution depends largely on

the type of problem and, therefore, the number of modes cannot be estimated a

priori to ensure that the computed solution is accurate enough. As commented

at the end of Section 2.2, the convergence check consists in computing the

relative residual of the problem considered. Then, the iterative enrichment
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process keeps running until the relative residual of the problem is smaller

than a prescribed tolerance.
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Fig. 15. Exact error between the full 3D FEM solution and the PGD solution on
the same equivalent mesh as a function of the prescribed tolerance.

Fig. 15 shows the exact error between the full 3D FEM solution and the

PGD solution on the same equivalent mesh as a function of the prescribed

tolerance of the PGD problem. This error is computed as the integral over

the whole domain of the relative error between the PGD solution and the 3D

FEM solution using the energy norm. As can be noticed, the reduction of the

prescribed tolerance is a good indicator of the accuracy of the solution because

the integral of the relative error decreases very rapidly when the prescribed

tolerance is reduced, i.e. the convergence is quite fast.

Fig. 16 shows the number of modes in the PGD solution for the numerical

examples. As expected, the number of modes needed to describe the solution

increases with the required accuracy. Moreover, the parameterized solution in-

cluding the thickness B and the Poisson’s ratio ν as coordinates needs many

more modes to capture the complexity of the solution. However, the accuracy

is quite similar in comparison with non-parametric solutions. In practice, a
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Fig. 16. Number of modes in the PGD solution for the numerical examples.

prescribed tolerance of 10−3 can be used for conventional engineering applica-

tions, which implies that less than 50 modes are included in the approximated

solutions of the presented examples.

4 CONCLUSIONS

In this work, a formulation of the Proper Generalized Decomposition (PGD)

for solving efficiently 3D cracked plates has been presented. For plate geome-

tries, the space domain can be separated into a 2D discretization plus a 1D

discretization. Moreover, certain material and geometry parameters that can

be of interest for fracture mechanics problems have been included in the ap-

proximating space of the solution, namely the Poisson’s ratio and the plate

thickness. These parameters are considered as independent coordinates that

take values within their respective intervals of definition. Thus, a single solu-

tion for a 3D elastic problem plus two additional coordinates can be obtained

simultaneously in the space (x, y, z, ν, B). The method provides large compu-
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tational cost reductions when compared to standard FE 3D analysis, not to

mention the parametric variation of ν and B, and it also captures conveniently

the crack front and corner singularities.

By means of numerical examples, it has been shown that very accurate results

can be obtained with a reduced computational cost, including the variation

with the parameters ν and B. The accuracy of the results has been measured

in terms of the J-integral and the stress intensity factor K that are the main

quantities of interest in linear elastic fracture mechanics. The intensity of the

corner singularity has also been estimated, correlating well with predictions

available in the literature. It has also been shown that the procedure can be

successfully applied to solve planar cracks with curved crack fronts with the

above commented advantages.
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Dimitrov, A., Andrä, H., Schnack, E., 2001. Efficient computation of order

and mode of corner singularities in 3D-elasticity. International Journal for

Numerical Methods in Engineering 52, 805–827.

Ghnatios, Ch., Masson, F., Huerta, A., Cueto, E., Leygue, A., Chinesta, F.,

2012. Proper Generalized Decomposition based dynamic data-driven con-

trol of thermal processes. Computer Methods in Applied Mechanics and

Engineering 213–216, 29–41.
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