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Abstract 

In this work we determined the Sensitivity (estimated as the I50 value) and Limit of Detection (LOD) for the immunodetection of 
carbaryl pesticide with two different types of acoustic wave sensors: High Fundamental Frequency Quartz Crystal Microbalance 
(HFF-QCM) and Love Mode Surface Acoustic Wave (LM-SAW). Results were compared with others previously reported using 
different sensors and techniques, like traditional QCM, Surface Plasmon Resonance (SPR) and Enzyme-Linked ImmunoSorbent 
Assay (ELISA). We used the AWS-A10 research platform (AWSensors, Spain) to perform the experiments. We obtained I50 
values of 0.31 g/L and 0.66 g/L, and LODs of 0.09 g/L and 0.14 g/L, for 120 MHz LM-SAW and 100 MHz HFF-QCM 
devices, respectively. Both the sensitivities and LODs of the immunosensors improved previously reported SPR and QCM results 
by one and two orders of magnitude, respectively, and reached those of ELISA. 
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1. Introduction 

Acoustic wave sensors are widely used in in-liquid biosensing applications [1]. One of these applications is the 
label-free pesticide analysis in fruit and juices [2]. However, the sensitivity and LOD of acoustic immunosensors 
should be improved to comply with regulations and to extend their applicability to more demanding applications, 
such as the analysis of drinking water. In this work we propose two acoustic technologies, HFF-QCM and LM-
SAW, for the detection of a Low Molecular Weight (LMW) compound, carbaryl pesticide. Carbaryl was chosen as 
model analyte since it was used as a reference LMW compound by previous works, both for acoustic and other 
techniques such as SPR and ELISA [2,3,4] We sought to enhance the analytical performance of the proposed 
acoustic biosensors by improving the sensitivity of the transducer devices -using sensors working at higher 
frequencies than those previously used in this application -, and by reducing the readout system noise and improving 
the flow injection analysis (FIA) system - using a dedicated system to perform the experiments -. 

2. Materials and methods 

2.1. LM-SAW sensors, HFF-QCM sensors and flow cells 

The Love-Mode sensors used were based on a 17×8.4 mm and 0.35 mm thick single-side polished Z-propagating 
AT-cut quartz substrates. The silicon dioxide (SiO2) guiding layer had a thickness of 3 m. The input and output 
IDT consisted of 100 double-finger pairs designed for a sensor synchronous frequency of 120 MHz. The sensing 
area consisted of 10 nm of chrome and 50 nm of gold.  

The HFF-QCM sensors used were based on AT-cut 100 MHz HFF-QCM inverted mesa resonators. The electrode 
had 1mm of diameter and its structure consisted of a gold layer of 90 nm deposited over a 5 nm chromium adhesion 
layer. The resonators were bonded permanently to a support made of polyether ether ketone (PEEK) using an epoxy 
adhesive. The electrical contact between resonator electrodes and copper pads in the lower part of the peek support 
was made by a conductive epoxy.  

Flow cells for both types of sensors were designed and manufactured considering the mechanical, electrical and 
chemical requirements of the application. They allowed a fast and easy installation and replacement of the sensors, 
and a convenient interface to the system (Figure 1b). 

 

 

Fig. 1. (a) Block diagram of the AWS A10RP system; (b) Picture of the sensors and flow cells used in this work. 
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2.2. Experimental set-up 

We used the research platform AWS-A10 (Advanced Wave Sensors S.L., Spain) to perform the experiments. The 
platform consists of an electronic characterization system, an automated FIA system, and a control and 
communications system (Figure 1a). The proposed system allows the comparison of both devices, measured by the 
same characterization system and under similar experimental conditions. The electronic characterization system is 
based on the open loop phase detection technique at a fixed frequency, which allows the characterization of very 
high frequency acoustic sensors without a significant increase of noise [5,6,7]. A PC software collects data from the 
characterization system and controls all the elements of the AWS-A10 Platform, including the FIA system. All 
measurements were performed at a temperature of 25ºC  0.1ºC. 

2.3. Functionalization protocol 

The sensing areas of the sensors were functionalized following a similar procedure, chemicals and reagents as 
described [2]. Sensors were cleaned by exposure to UV/ ozone using the UV/Ozone ProCleaner (BioForce 
Nanosciences Inc., USA). After exposure, sensors were rinsed with distilled water and ethanol, and dried with 
nitrogen gas. Active areas were functionalized by immobilizing BSA-CNH carbaryl hapten conjugates (10 g/mL) 
through the formation of a mercaptohexadecanoic acid self-assembled monolayer (SAM). 

3. Results 

The immunoassays were competitive inhibition tests based on the conjugate coated format. A fixed concentration 
of 2 g/mL of the monoclonal antibody (Mab) LIB-CNH45 [3] was mixed with standard solutions of the analyte at 
different concentrations. In this format the analyte inhibits the antibody binding to the immobilized conjugate. Thus, 
increasing concentrations of analyte reduce the measured signal changes. 

Figure 2a shows the immunoassay cycle followed for each sample. The protocol consisted of pumping phosphate 
buffer solution containing 0.005% Tween (PBST) at a flow rate of 20 L/min at least for 5 min (only 1 min. shown 
in figure), next injecting the sample (250 L) into the main flow for 15 min at the same flow rate. At this point, the 
change in the phase signal with respect to that obtained at the time of sample injection was measured ( u  = u -u 0). 
The regeneration of the active area was performed by pumping 0.1M HCl for 4 min and PBST again for 4min., at a 
flow rate of 250 L/min. 

 

Fig. 2. (a) Immunoassay cycle; (b) LM-SAW and HFF-QCM standard calibration curves for carbaryl determination 

All samples were injected and measured at least in duplicate. Figure 2b shows the standard curves obtained by 
representing the phase signal change versus the analyte concentration. The measurements were normalized as the 
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percentage of the maximum signal (the phase signal change in the absence of analyte). Experimental points were 
fitted to a four-parameter logistic equation and the analytical parameters were extracted from the fitted curve. 

The developed immunosensors achieved I50 values of 0.31 g/L and 0.66 g/L, and LODs of 0.09 g/L and 0.14 
g/L, for 120 MHz LM-SAW and 100 MHz HFF-QCM devices, respectively (Table 1). We compared these results 

with previously reported ones, using different technologies but the same target analyte and immunoreagents. The 
sensitivities and LODs of the developed immunosensors improved those of SPR [4] and QCM (with classical 
frequency shift measurement [2] and the phase shift measurement approach [8]).The improvement was in the range 
of one and two orders of magnitude respectively. Analytical parameters also approached ELISA’s ones [3]. 

     Table 1. Analytical performance of carbaryl determination for different immunosensing techniques 

 ELISA [3] SPR [4] QCM 10MHz 
f [2] 

QCM 10MHz 
 

HFF-QCM 
100MHZ  

LM-SAW 
120MHz 

Sensitivity ( g/L) 0.72 3.12 30.00 16.70 0.66 0.31 

L.O.D ( g/L) 0.13 1.41 11.00 4.00 0.14 0.09 

Working Range ( g/L) 0.23 - 2.36 1.90 - 5.75 15.00 – 53.00 7.00 – 35.00 0.26 – 1.73 0.14 – 1.63 

4. Conclusions 

We have developed both HFF-QCM and LM-SAW immunosensors for the detection of a LMW compound, the 
Carbaryl pesticide. The enhancement of the analytical performance sought was accomplished. Compared with QCM 
results previously reported, we achieved an improvement of about two orders of magnitude in sensitivity and LOD 
with both technologies. The obtained I50 and LOD values also exceed by one order of magnitude those reported for 
SPR and reached those of ELISA. The high sensitivity reached by these immunosensors could allow label free 
pesticide analysis at concentrations close to the European Maximum Residue Levels for drinking water.  
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