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Abstract

This work presents a sliding-mode method for robotic path conditioning.
The proposal includes a trap avoidance algorithm in order to escape from
trap situations, which are analogous to local minima in potential field-based
approaches. The sliding-mode algorithm activates when the desired path is
about to violate the robot workspace constraints, modifying it as much as
necessary in order to fulfill all the constraints and reaching their limit surface
at low speed. The proposed path conditioning algorithm can be used on-line,
since it does not require a priori knowledge of the desired path, and improves
the conventional conservative potential field-based approach in the sense that
it fully exploits the robot workspace. The proposed approach can be easily
added as an auxiliary supervisory loop to conventional robotic planning al-
gorithms and its implementation is very easy in a few program lines of a
microprocessor. The proposed path conditioning is compared through simu-
lation with the conventional potential field-based approach in order to show
the benefits of the method. Moreover, the effectiveness of the proposed trap
avoidance algorithm is evaluated by simulation for various trap situations.

Keywords: Path planning, sliding mode, collision avoidance

1. Introduction

One of the most relevant issues in robotics to perform tasks without
human supervision is path planning, which involves finding a continuous path
from the initial position to the goal position that avoids obstacles in the
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environment and which is feasible for the robot. This planning problem has
been typically approached in two different ways, broadly classified as global
and local methods [1]. Global planning is based on global knowledge of
a structured environment, while local planning uses only local information
gathered by proximity sensors in an unstructured environment to implement
a reactive behavior for collision avoidance [2]. Most navigation architectures
combine both types of approaches.

The framework of this work is a robot operating in a structured environ-

ment [1], where the location of the robot, its operation region and obstacles
to avoid are known, while the user reference is a priori unknown and may
not respect the workspace constraints. The use of artificial potential fields
may be a way to address the problem. The basic concept of the potential
field method [3] is to fill the robot’s workspace with an artificial potential
field in which the robot is attracted to its goal position and is repulsed away
from the obstacles. However, unless the field is designed to abruptly decay
at a short distance of the obstacle, some regions of the workspace close to
the boundaries will not be reached because of repulsion.

This paper proposes an alternative solution to the above problem. The
basic idea is to define a discontinuous control law inspired by the fact that,
in the limit case, as the repulsion region decreases, a potential field could be
characterized as a discontinuous force: zero away from the obstacle, a big
value when touching its boundary. Discontinuous control laws, as a particu-
lar case of variable-structure control strategies, have been deeply studied in
the context of sliding-mode control [4, 5]. Indeed, many types of sliding-mode
controllers have been developed in the past years for robotic systems [6, 7].
Hence, the objective of this paper is to design a supervisory sliding-mode
algorithm to modify the reference path so that the linear cartesian coor-
dinates of the robot’s end-effector fulfill the desired workspace constraints.
Sliding-mode-based supervisory blocks may also be used to handle joint speed
limits [8] or to take advantage of kinematic redundancy [9].

The structure of the paper is as follows. Next section states the prob-
lem to be addressed, while Section 3 presents a overall description of the
proposed approach. Afterwards, Section 4 develops the sliding mode path
conditioning technique proposed to fulfill workspace constraints, while some
remarks about it are given in Section 5. Next, Section 6 describes the trap
avoidance algorithm proposed to escape from trap situations. Furthermore,
Section 7 gives some guidelines to design the algorithm parameters, while a
discussion about the method is given in Section 8. Section 9 presents simula-
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tion results to illustrate the performance of the proposed approach. Finally,
some concluding remarks are given.

2. Problem statement

Let us denote as pref(t) the workspace position reference of the robotic
system, which can be usually expressed in terms of a desired path1 function
v(λ) whose argument is the so-called motion parameter λ(t) as:

pref = v(λ). (1)

Assumption 1. It will be assumed that pref is twice differentiable and
that p̈ref is reasonably bounded.

We consider that the robotic system to be controlled is subjected to
workspace constraints given by:

ΦWS(p) = {p | σi(p) ≤ 0} , i = 1, ..., N, (2)

where σi is a function of the workspace position coordinate2 p that is pos-
itive if and only if the ith-constraint is not fulfilled. Note that, σi(p) = 0
represents the boundary of the ith-constraint. For instance, a constraint
σsphere = 1 − ‖p‖2 ≤ 0 would indicate that the allowed workspace ΦWS is
included outside a sphere of radius 1, centered at the origin.

Assumption 2. It will be assumed that the functions σi are twice differ-
entiable around the boundary given by σi(p) = 0 and that their gradients3

∇σi around this boundary do not vanish.
For non-differentiable constraints, there are techniques in literature [10]

that may be used to enclose such non-smooth regions by smooth mathemat-
ical objects with an arbitrary degree of precision.

The control goal can therefore be stated as to generate a modified position
reference p∗

ref to be sent to the robotic control system so that it is as close
as possible to the user-input value pref and that belongs to the allowed
workspace ΦWS given by (2).

1The term path is used in this work to refer to the spatial positions followed by three
linear coordinates, e.g. the Cartesian position of the robot end-effector.

2The constraints could also be defined in terms of both the position and orientation of
the robot end-effector, i.e. σi(p,o), or the robot configuration q, see Section 5.3.

3The gradient of a scalar function f(x1, . . . , xn) is denoted ∇f = [ ∂f
∂x1

. . . ∂f
∂xn

]T.
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3. Overall description of the proposed approach

3.1. Improvement of the constraint space

At this point it is important to consider the following rationale. Ap-
proaching the constraints at high speed is impractical because collisions might
occur if the joint accelerations required to slow down the motion of the robot
towards the constraints boundary cannot be achieved by the robot actuators
due to power limitations. This is of particular significance in mechanical or
robotics systems in which the inertia is large. Hence, the actual constraint
space (2) will be modified to also include the speed of movement in the
following way:

Φ∗

WS(p, ṗ) =

{
[pT ṗT]T | φi(p, ṗ) = σi(p) +K

dσi(p)

dt

= σi +K ∇σT

i ṗ ≤ 0

}
, i = 1, ..., N, (3)

where σi(p) is the original ith workspace constraint and K is the constraint

approaching parameter, which is a free design parameter that determines the
rate of approach to the boundary of the constraints. Thus, expression (3)
introduces an additional degree of freedom necessary to reach the limit in a
controlled fashion. That is, the termKσ̇i is used to anticipate when the robot
is about to violate the ith-constraint in order to initiate an early corrective
action, which will increase the numerical stability of the proposed algorithm.
Note that σ̇i = ∇σT

i ṗ. Thus, for low speeds or small K values Φ∗

WS ≈
ΦWS given by (2). Note also that K may take different values for different
constraints, if so wished.

3.2. Diagram of the method

Fig. 1 shows the diagram of the proposed method to perform an on-line
robotic path conditioning so that environment limits given by equation (3)
are fulfilled. The objective of this path conditioning algorithm (PCA) is
to instantaneously modify the given position reference of the desired path
pref to a possibly different value p∗

ref which is sent to the robotic control
system when there is a risk of violating a given constraint. Moreover, a trap
avoidance algorithm (TAA) is also included in Fig. 1 in order to guarantee
that if no constraints are violated the value p∗

ref tends to pref .
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Fig. 1. Proposed method to fulfill workspace constraints.

The commanded path is shaped by modifying the position reference pref

as follows:
p∗

ref = pref + fSM + fRW , (4)

where fSM is the correcting action to the original path and fRW is a random

walk signal to escape from trap situations, as discussed in Section 6.
Signal fSM is generated by passing the discontinuous signal u1 through a

low-pass filter, as shown in Fig. 1. This filter smooths out the signal added
to the main control loop and it must be of second-order for p̈∗

ref to explicitly
depend on u1, as required in Section 4. Particularly, the following second-
order butterworth low-pass filter could be used:

f̈SM = −
√
2α1ḟSM − α2

1fSM + α2

1u1, (5)

with the scalar α1 being the filter cutoff frequency.
Signal fRW is generated by passing the discontinuous signal u2 through a

low-pass filter and an integrator, as shown in Fig. 1. The integrator gives rise
to a random walk signal whose variance increases monotonically with time,
while the filter smooths out the signal added to the main control loop. This
filter must be of first-order for velocity signal ṗ∗

ref to be continuous:

f̈RW = −α2ḟSM + α2u2, (6)
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with the scalar α2 being the filter cutoff frequency.
Fig. 1 also shows a third loop whose objective is to stop the motion of

the original reference pref when the TAA is active in order to avoid tracking
errors. For this purpose, signal fSP acts as a scale factor for the commanded
motion rate λ̇c. The control signal fSP is generated by passing the discon-
tinuous signal uSP through a first order low-pass filter in order to obtain a
continuous velocity signal λ̇.

3.3. State equation and Lie derivatives

The dynamical system given by (4), (5) and (6) has the following state
equation:




ṗ∗

ref

p̈∗

ref

ḟRW

f̈RW


 =




On In On On

−α2
1 In −

√
2α1In α2

1In (
√
2α1 − α2)In

On On On In
On On On −α2In







p∗

ref

ṗ∗

ref

fRW

ḟRW




+




0n

α2
1pref +

√
2α1ṗref + p̈ref

0n

0n


+




On On

α2
1In α2In
On On

On α2In



[
u1

u2

]

ẋ =f(x,d) + g(x)u, (7)

where n is the dimension of position vector p, matrices On and In denote
the null and identity matrices of dimensions n × n, respectively, vector 0n

denotes the n-dimensional null column vector, vector x is the system state,
vector d is the system disturbance (which is composed of the original posi-
tion reference pref and its derivatives), vector u is the system control input
(possibly discontinuous) and f and g are a vector field and a set of 2n vector
fields, respectively.

Using the above state equation, the Lie derivatives of φi in the direction
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of vector field f and in the direction of the set of vector fields g are given by:

∂φi/∂x =
[
∇σT

i +Kṗ∗ T
ref Hi K∇σT

i On On

]T
, (8)

Lgφi = (∂φi/∂x)
T
g =

[
α2
1K∇σT

i α2K∇σT
i

]
=
[
Lgφin Lgφi2n

]
, (9)

Lfφi = (∂φi/∂x)
T
f = K∇σT

i

(
α2

1pref +
√
2α1ṗref + p̈ref

)
+Kṗ∗ T

ref Hiṗ
∗

ref

+K∇σT

i

(
α2

1(fRW − p∗

ref) + (
√
2α1 − α2)ḟRW − (

√
2α1 − 1/K)ṗ∗

ref

)
,

(10)

where Hi denotes the Hessian matrix of second-order partial derivatives of
σi. Note that Lgφi is a 2n-dimensional row vector and Lfφi is a escalar
value whose first term depends on the disturbances, i.e. the original position
reference pref and its derivatives.

It is important to remark that Lfφi has a definite value in (10) only if
the first part of both assumptions made in Section 2 are fulfilled. Note also
that the first n elements of the row vector Lgφi (namely Lgφin) are not the
null vector since the values of α1, K and ∇σi are not zero4 from the above
definitions and the second part of Assumption 2.

4. Path conditioning algorithm

4.1. Invariance via sliding regimes

To ensure the fulfillment of the constraints, the following invariance con-
dition must be satisfied:

φ̇i(x,d,u) = ∇φT

i ẋ = ∇φT

i f +∇φT

i g u

= Lfφi + Lgφi

[
u1

u2

]
≤ 0, ∀i | φi(x) = 0. (11)

In this work, the above condition will be achieved by means of control sig-
nal u1, whereas control signal u2 will be designed to not affect this condition,

4If the chosen value of K had been zero, i.e., no speed limitations were desired, then
the low-pass filter of the PCA should have been first order, and the state x would not
include ṗ, in order to obtain a non-zero value for Lgφin. Details omitted for brevity.
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see Section 6.3. Therefore, expression (11) is rewritten as:

φ̇i = Lfφi + Lgφin u1 ≤ 0, ∀i | φi(x) = 0. (12)

The following variable structure control law is considered:

u1 =

{
0n if max

i
φi < 0

uSM otherwise,
(13)

where uSM is chosen to fulfill:

Lfφi + Lgφin uSM < 0, ∀i | φi(x) ≥ 0, (14)

in order to satisfy (12).
The above control law leads to a sliding regime [4] (i.e., control signal

u1 switches between 0n and uSM with a theoretically infinite frequency) on
the boundary of the ith-constraint if around this boundary Lfφi > 0, i.e.,
whenever the system tries by itself to leave the allowed region. Thus, the
switching law (13) does not seek for sliding mode (SM), but it becomes active
if the process is at the boundary of the allowed region and about to leave it.

4.1.1. Single active constraint

For only one active constraint φi, there exists a value of uSM fulfilling (14)
only if:

Lgφin 6= 0T

n , (15)

which is known as transversality condition [11] and imposes that the sliding
manifold must have unitary relative degree with respect to the discontinu-
ous action, i.e., its first-order time derivative (φ̇i) must explicitly depend on
u1. This condition is always fulfilled by the proposed method, see (9) and
Section 3.3.

For this case, the minimum-Euclidean-norm control action uSM fulfill-
ing (14) is given by a vector parallel to Lgφi

T

n :

uSM min i = −Lgφi
T

n

Lfφi

Lgφin Lgφi
T

n

. (16)

Therefore, for only one active constraint it is proposed to use the following
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expression for the control action uSM :

uSM = −Lgφi
T

n u+ = −α2

1K∇σiu
+, (17)

where u+ is a positive constant to be chosen high enough to establish a SM
on the constraint boundary. To fulfill that, the scalar factor u+ must be:

u+ >
max(Lfφi, 0)

Lgφin Lgφi
T

n

= uφi. (18)

Once the switching SM is established on the constraint boundary by the
control action uSM , the continuous equivalent control [4] is obtained, which
is the control required to keep the system just on the constraint boundary.
Consequently, the SM generated by switching law (13) produces the minimal
value uφi (without explicit knowledge of it) for the continuous equivalent of
u+ in order to achieve the invariance condition φ̇i ≤ 0.

4.1.2. Multiple active constraints

In case several constraints (say h constraints) are active, a function vec-
tor φ and its time derivative φ̇ composed of all active constraints should be
considered in (12), so the constraints can be kept holding if the linear system
of inequalities:

Lfφ+ Lgφn u1 ≤ 0h, (19)

admits a solution. Indeed, the non-active constraints admit a free u1, hence
only the active ones should be considered in the control law computation. Of
course, such set of active constraints changes with time.

In the spirit of the discussion for the above one-constraint case, one of
such control laws consists in generalizing (17) to:

uSM = −Lgφ
T

n 1h u
+ = −α2

1K∇σ1hu
+, (20)

where 1h is the h-dimensional column vector with all its components equal
to one, matrix ∇σ contains the gradient vectors ∇σi of all active constraints
and u+ is again a positive constant to be chosen high enough to establish a
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SM on the constraints boundary. To fulfill that, u+ must be [9]:

u+ >
h∑

i=1

(max(Lfφi, 0))

/
eigmin(Lgφn Lgφ

T

n ) = uφ, (21)

i.e., its value depends on the inverse of the minimum singular value of Lgφn.
Therefore, in this case the condition (15) must be now changed to the
“multiple-constraint” transversality condition of matrix Lgφn (i.e., matrix
∇σT) having full row rank, which indeed covers the previous single-constraint
case (a one-row matrix is full rank if there exists a non-zero element).

As in the previous single-constraint case, once the switching SM is estab-
lished on the constraints boundary by the control action uSM , a continuous
equivalent control [4] is obtained which is the control required to keep the
system just on the boundary manifold. Consequently, the sliding regime
generated by switching law (13) produces such equivalent control without
explicit knowledge of it, with a reasonably low computational cost, as dis-
cussed below.

4.2. Reduced computation time

Although equations (21) and (9)–(10) propose a lower bound for u+ to
be used in (20), the selection of this scalar factor can be made in a simple
manner by choosing a high-enough constant. In this way, fast computation
can be achieved. This is a distinctive advantage of SM algorithms [5].

Indeed, from the potential field approach point of view, the value u+ is in-
terpreted as the “repulsion” of the discontinuous field. This SM approach has
the advantage that the magnitude ‖fSM‖2 of the correcting action required
to avoid the constrained space is robustly auto-regulated to the continuous
equivalent control [4]. This magnitude could also be computed at each itera-
tion using (10), but it would require much more computational power than,
plainly, setting u+ to a big number which, due to the equivalent-control
principle, computes the required quantity by a high-frequency switching law
without explicit knowledge of the Hessian matrices Hi, the reference pref

and its derivatives, etc.

4.3. Strong invariance

Another distinctive feature of sliding regimes is that they are not affected
by disturbances/uncertainties d that are collinear with the discontinuous
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action in the state equation, i.e., that satisfy the so-called matching condi-

tion. In that case, it is said that the variable structure control given by (13)
presents strong invariance to disturbance d [4].

The matching condition is verified for the disturbances pref , ṗref and
p̈ref in the PCA, since they are collinear with the discontinuous action u1

in the state equation (7). Thus, the SM path conditioning presents strong
invariance to the uncertainties and/or inaccuracies of the reference trajectory
(i.e., pref and its derivatives) generated by the planner.

Note also that, the PCA is robust against environment modeling errors,
i.e., the PCA is not affected by the inaccuracies and uncertainties of the Hes-
sian matrices Hi of second-order partial derivatives of the constraint func-
tions σi.

4.4. Switching frequency and chattering

As in all SM controls, the theoretically infinite switching frequency cannot
be achieved in practice because all physical systems have finite bandwidth. In
computer implementations, the switching frequency is directly the inverse of
the sampling period. Finite-frequency commutation makes the system leave
the theoretical SM and, instead, its states oscillates with finite frequency and
amplitude inside a “band” around φ = 0, which is known as ‘chattering’ [5].

For active constraints, the chattering band △φi due to the PCA is given,
using the Euler-integration, by:

△φi = TPC |Lgφin uSM | = TPC α2

1 K |∇σT

i uSM |
≤ TPC α2

1 K ‖uSM‖2 ‖∇σi‖2, (22)

where TPC is the sampling period of the PCA, ‖uSM‖2 is the amplitude of
the control action and ‖∇σi‖2 is the amplitude of the gradient vector, i.e.,
the maximum directional derivative of the constraint function σi.

The signal σi is obtained by passing signal φi through a first-order
low-pass filter whose cutoff frequency is equal to 1/K, see (3). This fil-
ter smooths out the chattering band of φi. In the worst case the chattering
band △σi is equal to △φi and it is reduced as the chattering frequency ωφ

and/or the constraint approaching parameter K increase. Thus the upper
bound σmax for signal σi results in:

σmax = TPC α2

1 K ‖uSM‖2 ‖∇σi‖2. (23)
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5. Additional remarks about the path conditioning

5.1. Constraints definition

It is advisable to properly define all σi functions so that their orders
of magnitude are comparable, for instance, being related to the minimum
distance from p∗

ref to the boundary of the ith-constraint. Say, we may con-
sider the constraint σsphere = 1 − ‖p∗

ref‖2 ≤ 0 to indicate that the allowed
workspace is included outside a sphere of radius 1, centered at the origin.
However, instead of using σsphere we could have used 5σsphere, or σ

3
sphere, etc.

Therefore, in this case the first option might be advised if similar criteria are
used with the rest of constraints.

5.2. Security margin

In case it is needed for security reasons, the original constraint functions σi

may be designed conservatively, taking into account the estimated chattering
amplitude σmax and any other additional extra margin to cater for possible
inaccuracies of the robot controller while tracking the reference signal or
inaccuracies in the environment description.

5.3. Configuration space constraints

The proposed approach can also be used if the trajectory reference is ex-
pressed in terms of joint coordinates, e.g. the robot configuration q, instead
of workspace coordinates. In this case, the constraints must be given in the
joint space or configuration space and all developments keep unchanged ex-
cept for changing p to q. For example, this method can be used to guarantee
that all parts of the robot—not only the end-effector position—fulfill 3D-
spatial constraints, which is useful in some applications [12]. The method
can also be applied, for instance, to avoid configurations where the robot
kinematics is close to being singular, e.g. elbow, shoulder and wrist singu-
larities [13].

5.4. Non-static environment

The proposed approach can also be used if there are moving con-
straints, e.g. moving obstacles with known trajectories. In this case σi

also depends explicitly on time and, hence, the derivative of φi in equa-
tion (12) must be replaced by φ̇i = L̃fφi

+ Lgφin u1, where L̃fφi
is equal to

Lfφi+∂σi/∂t+K(∂2σi/∂t
2+2∂∇σT

i /∂t ṗ
∗

ref ), and Lgφin and Lfφi are given

12
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again by (9) and (10), respectively (the explicit derivation of the above ex-
pression is omitted for brevity). Therefore, all developments keep unchanged

except for changing Lfφi to L̃fφi
. Thus, only the value of the lower bound

for u+ is changed when moving constraints are considered and, hence, the
iterative computation of the PCA remains the same.

6. Trap avoidance algorithm

6.1. Introduction

A trap situation is defined as the case where the user-supplied pref tem-
porally enters an invalid region and, after pref reentering the valid region, the
PCA output p∗

ref does not converge again to it. An illustrative 2D example
of trap or blocking situation is depicted in Fig. 2, where the modified posi-
tion reference p∗

ref will be blocked on the surface region ∂Φ1A of boundary
∂Φ1 and will “lose” the original position reference pref . This phenomenon
is analogous to local minima and limit cycles in potential field-based ap-
proaches and, similarly, it can be avoided if the proposed PCA is combined
with a random walk (RW) [1] which is activated when the trap situation is
detected in order to escape from it, as discussed below.

6.2. Proposed method

In order to avoid the trap situations described above, we propose in this
work the heuristic Trap Avoidance Algorithm (TAA) shown in Fig. 1, which
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is based on a purely reactive behavior (i.e., no planning required) and consists
of two supervisory loops, as explained below.

The outer loop stops the motion (uSP = 0) of the original reference pref

when, firstly, the distance from the modified reference p∗

ref to pref is above
a given threshold ε1 and, secondly, pref is clearly within the allowed region,
i.e. maxi φi(pref) < −ε2, where ε2 is a given positive threshold. Thus, path
error is avoided while the modified reference p∗

ref converges to pref . A first-
order low-pass filter smooths out the control signal uSP generated by this
supervisory loop in order to obtain the continuous velocity signal λ̇. The
filtered control signal fSP acts as a scale factor for the commanded motion
rate λ̇c.

The inner loop activates a RW (u2 = uRW ) when the above stop condi-
tions are satisfied and some constraint is active, i.e. maxi φi(p

∗

ref) > −ε3,
where ε3 is a small positive threshold depending on the chattering given
by the SM PCA. Otherwise, the RW returns to zero, i.e., u2 = uRW . A
first-order low-pass filter smooths out the control signal u2 to obtain the
continuous signal ḟRW , which represents the RW speed vector. This signal is
integrated by an integrator to obtain the RW position fRW , which is added
to the original position reference pref . Note that this integration gives rise to
a RW position whose variance increases monotonically with time whenever
the RW is not returning to zero, i.e., whenever u2 = uRW . This increasing-
variance property allows to explore all the workspace in order to escape from
the trap situation. The computation of both uRW and uRW is detailed below.

6.3. Computation of the random walk

In order for the RW to return to zero, the vector uRW is computed as
follows:

uRW = −KefRW , (24)

where Ke is a positive constant giving rise to the specific dynamics of the
RW when returning to zero, which is given by the following two poles:

polesRW = −α2/2±
√

α2(α2/4−Ke). (25)

It is important to remark that the value of uRW does not interfere the
invariance condition (14) of the SM PCA in Section 4 since u2 = uRW only
if no constraint is active (maxi φi(p

∗

ref) ≤ −ε3), i.e., only if the PCA is not
active.
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The vector uRW is computed as a random non-zero vector orthogonal
to the gradients ∇σi of all active constraints for independence from the SM
PCA. That is, the first-order time derivative of the sliding manifold (φ̇i) does
not explicitly depend on uRW :

Lgφ2n u2 = Lgφ2n uRW = α2K ∇σTuRW = 0h, (26)

since vector uRW is orthogonal to each column vector of matrix ∇σ.
It worths mentioning that, the value assigned to u2 (either uRW or uRW )

indirectly affects the SM PCA since this value is filtered and integrated to
obtain ḟRW and fRW . Therefore, signal u2 indirectly modifies the minimum
value of u+ (21) (i.e., Lfφi (10)) required to establish the SM (and to fulfill
the constraints) when the PCA is active.

It will be assumed that the number of active constraints is always less
than n. Otherwise, such a non-zero vector uRW orthogonal to the gradients of
all active constraints does not exist and, in general, some planning is required
to escape from the trap situation.

The computation of vector uRW is made every sampling period TPC as
follows:

1. The gradient vectors∇σi of all active constraints (i.e., those constraints
that fulfill φi(p

∗

ref) > −ε3) are made orthogonal to each other, e.g.
using the Gram-Schmidt process, to obtain vectors ∇σo

i .
2. A new n-dimensional random vector (namely F) is generated every TF

seconds (i.e., every round(TF/TPC) samples) with all its components
ranging from −B to B, where constant B can be any real number.

3. Vector F is orthogonalized against all vectors ∇σo
i to obtain F.

4. Vector uRW is computed as follows:

uRW = (Kc +Kv ttrap)F/‖F‖2, (27)

where Kc and Kv are user-defined positive constants and ttrap is the
time elapsed since the TAA became active, i.e., since uSP was switched
off for the last time.

Note that the Euclidean-norm of uRW is a linear function of ttrap and,
thus, the amplitude of the RW is gradually increased in order to overcome
highly “attractive” trap situations, see Fig. 2.

The generation of a new random vector F every TF seconds (instead of
every sampling period TPC) allows to avoid permanent changes in the RW

15



speed ḟRW and, thus, the RW position fRW is smoother. Note that, in contrast
to the SM PCA, the RW speed does not need to change at a fast rate.

7. Guidelines for designing the algorithm parameters

This section will give some guidelines for the conceptual design of both
PCA and TAA.

7.1. Parameters of the PCA

7.1.1. Constraint approaching parameter

The value of K can be interpreted as the time constant of the “braking”
process when approaching the boundary of the original constraints σi, i.e.,
when approaching a constraint at high speed, the constraint will be reached
in approximately 3K seconds and transversal speed will be also lowered to
zero after that time has elapsed.

7.1.2. Cutoff frequency

The value of α1 must be higher than the frequency content of signals pref

and fRW (the latter is given by α2 and TF when u2 = uRW and by (25) when
u2 = uRW ) in order to obtain a good approximation of the theoretical SM
behavior, but not too high to avoid significant chattering (22).

7.1.3. Amplitude of the control action

The value of ‖uSM‖2 (which is directly related to u+) has to be as close as
possible to its lower bound given by (21) (with, perhaps, some safety margin)
in order to have reduced chattering amplitude and high chattering frequency,
see Section 4.4.

7.1.4. Sampling period

The sampling period TPC of the PCA has to be small enough in order
for the discrete implementation of the filter to work properly, i.e. TPC ≪
π/α1, and have small chattering amplitude (22). The minimum value for
the sampling period TPC is determined by the computation times of one
iteration of the PCA, which is below one microsecond (see the Appendix).
For instance, in Section 9 the PCA will operate at 1 or 0.2 milliseconds to
reduce the chattering phenomenon introduced by the SM based algorithm.
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7.2. Parameters of the TAA

7.2.1. Thresholds for the conditions

The value of threshold ε1 should be chosen small enough depending on
the desired tracking error when restarting the motion of the original reference
pref once the trap situation has been overcome. The value of threshold ε2
should be chosen: large enough to guarantee that the original reference pref

is clearly within the allowed region in order to activate the TAA; and small
enough to avoid tracking errors once the trap situation has been overcome.
The value of threshold ε3 should be chosen: larger than the chattering band
σmax (23) to avoid disturbing the SM of the PCA; and small enough to
avoid degrading the performance of the TAA, i.e., to fully exploit the allowed
workspace.

7.2.2. Gain for returning to zero

In this work it will be used Ke = α2/4 in order to obtain a critically
damped response, i.e., the RW returns to zero as quickly as possible without
oscillating. Therefore, from (25) it is obtained polesRW = −α2/2.

7.2.3. Amplitude of the speed vector

The value of Kc should be chosen: large enough to escape from trap
situations in a reasonable amount of time; and small enough to avoid fast
RW speeds that cannot be attained by the robot. The value of Kv should
be chosen: large enough to properly increase the amplitude of the RW speed
with time in order to overcome highly attractive trap situations; and small
enough to guarantee RW numerical stability.

7.2.4. Period of the random vector

The period TF for regenerating the random vector F should be chosen:
large enough to obtain a smooth RW position fRW ; and small enough to
obtain a significant variability in the RW speed ḟRW .

7.2.5. Cutoff frequency

The value of α2 should be chosen: large enough to properly react to the
random vector F generated every TF seconds; and small enough to avoid
abrupt changes in the RW speed ḟRW when control signal u2 switches to
another value. For example, typical values could be selected between 0.5/TF

and 2/TF .
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8. Discussion

The main advantages of the proposed path conditioning are summarized
below:

• It can be interpreted as a limit case of the conventional potential field-
based approach for collision avoidance.

• The robot workspace is fully exploited in order to maintain the faith-
fulness to the original path.

• The limit surface of the constraints is reached smoothly, depending on
a free design parameter.

• Reduced computation time: only linear algebra is used, no Hessian ma-
trices are required (only gradients are used), etc.

• The SM PCA is robust against the environment model and against the
reference trajectory generated by the planner.

• No a priori knowledge of the desired path is required.

• Moving constraints in a non-static environment are also valid as long
as they are known.

• The proposed approach also includes a trap avoidance algorithm to
escape from trap situations.

Let us now comment on the possible limitations.
Although the framework of this research is a robot operating in a struc-

tured environment, unexpected or a priori unknown obstacles could also be
considered if they are detected on-line by the robot’s proximity sensors [14].
However, this issue is out of the scope of this research and incorporating it
into the here proposed control structure remains as further work.

Differing from conventional SM control where the switching is in the main
control action of the controlled process, the current application presents a
reference conditioning setup where SM is confined to the low-power side of
the system and, hence, the so called chattering issues are greatly alleviated.

As stated in Assumption 1 and Assumption 2, the original reference
pref and the constraint functions σi must be twice differentiable and their
second-order derivatives must be reasonably bounded in order to fulfill (21).
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If these assumptions are not satisfied at a certain time, the SM behavior of
the path conditioning is temporarily lost and the constraints may be unful-
filled.

Note that, the proposed TAA is based on a RW and, therefore, it can take
a considerable amount of time to escape from complex trap situations where
the way out is given by an intricate maze. In some cases, then, combining
the proposed TAA with a higher-level planner might be advisable in order
to escape from intricate trap situations in a reasonable amount of time.

9. Simulation

In this section the main features of the proposed PCA are illustrated
through simulation results. The first example shows the behavior of the
PCA in Fig. 1 for different rates of approach to the constraints and its com-
parison to the conventional potential field-based approach. The second and
third examples show the behavior of the PCA in combination with the TAA
in Fig. 1 for escaping from a trap situation with one and multiple active
constraints, respectively. Finally, a fourth example is developed to show the
effectiveness of the proposed TAA to escape from a highly attractive trap
situation.

9.1. First example: comparison with the conventional method

Consider a reference path given by the following helicoidal expression:

pref (λ) = [xref(λ) yref(λ) zref(λ)]
T

= 0.1




sin (λ)
−0.75− cos (λ)

3.44− λ


 , (28)

with λ = 0...2π and λ̇ = 2π/5, where the units for linear and angular dimen-
sions are meters and radians, respectively.

Two workspace constraints are considered, the first one is characterized
by a plane and the second one by a sphere. These constraints are given by
the following expressions:

σ1(p
∗

ref) = [0 1 0] · p∗

ref = y∗ref ≤ 0, (29)

σ2(p
∗

ref) = 0.05−
∥∥p∗

ref

∥∥
2
≤ 0. (30)
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The PCA shown in Fig. 1 has been implemented with a constraint ap-
proaching parameter K of 0.1 s and 0.2 s (i.e., the simulation is run twice,
once for each value of K), a cutoff frequency α of 20 rad/s, a control action
amplitude ‖uSM‖2 of 0.1 m and a sampling period TPC of one millisecond.

In the same spirit of equations (4) and (5), the conventional potential
field-based5 path conditioning is given by [1]:

p∗

ref = pref + fPF , (31)

ḟPF = Fatt +
∑

i

(Frep i) , (32)

where fPF is the correcting action, Fatt is the attractive force to the current
position reference pref and Frep i is the repulsive force from the ith-constraint.
Thus, the sum of all “forces” determines the magnitude and direction of
the derivative of the correcting action. The commonly used attractive and
repulsive forces have the following form [16]:

Fatt = ξ1 (pref − p∗

ref), (33)

Frep i =

{
ξ2 (ρ

−1

i − ρ−1

0 ) ρ−2

i ∇ρi if ρi < ρ0
0 otherwise,

(34)

where ξi is a positive constant, ρi(p
∗

ref) is the minimal distance from p∗

ref to
the boundary of the ith-constraint and ρ0 is a positive constant denoting the
distance of influence of the constraints. The potential field-based path con-
ditioning just described has been implemented with the following parameter
values: ξ1 = 20 s−1, ξ2 = 5 · 10−6 m4/s and ρ0 = 0.1 m.

Fig. 3 shows the simulation results of the proposed PCA and the conven-
tional potential field-based method. For the proposed PCA, the approach
to the limit surface of the constraints is smoother for the higher value of K,
which agrees with equation (3). For the conventional potential field-based
method, the constraints are fulfilled but the workspace is not fully exploited
to maintain the faithfulness to the original path. In the limit case of the po-
tential field-based method, i.e. ξ2 → 0, the workspace is fully exploited, but
at the expense of discontinuous repulsive forces and abrupt changes in the

5In the conventional potential field-based method, it is usually assumed that the deriva-
tive of the position reference pref is zero, which is not the case of this work [15].
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Fig. 3. First-angle projections (front view and top view with respect to the base coordi-
nate frame) of the reference path (thick solid line) and the modified paths for the proposed
PCA with K = 0.1 (solid line) and K = 0.2 (dashed line) and the conventional potential
field-based approach (points). The limit plane of the first constraint is shown as a thick
dotted line in the top view.
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derivative of the modified reference, which requires using variable structure
control concepts like those used in this work. Fig. 4 shows the correction val-
ues of the proposed PCA for K = 0.1 and the active constraints. Note that
both constraints are simultaneously active for a period of about half second,
during which the performance of the SM guarantees workspace constraint
fulfillment.

9.2. Second example: trap avoidance with one active constraint

For this case, the reference path is given by the following helicoidal ex-
pression:

pref(λ) = 0.1




cos (λ)
sin (λ)
π − λ


 , (35)

with λ = 0...2π and the value of the commanded motion rate λ̇c is 2π/5,
where the units for linear and angular dimensions are meters and radians,
respectively.

One constraint, characterized by an ellipsoid, is considered:

σ3(p
∗

ref) = 0.1

(
1−

∥∥∥∥∥

[
x∗

ref

0.8

y∗ref
0.8

z∗ref
0.1

]T∥∥∥∥∥
2

)
≤ 0. (36)

For the simulations of this case, the PCA was implemented with a con-
straint approaching parameter K of 0.05 s, a cutoff frequency α of 20 rad/s
and a control action amplitude ‖uSM‖2 of 1.6 m. The TAA shown in Fig. 1
was implemented under the following conditions: a cutoff frequency of 20
rad/s was used for both first-order low-pass filters that smooth out the con-
trol signals uSP and u2, respectively; the switching law u2 was computed
with Kc = 2 m/s, Kv = 2 m/s2 and Ke = 5 s−1; the random vector F is
regenerated every TF = 0.1 s; and the values of the thresholds ε1, ε2 and ε3
were set to 0.05 m, 0.05 m and 0.01 m, respectively. Moreover, a sampling
period of 0.2 milliseconds was used for both PCA and TAA.

Fig. 5 and Fig. 6 show the simulation results of the proposed PCA and
TAA for this case. The behavior of the RW to avoid the trap situation,
which is due to the small curvature of the upper pole of the ellipsoid, is
shown in Fig. 5. The correction values fSM and fRW generated by the PCA
and TAA, respectively, are shown in Fig. 6. Note that the scale factor fSP
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Fig. 5. First-angle projections (front view and top view) of the reference path (thick solid
line) and the modified path (thin solid line) for the second example. The limit surface of
the constraint is also shown.

24



0 1 2 3 4 5 6
0

0.1

0.2

f
S

M
(m

)

0 1 2 3 4 5 6

−0.6
−0.4
−0.2

0
0.2

f
R

W
(m

)

0 1 2 3 4 5 6
0

0.5

1

f
S

P

0 1 2 3 4 5 6
−0.2

−0.1

0

φ
3

σ
3

Time (s)

Fig. 6. Correction values fSM and fRW of the path conditioning and random walk,
respectively, scale factor fSP for the commanded motion rate λ̇c and constraint functions
φ3 (dark line) and σ3 (light line).

25



for the commanded motion rate λ̇c stops the original reference pref within
the allowed region while the RW is active in order for the modified reference
p∗

ref to converge to pref .

9.3. Third example: trap avoidance with multiple active constraints

For this case, the reference path is given by the following sinusoidal ex-
pression:

pref(λ) = 0.1




0
sin (λ)
π − λ


 , (37)

with λ = 0...2π and the value of the commanded motion rate λ̇c is 2π/5,
where the units for linear and angular dimensions are meters and radians,
respectively.

Two symmetric constraints, both of them characterized by an ellipsoid,
are considered:

σ4(p
∗

ref) = 0.1

(
1−

∥∥∥∥∥

[
x∗

ref + 0.55

0.8

y∗ref
0.8

z∗ref
0.1

]T∥∥∥∥∥
2

)
≤ 0, (38)

σ5(p
∗

ref) = 0.1

(
1−

∥∥∥∥∥

[
x∗

ref − 0.55

0.8

y∗ref
0.8

z∗ref
0.1

]T∥∥∥∥∥
2

)
≤ 0. (39)

The PCA and the TAA were implemented under the same conditions of
previous section. Fig. 7 and Fig. 8 show the simulation results for this case:
the behavior of the RW to avoid the trap situation, which is due to the small
curvature of the upper pole of both ellipsoids, is shown Fig. 7; whereas the
correction values fSM and fRW generated by the PCA and TAA, respectively,
are shown in Fig. 8. As before, the scale factor fSP for the commanded
motion rate λ̇c stops the original reference pref within the allowed region
while the RW is active in order for the modified reference p∗

ref to converge
to pref . Note that while the TAA is looking for a way out of the trap (i.e.,
u2 = uRW ), the RW is performed across the intersection of both ellipsoids
since both constraints are active, which is due to the fact that the mentioned
intersection and the reference path lie in the same plane x = 0.
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Fig. 7. First-angle projections (front view, side view and top view) and 3D view of
the reference path (thick solid line) and the modified path (thin solid line) for the third
example.
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9.4. Fourth example: escape from a highly “attractive” trap situation

For this case, the reference path is given by the helicoidal expression (35)
and the following constraint, which is characterized by a three-dimensional
generalization of the oval of Booth, is considered:

σ6(p
∗

ref) = 0.5−
∥∥p∗

ref

∥∥2
2∥∥∥

[
x∗

ref y∗ref 0.3z∗ref
]T∥∥∥

2

≤ 0. (40)

The PCA and the TAA were implemented under the same conditions of
previous section except for the parametersKc andKv of the TAA which were
increased to 5 m/s and 5 m/s2, respectively, in order to overcome the highly
attractive trap situation. Fig. 9 and Fig. 10 show the simulation results for
this case: the trap situation given by the constraint (40) is highly attractive
because the modified reference generated by the PCA tends to go deeper
into the upper “hole” of the oval (Fig. 9) and, therefore, the RW (Fig. 10)
has to redirect this natural behavior. As before, signal fSP stops the original
reference pref within the allowed region while the RW is active in order for
the modified reference p∗

ref to converge to pref .

10. Conclusions

A sliding-mode algorithm for robotic path conditioning was proposed in
this work. The algorithm modifies the desired reference path in order to
fulfill the robot workspace constraints. The main advantage of the pro-
posed method over the conventional potential field-based approach for colli-
sion avoidance is that the robot workspace is fully exploited to maintain the
faithfulness to the original path. The main limitation of the method is that
trap situations, which are analogous to local minima in potential field-based
approaches, can arise during the path conditioning. To overcome this draw-
back, a trap avoidance algorithm has also been developed in order to escape
from trap situations once they are detected.

The proposed path conditioning algorithm can be used on-line, since it
does not require a priori knowledge of the desired path, its implementation
is very easy in a few program lines of a microprocessor and its computation
time is short (see the Appendix). The performance and effectiveness of the
proposed algorithms has been demonstrated by simulation results.
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Fig. 9. First-angle projections (front view and top view) of the reference path (thick solid
line) and the modified path (thin solid line) for the fourth example.
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Appendix. Computer Implementation

The MATLAB® code of the proposed PCA and TAA for the examples
presented in Section 9 is shown below. The PCA and TAA are implemented
in the loop pathcond and loop trapavoid functions, respectively, which call
five auxiliary functions to compute {∇σ3,∇σ4,∇σ5,∇σ6, φ3, φ4, φ5, φ6,F}.
Note that this implementation supports the claim made in the paper that
the proposed approach only requires a few program lines. The main script
file shown below uses this implementation to obtain the modified reference
generated by the proposed method for the second (Case = 1), third (Case =
2) and fourth (Case = 3) examples. The computation time per iteration in
a modern computer using MATLAB® R2009a (compiled C-MEX-file) was
around 0.6 µs (microseconds) for the PCA and 0.9 µs for the TAA.

function grad=grad3(p)
grad= −(p./[64;64;1])/max(norm((p)./[8;8;1]),1e −9);

function grad=grad4(p)
grad= −((p −[ −0.55;0;0])./[64;64;1])/ ...

max(norm((p −[ −0.55;0;0])./[8;8;1]),1e −9);

function grad=grad5(p)
grad= −((p −[0.55;0;0])./[64;64;1])/ ...

max(norm((p −[0.55;0;0])./[8;8;1]),1e −9);

function grad=grad6(p)
global Nov
grad=p. * (Nov.ˆ2 * (p' * p/max(norm(p. * Nov),1e −9)ˆ3) −...

2/max(norm(p. * Nov),1e −9));

function phi=phi3(p,pd)
global K;
phi=(0.1 −norm(p./[8;8;1]))+K * grad3(p)' * pd;

function phi=phi4(p,pd)
global K;
phi=(0.1 −norm((p −[ −0.55;0;0])./[8;8;1]))+K * grad4(p)' * pd;
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function phi=phi5(p,pd)
global K;
phi=(0.1 −norm((p −[0.55;0;0])./[8;8;1]))+K * grad5(p)' * pd;

function phi=phi6(p,pd)
global K Nov Rov;
phi=(Rov −p' * p/max(norm(p. * Nov),1e −9))+K * grad6(p)' * pd;

function Fbar=ComputeFbar(gradsF)
for i=2:size(gradsF,2),

gradsF(:,i −1)=gradsF(:,i −1)/max(norm(gradsF(:,i −1)),1e −9);
for j=1:i −1,

gradsF(:,i)=gradsF(:,i) −gradsF(:,i)' * ...
gradsF(:,i −j) * gradsF(:,i −j);

end ;
end;
Fbar=gradsF(:, end );

function [p next,pd next]=loop pathcond(pref,p,pd,Case)
% path conditioning loop
global Tpc Max usm NFilt1 DFilt1 usm1 usm2 fsm1 fsm2;
if Case==1, usm= −(phi3(p,pd) >=0) * grad3(p);
elseif Case==2, usm= −(phi4(p,pd) >=0) * grad4(p) −...

(phi5(p,pd) >=0) * grad5(p);
else usm=−(phi6(p,pd) >=0) * grad6(p); end ;
usm=Max usm* usm/max(norm(usm),1e −9);
fsm=usm* NFilt1(1)+usm1 * NFilt1(2)+usm2 * NFilt1(3) −...

fsm1 * DFilt1(2) −fsm2 * DFilt1(3);
p next=pref+fsm; pd next=(p next −p)/Tpc;
% for the next iteration
usm2=usm1; usm1=usm; fsm2=fsm1; fsm1=fsm;

function [fsp,frw]=loop trapavoid(pref,pdref,p,pd,Case)
% trap avoidance loop
global Tpc F Kc Kv Ke NFilt2 DFilt2 NFilt3 DFilt3;
global tTrap E1 E2 E3 fsp1 usp1 frw1 frw2 u21;
if Case==1, Cond1=phi3(p,pd) >−E3;
elseif Case==2, Cond1=max(phi4(p,pd),phi5(p,pd)) >−E3;
else Cond1=phi6(p,pd) >−E3; end;
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if Case==1, Cond2=(phi3(pref,pdref) <−E2);
elseif Case==2,

Cond2=(max(phi4(pref,pdref),phi5(pref,pdref)) <−E2);
else Cond2=(phi6(pref,pdref) <−E2); end ;
Cond2=Cond2&&(norm(pref −p) >E1);
if Cond2, usp=0; tTrap=tTrap+Tpc; else usp=1; tTrap=0; end;
if Cond1&&Cond2,

if Case==1, gradsF=grad3(p) * (phi3(p,pd) >−E3);
elseif Case==2, gradsF=[grad4(p) * (phi4(p,pd) >−E3), ...

grad5(p) * (phi5(p,pd) >−E3)];
else gradsF=grad6(p) * (phi6(p,pd) >−E3); end ;
gradsF=[gradsF,F];
Fbar=ComputeFbar(gradsF);
u2=(Kc+Kv * tTrap) * Fbar/max(norm(Fbar),1e −9);

else u2=−Ke* frw1; end ;
fsp=usp * NFilt3(1)+usp1 * NFilt3(2) −fsp1 * DFilt3(2);
frw=Tpc * (u2 * NFilt2(1)+u21 * NFilt2(2))+ ...

frw1 * (1 −DFilt2(2))+frw2 * DFilt2(2);
% for the next iteration
fsp1=fsp; usp1=usp; frw2=frw1; frw1=frw; u21=u2;

%%%%%%%%%%%%%%% Main script file %%%%%%%%%%%%%%%%%
clear all;
global Tpc Max usm K Kc Kv Ke usm1 usm2 fsm1 fsm2;
global tTrap NFilt1 DFilt1 NFilt2 DFilt2 NFilt3 DFilt3;
global E1 E2 E3 fsp1 usp1 frw1 frw2 u21 F Nov Rov;

Case=3; %{1,2,3 }−>{1 Ellipsoid,2 Ellipsoids,Oval }

% Initialization
Tpc=2e−4; K=0.05; wSM=20; wRW=20; wSP=20; Max usm=1.6;
E1=0.05; E2=0.05; E3=0.01; Ke=wRW/4; tTrap=0;
if Case==3, Kc=5; Kv=5; else Kc=2; Kv=2; end ;
frw=zeros(3,1); frw1=frw; frw2=frw; u21=frw;
usm1=frw; usm2=frw; fsm1=frw; fsm2=frw;
fsp1=0; usp1=0; fsp=0; lambda=0; derlambda=2 * pi/5;
pref=0.1 * [not(Case==2);0;pi]; p=pref;
pdref=[0;0.1; −0.1] * derlambda; pd=pdref;
Nov=[1;1;.3]; Rov=.5;
TimeF=0.1; SamplesF=round(TimeF/Tpc); F=rand(3,1) −0.5;

% Filters
[NFilt1,DFilt1]=butter(2,wSM * Tpc/pi, 'low' );
[NFilt2,DFilt2]=butter(1,wRW * Tpc/pi, 'low' );
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[NFilt3,DFilt3]=butter(1,wSP * Tpc/pi, 'low' );

tic; % Path conditioning loop
for i=1:1e8,

[p next,pd next]=loop pathcond(pref(:,i)+ ...
frw(:,i),p(:,i),pd(:,i),Case);

[fsp next,frw next]=loop trapavoid(pref(:,i), ...
pdref(:,i),p(:,i),pd(:,i),Case);

p=[p,p next]; pd=[pd,pd next];
frw=[frw,frw next]; fsp=[fsp,fsp next];
lambda=[lambda,lambda( end )+derlambda( end) * Tpc];
derlambda=[derlambda,(2 * pi/5) * fsp next];
if rem(i,SamplesF)==0, F=rand(3,1) −0.5; end;

pref=[pref,.1 * [cos(6 * lambda( end )) * not(Case==2);
sin(6 * lambda( end));(pi −lambda( end))]];

pdref=[pdref,(pref(:, end)−pref(:, end−1))/Tpc];

if rem(i,.1/Tpc)==0, fprintf( 'Time=%.2f \n' ,i * Tpc); end ;
if lambda( end) >=2* pi, break ; end;

end;
toc/size(pref,2) % Computation time per iteration

%***************** PLOTS **********************
% Paths followed by the original and modified references
figure; hold on; grid on; axis equal;
col=[.8,.8,.8]; colormap cool;
if Case==1, %%% 1 Ellipsoid

[X,Y,Z]=ellipsoid(0,0,0,.8,.8,.1,13);
contour3(X,Y,Z,24);
surface(X,Y,Z, 'EdgeColor' ,col, 'FaceColor' , 'none' );
axis([ −.85,.85, −.85,.85, −.35,.35]); view(0,0);

elseif Case==2, %%% 2 Ellipsoids
[X,Y,Z]=ellipsoid( −.55,0,0,.8,.8,.1,13);
contour3(X,Y,Z,24);
surface(X,Y,Z, 'EdgeColor' ,col, 'FaceColor' , 'none' );
[X,Y,Z]=ellipsoid(.55,0,0,.8,.8,.1,13);
contour3(X,Y,Z,24);
surface(X,Y,Z, 'EdgeColor' ,col, 'FaceColor' , 'none' );
axis([ −1.35,1.35, −.8,.8, −.34,.34]); view( −90,0);

else %%% Oval
th=linspace(0,2 * pi,40); al=linspace(0,2 * pi,80);
[th,al]=meshgrid(th,al);
aux1=Rov * sqrt(Nov(1)ˆ2 * cos(th).ˆ2. * sin(al).ˆ2+ ...
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Nov(2)ˆ2 * sin(th).ˆ2. * sin(al).ˆ2+Nov(3)ˆ2 * cos(al).ˆ2);
X=aux1. * cos(th). * sin(al); Y=aux1. * sin(th). * sin(al);
Z=aux1. * cos(al);
surface(X,Y,Z, 'EdgeColor' ,col, 'FaceColor' , 'none' );
axis([ −.53,.53, −.53,.53, −.34,.34]); view(0,0);

end ;
plot3(pref(1,:),pref(2,:),pref(3,:), 'g' , 'LineWidth' ,3);
plot3(p(1,:),p(2,:),p(3,:), 'r' , 'LineWidth' ,2);
xlabel( 'X (m)' ); ylabel( 'Y (m)' ); zlabel( 'Z (m)' );
title( ' {\bfp } {ref } (g) {\bfp }* {ref } (r)' );

% Correction values: fSM, fRW, fSP, phi i, sigma i
Ns=size(pref,2); time=0:Tpc:(Ns −1) * Tpc; fsm=p −pref −frw;
phi i=zeros(1,Ns); sigma i=zeros(1,Ns);
for i=1:Ns,

if Case==1, phi i(i)=phi3(p(:,i),pd(:,i));
sigma i(i)=phi3(p(:,i),zeros(3,1)); end ;

if Case==2, phi i(i)=phi4(p(:,i),pd(:,i));
sigma i(i)=phi4(p(:,i),zeros(3,1)); end ;

if Case==3, phi i(i)=phi6(p(:,i),pd(:,i));
sigma i(i)=phi6(p(:,i),zeros(3,1)); end ;

end;
figure; subplot(4,1,1); hold on;
ylabel( ' {\bf {f }} {SM} (m)' );
plot(time,fsm(1,:), 'k −' ,time,fsm(2,:), 'm−−' , ...

time,fsm(3,:), 'r −.' );
axis([0,time( end ),min(min(fsm)),max(max(fsm))]);
subplot(4,1,2); hold on; ylabel( ' {\bf {f }} {RW} (m)' );
plot(time,frw(1,:), 'k −' ,time,frw(2,:), 'm−−' , ...

time,frw(3,:), 'r −.' );
axis([0,time( end ),min(min(frw)),max(max(frw))]);
subplot(4,1,3); hold on; plot(time,fsp, 'b' );
axis([0,time( end ),0,1.1]); ylabel( ' f {SP}' );
subplot(4,1,4); hold on; plot(time,phi i, 'b' );
plot(time,sigma i, 'c' ); pos0=get(gcf, 'Position' );
axis([0,time( end ),min(phi i),max([0.05,phi i])]);
ylabel( ' \phi i \sigma i' ); xlabel( 'Time (s)' );
set(gcf, 'Position' ,[pos0(1:3) −[0,200,0],pos0(4) * 4/3]);
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