INDEX

1. **INTRODUCTION**

1.1. **FRUIT AND VEGETABLE CONSUMPTION TRENDS. MINIMALLY PROCESSED FRUIT**

1.1.1. DETERIORATION MECHANISMS OF MINIMALLY PROCESSED FRUITS

1.1.2. PRESERVATION AND PACKAGING TECHNOLOGIES FOR MINIMALLY PROCESSED FRUITS

1.2. **ACTIVE PACKAGING**

1.3. **ANTIMICROBIAL ACTIVE PACKAGING**

1.3.1. ANTIMICROBIAL AGENTS

1.3.2. POLYMERS USED IN ANTIMICROBIAL ACTIVE PACKAGING

1.4. **ANTIMICROBIAL PACKAGING FOR MINIMALLY PROCESSED FRUIT**

1.4.1. ESSENTIAL OILS (EOs) AND THEIR PURE COMPOUNDS

1.4.2. ORGANIC ACIDS AND THEIR SALTS

1.5. **LEGISLATIVE FRAMEWORK ON ACTIVE FOOD PACKAGING MATERIALS**

2. **OBJECTIVES**

2.1. **GENERAL OBJECTIVE**

2.2. **SPECIFIC OBJECTIVES**

3. **MATERIALS AND METHODS**

3.1. **MATERIALS**

3.1.1. CHEMICALS

3.1.2. GASES

3.1.3. CULTURE MEDIA

3.1.4. MICROORGANISMS

3.1.5. POLYMERS

3.1.6. OTHERS

3.2. **METHODS**

3.2.1. **ANTIMICROBIAL EFFICACY TEST IN VAPOR PHASE**

3.2.1.1. Culture preparation

3.2.1.2. Volatile active agents vapor phase inhibition test

3.2.2. **ORGANOLEPTIC COMPATIBILITY OF VOLATILE ACTIVE AGENTS WITH MINIMALLY PROCESSED FRUIT**

3.2.3. **THERMAL STABILITY OF ACTIVE AGENTS**

3.2.4. **ACTIVE MATERIALS PROCESSING**

3.2.4.1. Monolayer active films at lab scale with volatile active agents

3.2.4.2. Bilayer active films at semi-industrial scale with volatile active agents

3.2.4.3. Monolayer active materials at lab scale with solid active agents for tray development
INDEX

3.2.4.4. Active tray at semi-industrial scale with solid active agents 58

3.2.5. ACTIVE MATERIAL CHARACTERIZATION 60

3.2.5.1. Thickness and weight measurements 60

3.2.5.2. Quantification of active agents in the packaging materials 61

3.2.5.2.1. Quantification of volatile active agents 61

3.2.5.2.2. Quantification of solid active agents 62

3.2.5.3. Thermal properties 63

3.2.5.3.1. Thermogravimetric analysis (TGA) 63

3.2.5.3.2. Differential Scanning Calorimetry (DSC) 63

3.2.5.4. Visual appearance 64

3.2.5.5. Mechanical properties 64

3.2.5.6. Sealing properties 65

3.2.5.7. Optical properties 65

3.2.5.8. Structural properties 66

3.2.5.9. Barrier properties 66

3.2.5.9.1. Oxygen barrier 66

3.2.5.9.2. Water vapor barrier 67

3.2.6. EVALUATION OF ACTIVE AGENTS RELEASE KINETICS FROM ACTIVE PACKAGING MATERIALS 67

3.2.6.1. Release kinetics of volatile active agents from multilayer active film 67

3.2.6.2. Release kinetics of non-volatile agents from monolayer and bilayer active materials 69

3.2.6.3. Mathematical modeling of the active agents from the packaging materials 70

3.2.7. EVALUATION OF ANTIMICROBIAL PROPERTIES OF ACTIVE MATERIALS IN VITRO 72

3.2.7.1. Antimicrobial effectiveness of active films with volatile active agents 72

3.2.7.2. Antimicrobial effectiveness of preliminary monolayer active materials for active tray development 73

3.2.7.3. Antimicrobial effectiveness of active tray with solid antimicrobial agents 74

3.2.8. SHELF LIFE OF MINIMALLY PROCESSED ORANGE AND PINEAPPLE 75

3.2.8.1. Fruit samples, packaging process and storage conditions 75

3.2.8.2. Antimicrobial activity of films on the microflora of minimally processed fruit 75

3.2.8.3. Evolution of active agent concentrations in the packaging materials 76

3.2.8.4. Evolution of headspace composition 76

3.2.8.5. Juice leakage 76
INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.8.6. pH</td>
<td>76</td>
</tr>
<tr>
<td>3.2.8.7. Total soluble solids (TSS)</td>
<td>77</td>
</tr>
<tr>
<td>3.2.8.8. Sensory evaluation</td>
<td>77</td>
</tr>
<tr>
<td>3.2.9. FOOD CONTACT MATERIALS COMPLIANCE</td>
<td>78</td>
</tr>
<tr>
<td>3.2.9.1. Overall migration tests in food simulants</td>
<td>78</td>
</tr>
<tr>
<td>3.2.9.2. Specific migration test in food simulants</td>
<td>79</td>
</tr>
<tr>
<td>3.2.10. STATISTICAL ANALYSIS</td>
<td>80</td>
</tr>
<tr>
<td>4. RESULTS AND DISCUSSION</td>
<td>81</td>
</tr>
<tr>
<td>4.1. EVALUATION AND SELECTION OF ANTIMICROBIAL SUBSTANCES FOR ACTIVE MATERIAL DEVELOPMENT</td>
<td>83</td>
</tr>
<tr>
<td>4.1.1. Selection of active agents</td>
<td>83</td>
</tr>
<tr>
<td>4.1.2. STUDY OF ANTIMICROBIAL EFFECTIVENESS OF THE VOLATILE ANTIMICROBIAL AGENTS IN THE VAPOR PHASE</td>
<td>83</td>
</tr>
<tr>
<td>4.1.2.1. Study of the synergistic effect derived from the combination of volatile active agents</td>
<td>90</td>
</tr>
<tr>
<td>4.1.3. STUDY OF THE ORGANOLEPTIC COMPATIBILITY OF THE VOLATILE ANTIMICROBIAL AGENTS WITH THE FRUIT</td>
<td>92</td>
</tr>
<tr>
<td>4.1.4. STUDY OF THE THERMAL STABILITY OF THE ANTIMICROBIAL AGENTS</td>
<td>93</td>
</tr>
<tr>
<td>4.1.5. CONCLUSIONS FOR THE SELECTION OF ANTIMICROBIAL SUBSTANCES FOR ACTIVE MATERIAL DEVELOPMENT</td>
<td>96</td>
</tr>
<tr>
<td>4.1.5.1. Volatile antimicrobial agents</td>
<td>96</td>
</tr>
<tr>
<td>4.1.5.2. Solid antimicrobial agents</td>
<td>97</td>
</tr>
<tr>
<td>4.2. ACTIVE MATERIALS CHARACTERIZATION</td>
<td>99</td>
</tr>
<tr>
<td>4.2.1. MONOLAYER ACTIVE FILMS AT LAB SCALE</td>
<td>99</td>
</tr>
<tr>
<td>4.2.1.1. Quantification of active agents</td>
<td>100</td>
</tr>
<tr>
<td>4.2.1.2. Thermal properties of active films</td>
<td>103</td>
</tr>
<tr>
<td>4.2.1.3. Sealability of active films</td>
<td>105</td>
</tr>
<tr>
<td>4.2.1.4. Visual appearance of the films</td>
<td>106</td>
</tr>
<tr>
<td>4.2.2. BILAYER ACTIVE FILMS AT A SEMI-INDUSTRIAL SCALE</td>
<td>107</td>
</tr>
<tr>
<td>4.2.2.1. Quantification of active compounds</td>
<td>108</td>
</tr>
<tr>
<td>4.2.2.2. Quantification of active films</td>
<td>109</td>
</tr>
<tr>
<td>4.2.2.3. Thermal properties</td>
<td>110</td>
</tr>
<tr>
<td>4.2.2.4. Mechanical properties</td>
<td>117</td>
</tr>
<tr>
<td>4.2.2.5. Sealing properties</td>
<td>118</td>
</tr>
<tr>
<td>4.2.2.6. Optical properties</td>
<td>119</td>
</tr>
<tr>
<td>4.2.2.7. Microstructural evaluation</td>
<td>120</td>
</tr>
</tbody>
</table>
INDEX

4.2.2.8. Barrier properties 121
 4.2.2.8.1. Oxygen barrier 121
 4.2.2.8.2. Water vapor barrier 122

4.2.3. SEMI-INDUSTRIAL SCALE TRAYS 124
 4.2.3.1. Microstructural evaluation 125
 4.2.3.2. Quantification of active compounds 127
 4.2.3.3. Quantification of potassium sorbate and sodium in the active trays 128
 4.2.3.4. Thermal properties 129
 4.2.3.5. Sealing properties 134
 4.2.3.6. Mechanical properties 135
 4.2.3.7. Optical properties 136
 4.2.3.8. Barrier properties 137
 4.2.3.8.1. Oxygen barrier 137
 4.2.3.8.2. Water vapor barrier 138
 4.2.4. CONCLUSIONS FOR THE ACTIVE MATERIALS CHARACTERIZATION 138

4.3. ACTIVE PACKAGING MATERIALS RELEASE KINETICS 141
 4.3.1. RELEASE OF VOLATILE ACTIVE AGENTS FROM SEMI-INDUSTRIAL ACTIVE FILMS 141
 4.3.1.1. Release kinetics at 4 °C 141
 4.3.1.2. Release kinetics at 25 °C 145
 4.3.2. RELEASE OF NON-VOLATILES ACTIVE AGENTS FROM MONOLAYER MATERIALS AT 4 °C 150
 4.3.3. RELEASE OF NON-VOLATILES ACTIVE AGENTS FROM SEMI-INDUSTRIAL TRAYS AT 4 °C 156

4.4. ANTIMICROBIAL PROPERTIES OF ACTIVE MATERIALS 161
 4.4.1. ANTIMICROBIAL PROPERTIES OF LAB SCALE MONOLAYER FILMS WITH VOLATILE ACTIVE AGENTS 161
 4.4.1.1. Antimicrobial effect in vitro at 25 °C 161
 4.4.1.2. Antimicrobial effect in vitro at 4 °C 163
 4.4.2. ANTIMICROBIAL PROPERTIES OF SEMI-INDUSTRIAL SCALE BILAYER FILMS WITH VOLATILE ACTIVE AGENTS 165
 4.4.2.1. Antimicrobial effect in vitro at 4 °C 165
 4.4.3. ANTIMICROBIAL PROPERTIES OF MONOLAYER ACTIVE MATERIALS WITH NON-VOLATILE ACTIVE AGENTS FOR ACTIVE TRAY DEVELOPMENT 167
 4.4.3.1. Antimicrobial effect in vitro at 25 °C 167
 4.4.4. ANTIMICROBIAL PROPERTIES OF SEMI-INDUSTRIAL TRAYS WITH NON-VOLATILE ACTIVE AGENTS 169
 4.4.4.1. Antimicrobial effect in vitro at 25 °C 169
 4.4.4.2. Antimicrobial effect in vitro at 4 °C 171
INDEX

4.5. SHELF LIFE OF FRESH CUT FRUITS PACKED WITH ACTIVE PACKAGING MATERIALS DEVELOPED AT A SEMI-INDUSTRIAL SCALE

4.5.1. VALIDATION OF BILAYER ACTIVE FILMS AT A SEMI-INDUSTRIAL SCALE CONTAINING VOLATILE ACTIVE AGENTS 174

4.5.1.1. Antimicrobial activity of active films on peeled and cut fruit 174
4.5.1.2. Evolution of the headspace gas composition 182
4.5.1.3. Juice leakage 186
4.5.1.4. pH 188
4.5.1.5. Total soluble solids (TSS) 190
4.5.1.6. Sensory evaluation 193
4.5.1.7. Conclusions for active films containing volatile active agents 196

4.5.2. VALIDATION OF THE ACTIVE TRAY CONTAINING SOLID ACTIVE AGENTS 196

4.5.2.1. Antimicrobial properties 197
4.5.2.2. Evolution of the headspace gas composition 200
4.5.2.3. Sensory evaluation 202
4.5.2.4. Conclusions for active trays containing solid active agents 204

4.5.3. VALIDATION OF THE FINAL ACTIVE PACKAGING SOLUTION 205

4.5.3.1. Antimicrobial properties of the active packaging solution 206
4.5.3.2. Evolution of active agent concentrations during fruit storage tests 213
4.5.3.3. Evolution of the headspace gas composition 215
4.5.3.4. Juice leakage 217
4.5.3.5. pH 219
4.5.3.6. Total soluble solids (TSS) 220
4.5.3.7. Sensory evaluation 222
4.5.3.8. Evaluation of the active packaging materials along the storage period of the fruit 225

4.5.3.8.1. Visual appearance of the film 225
4.5.3.8.2. Visual appearance of the tray 227
4.5.3.9. Conclusions for active packaging system 227

4.5.3.8. Conclusions for active packaging system 227

4.6. FOOD CONTACT MATERIALS COMPLIANCE 231

4.6.1. MIGRATION TESTS OF ACTIVE FILMS 231

4.6.1.1. Overall migration 231
4.6.1.2. Specific migration 232

4.6.1. MIGRATION TESTS OF THE ACTIVE TRAY 237
INDEX

4.6.1.1. Specific migration 237
4.6.1.2. Overall migration 240
4.6.2. CONCLUSIONS ON THE FOOD SAFETY EVALUATION 242

5. **CONCLUSIONS** 245

6. **ANNEXES** 249

REFERENCES 253