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ABSTRACT4

Efficiency of hydraulic solvers for the simulation of flows and pressures in water distri-5

bution systems (WDS) is very important, especially in the context of optimization and risk6

analysis problems, where the hydraulic simulation has to be repeated many times. Among7

the methods used for hydraulic solvers, the most prominent nowadays is the global gradi-8

ent algorithm (GGA), based on a hybrid node-loop formulation and used by the software9

package Epanet. Earlier, another method based just on loop flow equations was proposed,10

which presents the advantage that it leads to a system matrix which is in most cases much11

smaller than in the GGA method, but has also some disadvantages, mainly a less sparse12

system matrix, and the fact that introducing some types of valves requires the redefinition13

of the set of network loops initially defined.14

The contribution of this paper is to present solutions for overcoming the mentioned15

disadvantages of the method based on loop flow equations. In particular, efficient procedures16

are shown for selecting the network loops so as to achieve a highly sparse matrix, and methods17

are presented to incorporate check valves and automatic control valves, while avoiding the18

need to redefine the loops initially selected.19
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(Spain)

1



INTRODUCTION20

Hydraulic solvers for the simulation of flows and pressures in water distribution systems21

(WDS) are used extensively to solve a large number of problems. Among them, optimization22

(e.g. design or model calibration), and risk analysis problems, usually require the simulation23

to be repeated many times, with variations in the input data, before a solution is reached.24

In those contexts, the computational performance of the hydraulic solver is of the utmost25

importance (Guidolin et al. 2013).26

Since the 1960s, a number of different methods for hydraulic solvers have been proposed,27

among which we should mention the method presented in (Martin and Peters 1963) as the28

first one to use a Newton-Raphson approach, applying it to a formulation based on nodal29

equations, with heads as unknowns. Later, (Epp and Fowler 1970) proposed a method using30

a formulation based on loop equations, with loop corrective flows as unknowns. Another31

method proposed, known as the global gradient algorithm (GGA) (Todini and Pilati 1988),32

which solves simultaneously for pipe flows and nodal heads, was adopted by Epanet, a public33

domain WDS modeling software package developed by the US Environmental Protection34

Agency (EPA) (Rossman 1999), (Rossman 2000). GGA is probably the most popular method35

used for the simulation of WDS, and Epanet is still considered nowadays a reference software36

package in this field.37

Different papers have compared the GGA method and the loop method of (Epp and38

Fowler 1970). From the point of view of convergence, (Todini and Pilati 1988) showed that39

both of them are equivalent. As they put it, one can project the results obtained in the40

problem space of GGA (pipe flows and nodal heads) into the problem space of the loop41

method (loop corrective flows) by simple linear algebra manipulations. Thus, the sequence42

of iterations of both methods is the same, if they start from the same initial values. This43

is also pointed out in (Todini 2008) and (Elhay et al. 2014). Therefore, as (Todini 2008)44

states, when comparing the computing time required by both methods, the key issues are the45

dimension of the space on which the problem is solved and the symmetry and the sparsity46
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of the resulting system matrix.47

In this context, the loop method presents the advantage that the size of the linear systems48

to be solved is considerably smaller. As disadvantages, the matrix of those linear systems49

is generally less sparse, and the introduction of valves and closed pipes presents difficulties,50

because it changes the set of loops over which the method is to be applied.51

Recently, there have been different publications considering the loop method. (Creaco52

and Franchini 2014) propose an automatic procedure to find the basis of “minimum loops”,53

producing a matrix with maximum sparsity for the linear systems. The main drawback of54

that method is its excessive computation time, which is reported to be up to 3 hours for a55

network of 5,100 pipes. (Arsene et al. 2012) consider the need to redefine the loops when56

there is a status change in a controlling element such as a valve or a pump. They propose57

a partial redefinition of the loop set by modifying a spanning tree that is the base for the58

loop definition. (Elhay et al. 2014) present a reformulated co-tree flows method (RCTM) ,59

which is similar to the loop method and also produces the same sequence of iterations. They60

provide results on a number of case study networks, where their method is reported to be61

between 15% to 82% faster than GGA.62

This paper presents some novel contributions in the context of the loop method for63

analysis of WDS, with the aim of improving its computational efficiency. These contributions64

are: (i) a fast method for selecting the network loops, that achieves a highly sparse matrix,65

and (ii) treatment of check valves and automatic control valves in a way that avoids the need66

to redefine the loops initially selected.67

In the next section, we provide the necessary background on the loop method for the68

simulation of WDS. Then, we consider the choice of a set of independent loops, presenting two69

novel methods. The next three sections describe the approach for modeling control valves,70

considering the cases of flow regulating and pressure regulating devices. After considering71

the choice of an initial flow vector for the loop method, we present results for the proposed72

methods. Finally, conclusions and future work are presented.73
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THE LOOP METHOD FOR WDS SIMULATION74

The loop method was formulated by Epp and Fowler in (Epp and Fowler 1970). The75

method considers the set of energy-conservation equations, that state that the sum of energy76

losses around any network loop must be zero. In particular, if a set of l independent loops77

or cycles is found for a network of p pipes, the following equations hold:78

p∑
j=1

δijhj(qj) = 0, i = 1, 2 . . . l (1)79

where the notation δij is used to express which pipes form each loop: δij is 0 if the pipe j is80

not included in loop i, and ±1 otherwise, the sign accounting for the two possible orientations81

of the pipe in the loop. hj(qj) is the energy loss in the pipe j due to friction, expressed as a82

function of the flow qj. There are different formulas that can be used to compute that loss,83

e.g. the Hazen-Williams formula, which is (using international system units):84

hj(qj) =
10.674 L

C1.852D4.871
qj|qj|0.852 = R qj|qj|0.852 (2)85

where C is a roughness coefficient, and D and L are the pipe diameter and length, respec-86

tively. Other formulas are used for hydraulic elements such as pumps or throttle control87

valves.88

Additionally, the flows qj must satisfy the mass conservation equations, stating that the89

sum of all flows entering/leaving any junction must be zero, i.e., for a network of n junctions:90

p∑
j=1

γijqj − ci = 0, i = 1, 2 . . . n (3)91

where ci is the flow consumed in the junction i, and γij is +1 (−1) if the pipe j ends (starts)92

at node i, and 0 otherwise.93

Equations (1) and (3) are a set of l + n equations in p unknowns (the flows qj). If the94

network has only one tank/reservoir, the number of independent loops that can be formed95
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is l = p− n, as in the network of figure 1, with 3 junctions (N1-N3), one tank (N4), 5 pipes96

(P1-P5) and 2 loops (L1-L2). In the general case of nt tanks, where nt ≥ 1, nt − 1 fictitious97

loops are formed connecting the tanks, and again l = p− n (see figure 5). Thus, the system98

of equations given by (1) and (3) always has p equations and unknowns.99

However, the system can be reduced to l equations if we take into account that, given100

an initial vector of flows q0 satisfying equation (3), any other vector that satisfies the same101

equation can be obtained by considering a flow correction q̂k for each independent loop k,102

and adding the correction to the initial flow of the pipes forming the loop, i.e.:103

qj = q0j +
l∑

k=1

δkj q̂k j = 1, 2 . . . p (4)104

Thus, equations (1) and (3) can be combined in the following way:105

p∑
j=1

δij hj(q
0
j +

l∑
k=1

δkj q̂k) = 0, i = 1, 2 . . . l (5)106

which is a non-linear system of l equations in l unknowns (the loop flow corrections q̂k). The107

system is then solved by means of the Newton-Raphson method, which leads to a sequence108

of linear systems of the form:109

p∑
j=1

(
δijh

k
j + δijdj

l∑
k=1

δkj∆q̂k

)
= 0, i = 1, 2 . . . l (6)110

where hkj is the head loss across pipe j at the current iteration k, dj is the derivative of hj(qj)111

at the same iteration, and ∆q̂k is the increment of the flow correction for loop k. According112

to (2):113

dj = 1.852R |qj|0.852 (7)114

As an example, let us consider the network of figure 1, with the two loops denoted by L1115
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and L2. The nonlinear system of equations is:116

h1(q
0
1 + q̂1) + h4(q

0
4 + q̂1)− h2(q02 − q̂1 + q̂2) = 0

h2(q
0
2 − q̂1 + q̂2)− h5(q05 − q̂2)− h3(q03 − q̂2) = 0

(8)117

The linear equations corresponding to the Newton-Raphson method are:118

hk1 + d1∆q̂1 + hk4 + d4∆q̂1 − hk2 + d2(∆q̂1 −∆q̂2) = 0

hk2 + d2(−∆q̂1 + ∆q̂2)− hk5 + d5∆q̂2 − hk3 + d3∆q̂2 = 0
(9)119

or, written in matrix form:120

 d1 + d2 + d4 −d2

−d2 d2 + d3 + d5


 ∆q̂1

∆q̂2

 = −

 hk1 + hk4 − hk2

hk2 − hk5 − hk3

 (10)121

where the system matrix is symmetric positive definite.122

An advantage of the loop method for water distribution systems is that it works with a123

matrix of size l × l, which is in most cases much smaller than the matrix for the gradient124

method, which is n × n. However, this does not necessarily mean that the linear system125

can be solved faster, since it will largely depend on the number of nonzero coefficients in126

the matrix, which is strongly related to the way the network loops are defined, as explained127

next.128

CHOOSING THE LOOPS129

As we can see in the example above, each diagonal element of the matrix is the sum of130

di for the pipes i in a loop. Likewise, an off-diagonal coefficient is the sum of ±di for those131

pipes i which are common to two different loops (−d2 in the example).132

It is important to note that the choice of the set of independent loops for a network can133

greatly influence the amount of non-zero off-diagonal elements in our matrix, and thus the134

efficiency of the method. In particular, it is desirable to choose loops that are short and with135

minimum overlapping among them.136
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Let us consider, for instance, the network in figure 2, with n = 13 junctions, p = 20137

pipes, and a number of independent loops of p− n = 7. If the loops were selected as shown138

in the figure, the sparsity pattern of the resulting matrix would be as presented in figure139

3 (only the upper triangular part is shown, since the matrix is symmetric). Other possible140

choices of loops may result in a completely dense matrix, as we will shortly see.141

A commonly used method for selecting the set of independent loops starts by obtaining a142

spanning tree of the network (Travers 1967), (Arsene et al. 2012). Once it has been formed,143

adding any other pipe to the tree results in a loop, which is known as a fundamental cycle144

or fundamental loop. To obtain the loop, we go from each end of the added pipe following145

the tree towards the root, until the two paths join. As an example, solid lines in figure 4146

correspond to a spanning tree. If pipe 5-8 is added to the tree, the loop formed is given by the147

pipe 5-8 itself, together with the paths 5-2-0-13 and 8-6-4-1-13. The set of fundamental loops148

for the spanning tree constitute a set of independent loops. This method will be referred to149

as m1 in this paper.150

Although this method is simple, it presents the disadvantage that it generally produces151

a matrix that is not very sparse. In our example, each loop resulting from the spanning152

tree has at least one pipe in common with every other loop, therefore the matrix produced153

is completely dense. While other spanning trees can be found that are more favorable, no154

spanning tree can produce the set of loops presented in figure 2.155

From a graph theory perspective, (Kavitha et al. 2004) and (Kavitha et al. 2009) study156

the problem of finding a Minimum Cycle Basis (MCB) of a graph. In those papers, the set157

of all possible cycles in a graph is seen as a vector space, and a cycle basis is defined as158

a set of cycles forming a basis of that vector space. A minimum cycle basis of a weighted159

graph is then defined as a cycle basis such that the sum over all cycles of the edge weights160

is minimum. Our case corresponds to an unweighted graph, where a minimum cycle basis is161

one in which the sum of the number of edges of each cycle is minimum.162

In the case of the loops shown in figure 2, each loop has 4 edges (pipes), so the sum is 28.163
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If we take the fundamental cycles resulting from figure 4, the sum will be 56. Pipes that are164

common to two or more loops will be counted more than once, which implies that a minimum165

cycle basis will have little overlap between the loops, and will consequently produce a fairly166

sparse matrix.167

Taking into account the good properties of MCB, we have implemented a simplified168

version of the algorithm presented in (Kavitha et al. 2004) for its computation. Although169

the results are very good in terms of matrix sparsity, as presented in section 8, the problem170

encountered is the high computational cost of the algorithm, both in terms of execution time171

and memory. This method is referred to in this paper as m2. A similar approach was taken172

in (Creaco and Franchini 2014), using an algorithm based on (De Pina 1995), and the same173

problem of high computational cost is reported.174

Trying to overcome the problems of the two mentioned methods, this paper presents two175

different approaches for the definition of the set of independent loops.176

The first method proposed (which will be called m3) starts by constructing a spanning177

tree and obtaining the fundamental loops as in m1. Then the loops are simplified by com-178

bining them. When we combine two loops, the result is a loop that contains the pipes which179

are in either one of the two original loops, but not in both of them. For instance, in figure 4,180

the loop 5-2-0-13-1-3-5 could be simplified by combining it with the loop 0-13-1-3-0, resulting181

in the loop 5-2-0-3-5. Before combining the loops, however, they are sorted according to its182

depth in the tree, from less depth to more depth.183

The simplification process is described in algorithm 1, in which each loop li is tried to be184

reduced by combining it only with the previous loops (l1 . . . li−1). Note that the order in which185

to consider the loops l1 . . . li−1 for their possible combination with the loop li is important.186

Here, algorithm 1 follows a greedy approach, in which the first candidates considered are187

those that would produce a shorter loop if combined with li. In particular, a list P of those188

loops, among l1 . . . li−1, that overlap with the loop li is built, and it is sorted ascendingly by189

the length of the loop resulting from the combination with li. Then each of the loops in the190
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Algorithm 1 Loop simplification process for method m3

Input: L, list of loops
Output: L′, list of simplified loops
L′ ← ∅
for all loop li in L do
P ← ∅
for all loop lj in L, where j < i do

if lj overlaps with li then
nj ← length of the loop resulting from the combination of li and lj
Insert (lj, nj) in P , sorted ascendingly by nj

end if
end for
l′i ← li
for all pair (lj, nj) in P do
c← loop resulting from the combination of l′i and lj
if length of c < length of l′i then
l′i ← c

end if
end for
Insert l′i in L′

end for

list is combined with li, the result of a combination being discarded if it fails to reduce the191

length of the loop. Finally, the new reduced loop l′i is inserted in the new set of loops L′.192

The second method proposed (which will be called m4) is described in algorithm 2.193

Basically, it performs a breadth-first exploration of the network graph G, starting from a194

given node u. During this exploration, a graph G′ is built containing the edges and nodes of195

the network that have already been visited. Whenever a new edge (i, j) /∈ G′ is encountered196

that connects the current node i with a node j already visited, a new loop is added to the set197

of loops L. That new loop will consist of the edge (i, j) and the shortest path in G′ between198

nodes i and j, where “shortest path” means a path with minimum number of pipes. Note199

that the edge (i, j) is then added to G′, and thus can also be used for the following loops to200

be found.201

In the literature, very often each loop in the independent set is identified by a corre-202

sponding chord pipe (i.e. a pipe that is not in an initially defined spanning tree), and the203

loop flow correction is equal to the flow through that pipe. Note however that this can only204
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Algorithm 2 Loop definition method m4

Input: G, network graph; u, initial node for exploration.
Output: L, list of loops
L← ∅
G′ ← ∅
S ← {u}
while S 6= ∅ do
i← pop first element of S
for all node j where edge (i, j) ∈ G do

if j /∈ G′ then
Add node j and edge (i, j) to graph G′

Insert j as the last element of S
else if edge (i, j) /∈ G′ then
p← shortest path from i to j in G′

c← {edges of p} ∪ {(i, j)}
Insert c into L
Add edge (i, j) to G′

end if
end for

end while

be done if the method m1 is used, because the method imposes the constraint that the set205

of loops must be the set of fundamental loops of a spanning tree. Methods m2-m4 do not206

impose that constraint, and as a result of that they can find a better set of loops, producing207

a more sparse matrix, as shown in the network of figure 2.208

APPROACH FOR MODELING CONTROL VALVES209

The next two sections deal with hydraulic elements that can change their status, such210

as check-valves, flow control valves (FCV), pressure reducing valves (PRV) and pressure211

sustaining valves (PSV). These elements can be in different status depending on hydraulic212

conditions which are not known a priori, presenting an important challenge for the simulation.213

Epanet (Rossman 1999) uses a method in which the status of the valves is assumed214

at the beginning of the iterative process, checked between the iterations and if necessary215

adjusted by specific heuristics. There is no guarantee that this method will be able to find216

the correct valve status in all cases, see e.g. (Simpson 1999), but it works well in practice217

and is a widely accepted method in the hydraulic modeling community. There are other218
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more rigorous approaches in which the problem is formulated as the minimization of the219

content or co-content functions subject to inequality constraints (Deuerlein et al. 2009a),220

(Deuerlein et al. 2005), (Deuerlein et al. 2009b), (Piller and van Zyl 2014). These methods221

overcome the difficulties found in a heuristic method, although they are more complex and222

can therefore require more computing time.223

This paper assumes that a method similar the one implemented in Epanet is going to224

be used to determine the operational status of the valves in the network. Even in that225

context, the presence of control valves affects the formulation of the loop method given by226

(6). (Jeppson 1976) uses an approach to include PRV in which the set of independent loops227

changes depending on the status of the valves. Other authors, such as (Arsene et al. 2012),228

propose a partial redefinition of the loop set by modifying a spanning tree that is the base229

for the loop definition. The problem with these approaches is the need to redefine the loop230

set, which implies introducing changes in the sparsity structure of the system matrix. This231

is important because the linear systems arising in water distribution system analysis are232

normally solved by means of a direct method, and a symbolic decomposition is done at the233

beginning of the simulation, to determine the sparsity structure of the factorized matrix.234

If the structure of the matrix changes, the symbolic decomposition would have to be done235

again, or at least updated, resulting in increased computing time.236

This paper presents a method to cope with control valves that avoids changing the set237

of independent loops when a valve changes its status.238

MODELING FLOW REGULATING DEVICES239

Check valves are used to ensure that the flow through a pipe is always in the desired240

direction, preventing reverse flow by closing the pipe. This can be a difficulty for the loop241

simulation method, because the topology of the network changes, which might require a242

redefinition of the set of independent loops.243

For example, let us consider the network in figure 5, with 4 junctions (N1-N4), 2 tanks244

(N5-N6), 7 pipes (P1-P7), and the independent loops L1, L2 and L3. The system of linear245
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equations to be solved in each iteration of the Newton-Raphson method, using the loop246

formulation, is:247


d1 + d2 + d5 −d2 0

−d2 d2 + d3 + d6 −d3

0 −d3 d3 + d4 + d7




∆q̂1

∆q̂2

∆q̂3

 = −


hk1 − hk2 + hk5

hk2 − hk3 − hk6

hk3 − hk4 − hk7 + Ĥ6 − Ĥ5


(11)248

where Ĥ5 and Ĥ6 are the head values at the tanks, which are assumed to be known, and the249

rest of the symbols are as defined in section 2.250

Let us suppose that pipe 2 is equipped with a check valve and that the valve closes.251

This could be modelled by using a very high value for d2, e.g. 108 (corresponding to a high252

resistance for the pipe), and solving the system of linear equations (11) normally. However,253

this approach introduces very large numbers in the matrix, causing the system of equations to254

be ill conditioned, which means that we should expect important round-off errors. Another255

approach is to eliminate the closed pipe and redefine the loop set accordingly. In this example256

network, loops 1 and 2 could be replaced by a single loop with pipes 1, 3, 5 and 6. This is257

done e.g. in (Arsene et al. 2012).258

We propose another approach to cope with a closed check valve, which avoids the need to259

redefine the loops of the network. In particular, if check valve in pipe 2 closes, the difference260

in head between the two ends of the pipe is not related to the flow through it, since that261

flow is zero. It follows that we should not use d2, but introduce h2 as a new variable. We262

also introduce a new equation, which states that flow through pipe 2 is zero, i.e:263

q02 − q̂1 + q̂2 = 0 (12)264

Expressing this equation using the system unknowns, which are ∆q̂, we have:265
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q02 − q̂k1 −∆q̂1 + q̂k2 + ∆q̂2 = 0 (13)266

where q̂ki is the flow correction for loop i (q̂i), at the start of iteration k.267

Taking that into account, the original system is transformed in the following way:268



d1 + d5 0 0 −1

0 d3 + d6 −d3 1

0 −d3 d3 + d4 + d7 0

−1 1 0 0





∆q̂1

∆q̂2

∆q̂3

h2


= −



hk1 + hk5

−hk3 − hk6

hk3 − hk4 − hk7 +H6 −H5

−q02 + q̂k1 − q̂k2


(14)269

We now generalize the methodology proposed. With any number of closed check valves,270

equation (14) presents the form:271

 A C

CT 0


 ∆q̂

ĥ

 =

 b

b̂

 (15)272

where A is the same matrix as that of the original system, only changing the value of the273

coefficients affected by the check valves (as if those valves had been replaced by pipes of274

zero resistance). In particular, no new non-zero elements are added to the matrix. C is an275

incidence or topological matrix, the elements of which can only have the values 0 and ±1; ĥ276

is the vector of head losses for the closed check valves, and b̂ are the elements added to the277

right-hand side of the equation.278

This formulation was also derived in (Deuerlein et al. 2009a) following a different ap-279

proach, in which the hydraulic steady-state simulation is treated as the minimization of the280

content function with inequality flow constraints, and the head losses of the check valves281

are interpreted as Lagrange multipliers. In this paper we use expression (15) without con-282

sidering an optimization problem, which may be more cumbersome. Instead, we use a283
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Newton-Raphson iterative scheme together with a method to find out the correct status of284

the valves (such as the heuristic method of Epanet). Another contribution of this paper is285

to address the efficient solution of the system (15), which could be split in two equations:286

A∆q̂ + Cĥ = b (16)287

288

CT∆q̂ = b̂ (17)289

Then, using the Schur decomposition (Zhang 2005), we isolate ∆q̂ from (16) and substi-290

tute in (17) to get:291

∆q̂ = A−1b− A−1Cĥ (18)292

293

ĥ = (CTA−1C)−1(CTA−1b− b̂) (19)294

Vector ĥ can be obtained from (19), which implies: (i) solving the two linear systems A−1b295

and A−1C, which share the coefficient matrix; (ii) multiplying the solution of those systems296

by the matrix CT , and (iii) solving a linear system with the symmetric matrix CTA−1C. The297

dimension of the latter linear system is equal to the number of closed check-valves, which298

will usually be few. Finally, ∆q̂ is obtained from (18), taking advantage of the fact that299

A−1b and A−1C have already been solved as part of (19).300

As a summary, the introduction of closed check-valves can be done without redefining the301

loops of the network and thus without changing the sparsity pattern of the system matrix.302

Pipes can also be closed directly by means of control rules during the simulation process.303

The approach presented in this section is also valid for that case, which is in fact simpler,304

because the status of the pipe (open/closed) does not depend on the direction of the flow.305

Flow control valves (FCV). These valves try to maintain the flow through the valve306

at a set value. They can be dealt with in a very similar way to a closed pipe, as discussed307

above, changing the zero in equation (12) for the set value of the FCV. This results in a308

system with the same structure as (15), which is solved in the same way.309
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MODELING PRESSURE REGULATING VALVES310

In this section we consider the inclusion of two different types of valves in the simulation:311

pressure reducing valves and pressure sustaining valves.312

Pressure reducing valve (PRV). A PRV is used to reduce the pressure of the valve313

outlet to a given set value. The valve can be in three different status: i) if the inlet head314

is too low to provide the desired outlet pressure, the valve opens fully; ii) if the heads at315

the valve ends would produce a negative flow, the valve closes; iii) otherwise the valve is316

active and the outlet pressure is equal to the set value. The first two cases correspond to a317

normal pipe, possibly closed, and can be dealt with as described in previous sections. In the318

following paragraphs we discuss the third case.319

In (Jeppson 1976), an active PRV is modelled in the context of the loop method by320

considering an independent path (or pseudo-loop) that goes from the downstream node of321

the PRV to a reservoir/tank. An energy balance equation is imposed on that path, replacing322

the energy equation of a loop containing the PRV. Additionally, if the PRV is contained in323

more than one loop, the rest of the loops have to be redefined so that they do not contain the324

PRV. The procedure produces a linear system with a matrix that is no longer symmetric.325

Here we present another way to model the PRV. Like in (Jeppson 1976), a path from326

the downstream node of the PRV to a reservoir/tank is considered. However, the balance327

equation for that path is added, without replacing another equation, and the headloss at the328

PRV is added as a new unknown. The advantages are that there is no need to redefine the329

loops, and that the non-symmetric part of the system matrix is isolated.330

Let us consider the network shown in figure 6. Initially, if the valve were a normal pipe,331

the system of linear equations at an iteration k would be:332
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

d1 + d2 + d3 −d3 0 0

−d3 d3 + d4 + d5 −d5 0

0 −d5 d5 + d7 + d8 −d7

0 0 −d7 d6 + d7 + d9





∆q̂1

∆q̂2

∆q̂3

∆q̂4


= −



hk1 − hk2 + hk3

−hk3 + hk4 − hk5

hk5 + hk7 − hk8

hk6 − hk7 + hk9


(20)333

If link 7 is an active PRV, the relationship between the flow circulating through the link334

and the head loss, given by d7, is unknown. However, we can eliminate it, and instead335

introduce the head loss itself (h7) as an unknown.336

On the other hand, we know that the head at the downstream node of the valve, H5,337

is equal to e5 + k7, where e5 is the elevation of the node, and k7 is the pressure setting for338

the PRV. Additionally, the head difference between the tank and node 5 must be equal to339

the sum of head losses along a path going from the tank to that node, e.g. the path going340

through pipes 2 and 8, i.e.:341

h2 + h8 = H6 −H5342

By approximating the nonlinear functions of the flows, h2 and h8, using the first two343

terms of the Taylor series, we get:344

−H6 +H5 + hk2 − d2∆q̂1 + hk8 − d8∆q̂3 = 0 (21)345
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Taking that into account, we have:346



d1 + d2 + d3 −d3 0 0 0

−d3 d3 + d4 + d5 −d5 0 0

0 −d5 d5 + d8 0 1

0 0 0 d6 + d9 −1

−d2 0 −d8 0 0





∆q̂1

∆q̂2

∆q̂3

∆q̂4

h7


= −



hk1 − hk2 + hk3

−hk3 + hk4 − hk5

hk5 − hk8

hk6 + hk9

−H6 +H5 + hk2 + hk8


(22)347

In a more general case, with any number of PRV, the previous system presents the form:348

 A C

E F


 ∆q̂

ĥ

 =

 b

b̂

 (23)349

or, equivalently:350

A∆q̂ + Cĥ = b (24)351

E∆q̂ + Fĥ = b̂ (25)352

where, similarly to the case of check valves and FCV, A is the same matrix as that of the353

original system (20), only changing the value of the coefficients affected by the PRV (as if354

those valves had been replaced by pipes of zero resistance). No new non-zero elements are355

added to the matrix. C and F are incidence or topological matrices, the elements of which356

can only take the values 0 and ±1. In particular, C indicates the valves involved in each357

cycle, and F indicates the valves involved in each of the PRV paths. In the example above,358

the path from node 5 to node 6 does not contain any valve, and thus the only element of F359

is zero. Finally, E contains the headloss derivatives for the pipes in each of the PRV paths.360

Operating in a similar way to section 5, we have:361

∆q̂ = A−1b− A−1Cĥ (26)362
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ĥ = (EA−1C − F )−1
(
EA−1b− b̂

)
(27)363

where ĥ can be obtained from (27), which involves solving the linear systems A−1C and A−1b,364

multiplying the results by E, and solving a small linear system with the matrix (EA−1C−F ),365

with size equal to the number of active PRV. Then, ∆q̂ is obtained from the expression (26),366

where taking into account that A−1b and A−1C have already been computed.367

It can be shown (see Appendix I) that the inverse of the matrix (EA−1C − F ) exists368

if the following assumptions hold: (i) the system matrix of (23) is invertible, and (ii) the369

matrix A is invertible. The first condition is the same requirement existing also in the GGA370

method, e.g. in Epanet. The second condition follows from the fact that A is the matrix371

of the Newton-Raphson iteration (6) for the original network where active PRV have been372

replaced by zero-resistance pipes, and is consequently positive definite (Todini and Pilati373

1988).374

To sum up, active PRV can be treated without redefining the loops of the network and375

thus without changing the sparsity pattern of the system matrix, with a procedure which is376

very similar to that of check valves presented in section 5. The main difference is that in377

the case of PRV, the small system of equations introduced, with the matrix (EA−1C − F ),378

is not symmetric. However, the matrix A is still symmetric and can be factorized using a379

Cholesky decomposition.380

Pressure sustaining valves (PSV). These valves are very similar to PRV. In particular,381

a PSV tries to keep the inlet pressure at a set value. The approach described above for PRV382

is also valid for PSV, with the difference that we should use a path from a tank to the383

upstream node of the valve (instead of the downstream node).384

CHOOSING AN INITIAL FLOW VECTOR385

One of the difficulties found was the choice of a suitable initial flow vector for the loop386

method, i.e. a vector q0 satisfying the mass balance equation (3). It was found that the387

choice of that vector has a considerable impact on the number of iterations performed.388
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In order to compute q0, we build a spanning tree of the network and impose a given389

flow to each of the chord links. The flow of all the other links (the links in the tree) can be390

computed by going over the tree from the leaves to the root, and imposing the mass balance391

equation on each of the network nodes.392

Different spanning trees and different flow values for the chord links can be used. We393

found that the best results were obtained using a minimum-resistance spanning tree, i.e. a394

spanning tree where the sum of resistances R of all the tree links is minimum, and assigning395

to each chord link a flow corresponding to a velocity of 1 m/s (this is the initial flow used396

by Epanet for all the links). The minimum-resistance spanning tree was obtained by means397

of Prim’s algorithm (Prim 1957).398

RESULTS399

In this section, we present results that compare the GGA and loop methods, tak-400

ing into account different aspects. We consider the hydraulic networks shown in table401

1. Net3 is the example network 3 of Epanet (Rossman 2000). bwsn2m is a modi-402

fied version of the network 2 proposed in (Ostfeld et al. 2008), where parallel pipes (i.e.403

pipes having the same end nodes) and valves have been removed. In order to remove404

the valves, we focused on producing a steady-state model for the initial time step of the405

simulation, for which Epanet revealed that only one PSV was active, and the remain-406

ing four valves were closed. The four closed valves were removed, and the only active407

PSV was substituted by a pipe producing the same headloss. urb is a large real ur-408

ban water network, the outline of which is shown in figure 7. Finally, the exnet net-409

work can be downloaded from the Centre for Water Systems of the University of Exeter410

(http://emps.exeter.ac.uk/media/universityofexeter/emps/research/cws/downloads/exnet.inp).411

Realistic results of computing time should consider efficient implementations of the meth-412

ods. For that reason, we use here the very efficient GGA implementation of Epanet, written413

in C, while for the loop method we have also used a C implementation which has been inte-414

grated with the source code of Epanet. Of course, the same optimization flags were used for415
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compiling both codes. The code for the solution of linear systems using Cholesky factoriza-416

tion is taken from Epanet, and is exactly the same for both methods. This approach differs417

from other works such as (Creaco and Franchini 2014), (Elhay et al. 2014), where Matlab418

implementations of the methods are used. However, we use a simpler Matlab implementation419

of the loop method for the simulation of networks containing control valves, for which the420

computing time is not evaluated.421

With respect to the time results, the times to be measured were in general very short. For422

that reason, the task under consideration was repeated a sufficient number of times to get an423

accumulated time of about a second, and then the average time was obtained. Additionally,424

the whole series of repetitions was run eleven times, and the median time was obtained.425

Times are in seconds, except where indicated otherwise. The machine were the tests were426

run was equipped with an Intel Core 2 Duo CPU at 3GHz, with 4GB RAM.427

We first present results in table 2 that evaluate the loop selection methods presented in428

the paper, considering the sparsity of the resulting linear system matrix. The columns under429

n compare the matrix size for GGA and the loop method. We can see that, for normal430

networks like those used here, the matrix produced by the loop method is much smaller431

than that of the gradient method. The columns under nnz(A) show the number of non-zero432

elements of the linear system matrices, for the case of the GGA method and for each of the433

loop selection methods previously presented. As expected, the best results are achieved with434

m2, although the high computational requirements of the method, in terms of execution435

time and memory, prevent its use for the two larger networks (bwsn2m and urb). Among436

the other loop selection methods, m4 is the best, producing a considerable difference in437

number of non-zero elements with respect to the GGA.438

The columns under nnz(L) show the number of non-zeros of the Cholesky factor of the439

linear system matrices. The amount of non-zero elements of the factorized matrix, which440

is determined at the beginning of the simulation as a result of a reordering and a symbolic441

decomposition of the matrix, is a good indicator of the computing time necessary to solve442
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the linear system. The number of non-zero elements of the factorized matrix is higher than443

that of the original matrix, and depends on the reordering method used. In our case, the444

method is Mimimum Degree (George and Liu 1989), the implementation of which has been445

taken from Epanet. We can see that there is a considerable reduction in the number of446

non-zero elements for m4 with respect to the GGA.447

(Elhay et al. 2014) also present results for the exnet network for a reformulated co-tree448

method (RCTM), reporting a 2% increase in the number of non-zeros of the factorized matrix449

with respect to GGA. The results in this paper are clearly better, with a reduction of 68%450

in the number of non-zeros with respect to GGA.451

(Creaco and Franchini 2014) present results for an algorithm similar to m2, applying it452

to two sets of networks: a set of networks made up of rectangular loops, and another set of453

networks made up of hexagonal loops. The paper then analyses the sparsity of the matrices454

and the computing time. We have applied our loop selection method m4 to those same455

networks, and have reached exactly the same results in terms of matrix sparsity, indicating456

that m4 was able to obtain optimal results for those networks, with the advantage of being457

a very fast procedure, as will be shown next.458

Considering now the computing time that is necessary to obtain the set of loops, the459

results are presented in table 3. Columns m1-p to m4-p correspond to implementations460

of the algorithms m1-m4 in Python. Column m4adj-c corresponds to the implementation461

of m4 in C language, and includes also the time to build the loop-adjacency information462

(i.e. for each loop, which other loops it overlaps with) necessary to determine the matrix463

structure. As explained above, the method m2 could not be run for networks bwsn2m and464

urb. It also takes more than 26 minutes for network exnet.465

Table 3 shows clearly that obtaining the set of loops with the method m4 is extremely466

fast. This implies that the loop method can be competitive even in cases where a single467

simulation is wanted, as opposed to situations where many simulations of networks with468

the same topology is required. Other approaches, such as (Creaco and Franchini 2014) and469
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(Elhay et al. 2014), assumed the second case.470

Table 4 compares the number of iterations performed by the loop and GGA solvers,471

for the networks without control valves. The left part of the table shows the number of472

iterations for the initial instant of the simulation, while the right part presents the sum473

of iterations for all the time steps of an extended-period simulation. The difference in the474

number of iterations between the two methods is due to the fact that the initial solution475

used is different. The loop method requires in some cases some extra iterations, but the476

difference is very small.477

We now analyze the time for the simulation of the networks. First, we consider the time478

per iteration of the non-linear solver. This is shown in table 5 (times are in milliseconds479

because they are very small), where the column “speedup” is the time for GGA divided by480

the corresponding time for the loop method. The table also shows the time spent on the481

different tasks in the iteration. In particular, newcoeffs is the part that sets the values of the482

linear system coefficients, which involves computing the derivatives of the headloss formula.483

The task linsolve corresponds to the solution of the linear system that has been formed in484

newcoeffs. Finally, newflows is the part that computes the new vector of flows. In the case485

of the GGA method, this new vector is computed from the new heads obtained by solving486

the linear system. In the case of the loop method, it is formed using (4). As we can see,487

linsolve is the part where the loop method shines. The speedup achieved in this part is more488

than 5 for the two large networks, although the weight of newcoeffs (around 60% in both489

cases) masks the real advantages of the loop method.490

Table 5 does not consider the computation of the initial balanced flow vector for the loop491

method, nor the computation of the heads, because those tasks are done only once for each492

time step, instead of in every iteration. Those two aspects are taken into account in table 6,493

that presents the time to solve all the steady-state problems in a complete extended-period494

simulation. The number of time steps in the simulation was shown in table 4.495

We can see that the loop method, with the definition of loops proposed in this paper, is496
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between 11% and 20% faster than the GGA method. This performance gain is especially497

important in the context of network design by means of an optimization process, which may498

require the solution of steady-state problems for thousands or millions of slightly different499

networks.500

Finally, we tested our approach for the treatment of control valves, by means of a simple501

implementation written in Matlab, which was used to simulate the network of figure 5 (with502

a closed check valve in pipe 2), and the network of figure 6 (with the PRV assumed to be503

active). In both cases, convergence was achieved with few iterations, and the results matched504

those obtained with Epanet.505

CONCLUSIONS AND FUTURE WORK506

In this paper, we present contributions for overcoming the main disadvantages of the507

method based on loop flow equations.508

As the first of these contributions, we present efficient procedures for selecting the network509

loops so as to achieve a highly sparse matrix. Results on the application of those procedures510

to four networks, some of them coming from large real WDS, are given. Method m2, based511

on (Kavitha et al. 2004), and similar to the algorithms presented in (Creaco and Franchini512

2014), produces very good results in terms of sparsity and, although it presents excessive513

requirements in terms of execution time and memory needed, it can be used as a reference514

for other methods. We propose two other novel faster methods, m3 and m4, and the latter515

is identified as the most suitable one, producing considerably less non-zero elements than516

the GGA solver.517

This contribution leads to important reductions in the time to solve the linear systems,518

with speedup of more than 5 with respect to the GGA method for two of the networks519

considered, and more than 2 for the other one. Considering the whole problem of extended-520

period simulation, the speedup achieved is between 1.11 and 1.20. In a context of network521

design by means of an optimization process, requiring the solution of many steady-state522

problems of slightly different networks, this performance gain can be very important.523
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We also show that the method m4 to obtain the set of loops is extremely fast, which524

makes the loop method a competitive option with respect to the GGA method, even in cases525

where a single simulation is needed.526

The second contribution of the paper is the development of methods to include check527

valves and automatic control valves in the model, avoiding the need to redefine the loops528

initially selected. Preliminary results on small networks show the correctness of the approach,529

since it produces output which agrees with the Epanet solver.530

Finally, future work is needed in order to do a more complete test of the approach for531

control valves, considering more realistic networks. Also to be explored is the consideration532

of an optimization framework for the simulation with control valves, where the status of these533

elements is not obtained by means of a heuristic method, but as a result of the optimization534

process. Another direction of work is to try to reduce the time needed for the computation535

of the linear system coefficients (the task referred to as newcoeffs in the paper), which is536

shown to be the most time consuming part for both the loop and the GGA methods.537

APPENDIX I: INVERSE OF THE SCHUR COMPLEMENT538

Let A be a non-singular matrix given by:539

 A1,1 A1,2

A2,1 A2,2

 (28)540

where A1,1 and A2,2 are square matrices of sizes p× p and q× q, respectively, and A1,1 is also541

non-singular. We now build the matrix L:542

L =

 Ip 0

−A2,1A
−1
1,1 Iq

 (29)543

where Ip and Iq are identity matrices of sizes p× p and q × q, respectively. We have that:544
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LA =

 A1,1 A1,2

0 A2,2 − A2,1A
−1
1,1A1,2

 (30)545

Consequently,546

det(A) = det(LA) = det(A1,1) det(A2,2 − A2,1A
−1
1,1A1,2) (31)547

Since det(A) 6= 0 and det(A1,1) 6= 0, it follows that det(A2,2 − A2,1A
−1
1,1A1,2) 6= 0.548
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Network junctions pipes tanks pumps valves
Net3 92 117 5 2 0

bwsn2m 12523 14313 4 4 0
urb 26627 29043 26 0 0

exnet 1891 2465 2 0 2

TABLE 1. Networks considered.
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n nnz(A) nnz(L)
Network GGA loop GGA m1 m2 m3 m4 GGA m4

Net3 92 27 211 128 84 93 90 279 94
bwsn2m 12523 1794 26840 16765 - 5840 5527 37500 6577

urb 26627 2416 55670 52762 - 10873 9601 81564 13722
exnet 1891 576 4309 4895 1664 1825 1695 6010 1935

TABLE 2. Number of non-zero elements in the system matrix and its Cholesky factor.
Comparison of GGA vs loop solver with different loop definition methods.
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Network m1-p m2-p m3-p m4-p m4adj-c
Net3 0.00049 0.27700 0.00223 0.00140 0.00006

bwsn2m 0.07360 - 0.50500 0.20600 0.01870
urb 0.16400 - 1.68000 0.47200 0.05799

exnet 0.00897 1565.0 0.05780 0.02360 0.00270

TABLE 3. Time to determine the set of loops.
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First time step All timesteps
Network GGA loop Time steps GGA loop

Net3 5 6 27 86 89
bwsn2m 8 8 1 8 8

urb 6 7 13 30 31

TABLE 4. Number of iterations.
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Net3 GGA loop speedup
newcoeffs 0.0164 0.0168 0.98
linsolve 0.0073 0.0034 2.16

newflows 0.0029 0.0034 0.85
Total iteration 0.0265 0.0235 1.13

bwsn2m GGA loop speedup
newcoeffs 1.8963 1.8586 1.02
linsolve 0.9257 0.1720 5.38

newflows 0.2076 0.3377 0.61
Total iteration 3.0295 2.3683 1.28

urb GGA loop speedup
newcoeffs 4.1298 3.9716 1.04
linsolve 2.0773 0.4016 5.17

newflows 0.9517 1.0653 0.89
Total iteration 7.1588 5.4386 1.32

TABLE 5. Execution time (in milliseconds) for a single iteration of the non-linear
solver.
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Network GGA loop speedup
Net3 0.00221 0.00198 1.11

bwsn2m 0.02667 0.02220 1.20
urb 0.23565 0.20079 1.17

TABLE 6. Time for all steady-state problems in a simulation.
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FIG. 1. A very simple network
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FIG. 2. Sample network, with a set of independent loops
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FIG. 3. Sparsity pattern for the loops defined in the sample network
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FIG. 4. A possible spanning tree for the sample network
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FIG. 5. A simple network
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FIG. 6. Network with a PRV
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FIG. 7. Outline of network urb
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