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ABSTRACT 

For many biological and biomedical studies, it is essential to detect the production of 
1
O2 and 

quantify its production yield. Among the available methods, detection of the characteristic 1270 nm 

phosphorescence of singlet oxygen by time-resolved near infrared (TRNIR) emission constitutes the 

most direct and unambiguous approach. An alternative indirect method is electron paramagnetic 

resonance (EPR) in combination with singlet oxygen probe. This is based on the detection of the 

TEMPO free radical formed after oxidation of TEMP (2,2,6,6-tetramethylpiperidine) by singlet 

oxygen. Although the TEMPO/EPR method has been largely employed, it can produce misleading 

data. This is demonstrated by the present study, where the quantum yields of singlet oxygen 

formation obtained by TRNIR emission and by the TEMPO/EPR method are compared for a set of 

well-known photosensitizers. The results reveal that the TEMPO/EPR method leads to significant 

overestimation of singlet oxygen yield when the singlet or triplet excited state of the 

photosensitizers are efficiently quenched by TEMP, acting as electron donor. In such case, 

generation of the TEMP
+●

 radical cation, followed by deprotonation and reaction with molecular 

oxygen gives rise to a EPR detectable TEMPO signal that is not associated with singlet oxygen 

production. This knowledge is essential for an appropriate and error-free application of the 

TEMPO/EPR method in chemical, biological and medical studies. 

 

KEYWORDS: EPR; photosensitizer; singlet oxygen; TEMPO; time-resolved near infrared 

emission 
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Introduction  

Singlet oxygen (molecular oxygen in a 
1
g state or 

1
O2) is one of the most important “reactive 

oxygen species” (ROS). Its reactions include oxidation of lipids [1-2], proteins [3-5] and nucleic 

acids [6-8], that may trigger a biological damage. This reaction cascade can lead to undesired 

adverse effects, like drug-induced phototoxicity [9-10], but can also be exploited to produce 

beneficial effects as in photodynamic therapy [11-12].  

Production of 
1
O2 by a photosensitizer is a classical example of photoinduced energy 

transfer: after absorption of light, the photosensitizer reaches its singlet excited state and 

subsequently crosses to its triplet excited state. Then, the triplet ground state of molecular oxygen 

(X
3
g

-
) is promoted to the 

1
g state through triplet-triplet energy transfer [13]. 

For many biological and biomedical studies, it is essential to detect the production of 
1
O2 

and quantify its production yield. Among the available methods, detection of the characteristic 1270 

nm phosphorescence of singlet oxygen by time resolved near infrared (TRNIR) emission constitutes 

the most direct and unambiguous proof [14-15]. However, the required equipment is not always 

available in biochemical laboratories. 

An alternative indirect method that has been widely applied is the use of electron 

paramagnetic resonance (EPR) in combination with a 
1
O2 probe. Upon reaction with 

1
O2, the 

trapping molecule gives rise to a detectable spin active species with a distinctive line pattern. Thus, 

oxidation of TEMP (2,2,6,6-tetramethylpiperidine) by singlet oxygen yields the TEMPO (2,2,6,6-

tetramethyl-1-piperidinyloxyl) free radical easily detected by EPR (Figure 1) [16]. Although the 

TEMPO/EPR method has been largely employed [17-25], a systematic investigation of the scope 

and limitations of this technique has never been performed. For instance, amines are widely known 

for their quenching ability of excited states, so a probable source of artefacts may be the interaction 

between the excited photosensitizer and TEMP [26-29]. The aim of the present study is to compare 
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the results obtained for the detection and quantification of singlet oxygen by means of the direct 

method (TRNIR emission) and the indirect 
1
O2 trapping mode (TEMPO/EPR method), using a set 

of well known photosensitizers. The basis of the TEMPO method and the chemical structure of the 

selected photosensitizers are shown in Figure 1. The obtained results reveal that the EPR method 

leads to significant overestimation of singlet oxygen production when the singlet or triplet excited 

state of the photosensitizers are efficiently quenched by TEMP, acting as electron donor. 

 

Figure 1: Structure of the molecules involved in the study and EPR signal of TEMPO radical 
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Materials and methods 

Chemicals 

2,2,6,6-Tetramethyl-1-piperidine (TEMP), tris(4-bromophenyl)aminium hexachloroantimonate 

(BAHA), phenalenone (PN), benzophenone (BZ), naphthalene  (NP), carbazole (CBZ), rose Bengal 

(RB) and acetonitrile (ACN) were from Sigma-Aldrich. TEMP was freshly distilled at 152°C before 

use. 

Absorption and fluorescence spectra 

UV–vis absorption spectra were recorded on a commercial spectrophotometer (650, Perkin 

Elmer). Fluorescence spectra were measured using 1 nm steps and 0.5 s dwell time, at right angle 

detection (FLSP920, Edinburgh Instruments). Slits were kept narrow to 1 nm for excitation and 1 or 

2 nm for emission; where necessary, a cutoff filter was used. All the measurements were carried out 

at 295 K in quartz cuvettes with path length of 1 cm. The fluorescence spectra were obtained for 

air-equilibrated solutions with A < 0.1 over the whole absorption range to avoid inner filter effects 

and reabsorption of emission. Quenching of CBZ and NP fluorescence intensity by TEMP upon 

excitation at 331 and 278 nm, respectively, was performed by adding increasing amounts TEMP to 

the solution. For NP measurements, the fluorescence intensities have been corrected for the inner 

filter effect due to absorption of TEMP at 278 nm. The following equation was used to determine 

Ksv, the Stern–Volmer quenching constant: 

       (1) 

F0 and F are the fluorescence intensities in the absence and presence of the quencher Q, 

respectively; [Q] is the quencher concentration (M), Ksv the Stern-Volmer constant. The 

bimolecular quenching rate constant kq (M
-1

s
-1

) was obtained dividing Ksv by the fluorescence 

lifetime.  
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Fluorescence lifetimes 

Fluorescence decays were measured in air-equilibrated solutions with a time-correlated single 

photon counting apparatus (IBH 5000F) equipped with a TBX picosecond photon detection module. 

A NanoLED pulsed excitation source at 331 and 278 nm was used and the emission was collected 

at right angle at 341 or 320 nm using a long pass cutoff filter at 305 nm. Fluorescence decay 

profiles were fitted using a monoexponential function of the decay analysis software DAS6 

provided by the manufacturer with deconvolution of the instrumental response function. 

Laser flash photolysis measurements 

The beam of a pulsed Nd:YAG laser, operating at 532 nm or 355 nm (20 ns fwhm, 2 Hz, 2.7 

mJ/pulse), was suitably shaped to pass through a 3 mm high and 10 mm wide rectangular window 

and provide a fairly uniform energy density of 9 mJ/cm
2
 incident onto the sample cell. A front 

portion of 2 mm depth of the excited solution was probed at right angle, the useful optical path for 

analyzing light being 1 cm. All transient spectra were recorded with 3 mL of sample solutions in 1 

× 1 cm
2
 quartz cells; when specified ACN solutions were bubbled for 10 min with Ar before data 

acquisition. The absorbance of the samples was kept in the range 0.30–0.40 at the laser wavelength. 

Stock solutions of the quenchers were prepared, so that addition of microliter volumes to the sample 

cell allowed us to obtain the appropriate quencher concentration.  

The bimolecular rate constant kq (M
-1

s
-1

) for quenching of the triplet states was calculated from the 

slope of linear plots of the observed triplet decay rate constant kobs (s
-1

) versus the quencher 

concentration, applying equation 2: 

        (2) 
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where k0 is the triplet decay rate constant in the absence of quencher, and [Q] is the quencher molar 

concentration (M). 

Singlet oxygen time-resolved near infrared (TRNIR) emission measurements 

The pulse of a Nd:YAG laser, operating at 355 nm or 266 nm (20 ns fwhm), was used for excitation 

of the samples dissolved in air-equilibrated acetonitrile. A preamplified (low impedance) Ge-

photodiode (Applied Detector Corp., Model 403HS, time resolution 300 ns), cooled at 77 K and 

equipped with a 5 mm thick AR coated silicon metal filter with wavelength pass >1.1 μm and an 

interference filter at 1.27 μm, was used to measure emission of singlet oxygen at 1270 nm in right 

angle geometry. The photodiode output current was fed into a digital oscilloscope. All 

measurements were made at room temperature in 1 cm pathway quartz cuvettes. The absorbance of 

the samples was 0.30 at the laser wavelength. The singlet oxygen quantum yield () was 

determined using phenalenone in acetonitrile (
ref

= 0.95) as reference [30]. Singlet oxygen 

formation quantum yield was calculated from the slope of linear plots representing signal intensity 

at zero time versus laser pulse energy according to the following equation: 

∆ =  ∆ 
𝑟𝑒𝑓   

𝐼𝑠𝑎𝑚𝑝𝑙𝑒

𝐼𝑟𝑒𝑓
 

where Isample is the emission intensity for the sample at pulse end, Iref is the emission intensity for the 

reference and 
ref

 is the quantum yield of singlet oxygen formation of the reference. 

EPR trapping measurements 

The EPR signal of the free radical TEMPO (g = 2.0060, aN = 17.3 G) generated by reaction of 

singlet oxygen with TEMP was recorded [31]. The measurements were performed in a Wildman 

Suprasil/aqueous quartz ware flat cell (volume of 150 L, 60 mm of length) with a Bruker EMX 

10/12 EPR spectrometer, using the following parameters: microwave power, 20 mW; modulation 

amplitude, 1.0 G; and modulation frequency, 100 kHz. 
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Aerated ACN solutions of 50 mM TEMP containing a photosensitizer, with an absorbance of 0.4 at 

280 nm, were irradiated using the light produced by a Microbeam system (model L-201), including 

a 150 W xenon lamp coupled with a monochromator (model 101); EPR spectra were recorded at 

different irradiation times. The singlet oxygen quantum yield () was determined using 

phenalenone in acetonitrile (
ref

 = 0.95) as reference [30]. Singlet oxygen formation was calculated 

from the slope of the plots of signal area versus irradiation time according to the following 

equation: 

∆ =  ∆ 
𝑟𝑒𝑓   

𝑥𝑠𝑎𝑚𝑝𝑙𝑒

𝑥𝑟𝑒𝑓
 

where xsample is the coefficient of linear fit for the sample, xref is the coefficient of linear fit for the 

reference and ∆ 
ref is the quantum yield of singlet oxygen formation of the  reference. 

In the case of tris(4-bromophenyl)aminium hexachloroantimonate (BAHA) oxidation, EPR spectra 

of aerated ACN solutions of 50 mM TEMP were recorded before and after addition of 0.1 BAHA 

equivalents. 

Photoinduced electron transfer 

According to Rehm-Weller [32] the free energy change G for electron transfer is expressed by: 

G = Eox – Ered - E* + C 

where Eox is the oxidation potential of the donor,  Ered the reduction potential of the ground state 

acceptor, E* the energy of the acceptor excited state and C is a coulombic term accounting for the 

electrostatic attraction of the produced ions.  Neglecting the C term, G was calculated using the 

following values for the potentials: Eox (TEMP) = 1.0 V and Ered = -1.2, -1.3, -2.6 and -1.8 V vs 

SCE for PN [33], BP[20], NP [34] and CBZ [35], respectively. In the case of PN [36] and BP [20], 

the lowest triplet excited state energy was considered for E* with values of 220 and 292 kJ mol
-1

, 
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respectively, whereas this parameter was associated with the singlet manifold for NP [34] and CBZ 

[37], using values of 377 and 344 and kJ mol
-1

, respectively. 

Results and discussion 

Determination of singlet oxygen quantum yield by TRNIR emission or TEMPO/EPR 

Singlet oxygen quantum yields () were determined for each photosensitizer with both direct 

method (TRNIR emission) and indirect method (TEMPO/EPR), by comparison with phenalenone 

(= 0.95) [30](Figure 2). The obtained values are reported in Table 1. The results of TRNIR 

direct method are in accordance with literature values [37-39]. However, the quantum yield of 

benzophenone evaluated by indirect method TEMPO/EPR was significantly higher. This result is 

somewhat intriguing as, upon addition of 50 mM TEMP to the benzophenone solution, the direct 

TRNIR emission measurement led to nearly zero quantum yield (Figure 2B and 3A). 

 

Table 1: Singlet oxygen quantum yield of each photosensitizer 

 ΦΔ  / TRNIR
a
 ΦΔ  / EPR

a
 

Phenalenone 0.95
b
 0.95

b
 

Benzophenone 0.35 (0.35)c 0.50 

Naphthalene 0.56 (0.5)
d
 0.50 

Carbazole 0.15 (0.17)
e
 0.21 

a 
in brackets, literature values, 

b
 reference, see ref [30], 

c
 from ref [39], 

d 
from ref [38], 

e 
from ref 

[37] 
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Figure 2: Quantification of 
1
O2 formation for aerated acetonitrile solutions of photosensitizers. (A) 

Area of TEMPO signal in EPR as a function of irradiation time at 280 nm, A280=0.4 (Control: ACN 

solution of 50 mM TEMP). (B) Initial intensity of 
1
O2 TRNIR emission as a function of 266 nm 

laser energy, A266=0.3; in black, solution of BP and 50 mM TEMP.  

 

Effect of added TEMP on singlet oxygen detection by TRNIR 

To investigate the direct effect of TEMP on 
1
O2 production, TRNIR emission measurements were 

performed with photosensitizers in presence of increasing amounts of TEMP. As shown in Figure 3, 

in the absence of TEMP the 
1
O2 lifetime was 85 µs using either phenalenone or benzophenone, in 

accordance with the literature value [40]. Addition of TEMP to the solution had different 

consequences depending on the photosensitizer: in the case of phenalenone TEMP acted as a poor 
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quencher, shortening the 
1
O2 lifetime with kq = 1.3 x 10

6 
M

-1 
s

-1 
[41], a result consistent with  

literature data; in the case of BP, in addition to lifetime shortening, TEMP was able to knock out the 

formation of 
1
O2 (Figure 3A). The latter observation indicates that there is an interaction between 

TEMP and the precursor of 
1
O2, namely the excited triplet state of BP. In the case of PN addition of 

TEMP did not influence the initial TRNIR signal intensity of 
1
O2, while it affected the 

1
O2 lifetime 

(Figure 3B). 

 

 

 

 

 

 

 

 

 

 

Figure 3: Luminescence decay of 
1
O2 at 1270 nm in aerated ACN solution of (A) BP, (B) PN with 

0 mM (□), 5 mM (○), 50 mM (∆) TEMP. Incident 355 nm laser energy: 3.65 mJ/pulse, A355 = 0.3. 
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Quenching of photosensitizer excited states by TEMP 

In view of the effects produced by addition of TEMP on the 
1
O2 TRNIR signal, the triplet-triplet (T-

T) transient absorption of the photosensitizers  was studied by laser flash photolysis in the presence 

of TEMP (see Figures S2-S4 in the Supplementary Material). In the case of BP, triplet quenching 

by TEMP was observed with rate constant kq = 1.5x10
9
 M

-1 
s

-1
, in accordance with literature [42-

43].
 
In the case of PN, although TEMP was also able to deactivate the triplet excited state, the 

measured rate constant was two orders of magnitude lower (kq = 8.3x10
6
 M

-1 
s

-1
). On the contrary 

the rate constants for triplet quenching by oxygen are very similar for the two ketones (ca. 2.5x10
9
 

M
-1

 s
-1

). Taking into account the competition between TEMP and O2, as well as the kq values and 

the TEMP and O2 concentrations (50 mM and 1.9 mM, respectively), more than 90% of triplet BP 

is quenched by TEMP, whereas more than 90% of triplet PN is quenched by O2 under the employed 

conditions. This fact explains the difference between BP and PN in the singlet oxygen formation 

yields upon TEMP addition.  

As regards NP and CBZ, weak intensity of the LFP signals makes their triplet states to be 

barely detected in the presence of TEMP (for example, Figure S4 in the Supplementary Material); 

this was attributed to scarce population of the triplet states caused by quenching of the precursor 

singlet excited states. To check this hypothesis, the emission signal of NP and CBZ was monitored 

in the presence of TEMP. The results for CBZ are shown in Figure 4A; they reveal a marked 

decrease of the fluorescence intensity concomitant with the growth of a new structured emission 

band with peaks at 400, 420, 450 and 470 nm. This type of long-wavelength emission has been 

previously observed in the presence of amines and attributed to charge transfer in the excited state 

(excited CBZ carbanion and/or exciplex formation) [44]. The kq determined by means of steady-

state and time-resolved emission measurements were 9.1 x 10
8
 M

-1
 s

-1
 and 6.7 x 10

8
 M

-1
 s

-1
, 

respectively (Figure S5 in the Supplementary Material). The difference between the two values 

suggests the contribution of static quenching, probably due to formation of a ground-state complex. 
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Figure 4: (A) Steady state fluorescence spectra of CBZ in aerated ACN solution with increasing 

amount of TEMP. [CBZ] = 3.5x10
-5

 M, ex = 331 nm. [TEMP] = 0 (black), 10 (red), 50 (blue), 100 

mM (green). Inset: Decay of CBZ at 341 nm in aerated ACN solution with 0 mM TEMP (black), 

100 mM TEMP (blue). (B) Steady state fluorescence spectra of NP in aerated ACN solution with 

increasing amount of TEMP. [NP] =2.3x10
-6

 M, ex = 278 nm. [TEMP] = 0 (black), 10 (red), 50 

mM (blue). Inset: Decay of NP at 320 nm in aerated ACN solution with 0 mM TEMP (black), 50 

mM of TEMP (blue). 

Likewise, the singlet excited state of NP was quenched by TEMP (Figure 4B); the rate 

constant obtained from steady state fluorescence (kq= 1.9×10
9
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-1
 s

-1
, Figure S6 in the 

Supplementary Material) was similar to that resulting from time resolved fluorescence (kq= 2.0×10
9
 

M
-1

 s
-1

), indicating that NP-TEMP ground-state complexation can be safely ruled out. It should be 

noticed that the efficient quenching of the singlet excited photosensitizer by TEMP and the reduced 

1
O2 production are not reflected in the EPR measurements of Table 1. 
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Overall, the results related to excited state quenching by TEMP suggest the possibility of an 

alternative electron transfer reaction pathway for the oxidation of TEMP that produces a detectable 

TEMPO signal not involving singlet oxygen. 

Electron transfer oxidation of TEMP to TEMPO 

Photoinduced electron transfer (PET) is a feasible reaction between ketone or aromatic hydrocarbon 

photosensitizers and amines [26-29]. Being a secondary amine, TEMP (Eox= 1.0 V vs SCE) [45] 

could be oxidized by PET if the process is thermodynamically allowed. According to Rehm-Weller 

[32], this requirement is fulfilled for all the investigated photosensitizers. Indeed G for electron 

transfer is in all cases negative, being of ca. -10, -70, -30 and -70 kJ mol
-1

 for PN, BP, NP and CBZ,
 

respectively. 

To actually prove that an electron transfer reaction can contribute to the production of the TEMPO 

radical, TEMP was oxidized by tris(4-bromophenyl)aminium hexachloroantimonate (also named 

BAHA or magic blue), a known one-electron oxidizing agent (Ered = 1.17 V vs SCE) [46]. Addition 

of BAHA to a solution of TEMP in acetonitrile led to the bleaching of the initial blue color, which 

turned pale brown (Figure S7 in the Supplementary Material). The resulting solution was analyzed 

by EPR, and an enhanced TEMPO signal was observed under aerobic conditions (see Figure S8 in 

the Supplementary Material). The mechanistic scheme explaining these results is outlined in Figure 

5. Generation of the radical cation TEMP
+●

 is followed by deprotonation and reaction of the 

resulting neutral radical with molecular oxygen, finally leading to the TEMPO radical [47-49].
 
 

 

Figure 5: Proposed mechanism for the electron transfer oxidation of TEMP to TEMPO in the 

presence of molecular oxygen 
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The case of rose Bengal, an archetypal 
1
O2 photosensitizer 

The methodology was applied to rose Bengal (RB), a 
1
O2 photosensitizer widely used in cellular 

experiments. Steady-state fluorescence showed an almost unaltered emission of RB singlet excited 

state in the presence of 100 mM TEMP (Figure 6A). This result is in accordance with time-resolved 

measurements, which allowed determining a very low quenching rate constant of ca. 10
7
 M

-1
 s

-1
 

(Figure 6A, inset). Likewise, the triplet excited state of RB was not affected by the presence of the 

secondary amine (Figure 6B). Thus, from these data one can anticipate that the RB singlet oxygen 

quantum yield obtained by the TEMPO/EPR method should correlate well with that reported in the 

literature ( = 0.54) [50]. This was confirmed by performing the EPR experiment using PN as 

standard, which led to a very reasonable value of 0.56 (Figure 6C). 
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Figure 6: (A) Emission of an aerated ACN solution of RB alone (black) or in the presence of 100 

mM TEMP (blue). [RB]= 4x10
-6

 M, ex= 560 nm. Inset: Stern-Volmer plot obtained from time-

resolved measurements of RB in the presence of increasing amounts of TEMP (ex= 560 nm, 

em=573 nm). (B) T-T absorption decays monitored at 620 nm (ex= 532 nm) of argon-bubbled 

ACN solution of RB (3.3x10
-5

 M) alone (black) or in the presence of 100 mM TEMP (blue). (C) 

Area of TEMPO signal in EPR as a function of irradiation time at 280 nm, A280= 0.4. 

 

Conclusion 

Detection and quantification of singlet oxygen by means of the TEMPO/EPR method is a useful 

and widely employed technique. This method however may be misleading when the excited 

photosensitizer is capable to react with TEMP, acting as an electron donor. In this case, generation 

of the TEMP
+●

 radical cation, followed by deprotonation and reaction with molecular oxygen, gives 

rise to a EPR detectable TEMPO signal that is not associated with singlet oxygen production. The 

possibility of such an electron transfer interference can be anticipated by means of simple 

thermodynamic calculations based on redox potentials and excited state energies. In addition, this 

source of artifacts can be safely ruled out when no quenching of the photosensitizer singlet and 

triplet excited states by TEMP is observed in fluorescence and laser flash photolysis experiments, 

(C) 
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respectively. Thus the application of such relatively simple techniques provides knowledge that is 

essential for an appropriate and error-free application of the TEMPO/EPR method of singlet oxygen 

detection in chemical, biological and medical studies. 

 

Appendix A. Supplementary material 

Supplementary data associated with this article can be found in the online version at xxxxxxxxxxx 
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