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Abstract  

The cost associated with corrosion is an issue of major economic importance; controlling 

corrosion would promote the conservation of natural resources in relation to metals and save 

both energy and water. Phosphoric acid is mainly produced by the wet acid process, where 

corrosion problems could be intensified due to the presence of impurities in the phosphate 

rock. Operating temperatures and flowing conditions aggravate the aforementioned problems. 

This work studies the influence of temperature (25 to 60 ºC) and hydrodynamic conditions 

(Reynolds numbers from 1456 to 5066) on the corrosion of AISI 316L stainless steel in pure 

and polluted phosphoric acid solutions, by means of cyclic potentiodynamic polarization 

curves in a hydrodynamic circuit. The effect of temperature is the same as that caused by 

impurities; that is, higher corrosion rates and hindered passivation and repassivation 

resistance of the alloy. Statistical analysis by means of surface response methodology proved 

that the effect of temperature on the corrosion parameters of ASI 316L is more influential 

than the Reynolds number effect. The Reynolds number seems to have no significant 
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influence on the corrosion behaviour of stainless steel. Furthermore, the influence of 

temperature on the corrosion rate is much higher than on the rest of the corrosion parameters 

analysed, especially in polluted phosphoric acid solutions. AISI 316L stainless steel has a 

clear interest for the phosphoric acid industry as a component material of some equipment due 

to its good corrosion properties at the different temperatures and Reynolds numbers studied 

even in polluted media. 

 

Keywords: A. alloys; C. corrosion test; C. electrochemical techniques; D. corrosion 

 

1. Introduction 

More than 95% of the world’s phosphoric acid production is by the wet acid process. Wet 

phosphoric acid manufacturing appears to be relatively simple involving the reaction of 

phosphate rock with concentrated sulphuric acid yielding phosphoric acid (26 to 28% P2O5) 

and calcium sulphate slurry, followed by filtration of the acid slurry to remove particulate 

matter, and by concentration and purification of the phosphoric acid. Although the process is 

simple and straightforward, severe erosion/corrosion problems have been encountered. 

Corrosion problems occur due to impurities in the phosphate rock, such as chlorides (Cl
-
) in 

presence of sulphuric acid (H2SO4) traces. In fact, sulphuric acid is the most common 

impurity in the wet acid process since this compound is necessary in a certain excess [1]. 

Chloride promotes pitting corrosion; moreover, the effects of chloride are intensified by the 

presence of sulphuric acid. The recent trend to increase the concentration of the final product 

involves using higher operating temperatures. This fact, along with the hydrodynamic 

operating conditions prevailing in these plants, increases the severity of the corrosive 

environments [2-5].  
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Corrosion can be defined as the destruction or deterioration of a metallic material by reaction 

with its environment. This process can affect the mechanical integrity of facilities and damage 

the quality of the end products by contamination with the resulting corrosion compounds. All 

these facts lead to substantial economic losses; hence, the importance of studying corrosion to 

reduce material losses in the industrial sector, as well as to promote the conservation of 

natural resources, particularly metals, but would finally result in save both energy and water. 

The estimated annual direct cost of corrosion in the U.S. is about 276 billion dollars, 

approximately 3.1% of the nation’s Gross Domestic Product (GDP) [6]. Thus, the costs of 

metal and metal alloy corrosion amount to several percent of the GDP of an industrialized 

country are an issue of major economic importance [7]. 

 

Austenitic stainless steels (SS) are widely used in many industrial areas where high corrosion 

resistance is required [8-11], for instance in the phosphoric acid industry [12]. In particular, 

AISI 316L stainless steel is widely used due to its good mechanical properties and corrosion 

resistance [13].  

 

Few works have addressed the influence of impurities on the corrosion behaviour of austenitic 

stainless steels in phosphoric acid solutions [14-16] and none of them has studied the 

hydrodynamic conditions, which are the real conditions for the productionof phosphoric acid. 

Some works have studied the effects of temperature on different materials in polluted 

phosphoric acid solutions under static conditions: graphite [2], stainless steels and graphite 

[17], austenitic stainless steels [18], mild steel [19] and Ti-Cu [20]. On the other hand, very 

few works have analysed the corrosion-erosion behaviour in polluted phosphoric acid media 

[4]. Therefore, the first aim of this work is the study of the influence of the operating 

conditions (temperature: 25, 40 and 60 ºC and Reynolds number: 1456, 3166 and 5066) on the 
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corrosion of AISI 316L SS tubes in pure and polluted (with impurities of H2SO4 and Cl
-
) 

phosphoric acid solutions using a hydrodynamic circuit. Cyclic polarization curves were 

performed to study the corrosion behaviour of the alloy. Potentiodynamic procedures are 

widely used to determine the electrochemical corrosion behaviour of an active-passive 

material [21, 22].  

 

Response surface methodology (RSM) is a powerful experimental design tool [23] and has 

been successfully employed for the statistical analysis of different systems, some of which 

related to the corrosion field; for example RSM was used to evaluate the conditions for the 

high-dose polyphosphate inhibition in reducing copper release [24]. The feasibility of using a 

higher dosage of polyphosphate was of interest because it could reduce copper release from 

corroded copper pipes within a short period by forming the protective film. Rajakumar [25] 

employed RSM to analyse the relationships between the friction stir welding input parameters 

(rotational speed, welding speed, axial force, shoulder diameter, pin diameter and tool 

hardness) and three output responses (tensile strength, hardness and corrosion rate). RSM was 

also used by Masmoudi [26] to determine the effects of the passivating solution concentration, 

temperature and period of treatment on the corrosion resistance of passivated commercially 

pure titanium and the Ti6Al4V alloy. Thus, the second aim of this study is the performance of 

a RSM-based statistical analysis in order to evaluate the combined effects of temperature and 

Reynolds number on the main corrosion parameters (corrosion potential, corrosion current 

density, passivation current density and breakdown potential), and to find out which of these 

operating conditions is more influential on the corrosion behaviour of AISI 316L stainless 

steel. The presence of impurities was also taken into consideration.  
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2. Materials and methods 

2.1. Materials characterisation 

The materials studied were tubes 14 mm and 16 mm in inner and external diameter, 

respectively, and 20 mm in length (an area of 8.8 cm
2
 was exposed to the solution). They 

were made of AISI 316L SS (16.957 wt. % Cr, 10.171 wt. % Ni, 1.337 wt. % Mn, 2.298 wt. 

% Mo, 0.004 wt. % S, 0.368 wt. % Si, 0.030 wt. % P, 0.022 wt. % C, bal. wt. % Fe). For the 

characterisation of the AISI 316L stainless steel, microstructure and microhardness analyses 

were carried out.  

 

To observe the microstructure of the alloy, the tubes were cut lengthwise and covered in cold 

mounting acrylic resin for the embedding of the specimens. Then, the samples were wet 

abraded from 220 silicon carbide (SiC) grit to 4000 SiC grit (in several steps; i.e. 220, 500, 

1000, 2500 and 4000). Finally, the mounted samples were polished with 1 and 0.3 micron 

alumina and were rinsed with distilled water, followed by ethanol. Once the samples were 

polished, metallographic etching (Kiesel modified) was carried out according to ASM 

International [27]. The etchant composition consisted of 10 mL of nitric acid (65 wt. %), 10 

mL of acetic acid (99-100 wt. %), 15 mL of hydrochloric acid (37-38 wt. %) and 5 mL of 

glycerine (100 wt. %). The samples were immersed in the etching solution during 90 seconds 

and then rinsed with distilled water, followed by ethanol. Subsequently the materials were 

examined by scanning electron microscopy (SEM) and light microscopy (LM) to reveal their 

microstructure. 

 

Vickers microhardness measurements were carried out using a microhardness tester (Struers 

Duramin) with a diamond pyramid indenter at a load of 300 g for 15 s [28]. Hardness values 

were obtained as the mean of six readings.  
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2.2. Solution 

The materials were tested in a 5.5 M H3PO4 solution (40 wt. % H3PO4) made with distilled 

water. This concentration is typical in the phosphoric acid industry [1]. In order to study the 

effect of impurities on the corrosion of AISI 316L stainless steel tubes, a polluted phosphoric 

acid solution was used. Table 1 shows the composition of the different phosphoric acid 

solutions employed in this work.  

 

The experiments were conducted at Reynolds numbers of 1456, 3166 and 5066 at 25 ºC, 40 

ºC and 60 ºC. Reynolds numbers were calculated as follows: 

 

μ

ρdv
Re


  (1) 

 

where v is the characteristic fluid velocity in m·s
-1

, d is the characteristic length of the system 

in m (the diameter of a pipe in the case of pipe flow),  is fluid density in Kg·m
-3

 and  is the 

dynamic fluid viscosity in Kg·m
-1

·s
-1

. 

  

The density values of the phosphoric acid solutions at the different temperatures studied are 

presented in Table 2 [29-31]. The density of the polluted phosphoric acid solutions was 

determined from the density values of the different compounds that form the polluted solution 

at the corresponding temperature (see Table 2) according to equation 2 [32]:  

 

iiOHOH

m
vωvω

1
ρ

22


  (2) 
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where m is the density of the mixture in Kg·m
-3

, OH2
ω is the mass fraction of water, OH2

v is 

the water specific volume in m
3
·Kg

-1
, iω is the mass fraction of component i and OH2

v is the 

specific volume of component i in m
3
·Kg

-1
.
 
 

 

The viscosity values of the phosphoric acid solutions at the different temperatures were 

obtained experimentally with a Cannon-Fenske viscosimeter [33, 34] and a thermostat. As 

density and viscosity values change with temperature, the rates equivalent to the applied 

Reynolds numbers (1456, 3166 and 5066) are summarized in Table 3. 

 

2.3. Hydrodynamic circuit  

Figure 1 shows the hydrodynamic circuit used to study corrosion under flowing conditions. It 

consists of a centrifugal pump (piece J in Figure 1), a flow-meter (piece A in Figure 1), a 

thermostat to regulate the solution temperature (piece H in Figure 1), a test section (where the 

tube is assessed, piece B in Figure 1), a valve to drain the system (piece I in Figure 1) and 

several glass devices: for the reference electrode (Ag/AgCl, 3M KCl; piece C in Figure 1), for 

the auxiliary electrode (Pt; piece D in Figure 1), for the gas output (piece E in Figure 1), to 

introduce the solution into the flow circuit (piece F in Figure 1) and to bubble an inert gas 

(piece G of Figure 1). Medical grade silicone flexible tubes were used to assemble the 

different elements. Fully developed flow was assured using a 90-cm-long Teflon rigid tube of 

the same inner diameter as the test tube upstream of the test section.  

 

Before each test the tubes were degreased with ethanol and dried with air at room 

temperature. Nitrogen (99.99 %) was bubbled into the solution for 60 minutes. The 

hydrodynamic circuit was purged with nitrogen using a glass adapter for 20 minutes. Then, 

the hydrodynamic circuit was tight closed to maintain these conditions. All the tests were 
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repeated at least three times for reproducibility. After the tests, the tubes were rinsed with 

ethanol and dried with air at room temperature. Then, the samples were cut lengthwise to 

observe the surface exposed to the acid solutions. To this end, a laser scanning confocal 

microscope (LSCM) Olympus LEXT OLS3100, which utilized LEXT OLS 6.0.3 software, 

was used. The LSCM uses a Laser Diode with a wavelength of 408 nm, an outstanding 

horizontal resolution of 0.22 m, vertical resolution of 0.01 m (z-axis), and a magnification 

range from 120x to 14400x. 

 

2.4. Electrochemical tests 

Cyclic polarization curves were used to study the hydrodynamic corrosion of AISI 316L SS in 

the different acid solutions. To perform the tests a potentiostat (Solartron 1285 provided with 

the Corrware software) was used. Before obtaining the cyclic potentiodynamic curves, the 

open circuit potential (OCP) was recorded for one hour. After the OCP test, the potential was 

reduced progressively to -400 mVAg/AgCl; then, the working electrode potential was scanned 

from -400 mVAg/AgCl to the anodic direction until the current density reached 0.2 mA/cm
2
, 

where the potential scan was reversed. A scan rate of 1 mV/s was used. These operating 

conditions were defined for the H3PO4 system in order to obtain polarization curves for the 

determination of the corrosion parameters.  

 

3. Results and discussion 

3.1. Materials characterisation 

Figure 2 shows the microstructural analysis of the AISI 316L stainless steel tube acquired by 

scanning electron microscopy (SEM). Microstructural analysis reveals that AISI 316L has a 

single-phase austenitic microstructure with equiaxed grains. Carbide precipitation was not 

observed since AISI 316L SS is a stainless steel with low carbon content. AISI 316L SS 
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microstructure also shows the presence of twins. AISI 316L SS microstructure can also be 

observed in Figure 3a together with the marks of the diamond pyramid indenter on the alloy 

surface for microhardness analysis. This photograph was acquired with a light microscope. 

 

Figure 3b shows that the microhardness values of AISI 316L SS are almost constant along the 

length ring surface and at around 250 HV300g. In general, there is a positive correlation 

between hardness and strength: the higher the hardness, the higher the strength [35]. 

Microhardness tests were performed both in etched and  untreated samples in order to 

appreciate any change due to the etching treatment. Microhardness values did not change after 

etching.  

 

3.2. Influence of impurities on the corrosion of AISI 316L SS 

In order to study the influence of impurities (H2SO4 and Cl
-
) on the corrosion of AISI 316L 

SS tubes, open circuit potential measurements were carried out in the different solutions. 

Figure 4 shows the data of the OCP measurements at the different temperatures and Re 

analysed. According to Figure 4, the open circuit potentials in the pure H3PO4 solution tends 

to shift towards more positive values with time and stabilises during the last minutes of the 

test. This general tendency of the OCP values can be attributed to surface passivation due to 

SS high chromium content [14, 16]. As it is well known [36, 37], chromium oxide is 

considered the main passive component of the passive film in the anodic polarization of 

stainless steels.  

 

As opposed to OCP in pure H3PO4 solutions, open circuit potentials in polluted H3PO4 

solutions hardly change with time (Figure 4). Moreover, the open circuit potential values of 

AISI 316L SS in pure phosphoric acid solutions are more positive than the values registered 
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in the polluted medium. Therefore, impurities seem to reduce passivation, as suggested by 

Sueptitz et al. [16] who reported that chloride ions hinder the formation of a protective 

passive film. The corrosive effect of chloride is greatly reinforced by the presence of sulphate 

ions. Sulphate ions have a synergic effect on corrosion and, for a given chloride content, they 

greatly increase the speed of corrosion of SS alloys [1, 38]. In spite of this, Figure 4 shows 

that the evolution of the open circuit potentials in polluted solutions may attain a steady-state 

after a few minutes of immersion, indicating a good stability of the material/solution system 

even in the presence of impurities. 

 

Figure 5 shows the cyclic potentiodynamic curves obtained for the materials in pure and 

polluted H3PO4 solutions at the different temperatures and Reynolds numbers analysed. 

Figure 5 demonstrates that these curves are typical of passivable materials, which proves the 

good corrosion resistance of austenitic stainless steels in acid media. Typical corrosion 

parameters such as corrosion current density (icorr) and corrosion potential (Ecorr) were 

obtained from these curves. Table 4 shows the mean values of icorr and Ecorr of AISI 316L SS 

obtained from the polarization curves. The icorr values obtained in polluted H3PO4 solutions 

are the highest. This fact was also observed by Iken et al. [17]. The presence of aggressive 

ions in phosphoric acid activated the material surfaces and then accelerated the corrosion rate 

[17]. In general, the presence of impurities results in more positive corrosion potentials. The 

shift of Ecorr towards slightly more positive values could be expected since impurities increase 

the cathodic reaction rate (see Figure 5). In fact, the cathodic reaction is increased by the 

larger acid concentration. 

 

Cyclic potentiodynamic curves were carried out to evaluate the repassivation tendency of 

AISI 316L SS in the different phosphoric acid solutions and operating conditions. Table 5 
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shows the mean value of the breakdown potentials (Eb) and passivation current densities (ip) 

obtained from the anodic branch of the polarization curves. The potential at which the current 

density reaches 100 A/cm
2
 was reported as Eb [39]. Passivation current densities were 

obtained as the mean value between the lowest current density after the transition peak from 

the active to the passive state and the value where the current density starts to increase 

drastically with an increase in potential. Table 5 shows that impurities increase passivation 

current densities and slightly decrease breakdown potential values (less positive). In other 

words impurities somehow limit the passivation and repassivation characteristics of AISI 

316L SS. 

 

Figure 6 represents the difference between Eb and Ecorr (passivity range). This difference is 

used as a measure of passivity. The greater the difference, the wider the range of potentials in 

which the alloys remain passive. The passivity ranges are usually higher for the materials 

tested in pure phosphoric acid solutions due to the fact that impurities diminish breakdown 

potentials (less positive values) and shift corrosion potentials to more positive values. These 

issues also confirm that impurities make passivation of the alloy difficult. 

 

Figure 6 also shows the value of the open circuit potential values (OCP). OCP values were 

obtained as the arithmetic mean of the last five minute values of open circuit potential 

measurements [40]. OCP values are in the passive region of the stainless steel in both 

solutions (pure and polluted), however, in polluted solutions the open circuit potentials are 

very close to the corrosion potentials, that is, close to the active region. 

 

Figure 7 shows the image of the AISI 316L SS surface after the tests at 60 ºC and at a Re of 

5066 acquired by laser scanning confocal microscopy. As it can be observed, the corrosion 
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process revealed the grain of AISI 316L SS both in pure and polluted H3PO4 solutions. The 

austenitic microstructure of AISI 316L SS could be observed and no considerable differences 

were found because of the presence of impurities. Figure 7 does not reveal any trace of 

localized corrosion since no pits can be observed. The photographs show that AISI 316L SS 

in phosphoric acid solutions undergoes generalized corrosion. This type of corrosion is 

corroborated by the cyclic potentiodynamic curves of Figure 5, since they did not present a 

hysteresis loop [41]. This fact shows the clear interest of the alloy for the phosphoric acid 

industry as a component material of some equipments.  

 

3.3. Influence of temperature on the corrosion of AISI 316L SS 

Figure 4 shows that the open circuit potentials tend to shift towards more negative values as 

temperature increases. More specifically, the most negative OCP values are those 

corresponding to the highest temperature analysed (see Figure 6). This may indicate that 

temperature favours the kinetics of corrosion reactions [1, 2]. On the other hand, corrosion 

current densities increase with temperature (Table 4). This fact also confirms that temperature 

enhances the corrosion rate [2, 4, 19]. The increase in temperature increases the activity of the 

aggressive ions adsorbed on the surface, and consequently accelerates the dissolution process 

and the kinetics of exchange between the electrode surface and the electrolyte [17]. 

 

In general, temperature increases the rate of most reactions following Arrhenius equation 

[42]. In the case of electrochemical reactions, temperature can favour the kinetics of corrosion 

reactions and, more specifically, the anodic dissolution of the metal [43-45]. The activation 

energy of the corrosion process can be obtained from Arrhenius-type plots according to the 

following equation: 
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TR

E

corr

a

eAi 


  
(3) 

 

where Ea is the molar activation energy of the process (J/mol), R is the universal gas constant 

(8.314 J/(mol K)), T is the temperature (K) and A is a constant. Using the logarithm of the 

Arrhenius equation the following expression is obtained: 

2.303·R·T

E
A)(Log)iLog( a

corr   (4) 

 

Therefore, the activation energy values of a corrosion process can be determined from the 

slope of log(icorr) versus 1/T plots [46]. The molar activation energy of an electrochemical 

process refers to the energy level that must be overcome by one electron in the exchange 

through the electrode/electrolyte interphase. Moreover, the Arrhenius equation indicates that 

the greater the dependence of the corrosion rate on temperature, the higher the Ea values [47]. 

 

In this electrochemical system, Equation 4 indicates that the higher the slope of the relation 

between log(icorr) and 1/T is, the greater the dependence of the corrosion current density with 

temperature. Figure 8 shows the plot of the corrosion current density of AISI 316L stainless 

steel in pure and polluted phosphoric acid solutions versus 1/T, at the different Reynolds 

numbers studied, according to Equation 4.  

 

Figure 8 shows that the corrosion current density increased with temperature according to 

Arrhenius equation, in all the solutions analysed. On the other hand, Table 6 includes the 

relation of Log(icorr) and 1/T for the different Re and solutions studied. The higher slope of 

AISI 316L SS in polluted H3PO4 solutions indicates a higher increase of the corrosion current 

density with temperature in this medium. This means that the most noticeable effect of 

temperature was in polluted H3PO4. Therefore, impurities cause an accelerating corrosion 
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effect on AISI 316L SS and temperature modifications are more dangerous in polluted acid 

solutions. The values of the activation energy in both pure and polluted phosphoric acid 

solutions (around 18 and 35 kJ/mol, respectively) were similar regardless of the Reynolds 

number studied. This is due to the fact that the icorr values of AISI 316L SS hardly vary with 

the Reynolds number. Thus, there is no influence of Re on the temperature effects.  

 

As observed in Table 4, corrosion potentials slightly shift towards more positive values in 

pure phosphoric acid solutions as temperature increases. These results are in good agreement 

with those reported by other authors [4, 18]. However, corrosion potentials remain almost 

constant for the stainless steel in polluted phosphoric acid. 

 

With respect to repassivation (Table 5), in general, an increase of temperature induces an 

increase of the passivation current densities, a decrease of the breakdown potentials (towards 

more negative values) and a decrease of the passivity range (Figure 6). Consequently, worse 

passivation and repassivation characteristics could be expected at higher temperatures. 

 

3.4. Influence of Reynolds number on the corrosion of AISI 316L SS 

Figures 4 and 6 show that the Reynolds number does not have a great influence on open 

circuit potential values both in the pure and the polluted phosphoric acid solutions. Similarly, 

Table 4 shows that corrosion current densities remain almost constant with Re at a certain 

temperature.  

 

A general dependence of the corrosion rate on fluid velocity could be established in terms of a 

potential relation between the corrosion rate and the Reynolds number [48-51]: 
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icorr = constant·Re
a
 (5) 

 

The experimental exponent “a” in Equation 5 can be in the range 1 to 3 depending upon the 

corrosion mechanism and flow regime. For simple mass transport to the inside wall of a tube, 

the value of exponent “a” is close to 1, while for erosion-corrosion in particle-containing 

liquids, “a” value is up to 3. For values between 1 and 3, there is a mixed control of mass 

transport and erosion-corrosion. For mixed control of a chemical step and mass transport, “a” 

value varies between 0 and 1 depending on the mass transport [48, 50-53]. 

 

Corrosion current density values of AISI 316L SS have been plotted in Figure 9 according to 

Equation 5 for all the temperatures analysed in pure and polluted phosphoric acid. Table 7 

shows the fitting obtained from the plots of Figure 9. The exponent “a” values seem to be 

closed to zero in both solutions, independently of temperature. 

 

The value of exponent “a” applied to the Reynolds number, reveals no influence of fluid 

velocity on the corrosion rate (“a” values = 0). Therefore, it can be concluded that there is a 

chemical step control of AISI 316L SS corrosion in pure and polluted H3PO4 media [48, 50-

53]. 

 

Similarly, the corrosion potentials (Table 4), the passivation current densities, the breakdown 

potentials (Table 5) and the passivity ranges (Figure 6) are similar in both solutions regardless 

of the Reynolds number. Thus no influence of Re on these parameters is expected.  

 

3.5. Combined influence of temperature and Reynolds number on the corrosion of AISI 316L 

SS 
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A statistical analysis with Statgraphics software was used to study the combined effects of 

temperature and Reynolds number on the corrosion behaviour of AISI 316L SS. The effects 

of temperature (A) and Reynolds number (B) and their respective interactions (AA, BB and 

AB) on the corrosion parameters (icorr, Ecorr, ip and Eb) under hydrodynamic conditions are 

illustrated in the Pareto charts and response surface graphs in Figures 10 and 11, for pure and 

polluted phosphoric acid, respectively.  

 

Pareto charts represent the influence of each factor (temperature, Re or their interactions) as a 

function of the standardized effect, which is proportional to the magnitude of the effect on the 

corrosion parameter studied in each case. Figures 10 (pure) and 11 (polluted) show that the 

effect of temperature (A) is significant on all corrosion parameters except on the corrosion 

potential, with a P-value of less than 0.05. Temperature increases icorr and ip (positive effect) 

and decreases Eb (negative effect). The effect of temperature seems to be of the same 

magnitude order for the corrosion potential, the passivation current density and the 

breakdown potential, independently of the presence of impurities, since the standardized 

effects are similar. However, the effect of temperature on the corrosion current density is 

much more important than on the rest of the corrosion parameters analysed, especially in 

polluted phosphoric acid solutions. This effect might be due to the presence of impurities, as 

corroborated by the results of the Arrhenius plot, where a higher slope of the relation 

Log(icorr) vs 1/T was obtained in polluted phosphoric acid media. On the other hand, the effect 

of Reynolds number (B) on the corrosion parameters is not significant, since it does not reach 

the vertical line that defines 95% of the confidence interval.  

 

The response surface graphs shown in Figures 10 and 11 confirm the behaviour observed in 

the Pareto charts. In all of them, the inclined surfaces that generate the most significant 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

17 

variation in the corrosion parameters are induced by an increase in temperature, rather than by 

the Reynolds number. Furthermore, the surface generated by the corrosion potential is 

practically horizontal; this corroborates that both the effect of temperature and Reynolds 

number was not significant on this parameter. 

 

4. Conclusions 

This work studies the influence of temperature (25 to 60 ºC) and hydrodynamic conditions 

(Reynolds numbers from 1456 to 5066) on the corrosion of AISI 316L stainless steel in pure 

and polluted phosphoric acid solutions using cyclic polarization curves. A hydrodynamic 

circuit was employed to perform the tests. Furthermore, statistical analysis by the response 

surface methodology has proved to be a useful tool to analyse the combined effects of 

operating conditions on the corrosion parameters. The main conclusions drawn from the 

research are summarized as follows: 

 

1. Impurities increase the corrosion rate and hinder the passivation and repassivation 

resistance of AISI 316L SS since they increase icorr and ip, and diminish passivity 

ranges, shifting Eb towards more negative values. 

 

2. Temperature increases the corrosion rate and consequently worsens passivation and 

repassivation properties of the alloy. 

 

3. Arrhenius plot shows that impurities increase the value of the activation energy. 

Therefore, impurities cause an accelerating corrosion effect on AISI 316L SS and 

temperature modifications will be more dangerous in polluted acid solutions. The 
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value of the activation energy in both pure and polluted phosphoric acid solutions was 

very similar regardless of the Reynolds number studied. 

 

4. Reynolds number seems to have no influence on the corrosion rate and repassivation 

parameters.  

 

5. There is a chemical step control of AISI 316L stainless steel corrosion in pure and 

polluted H3PO4 media, since exponent “a” applied to the Reynolds number is close to 

zero. 

 

6. Response surface methodology analysis shows that in the range of temperatures and 

Reynolds numbers studied the effect of temperature on the corrosion parameters is 

much higher than that of the Reynolds number. Moreover, the effect of temperature on 

the corrosion rate is enhanced by the presence of impurities in the acid medium. 

 

7. AISI 316L stainless steel has proved to be an excellent component material of some 

equipment in the phosphoric acid industry due to its good corrosion properties at the 

different temperatures and Reynolds numbers studied, even in polluted media. The 

corrosion rate should be specially controlled when temperature is modified in the 

presence of impurities, in this way, economic losses due to corrosion could be reduced 

and environmental resources could be saved. 
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TABLE CAPTIONS 

Table 1. Composition of the different phosphoric acid solutions used. 

Table 2. Density and viscosity values of the phosphoric acid solutions.  

Table 3. Flow rates used for the different H3PO4 solutions.  

Table 4. Corrosion current densities (icorr) and corrosion potentials (Ecorr) of AISI 316L SS at 

the different temperatures and Reynolds numbers analysed for pure and polluted H3PO4 

solutions.  

Table 5. Passivation current densities (ip) and breakdown potentials (Eb) of AISI 316L SS at 

the different temperatures and Reynolds numbers analysed for pure and polluted H3PO4 

solutions.  

Table 6. Fitting of the Arrhenius plot and activation energy values at the different Reynolds 

numbers analysed for pure and polluted H3PO4 solutions.  

Table 7. Fitting of the corrosion current density vs Reynolds number plots at the different 

Reynolds numbers analysed for pure and polluted H3PO4 solutions.  

 

FIGURE CAPTIONS 

Figure 1. Schematic diagram of the hydrodynamic circuit used to perform the tests.  

Figure 2. Microstructure of AISI 316L SS acquired by SEM. 

Figure 3. Microstructure of AISI 316L SS acquired by LM with the marks of the diamond 

pyramid indenter (a) and microhardness values of the alloy (b). 

Figure 4. Open circuit potential register of AISI 316L SS in pure H3PO4 solutions (solid line) 

and in polluted H3PO4 solutions (broken line) at the different temperatures and Reynolds 

numbers studied.  

Figure 5. Cyclic potentiodynamic curves of AISI 316L SS in pure and polluted phosphoric 

acid at different temperatures and Reynolds numbers. 
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Figure 6. Passivity ranges of AISI 316L SS in the different H3PO4 solutions at the 

temperatures and Reynolds numbers studied. Cross points indicate the OCP values. 

Figure 7. Photographs of AISI 316L SS surface after the tests at Reynolds number of 5066 

and at 60 ºC in pure H3PO4 (a) and polluted H3PO4 (b), acquired by LSCM. 

Figure 8. Dependence of the corrosion current of AISI 316L SS on the temperature according 

to Arrhenius plot at the different Reynolds numbers studied, for pure and polluted phosphoric 

acid solutions. P = pure H3PO4 and Pol = polluted H3PO4 (Reynolds number). 

Figure 9. Variation of AISI 316L SS corrosion current density with Reynolds number at all 

the temperatures studied, for pure and polluted phosphoric acid solutions. P = pure H3PO4 and 

Pol = polluted H3PO4 (Reynolds number). 

Figure 10. Pareto charts and response surface graphs of the different corrosion parameters for 

pure H3PO4 solutions. a) influence on icorr; b) influence on Ecorr; c) influence on ip; d) 

influence on Eb. In Pareto charts the vertical line defines 95% of the confidence intervals.  

Figure 11. Pareto charts and response surface graphs of the different corrosion parameters for 

polluted H3PO4 solutions. a) influence on icorr; b) influence on Ecorr; c) influence on ip; d) 

influence on Eb. In Pareto charts the vertical line defines 95% of the confidence intervals. 
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 H3PO4 H2SO4 Cl
-
 

Pure acid 40 wt. % (5.5 M) - - 

Polluted acid 40 wt. % (5.5 M) 2 wt. % 380 ppm 

 

Table 1



 
T 

(ºC) 
Pure 

H3PO4 

Polluted  

 H3PO4 

Density 

(g/mL) 

25 1.2527
[29]

 1.2615


H2O = 0.99707
[30]

H3PO4 (84 wt. %) = 1.6733
[29]

 

H2SO4 (98 wt. %) = 1.8310
[31]

 

KCl (2 wt. %)  = 1.00977
[31]

 

40 1.2444
[29]

 1.2543


H2O = 0.99224
[30]

 H3PO4 (84 wt. %) = 1.6615
[29]

 

H2SO4 (98 wt. %) = 1.8163
[31]

 

KCl (2 wt. %)  = 1.00471
[31]

 

60 1.2326
[29]

 1.2426


H2O = 0.98324
[30]

 H3PO4 (84 wt. %) = 1.6456
[29]

 

H2SO4 (98 wt. %) = 1.7976
[31]

 

KCl (2 wt. %)  = 0.99560
[31]

 

Viscosity 

(cP) 

25 3.7244 3.7335  

40 2.6140 2.6298  

60 1.7666 1.7742  

 

Table 2



 Flow rates (L/h) 

 Pure H3PO4  Polluted H3PO4 

T (ºC) Re = 1456 Re = 3166 Re = 5066  Re = 1456 Re = 3166 Re = 5066 

25 171 373 596  171 371 594 

40 121 263 421  121 263 420 

60 83 180 287  82 179 286 

 

Table 3



  icorr (A/cm
2
) Ecorr (mVAg/AgCl) 

Re Temperature 
Pure  

H3PO4 

Polluted  

H3PO4 

Pure 

H3PO4 

Polluted 

H3PO4 

1456 

25 ºC 4.92 ± 0.10  7.45 ± 0.42 -282 ± 1 -224 ± 14 

40 ºC 6.41 ± 0.12 18.03 ± 1.04 -251 ± 7 -213 ± 21 

60 ºC 10.18 ± 0.19 32.68 ± 0.59 -250 ± 4 -220 ± 6 

3166 

25 ºC 4.43 ± 0.32  7.33 ± 0.37 -275 ± 15 -241 ± 21 

40 ºC 6.50 ± 0.31 18.27 ± 1.03 -262 ± 21 -223 ± 20 

60 ºC 10.23 ± 0.79  32.85 ± 0.41 -254 ± 15 -221 ± 13 

5066 

25 ºC 4.60 ± 0.22 7.59 ± 0.76 -268 ± 6 -211 ± 5 

40 ºC 6.53 ± 0.33  18.53 ± 0.61 -270 ± 20 -211 ± 1 

60 ºC 10.19 ± 0.44  32.77 ± 1.65 -209 ± 19 -218 ± 11 

 

Table 4



  ip (A/cm
2
) Eb (mVAg/AgCl) 

Re Temperature 
Pure  

H3PO4 

Polluted  

H3PO4 

Pure 

H3PO4 

Polluted 

H3PO4 

1456 

25 ºC 5.68 ± 0.45  8.00 ± 0.49 1158 ± 14 1140 ± 1 

40 ºC 8.67 ± 1.02 11.55 ± 0.28 1124 ± 1 1099 ± 3 

60 ºC 7.25 ± 1.45 14.52 ± 0.98 1083 ± 9 1076 ± 14 

3166 

25 ºC 6.04 ± 1.00  9.11 ± 1.05 1162 ± 4 1136 ± 8 

40 ºC 8.18 ± 1.20 11.28 ± 0.54 1115 ± 14 1110 ± 4 

60 ºC 7.23 ± 1.03  13.17 ± 0.83 1094 ± 6 1075 ± 6 

5066 

25 ºC 5.45 ± 1.00 7.31 ± 1.01 1159 ± 1 1133 ± 3 

40 ºC 8.36 ± 1.06  10.54 ± 1.11 1105 ± 4 1115 ± 3 

60 ºC 7.42 ± 0.89  12.59 ± 1.05 1096 ± 11 1093 ± 10 

 

Table 5



Re Pure H3PO4 Polluted H3PO4 

1456 

Log(icorr) = 3.70 - 900.16·(1/T) 

Ea = 17.24 kJ/mol 

Log(icorr) = 6.96 - 1805.00·(1/T) 

Ea = 34.56 kJ/mol 

3166 

Log(icorr) = 4.10 – 1029.10·(1/T) 

Ea = 19.70 kJ/mol 

Log(icorr) = 7.04 - 1830.70·(1/T) 

Ea = 35.05 kJ/mol 

5066 

Log(icorr) = 3.96 - 981.83·(1/T) 

Ea = 18.80 kJ/mol 

Log(icorr) = 6.90 - 1784.30·(1/T) 

Ea = 34.16 kJ/mol 

 

Table 6



T (ºC) Pure H3PO4 Polluted H3PO4 

25 icorr = 7.65·Re
-0.0626

 icorr = 6.82·Re
0.0113

 

40 icorr = 5.76·Re
0.0149

 icorr = 15.44·Re
0.0212

 

60 icorr = 10.07·Re
0.0016

 icorr = 32.08·Re
0.0027

 

 

Table 7
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