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ABSTRACT 
 

It is commonly assumed that intermittent demand appears randomly, with many periods 
without demand; but that when it does appear, it tends to be higher than unit sise. Basic 
and well-known forecasting techniques and stock policies perform very poorly with 
intermittent demand, making new approaches necessary. To select the appropriate 
inventory management policy, it is important to understand the demand pattern for the 
items, especially when demand is intermittent. The use of a forecasting method designed 
for an intermittent demand pattern, such as Croston’s method, is required instead of a 
simpler and more common approach such as exponential smoothing. The starting point is to 
establish taxonomic rules to select efficiently the most appropriate forecasting and stock 
control policy to cope with thousands of items found in real environments. This paper 
contributes to the state of the art in: (i) categorisation of the demand pattern; (ii) methods 
to forecast intermittent demand; and (iii) stock control methods for items with intermittent 
demand patterns. The paper first presents a structured literature review to introduce 
managers to the theoretical research about how to deal with intermittent demand items in 
both forecasting and stock control methods, and then it points out some research gaps for 
future development for the three topics. 
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1.  INTRODUCTION 
 
In many industries, stock control has become a strategic element that determines the 
success of important objectives, such as fulfilling a predetermined target customer service 
level. A suitable inventory control policy has to take into account the characteristics of the 
items, especially when they present variability in both demand sise and demand 
occurrence. So it is necessary to characterise the type of item before selecting the best 
stock control policy and the best forecasting procedure. 
 
Intermittent demand pattern appears randomly, with many periods that have no demand; 
but when demand does occur, it can be greater than unit sise. (See, for example, Johnston 
and Boylan [1]; Syntetos and Boylan [2]; Willemain et al. [3]). This situation frequently 
applies to spare parts and to low- and medium-movement items in many industries. In fact, 
it is usual to find intermittent demand patterns instead of the constant, smooth, or normal 
ones for which traditional models are designed.  
 
Furthermore, appropriate models and techniques to manage those items are not used in 
real industrial environments, despite active research carried out on this topic in recent 
years. This paper contributes to the organisation of stock and forecasting models and 
techniques, providing background information that helps managers to select models and 
techniques more efficiently to manage intermittent demand items. 
 
The paper is organised as follows: Section 2 describes and classifies the different 
approaches in order to categorise demand pattern, and ends by identifying the research 
gaps related to this topic, and the most common demand distribution function used under 
specific circumstances in the literature. Section 3 is dedicated to explaining methods to 
forecast intermittent demand patterns, and their implications in practical environments. 
Section 4 gathers some relevant inventory control policies applied to intermittent demand 
items in both periodic and continuous review policies. To end, Section 5 presents some 
conclusions and potential research extensions of this work. 
 
2.  CATEGORISATION OF DEMAND PATTERNS 
 
Categorisation of demand patterns consists of defining groups or categories with the 
purpose of classifying the items to select the best forecasting method and inventory control 
policy. However, there is no standard classification, definition, or characterisation of the 
different demand patterns. In fact, ad hoc categorisations are the most widely used to 
classify real data in industrial environments (Sani and Kingsman [4]) and software packages 
(Boylan et al. [5]).  
 
In this section, the different approaches related to demand pattern categorisation are 
classified as follows: (1) approaches based on variance partition; (2) approaches based on 
the accuracy of forecasting procedures; and (3) approaches based on the demand shape. 
The shortcomings of these approaches and the potential research gaps are highlighted. 
 
 
2.1  Approaches based on variance partition 
 
Williams [6] proposes a method based on splitting the variance of demand during a lead 
time (DDLT) into its causal parts. The author defines these causal parts as: (1) the number 
of orders arriving in successive units of time with mean n and variance var(n); (2) the size 
of the orders, with mean x and variance var(x); and (3) the lead time, with mean L and 
variance var(L). Given that (1), (2) and (3) are considered to be independent and identically 
distributed random variables, Williams suggests dividing the variance of DDLT as follows: 
 

2 2 2var( ) var( ) var( ) var( )DDLT x L n nL x n x L= + +   (1) 
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which could be expressed as the variance due to n plus the variance due to x plus the 
variance due to L. 
 
By expressing (1) through its coefficients of variation (CV), we have the following 
expression: 
 

2 2
2 2n x
DDLT L

CV CV
CV CV

L nL
= + +   (2) 

 
The size of each term of (2) is used by Williams [6] and extended by Eaves and Kingsman [7] 
as an indicator of the type of demand pattern. Table 1 compares both categorisations.  

 

2

DDLTCV  Categorisation of demand 

2
nCV L  2

xCV nL  2
LCV  Williams [6] Eaves and Kingsman [7] 

Low    Low  Smooth Smooth 
Low    High  Smooth Irregular 
High    Low  Slow moving Slow moving 
High    High Low Sporadic Mildly intermittent 
High    High High Sporadic Highly intermittent 

 
Table 1: Categorisation of demand based on variance partition 

 
According to the authors, the choice of boundaries between categories should depend on 
the sector and type of item, and this is essentially a management decision. Williams [6] 
proposes cut-off values between categories when the lead time is constant and the number 
of orders arriving are Poisson distributed. These limits are defined for a pure ‘store’ 
situation, which means that each product is independent, bought in, and distributed with 
no manufacturing activity. Eaves and Kingsman [7] deal with consumable inventories from 
the Royal Air Force. The authors do not state any boundaries between categories, assigning 
each category a percentage of the total number of the items analysed. In that particular 
case, the theoretical categorisations shown in Table 1 become ad hoc when boundaries are 
defined for each industrial environment. 
 
2.2  Approaches based on the accuracy of the forecasting procedure 
 
Syntetos et al. [8] suggest a categorisation scheme according to the theoretical comparison 
of the mean squared error (MSE), which arises from three forecasting methods: (i) Croston’s 
method (CM), designed to forecast intermittent demand items (explained in Section 3); (ii) 
a modification of CM derived by Syntetos and Boylan [9] (S&B); and (iii) simple exponential 
smoothing (SES). To establish demand categories, the authors compare the MSE that arises 
from each method to identify regions of higher accuracy. These regions are delimited by 
the squared coefficient of variation of the demand size (CV2) and the average inter-demand 
interval (p), distinguishing four demand categories: erratic, lumpy, smooth, and 
intermittent (see Syntetos et al. [8] for accurate definitions of each pattern). Additionally, 
Kostenko and Hyndman [10] suggest using the S&B forecasting procedure in the smooth 
pattern whenever: 
 

( )2 2 3 2CV p> −
          (3)  

Demand categories are shown in Figure 1, where the use of the S&B forecasting method is 
recommended whenever demand is categorised as erratic, lumpy, intermittent, and 
smooth, whereas the CM appears only for some of the smooth patterns. The SES method 
does not appear in the diagram, even though demand pattern is categorised as smooth.  
 
Additionally, Boylan et al. [5] assess the use of CV2 and p as categorisation parameters 
instead of the average demand used in the spare parts industry, which has an ad hoc 
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categorisation schema for both forecast and stock control systems. According to Boylan et 
al. [5], the main benefit of using CV2 in lieu of the average demand is that it allows users to 
distinguish between slow and lumpy items, as the average is not able to capture ‘the 
essence of lumpiness’. In this paper, a theoretical categorisation framework is introduced 
as a conceptual guide to classifying non-normal demand patterns. (See Gelders and Van 
Looy [11]; Williams [6] for a definition of non-normal demand pattern.) 
 

 
Figure 1: Categorisation of demand pattern based on the accuracy of forecasting 

procedures [Syntetos et al. [8] and Kostenko and Hyndman [10]] 
 
2.3  Approaches based on the characteristics of the demand shape 
 
Bartezzaghi et al. [12] and Zotteri [13] associate the intermittence of demand with two 
characteristics of the demand shape: (1) the skewness or asymmetry of the distribution, 
measured as the third standardised moment of the probability distribution; and (2) the 
existence of more than one mode (multimodality distributions). To analyse the impact of 
(1) and (2) on the intermittence of the demand pattern, the authors analyse six demand 
shapes with the same average and CV that differ in their asymmetry and multimodality 
characteristics.  
 
The study, which is evaluated through the simulation of a stock control system, reveals that 
the higher the right asymmetry – that is, when the skewness is positive – the more 
intermittent the demand pattern; and thus higher inventory levels are required to assure a 
target level of service. The study points out that the existence of more than one mode also 
affects intermittence, but not as much as right asymmetry. However, this result is not 
quantified by the authors. 
 
Although the authors suggest the importance of right asymmetry in demand pattern 
classification, they do not refer to any categorisation schema. 
 
 
2.4  Conclusions and research gaps 
 
The review of existing categorisation approaches points out that more research is required 
in this area to help managers to classify and manage inventories. Without further research, 
only ad hoc categorisations can be used in real industries. In those cases in which 
theoretical approaches are actually used, they do not seem to be accurate enough to be 
applied to any environment, since the boundaries between demand categories or the 
categories themselves are not defined. 
 
Table 2 highlights the most important contributions of each approach and the research gaps 
arising from them. 
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A common research gap in the three approaches is to know which demand distribution 
function fits better with real data. Some authors recommend the use of some distribution 
based on the characteristics of real demand. Table 3 summarises the main suggestions on 
this topic, which managers can use to select the appropriate demand distribution function 
in each individual situation. 
 

Approach 
Categorisation 
factors 

Contributions Research gaps 

based on variance 
partition 
Williams [6] 
Eaves and Kingsman 
[7] 

• 2
nCV L  

• 2
xCV nL  

• 2
LCV  

• States the causal 
parts of the 
variance of DDLT. 

• Defines demand 
categorisation 
based on the size 
of these causal 
parts. 

• Only ad hoc limits 
are suggested 
between categories. 

• To obtain the 
categorisation 
factors, the 
distribution of 
demand has to be 
known. 

based on the 
accuracy of the 
forecasting 
procedure 
Syntetos et al. [8] 

• 2
xCV  

• p  

• Presents a 
categorisation 
schema based on 
the accuracy of 
three forecasting 
methods. 

• Introduces 
theoretical cut-off 
values between 
categories. 

• Suggests the best 
forecasting method 
for each demand 
pattern. 

• Cut-off values work 
with forecasting 
procedures. 
However, it is not 
demonstrated that 
they work when 
selecting the best 
stock control policy. 

• To obtain the 
categorisation 
factors, the 
distribution of 
demand has to be 
known. 

based on the 
characteristics of 
the demand shape 
Bartezzaghi et al. 
[12] 
Zotteri [13] 

• Skewness 
• Multi-
modality 

• Introduces the right 
asymmetry of the 
demand shape as a 
factor of 
intermittence. 

 

• Does not quantify 
the value of the 
skewness that causes 
us to consider the 
demand pattern as 
intermittent. 

• Does not have a 
categorisation 
schema. 

• To obtain the 
categorisation 
factors, the 
distribution of 
demand has to be 
known. 

 
Table 2: Contributions and research gaps of demand categorisation approaches 

 
3.  FORECASTING INTERMITTENT DEMAND 
 
Once the intermittent demand pattern has been identified, the best forecasting procedure 
has to be chosen to guarantee a good prediction of future demands. Time series forecasting 
approaches are used extensively in a routine stock control system when large number of 
products may be involved such as in manufacturing industries and service sectors. However, 
neither the simplest approaches (such as simple average [SA] and the random walk 
approach [Naïve forecasting]) nor more sophisticated methods (such as the autoregressive 
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models or the exponential smoothing models generalised by the ARIMA models) are suitable 
when there is a large number of periods with no demand. For example, the ARIMA(0,1,1) 
model – that is, Simple Exponential Smoothing (SES) – focuses on the most recent data, and 
due to the large number of periods with no demand, it tends both to underestimate the size 
of the demand when it occurs, and to overestimate the long-term average demand [Croston 
[14]] that leads to an increase in the average stock level. Obviously, these results can be 
generalised to any ARIMA model, and so methods designed specifically to forecast 
intermittent demand patterns are required. This section presents methods and 
contributions related to this approach suggested by Croston [14] and its related extensions  
and the most widespread contributions to this topic. To end, relevant implications for 
industrial engineering are outlined. 
 

Demand characteristics  Probability distribution  

CV>0.5 or 
Right asymmetry of demand 
shape 

 
• Gamma Distribution 

[Silver et al. [15]] 

CV<0.5 and applies the central 
limit theorem (for example, with 
large lead times) 

 
• Normal Distribution 

[Silver et al. [15]; [Rice [16]] 

Strategic but slow-moving items 
 

 

• Poisson Distribution  
[Silver et al. [15]] 

• Negative Binomial Distribution  
[Syntetos and Boylan [17]] 

Items for which probability of no 
demand during a single period 
cannot be neglected 
 

 

• Negative Binomial Distribution  
[Williams [6]; Syntetos and Boylan [17] 

• Compound Poisson Distribution 
[Adelson [19]; Friend [18]; Nahmias and Demmy 
[20]] 

• Compound Bernoulli Distribution 
[Janssen et al. [21]; Strijbosch et al. [22]] 

 
Table 3: Probability distribution functions recommended in the literature, based on 

demand characteristics 
 
3.1  Croston’s method 
 
The classic method to forecast intermittent demand was developed by Croston [14] and 
algebraically corrected by Rao [23]. Croston’s method (CM) uses two separate exponential 
smoothing estimates to forecast the demand size, zη, and the interval between non-zero 
demands, pη. These estimates are updated only when demand occurs. Hence, CM is 
identical to conventional SES if demand occurs at each period. 
 
Consider the model  
 

1( )t ty x z eη η−= + ,         (4) 

 
where 
 
t refers to the review interval, 

η refers to the serial number of non-zero demands, 
p is the average inter-arrival interval, 
xt is the demand occurrence and follows a Bernoulli process with probability 1/p, 
qt is the inter-demand interval and is geometrically distributed with mean p, 

zη 
is the non-zero observation of the demand and follows a normal distribution with 
mean µ and standard deviation σ. 
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Assuming that xt and zη are independent from each other and that error eη is independent 
and identically normal distributed with a zero mean, then the updating procedure is as 
follows: 
 

( )
( )
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1 1
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       (5) 
 
MADη being the mean absolute deviation at η, and α the smoothing constant of the model. 
 
With the forecasted demand size and interval, the estimation of the average demand per 
period is calculated as: 
 

ty z pη η=
  (6) 

 
the expected value of the average demand per period and the variance being as follows: 
 

( )t p
E y

µ=
  (7) 

 

( )
2 2

2
4 2

( 1)
var

2t

p
y

p p

α σµα
 
 
  

−= +
−

  (8) 
 
Which, according to Croston [14], is lower than the variance from SES. 
 
One of the benefits of Croston’s method is that managers can easily implement it using a 
spreadsheet. Following Croston’s work, many authors have carried out studies to analyse 
CM performance. Table 4 summarises the most relevant contributions. 
 

Author Contributions 

Schultz [24] Uses two SES estimates for demand size and interval with 
two different smoothing constants. He considers both 
distributions to be non-stationary, i.e. that the 
probability distribution changes over time. 

Willemain et al. [3] Compare CM and SES and conclude that some optimal 
degree of intermittence is needed to benefit from CM. 

Johnston and Boylan [25] Point out that the optimal degree of intermittence to 
apply CM should be greater than 1.25 times the review 
interval. 

Sani and Kingsman [4] Show very modest benefits from the application of CM to 
real data. 

Syntetos and Boylan [2] Find a mathematical error in Croston’s estimation of the 
demand per period. 

Snyder [26] Proposes to estimate the variance of error σ2 and inter-
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demand interval p in a different way to comply with the 
stationary assumption. 

Leven and Segerstedt [27] Derive a new estimator (LS), unbiased, for the demand 
per period. They use the Erlang distribution to model 
demand size. 

Syntetos and Boylan [9] Assess the bias introduced by CM forecasts. They derive a 
new estimator (S&B), approximately unbiased, for the 
demand per period. 

Shale et al. [28] Derive the bias expected when the order arrivals follow a 
Poisson process and demand per period is calculated as in 
CM. 

Boylan and Syntetos [29] Show that the demand per period estimator introduced 
by Leven and Segerstedt [27] is biased. 

Teunter and Sani [30] Compare the performance of CM, S&B, and LS in terms of 
bias when they are used to forecast demand distributions 
with different degrees of intermittence. 

 
Table 4: Main contributions following the Croston method 

 
3.2  Extensions to the Croston method 
 
Willemain et al. [3] compare CM and SES using artificial data created to violate Croston’s 
assumptions, and real-world data from industrial sources. The authors argue that to obtain 
benefits from CM, some optimal degree of intermittence is required. Johnston and Boylan 
[25] quantify this degree as more than 1.25 times the review interval. 
 
Snyder [26] identifies inconsistencies in CM since, to justify the use of SES to forecast p and 
MAD, it has to be assumed that p and the standard deviation, σ2, change over time – that is, 
the process should be non-stationary. Both are supposed to be constant in CM. For this 
reason, the author suggests replacing them with the following expressions: 
 
2 2

1 1 1

n n n

t t t
t t t

and pe x x nσ
= = =

= =∑ ∑ ∑
  (9) 

 
This modified version is called MCROST. In addition, the author suggests two methods: one 
the author called the ‘LOG’ method, which avoids negative demands using log-space 
adaptation; and the other called the ‘AVAR’ method, which uses variances instead of MADs. 
 
Although CM seems to be robust and superior to other conventional methods, Sani and 
Kingsman [4] demonstrate that its application to real data has very few benefits. To explain 
this unexpected behaviour, Syntetos and Boylan [2] find a mathematical error in CM 
derivation, known as inversion bias [see Syntetos and Boylan [2] for further details]. The 
bias introduced in CM is quantified by Syntetos and Boylan [9] as 
 

( )
2

1

2

p

p

α µα
−

−
 (10) 

 
and therefore the authors propose an approximate unbiased estimator of average demand 
per period as 
 

1
2t

z
y

p

η

η

α 
 
 

= −
 (11) 

 
The corrected CM, referred to in the previous section as S&B, is also known as the 
approximation method. 
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Leven and Segerstedt [27] also suggest an estimator for the average demand per period 
derived to avoid the inversion bias as: 
 

( ) 11t t

z

p
y y

η

η
α α −

 
 
 
 

= + −
 (12) 

 
However, Boylan and Syntetos [29] demonstrate that, in a stationary process, the expected 
value of (12) is biased. In a subsequent paper, Teunter and Sani [30] show that using (12) is 
even more biased than the Croston method. 
 
To eliminate the bias produced by conventional forecasting methods, Shale et al. [28] 
derive corrector factors for the SA and the SES methods when they are used to forecast 
intermittent demand. When p and z are SES estimates, the corrector factor is designed to 
eliminate the inversion bias. Demand is assumed to follow a Poisson process, the inter-
demand interval being negative exponentially distributed. Time series are treated as locally 
stationary. Hence, the authors suggest the following correction factor for the inversion 
bias: 
 

1
2

α
α−

−  
 (13) 
 
Additionally, some non-Poisson arrivals are briefly considered by the authors. 
 
3.3 Other methods and algorithms to forecast intermittent demand 
 
Willemain et al. [31] develop a patented algorithm to forecast the cumulative distribution 
of intermittent demand over a constant lead time, and a new method of assessing the 
accuracy of these forecasts. The bootstrap method suggested by Efron [32] is adapted for 
use in the algorithm. The authors assume a positive correlation between zero and non-zero 
demand values, which is modelled using a two-stage first order Markov process. Simulation 
results show that the mean values of the chi-squared statistic resulting from the algorithm 
are smaller than those from the CM and SES, and based on this, the authors point out that 
the bootstrap method is more accurate than the others, despite its decreasing accuracy 
with the lead time. 
 
Additionally, Hua et al. [33] propose a similar approach to forecast spare parts demand, 
taking into account the relationships between explanatory variables and non-zero demands. 
More recently, Bao et al. [34] have carried out studies on the application of a neural 
network algorithm, called ‘support vector machine’ or SVM, to forecast intermittent 
demands. Although its use seems to be promising, there are no conclusive results yet. 
 
3.4  Conclusions and research gaps 
 
Table 5 outlines some forecasting procedures to model and estimate demand series. Apart 
from the patented algorithm developed by Willemain et al. [31], the other procedures are 
based on CM.  
 
An important implication for industrial engineering arising from the literature is that using 
traditional forecasting procedures like SA or SES is not accurate enough when dealing with 
intermittent demand items. For these demand patterns, separately forecasting the 
distribution of demand size and the distribution of the interval between positive demands 
entails more accurate forecasts. 
 
Furthermore, CM produces fewer average inventory levels than SES when the inter-demand 
interval is above 1.25 the review interval, but guaranteeing the same, or even higher, 
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target cycle service level. The authors have developed a simple experiment to assess the 
benefits of using CM, which can be sent on request. 
 

 Demand size Inter-demand interval 

CM 
Croston [14] 

N(µ,σ2) SES 

Geometric and 
independent and 
identically 
distributed (i.i.d.) 

SES 

S&B 
Syntetos and Boylan [9] 

N(µ,σ2) SES 
Geometric and 
i.i.d. 

SES 

MCROST/LOG/AVAR 
Snyder [26] 

N(µ,σ2) SES 
Geometric and 
i.i.d. 

See (9) 

Corrector factor method 
Shale et al. [28] 

Geometric SA or SES 
Negative 
exponential 

SA or SES 

Willemain Algorithm 
Willemain et al. [31] 

Bootstrapping method 
Two stage first order Markov 
process 

 
Table 5: Outline of the main characteristics of intermittent demand forecasting 

methods 
 
4.  INVENTORY CONTROL FOR INTERMITTENT DEMAND 

 

It is known that traditional inventory control techniques are based on assumptions that are 
inappropriate for items with intermittent demand [Silver et al. [15]]. For instance, to apply 
continuous review policies, it is assumed that the average demand is almost invariant over 
time, or that undershoots at the re-order point can be neglected. To implement periodic 
review policies, demand between reviews must be large enough to place a replenishment 
order every review cycle. Obviously, these assumptions do not fit intermittent demand 
patterns. 
 
Moreover, there is no agreement about what type of review policy – periodic or continuous – 
should be preferred to manage intermittent demand items. Sani and Kingsman [4] suggest 
the use of periodic review in order to minimise total inventory costs, while Yeh et al. [35] 
propose the use of continuous review policies to guarantee a desired service level. 
 
This section reviews works that suggest stock control policies for intermittent demand 
patterns in both continuous and periodic review policies. The purpose of this section is to 
provide managers with enough background to control items with intermittent and slow-
moving demand patterns. 
 
The nomenclature used in this section regarding stock control policies is: 
 
R Review interval 
S Order up to level 
s Re-order point 

(R, S) 
Periodic-Review, Order-Up-To-Level policy. Every R units of time, a 
replenishment order is launched in order to raise inventory positions to level 
S. 

(Q, s) 
Continuous-Review, Order-Point, Order-Quantity policy. A fixed quantity Q is 
ordered whenever inventory positions drop to s or lower. 

(R, s, Q) 
Combination of (R, S) and (Q, s) policies. Every R units of time, the inventory 
position is checked. If it is at or below s, it is ordered to raise it to S. 

 
 
 
4.1 Contributions to periodic review conditions 
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Schultz [24] proposes an (R, S-1,S) policy, delaying the placement of the replenishment 
order for a number of periods to achieve a reduction in holding costs. The author 
recommends this policy whenever the average time between demands is sufficiently large 
and constant-related to the lead time, and holding costs are high compared with other 
inventory costs. The value of the delay depends on the inter-demand interval. When 
demand distribution is unknown, the delay is determined using CM. Subsequently, Schultz 
[36] also applies the delayed model in continuous review policies. 
 
Dunsmuir and Snyder [37] describe a model for determining the re-order point (s) to 
guarantee a target customer service level when the system follows the (R,s,Q) policy. The 
model is based on the method developed by Snyder [38]. The authors suggest determining 
the re-order point by means of the unsatisfied demand during a cycle, whereas undershoots 
at s are neglected. Janssen et al. [21] follow the same reasoning, but without neglecting 
undershoot at s. This leads to a more complex expression of the service level. In this case, 
demand is modeled using a compound Bernoulli process with a given probability of demand 
being positive. This method is called the Compound Bernoulli method (CBM). 
 
Leven and Segerstedt [27] suggest a heuristic procedure in which demand size is modeled 
using the Erlang distribution in order to determine the stockout probability for the (R, S) 
policy. 
 
Based on the work of Sani and Kingsman [4], Syntetos and Boylan [17] use an (R,S) policy to 
deal with intermittent demand items based on three constraints: (1) the specified fraction 
of demand satisfied directly from stock (P2); (2) the cost of shortage per unit value short 
(B2); and (3) the emergency delivery cost per unit value short (B3). In this case DDLT is 
modeled with the negative binomial distribution. 
 
Cardós et al. [39] provide an exact method to calculate the cycle service level (CSL) when 
demand is modeled with a discrete and known probability distribution. The method takes 
the intermittent demand characteristics into account, but requires a huge computational 
effort, which motivates the derivation of some approximations approaches in Cardós and 
Babiloni [40]. 
 
4.2 Contributions to continuous review conditions 
 
Snyder [38] proposes a heuristic model based on computing s to achieve a target service 
level. He follows the same reasoning as Dunsmuir and Snyder [37], but applies it to the 
(s,Q) policy. The model, based on Burgin [41], consists of the application of Gamma 
distribution and the partial expectation approach proposed by Brown [42]. 
 
Segerstedt [43] suggests an algorithm to determine when it is necessary to place a 
replenishment order, given a target probability for no shortage. It is assumed that the 
demand size, the inter-demand interval, and the length of lead time are Gamma distributed 
and independent from each other. The parameters of these distributions are calculated 
using SES estimates. Basically, the algorithm calculates two probabilities: that at least N 
orders take place during the lead time (PA); and that the available physical inventory gives 
no shortage for N orders (PB). Once both are calculated and given a target service level α, a 
replenishment order must be placed when (PA)�( PB)≥(1-α). 
 
Haddock et al. [44] present a simple heuristic rule to determine the optimal value of Q that 
minimises the total cost associated with the production and storage of slow-moving items.  
 
Vereecke and Verstraeten [45] propose an algorithm to be implemented in a computerised 
system to manage spare parts inventories that are classified as lumpy items, slow movers, 
and fast movers. Demand occurrence is Poisson distributed, whereas the demand size is 
approximated by a constant number called ‘package’. The authors called it the ‘Package 
Poisson’ method. 
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Yeh et al. [35] propose a simple graphical aid to establish an appropriate replenishment 
size to reach a target customer service level. The authors assume that demand size, inter-
demand interval, and lead time are Gamma distributed. 
 
Strijbosch et al. [22] use the Croston method to forecast, and the CBM suggested by Janssen 
et al. [21] to manage (s,Q) inventory policies for spare parts whose demand patterns are 
considered to be intermittent. 
 
Finally, Larson et al. [46] implement a nonparametric Bayesian approach in which the 
previous information is characterised by a Dirichlet process. 
 
To summarise, Table 5 identifies some relevant inventory control contributions in an 
intermittent demand context. This table provides information about the type of policy, the 
forecasting procedure, and the distribution function of demand from the inventory methods 
described in this section. 
 

Ref Author Proposed model DDLT Inventory Control 
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1 Snyder [38] 

Heuristic model 
based on Brown’s 
partial expectation 
approach 

- C Gamma - C/P (s,Q) SQ C - P2 

2 Schultz [24] 
delays the placement 
of the replenishment 
order k periods 

- C/D CM H (R,S-1,S) SQ Z - - 

3 Schultz [36] 
delays the placement 
of the replenishment 
order k periods 

2 C Poisson process CM C (0,1) - C - - 

4 
Dunsmuir and 
Snyder [37] 

Model for 
determining reorder 
levels for a target 
service level 

1 C Z+∼Gamma - H (R,s,Q) SQ C - P2 

5 
Segerstedt 
[43] 

Heuristic approach to 
calculate when a 
replenishment order 
needs to be placed 

 C 
Z∼Gamma;P∼Ga
mma 
L∼Gamma 

SES 
SES 
SES 

C - - V - P2 

6 
Haddock et 
al. [44] 

Heuristic rule to 
determine Q to 
minimise total costs 

 D 
Z∼Poisson; 
P∼Poisson 

- C - SQ C - - 

7 
Vereecke and 
Verstraeten 
[45] 

Algorithm for 
managing spare parts 

 D 
Z∼C; P∼Poisson 
‘Package 
Poisson’ 

- C (s,Q) SQ C  P1 

8 
Yeh et al. 
[35] 

Simple practical aid 
for selecting the 
appropriate 
replenishment size 

5 C 
Z∼Gamma;P∼Ga
mma 
L∼Gamma 

- C - - V - P2 

9 
Sani and 
Kingsman [4] 

Comparison between 
various forecasting 
methods and 
procedures to 
determine inventory 
control parameters 

 
Depends on the 
control parameters 
determination 

- H 
(R,s,S) 
(R,S) 

- C  P2 

10 
Janssen et al. 
[21] 

Compound Bernoulli 
Method 

4,1 D 
Compound 
Bernoulli 
Process (CBP) 

- H (R,s,Q) SQ V √ P2 

11 
Strijbosch et 
al. [22] 

integrate CM and 
CBM to manage 

10,4 D CBP CM C (s,Q) SQ C √ P2 

12 
Leven and 
Segerstedt 
[27] 

rely on Croston´s 
method approach 

 C Z∼Erlang CM P (R,S) SQ C - P2 
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13 
Syntetos and 
Boylan [17] 

study the accuracy of 
forecasting 
procedures 

9 D 
Negative 
Binomial 

SES 
CM 
AM 

P (R,S) SQ C - 
P2 
B2 
B3 

14 

Cardós et al. 
[39] 
Cardós and 
Babiloni [40] 

provide exact and 
approximate 
methods to assess 
the CSL 

 D  - P (R,S) - C - P1 

 

Review: Continuous (C); periodic (P); hybrid (H). Control parameters: Sequential determination (SQ); 
simultaneous determination (SM). Lead time: Zero (Z); constant (C); variable (V). Demand distribution 

during the lead time (DDLT): Continuous (C); discrete (D). 
 

Table 6:  Relevant inventory control contributions in an intermittent demand context 
 
5.  CONCLUSIONS 

 

Suitable categorisation of the demand pattern is necessary to select an appropriate 
forecasting and inventory control method, since identifying the demand pattern helps 
managers to find the best approach when dealing with items with intermittent or lumpy 
demand patterns. However, a standard categorisation approach is not extended in 
industrial environments, ad hoc classifications being most widely used. In this paper, the 
most relevant theoretical categorisation approaches have been classified into those based 
on (1) variance partition; (2) the accuracy of forecasting procedures; and (3) the 
characteristics of the demand shape. Yet these categorisation approaches require defining 
limits between demand categories before they can be applied to industrial environments. 
Further research should be focused on more general categorisation approaches that are 
applicable to any kind of inventories and industries, with an accurate definition of 
boundaries or cut-off values between demand categories. 
 
Regarding forecasting methods, simple exponential smoothing and Croston’s method are 
most commonly used to forecast intermittent demand patterns. Despite the superior 
performance of CM compared with SES – CM reduces average inventory levels in cycles – it 
assumes the demand size to be normally distributed. However, (i) normal distribution arises 
in practice by applying the Central Limit Theorem conditions, but these conditions cannot 
be recognised in an intermittent demand context; (ii) there is an unacceptable risk of 
forecasting negative demand; and (iii) skewness is not taken into account. Future 
investigations should contribute to establishing both the best probability distribution 
function to fit intermittent demand patterns, and the best forecasting procedure according 
to the demand pattern. 
 
Finally, the most relevant inventory control methods designed for intermittent demand 
items were identified in Section 4. Despite the research growth in this topic in recent 
years, more rigorous and industrially applicable contributions are required to integrate it in 
practical environments. 
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