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Abstract. This work presents a hybrid approach based on the use of genetic 
algorithms to solve efficiently the problem of cutting structural beams arising in 
a local metalwork company. The problem belongs to the class of one-
dimensional multiple stock sizes cutting stock problem, namely 1dimensional 
multiple stock sizes cutting stock problem. The proposed approach handles 
overproduction and underproduction of beams and embodies the reusability of 
remnants in the optimization process. Along with genetic algorithms, the 
approach incorporates other novel refinement algorithms that are based on 
different search and clustering strategies. Moreover, a new encoding with a 
variable number of genes is developed for cutting patterns in order to make 
possible the application of genetic operators. The approach is experimentally 
tested on a set of instances similar to those of the local metalwork company. In 
particular, comparative results show that the proposed approach substantially 
improves the performance of previous heuristics. 

Keywords: Cutting stock problem. Pattern generation. Hybrid metaheuristics. 
GA 

1   Introduction 

In the context of Operations Research and under the term Cutting and Packing 
(C&P) is included a set of combinatorial optimization problems with a considerable 
variety of industrial applications. The study of C&P problems is among the first 
addressed by Operations Research, Kantorovich (1939) and Gilmore and Gomory 
(1961, 1963). The practical applications of C&P problems, along with the significant 
technological development of tools for modeling and implementation, have led to an 
increase in the number of publications in the last two decades. In particular, more than 
400 publications on standard problems (i.e., excluding other variants such as multiple 
objectives, on line problems or stochastic problems) have been identified by Wäscher 
et al. (2007) between 1995 y 2005. 

Within the area of C&P, this paper addresses the problem known in the literature 
(Wäscher et al. 2007) as multiple stock sizes cutting stock problem (1dimensional 



MSSCSP) in which the property "kind of assignment" seeks the input minimization so 
that the availability of objects is large enough to meet items demands. The aim will be 
to minimize the amount of objects needed to meet all the demands on the items. 
Concerning the “assortment of items”, different types of objects have to be 
considered. Recent applications for the 1dimensional MSSCSP can be found in 
literature (Aktin and Özdemir 2009; Poldi and Arenales 2009). 

Several types of approaches have been developed in the literature to solve the 
1dimensional MSSCSP: approaches based on rounding heuristics and residual 
problems (Holthaus 2002; Poldi and Arenales 2009), approaches based on the column 
generation algorithm (Gilmore and Gomory 1961, 1963), approaches based on exact 
methods (Alves and Valério de Carvalho 2008;  Belov and Scheithauer 2002), 
approaches based on heuristic sequencing (Gradisar et al. 1999; Haessler 1992; 
Vahrenkamp 1996; Vanderbeck 2000), etc.  

Evolutionary algorithms and diverse metaheuristics have been widely used 
(Elizondo et al., 2010; Fan and Mumford, 2010; Ghiani et al., 2010; Gonçalves and 
Resende, 2011) for solving combinatorial optimization problems. Compared to other 
techniques, few publications use evolutionary algorithms to solve the cutting stock 
problem (CSP), probably because of the difficulty in maintaining the essence of the 
concept of recombination and the frequent violation of the problem constraints. That 
is, in most cases, when performing a direct recombination of two parent solutions, the 
children solutions obtained are not feasible. However, a main advantage of using 
genetic algorithms (GAs) is that, due to large populations of individuals, they offer 
great diversity when making decisions involving multiple objectives (Wagner 1999).  

Previous works that use GAs for the 1dimensional CSP (Hinterding and Kahn 
1995; Wagner 1999; Liang et al. 2002) usually present certain drawbacks: they are 
confined to problems with low quantities of both objects and items; they ignore issues 
concerning overproduction and reusable remnants; and in encoding pattern oriented 
approaches, chromosomes are not considered as variable gene strings.  

This paper presents a High-level Relay Hybrid (HRH) (Talbi 2002) approach based 
on the use of GAs to efficiently solve the 1dimensional MSSCSP arising in a local 
metalwork company. In contrast to previous works, the proposed approach handles 
over and underproduction of beams and reusability of remnants in the optimization 
process. For this purpose, GAs are used together with other novel refinement 
algorithms that are based on different search and clustering strategies. Moreover, a 
new encoding with a variable number of genes is developed for cutting patterns in 
order to make possible the application of genetic operators. 

The paper is organized as follows. First, the real problem identified in the process 
of cutting structural metal beams is described and modeled in Section 2. Next, the 
proposed HRH approach to solve the 1dimensional MSSCSP is developed in Section 
3. An experimental study is carried out in Section 4, followed by a comparison with 
previous methods in Section 5. Finally, Section 6 points out the more outstanding 
contributions of this research. 



2   Problem description and mathematical formulation 

2.1 The process of cutting structural beams in a metalwork company 

The company aim of this study is dedicated primarily to the storage and sale of steel 
products such as structural profiles, tubes, mesh, plates and other auxiliary products 
for both construction and machinery. Although the main activity of the company 
focuses on the distribution of products, the company also makes in its facilities some 
transformation processes, such as cutting structural beams of different profiles (IPE, 
IPN, UPN, HEB, HEA) and dimensions. The 1dimensional MSSCSP appears in 
several workplaces of the company dedicated to cutting beams in addition to drilling, 
blasting and painting operations, and it is implemented through band saws prepared 
for both horizontal and diagonal cuts on a wide range of steel profiles. 

Once the production order is placed, the operator responsible for the cutting 
operation selects, in light of its own experience, a certain beam to be cut from those in 
stock (objects). The operator selection pursues trim minimization and must prioritize 
low turnover beams such as those remnants generated by previous cuts. A leftover 
shorter than 400mm is not reusable in the future and its generation must be avoided. 
As the demanded beams (items) are cut, they are left in an area next to the cutting 
machine. This space is limited and its availability must be taken into account in order 
to define the cutting sequence. Finally, the product is strapped and shipped to 
customers. Figure 1 shows two pictures of the cutting process  

 

  

Fig. 1 Cutting machines and a stack of stored beams in the local metalwork company. 

As described, the responsible for production carries out the planning of cutting 
operations based on its experience under no clear criterion. Therefore, it is necessary 
to develop a procedure to plan this process automatically and taking into account all 
the constraints and objectives imposed by the company. Under this premise, this work 
develops a proposal which is explained in the following sections. As illustrative data, 
and in order to validate the proposed approach in further sections, the number of 
different lengths (objects) available for each kind of profile (shape and size) varies 
between four and six. Whereas, the number of different required lengths (items) of a 
certain profile (shape and size) for the horizon of the production program (one day) is 
low, around five and seldom reaching ten. These ranges are that small because of the 
diversity of profiles handled. 



2.2 Mathematical model 

The following assumptions are considered when modeling the 1dimensional MSSCSP 
mathematically: 

• The cutting operation is made along one dimension of the beam (its length). 
• All cuts are considered as if they were straight. 
• Despite that the problem should consider the different types of profiles that 

can be found in the real case, since these are not exchangeable, the problem 
is separable. Therefore, each production program only considers one 
structural profile section (shape and size). 

• More than one length is available in stock. They may be either standard 
lengths (std_length) or remnants generated in previous periods. 

• The assignment between the required beams and those available in stock is 
accomplished through the use of cutting patterns. 

• The delivery dates are large enough to ensure that the orders given by the 
production schedule are cut on time. 

 
Three types of data are considered in the mathematical model: 
• Those which have to do with the customers’ and production orders (items) 

o Beams demanded: quantity and length, size and type. 
• Those which have to do with the stock (objects) 

o Beams available in stock: quantity, length, size and type.  
• Those which have to do with the cutting process (cutting patterns) 

o Relationship between cutting patterns and beams 
o Scrap generated by each cutting pattern 

 
Thus, the CSP is characterized according to the following parameters 

( ) ( ) ( ) ( ) ( )1 1 1 1 1,..., ,..., ,...,,  ,  ,  ,  ,  ,..., ,  ,...,p p p m m
L L e e v vp m L e v l L L d d d= = = = = , (1) 

where p is the number of different lengths available in stock, and for each one 
{L, e, v} represent their {length, quantity, price}. The index m is the number of 
different lengths demanded, and for each one {l, d} represent their {length, quantity}. 

 
The problem is modeled using cutting patterns. Let n = m + p, a cutting pattern 

will be defined by the n-element column vector ( )1,..., n

T n
a a a ∈ += Z  that satisfies the 

foregoing inequalities 
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The elements ai with i between 1 and m determine how many beams of type i are 
cut in the cutting pattern. Whereas, the value of elements ak+m corresponding to the 
stock length k which the cutting pattern uses will be 1, and for the other elements ai+m, 
where i∈ {1,…,p}\k,  will be 0. 



Let η be the number of cutting patterns and matrix ( )   ijaA
η

∈ += Z , where each 

column represents a cutting pattern. The CSP is formulated as follows: 

Find a vector of frequencies of use of each cutting pattern ( )1,..., T
x xx η=  that 

minimizes the cost of materials to meet the demand of beams from those available in 

stock 
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One characteristic of the real process of cutting is the reuse of production scrap 
generated in previous periods. Scrap longer than 400mm is stored, becoming a part of 
the stock available for future production horizons. Thus, due to the reusability of 
trims, the model should consider the following: 

• The use of patterns with remains greater than 400mm will be promoted over 
those with remains between 10mm and 400mm. 

• The use of patterns obtained on scrap will be promoted over those that use 
standard lengths, since the marketability of scrap is lower. 

 
Therefore, coefficients cj of the objective function will depend on the length and 

reusability of the leftovers rj generated by each one of the cutting patterns, and on the 
type of stock length used by each cutting patterns. To this end, two coefficients are 
introduced: γj penalizes the non-reusable leftovers, whereas δj gives a bonus on the 
use of scrap against the use of standard lengths (std_length). Thus, the following 
objective function coefficients are considered 

  j j j jc rγ δ= , (6) 
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Fig. 2 Overview of the proposed HRH approach based on GAs 

3   Solution approach 

3.1 General overview of the proposed approach 

This section describes the proposed HRH approach based on GAs for solving the 
1dimensional MSSCSP identified in the company. The approach consists of a set of 
techniques and algorithms to be implemented sequentially over several phases, which 
are shown in Fig. 2. In the first stage (Phase 1) a basis of cutting patterns is generated 
by applying a GA (Subsection 3.1) to the data previously obtained from a problem 
generator (Subsection 4.2). Cutting patterns constitute the input information to solve 



the CSP itself which is done in two steps: Phase 2 and Phase 3. In this sense, another 
GA (Subsection 3.2) is applied in Phase 2 and after several iterations a set containing 
the best solutions is selected. Subsequently, in Phase 3, four different algorithms are 
applied (Subsection 3.3) to refine and improve the performance (overproduction, 
dissatisfaction with demands, etc.) of the solutions obtained in the previous stage. 

When solving of the CSP with GAs, two different encodings have been used in the 
literature. The first one represents the solution to the problem in terms of groups of 
beams (cutting patterns) and has been referred to as "group-based representation". The 
second one, referred to as “order-based representation”, encodes the solution to the 
problem as an ordered list of all demanded beams. In this case, the sequence of the list 
makes a difference between one possible solution and another. In this work the 
solutions to the problem are encoded using the "group-based representation", since it 
makes feasible the implementation of genetic operators (Hinterding and Kahn 1995). 
Thus, a solution to the problem will be a chromosome defined by a sequence of n 
genes, i.e., cutting patterns. As shown in the Fig. 3, each gene is associated with the 
following information: items that are obtained, object which is cut, and quantity of 
waste generated by the cutting operation. The use of this encoding requires in advance 
the cutting patterns. 

 

 
Fig. 3 Example of solution using the group-based representation 

3.2 Phase 1: Genetic algorithm to generate cutting patterns 

Pattern generation has been addressed in literature in two ways: previous to solve the 
CSP, and on line. Previous generation is used either in small and medium size 
problems where complete enumeration is possible or in large problems in which only 
a subset of representative patterns is generated. Online generation, however, is used to 
solve big problems by column generation techniques. In the case of applying 
metaheuristics, the cutting patterns have to be generated in advance. For example, 
Gilmore and Gomory (1961, 1963) use a column generation technique based on 
simplex method, which has been used subsequently by many researchers. Haessler 
(1992, 1979) develops a heuristic sequencing procedure. Christofides and 
Hadjiconstantinou (1995) design an enumerative procedure based on cut orders 

Demanded lengths: 

2, 5, 6, 7, 9 y 10 
 
Stock lengths: 
12, 13 y 15 
 
Possible cutting patterns: 

Group Items Object Leftover 

A  (10)  12 2 
B  (6 5 2) 13 0 
C  (9 2)  12 1 
D  (7 6)  13 0 
E  (10 5) 15 0 
 
Representation of one solution containing 10 genes 
 

AACBDDDEEE 



(symmetry) to generate the columns. Suliman (2001) proposes a simple heuristic 
based in a solution method for the knapsack problem that uses a search tree. 

A requirement for the good performance of the proposed approach is the 
generation of a wide variety of efficient cutting patterns, i.e., trim loss objective is 
achieved as long as a diverse population is provided. Thus, a GA has been developed 
to generate cutting patterns with the following input parameters: Population size 
(Pop); maximum number of iterations (iter); size of cloning proportion (Elite); and 
proportion of individuals generated by recombination and mutation (recombination 
and mutation rates, Tmut and Trec) according to the following expressions  

 

( ) ( )rec mutPop Elite T Pop Elite T Pop Elite= + − + − , (9) 

1 rec mutT T= + . (10) 

Genetic encoding. A cutting pattern is represented by a vector whose elements 
indicate the ordered sequence of overlapping demanded beams over the length in 
stock (k). In order to provide more diversity to the population of cutting patterns, the 
number of non-zero genes for each cutting pattern will vary randomly between two 
integer values given by the following expressions 
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where di and li are the quantity and lengths demanded and Lk is the stock length. 
 
Efficiency function. The efficiency of a cutting pattern is quantified in terms of the 
absolute amounts of scrap that it generates (rj ), which is obtained from  

1

N

j k hj

h

r L l
=

= −∑ , (12) 

where Lk is the length of the stock beam used by cutting pattern j and lhj is the length 
vector of the beams obtained from cutting pattern j. 

Pattern generation. The procedure used here avoids exceeding the levels of demands 
and is similar to that described by Annand et al. (1999) for two dimensional patterns 
generation. The following steps are considered to generate a cutting pattern: 
 

1. Set a random integer value N between Nmin and Nmax 
2. Select N random values randh between 0 y 1 
3. For h=1 to N do 

3.1. Find the value of i0 satisfying expression (13) 
3.2. Set the h-th element of the cutting pattern to beam i0 

4. Set, if necessary, the last elements of the cutting pattern to zero until 
expression (14) is satisfied  
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Cloning procedure. At each generation solutions are ranked by efficiency and a fixed 
quantity (Elite) of the highest efficiency values is taken directly into the next 
generation. This process known as cloning or elitist reproduction guarantees that once 
a good solution is found it is not discarded until a better solution replaces it.  
 

Recombination procedure. First, a set of individuals of the previous generation, 
whose size is given by the recombination rate Trec, is randomly selected to be the 
progenitors of the new individuals. The Bernoulli crossover procedure has been 
adopted for recombination with the crossover threshold fixed between 0 and 1. The 
crossover combination is carried out by choosing rand1, ,…, randN  random numbers. 
If randk is above the crossover threshold, k genes of the parents are exchanged, if it is 
below the threshold they are not. In this manner, two new solutions are obtained from 
two progenitors, the more efficient of which is placed into the next generation. 
 

Mutation procedure. The mutation procedure ensures a larger coverage of the state 
space by introducing new genetic information. Thus, a portion of new cutting 
patterns, whose size is given by the mutation rate Tmut, are introduced in each 
generation using the procedure described above,.  
 

The generalization of the algorithm for all stock lengths is simple; cutting patterns 
are generated for each length by running as many independent GAs as different 
lengths are available in stock; then, all them are stored in a matrix with a number of 
rows equal to the number of stock lengths. 

3.3 Phase 2: Genetic algorithm to solve the MSSCSP 

A solution to the problem consists of a sequence of patterns that meets the demand of 
beams without exceeding the available stock and that minimizes an objective function 
that weights things like: generated debris, inventory, space occupied by the work in 
process, etc. As before, the GA will have the following input parameters: Population 
size (Pop); maximum number of iterations (iter); size of cloning proportion (Elite); 
and recombination and mutation rates (Trec and Tmut). 
 

Genetic encoding. A solution to the CSP is encoded as a chromosome with G genes, 
each one of which refers to one cutting pattern. The number of genes G of each 
individual will vary randomly between two integer values given by: 
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where di is the quantity demanded for beam i and min  
1

m
aij
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 are the 

maximum and minimum number of demanded beams cut by pattern j, respectively. 
 

Efficiency function. Three terms are considered: cost associated to the cutting 
patterns, ending inventory generated by the solution, and unmet demands. Thus, the 
function to be minimized is given by 

( ) ( ) ( )
21 1

cost j j inv i unmet i

j i i

w X c w I w I
+ −+ +∑ ∑ ∑ . (16) 

where {wcost, winv, wunmet} are the weights for each term; X represents a solution, and 
the element Xj indicates how many cutting patterns of type j are used by the solution; 
cj represents the cost of using cutting pattern j that according to (6), depends on the 
scrap generated and its reusability and on the type of stock length used by each 

cutting patterns; and 1
i

I +  and 1
i

I − represent the ending inventories and the unmet 

demands for demanded beam i, respectively, which are obtained from 
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where 
0
iI  represents initial inventory for beam i (if any). 

 
Generation of the initial population. The following steps are applied: 
 

1. The number of genes G of each individual is randomly computed as an 
integer value between Gmin and Gmax. 

2. The value of each gene of each individual is randomly assigned from the 
available cutting patterns (if one stock length runs out, the cutting patterns 
associated with it become unavailable). 

3. Set to zero remaining genes until Gmax. 
 

Recombination procedure. The selection of parents is made randomly. For each 
gene, one of the cutting patterns is selected randomly from the parents. Afterwards, 
null genes are sent to the end of the chromosome. Finally, it is checked if the 
generated solution is feasible according to the availability of stock lengths. Figure 4 
shows an example. 
 

Cloning and mutation procedures. Both operations are performed like those in the 
GA of Phase 1 (Subsection 3.2).  
 



 
Fig. 4 Example of the recombination procedure for the GA in Phase 2 

 

Fig. 5. Overview of the refinement algorithms in Phase 3 
 

 
Fig. 6. Pseudo code for incomplete patterns algorithm 

Parent solutions with values  Gmin=4 and Gmax =7 
 

Parent1: (1 2 2 3 5 6 0) 
 

Parent2: (3 3 5 6 0 0 0) 
 

Random recombination 

Child: (1 2 5 3 0 6 0) 

Reorder child solution 

Child: (1 2 3 5 6 0 0) 

1- Initialization 

1.1 Select one solution to the MSSCSP X=(X1,…,XN) 

1.2 Calculate the initial inventories for each demanded beam i  (Ii
0+

) 

2- while (Ii
+
 ≠ 0) 

2.1 Calculate the contribution (Cij) of each pattern j to inventory of beam i (Ii
+
) 

if  Ii
+
 >Xij  then Cij=Xij 

if  Ii
+≤ Xij  then Cij=Ii

+
 

2.2 Select pattern J / ∑i CiJ =max (∑i Cij),  j=1,…N as an “Incomplete Pattern” 

If more than one value is possible for J, choose the cutting pattern with the 

smallest rJ 
 

2.3 Recalculate Ii
+
 



P
at
te
rn
3

 
Fig. 7 Graphical representation of the search for incomplete patterns 

3.4 Phase 3: Refinement algorithms 

Perhaps, the main limitation of an approach to solve the MSSCSP based solely on the 
use of GAs lies in the non-complete satisfaction of all demands, as well as the 
generation of excess inventories. Although the efficiency function used by the GA in 
the previous section takes into account such considerations, see expression (16), it 
appears that under certain circumstances (a high number of beams, low demands, etc.) 
the results get higher levels of overproduction and even partially unmet demands, 
which violates of the original constraints. To solve this situation, a sequence of novel 
algorithms is proposed here to improve the overproduction and to eliminate the unmet 
demands. The method, which is based on clustering patterns and search for shorter 
lengths solutions, consists of four algorithms, see Fig. 5.  
 

Incomplete Patterns Algorithm (A0). This novel algorithm searches among all the 
patterns in a solution j those which contribute most to beam overproduction. These 
patterns, referred to as incomplete patterns, are removed from the solution. The 
pseudo code for this algorithm is shown in Fig. 6, whereas Fig. 7 represents the way 
in which incomplete patterns are obtained, where Clj

+ represents the contribution to 
the ending inventories of pattern j during stage l and I0

+ is the initial inventory given 
by the solution.  



 

 
Fig. 8. Pseudo code for the Grouping Algorithm 

 
Fig. 9. Pseudo code for the Residual Genetic Algorithm 

 
Fig. 10. Pseudo code for Shorter Lengths Search Algorithm 

 
Both unmet demands and the demanded beams belonging to incomplete patterns 

constitute the so called residual problem, which is subsequently solved independently 

1- Initialization 

1.1  Calculate the total length Lm of each Incomplete Pattern (m),  

Lm=∑i lim,  where lim are the lengths of all beams i cut with m 
 

1.2  Obtain the scrap (rmk) generated if the cutting pattern m uses the stock length  

Lk rmk = Lk –Lm 
 

2- while I
 –≠ 0 

2.1  Obtain all C combinations to group the Q beams of I
 –

(groups from 1 to Q 

elements) 
 

2.2 Calculate for each combination the sum of all the demanded beams that it 

contains, that is    Lc==∑i lic 
 

2.3  Calculate   Tmkc= rmk –Lc  
 

2.4  if Tmkc < 0  then  Tmkc = 10000 
 

2.5  Select the smaller Tmkc (if tie, take any of them) 
 

2.6  Assign the beams of combination c to Incomplete Pattern m 
 

2.7  Update  I
 –

= I0
–
–lic 

 

3- Assign to each of the new “Incomplete Patterns” the smaller stock length which 

gives smaller scrap. 
 

4- Calculate the total scrap of the new solution  

1- Define the instance parameters obtained from the data of the residual problem  

(l1,...,lm,d1,...,dm,L1,…,Lp,P1,…,Pp) 

2- Apply the pattern generation GA to obtain a new array of cutting patterns mit, wkt. 

3- Apply the GA to solve the residual CSP 

4- Select the best solution (minimum waste) 

5- Calculate the total scrap of the new solution 

1- Unify all beams of the residual problem in a unique cutting pattern 

2- Seek, among all the available stock lengths, the one that fits all beams with minimum 

waste 
for k=1 to K,    if Lk ≥ ∑ij Cij  then  select  k’ / Lk’ = min(Lk) 

3- Update stock levels Pk’=Pk’
0
–1; 

4- Calculate the total scrap of the new solution 



by the three novel algorithms described below. All three are based on different 
strategies to cover as many possibilities as possible. Each one solves independently 
the residual problem and among the solutions provided by all three, the one with 
smaller scrap is chosen. 
 
Grouping Algorithm (A1). Unmet demands and all the incomplete patterns are 
simply grouped in a unique cutting pattern. Figure 8 provides the pseudo code for this 
algorithm. 
 
Residual Genetic Algorithm (A2). Phase 1 and Phase 2 are applied to the residual 
problem. Since demands and stocks are different from the original problem, new 
cutting patterns are generated. The pseudo code for this algorithm is shown in Fig. 9. 
 
Shorter Lengths Search Algorithm (A3). This algorithm maintains the incomplete 
patterns and seeks for each one of them an available stock length that fits in it with 
minimum scrap. The application of the algorithm is simple for solutions that meet all 
demands (I –

=0); if not (I –≠0), it has to be determined which one of the incomplete 
patterns will contain the unmet demands I –. For this purpose, the algorithm raises all 
possible combinations of grouping I

 –and selects the one that gives less waste. 
Figure 10 provides the pseudo code for this algorithm. 

4 Experimental study  

4.1 Introduction 

In this section, several issues concerning the proposed approach (instance generation, 
parameter characterization, performance of each phase, computational costs, etc.) are 
experimentally analyzed. The proposed algorithms have been implemented in 
commercial software MATLAB® release R2007b. The set of input parameters for the 
GAs in Phase 1 and Phase 2 are selected according to those used by Wagner (1999) 
and Annand et al. (1999):  

 

• {Pop=50, Iter=100, Elite=10, Trec = 0.8, Tmut = 0.2} for the GA in Phase 1 
• {Pop=100, Iter=500, Elite=10} for the GA in Phase 2 

 

In addition, the values of the recombination/mutation rate and the weights in the 
efficiency function for the GA in Phase 2 are optimized in Subsection 4.4. For 
comparison purposes in the experimental study, parameters δj and γj in expression (6) 
are set equal to 1 and, therefore, coefficients cj and rj coincide. Moreover, when the 
number of possible patterns is less than 250, Phase 1 is replaced by complete 
enumeration and the best 12 patterns are selected. Furthermore, refinement algorithms 
in Phase 3 are applied to the best solutions obtained in Phase 2. In particular the first 
20 solutions are considered for A1 and A3 algorithms while only the first 10 solutions 
for A2 due to computational reasons, see Subsection 4.7 



4.2 Instances generation 

For testing the proposed algorithms, it is required to implement a problem generator. 
For example, Gau and Wäsher (1995) develop a problem generator for the 
1dimensional SSSCSP which only considers one type of stock length. For this work 
each instance has the following parameters: m, types of different demanded lengths; 
{v1, v2}, upper and lower limits for demanded lengths; d, average demand for each 
demanded length; p, types of different stock lengths; e, average quantities in stock; 
{s1, s2}, upper and lower limits for stock lengths. Thus, a test problem is defined as a 
2m+2p-dimensional vector generated randomly: (l1,...,lm,d1,...,dm,L1,…,Lp,e1,…,ep), 
where lengths and quantities are specified for the demanded and stock beams. 

In order to evaluate the performance of the approach, instances obtained from the 
ten classes of Table 2, which fit the data handled by the company described in Section 
2, are considered. These instance classes have taken from literature and they have 
recently been used by Poldi and Arenales (2009) to evaluate their residual heuristics 
when solving the 1dimensional MSSCSP for low demands. The following 
expressions, which are taken from Poldi and Arenales (2009), are used to generate the 
test problem vector:  

 

• for k=1 to p,   Lk is randomly generated between 100 and 1000 length units, 
ek is randomly generated between 1 to (100·m/2) units; 
 

• for i=1 to m,   li is randomly generated between (v1· L) and (v2·L) length units, 
di is randomly generated between 1 and 10 units; 
 

where L is the average value of {L1,...,Lp}. 
  

Table 1 Instance classes used in the experimentation 

 Parameters   

Instance class p m v1 v2 

1 3 5 0,01 0,2 

2 5 10 0,01 0,2 

3 7 10 0,01 0,2 

4 3 5 0,1 0,8 

5 5 10 0,1 0,8 

6 7 10 0,1 0,8 

7 3 5 0,01 0,8 

8 5 10 0,01 0,8 

9 7 10 0,01 0,8 

10 7 20 0,01 0,8 

4.3 Performance of the algorithm to generate cutting patterns 

According to Haesler and Sweeny (1991), one key ingredient for the success of a 
heuristic procedure applied to the CSP is the efficiency of its cutting patterns. Thus, 



the performance of our pattern generation algorithm is evaluated in this subsection. In 
this sense, Fig. 11 shows the average results obtained for 150 test problems from the 
instance classes of Table 1. Each bin of the histogram groups the cutting patterns 
depending on their waste: 0%, 0.1%–2%, 2.1%–6%... 25.1%–31%, 31.1%–100%. 
Note that, 17% of the cutting patterns have no waste and 31% of them have a 
maximum waste of 2%. Therefore, it is conclude that the GA in Phase 1 is able to 
provide many good cutting patterns, which will represent a good base to solve the 
SCP in subsequent phases. 
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Fig. 11 Efficiency histogram of the cutting patterns generated by the GA in Phase 1 

4.4 Sensitivity analysis to different algorithmic configurations in Phase 2 

In order to get a good parameter setting, we analyze here the effects on the quality of 
the solutions obtained by the GA in Phase 2 when the recombination/mutation rate 
and the efficiency function weights are modified. Table 2 displays the average results 
obtained after applying Phase 1 and Phase 2 to 20 different instances from classes 1 
and 2 for different values of {Trec, wumet, winv} and setting {wcost=1} without loss of 
generality. In light of these results, it seems reasonable to choose {Trec=0.8, winv=3, 
wunmet=10} as the values for GA in Phase 2. Note that recombination and mutation 
rates are related by equation (10) and the value for Elite is given in Subsection 4.1, 
i.e. Trec=1−Tmut and Elite=10. Furthermore, Table 3 shows the Pearson’s correlation 
coefficients between the algorithm parameters {Trec, winv} and the output indexes in 
Table 2. These coefficients assess from -1 to 1 how sensitive the output indexes are to 
the algorithm parameters. In this case, the correlations are medium and low. 



 

Table 2 Sensistivity analisys for the GA in Phase 1 

Instance Trec Winv Wunmet 
Solutions all 

demands met 

Minimum 

overproduced beams 

Scrap in the 

best solution 

1 0.8 1 10 25,9 11,2 5,5 

1 0.4 1 10 27,2 17,8 26,4 

1 0.8 3 10 23,6 10,9 6,6 

1 0.4 3 10 28,4 14,6 58,3 

1 0.8 10 10 15,9 12,8 37,2 

1 0.4 10 10 15,1 18,5 91,7 

2 0.8 1 10 46,1 4,4 9,2 

2 0.4 1 10 54,1 6,1 23,3 

2 0.8 3 10 38,6 3,4 14,9 

2 0.4 3 10 37,6 3 9,5 

2 0.8 10 10 27,1 2,1 6,7 

2 0.4 10 10 36,3 2,9 8,9 

1 0.8 1 1 8,3 5,0 2,3 

1 0.4 1 1 10,8 5,4 5,4 

1 0.8 3 1 6,8 4,7 1,3 

1 0.4 3 1 9,7 5,9 13,9 

1 0.8 10 1 10,0 3,9 6,9 

1 0.4 10 1 14,0 3,6 20,6 

2 0.8 1 1 2,9 8,5 2,3 

2 0.4 1 1 4,2 11,8 6,1 

2 0.8 3 1 2,2 7,4 3,3 

2 0.4 3 1 1,8 8,0 1,9 

2 0.8 10 1 1,4 6,6 1,8 

2 0.4 10 1 1,8 8,6 2,2 

4.5 Sensitivity of the approach to the quality of cutting patterns 

Here we focus on analyzing how each phase of the proposed approach, contributes to 
the achievement of its performance. To this end, Phase 2 and Phase 3 are applied to 
40 test problems from 4 instance classes (to cover a wide range of situations) using 
three different sets of cutting patterns: one set of good cutting patterns obtained from 
Phase 1; and two more sets with less efficient patterns. Therefore we consider three 
different qualitative situations, see Figure 12 where the efficiency histograms for each 
set are shown. Thus, evaluating the improvement obtained applying Phase 2 and 3 for 



these three cases, we can determine the necessity of Phase 1 in the proposed 
approach. Table 4 compares the average scrap results for each instance class when 
applying both Phase 2 and Phase 3 to the above mentioned sets of cutting patterns. 
First observe that, the better the quality of the input patterns, the better the average 
scrap result. Table 4 also indicates the average number of cutting patterns in the 
solution and the percentage of those generated in Phase 3 (new patterns). Comparing 
these values with the average scrap values we conclude that as the number of patterns 
in the solution increases, the contribution of Phase 3 decreases and the quality of the 
input patterns is less relevant. 

In short: an efficient basis of patterns becomes more necessary as the number of 
patterns of the solution increases; and the contribution of refinement algorithms is 
greater for sets of patterns with low and medium efficiency, but this is not enough to 
neutralize effects of using those basis of patterns. 

Table 3 Pearson’s correlation coefficients for the variables in Table 2 

Variables Pearson’s Coefficient 

Trec / Minimum overproduced beams -0,26685041 

Trec / Solutions all demands met -0,1944211 

Trec / Scrap in the best solution -0,6489404 

Wunmet / Minimum overproduced beams 0,3031187 

Wunmet / Solutions all demands met 0,88586149 

Wunmet / Scrap in the best solution 0,74583432 

Winv / Minimum overproduced beams -0,01710628 

Winv / Solutions all demands met -0,54228093 

Winv / Scrap in the best solution 0,45635913 
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 Fig. 12 Efficiency histogram of three different sets of cutting patterns 

 



Table 4 Impact of the cutting patterns basis on solutions 

  Genetic algorithm patterns  Medium efficiency patterns  Low efficiency patterns 

 

 
Instance 

class 

 
Avg. 
scrap 

Patterns 
from 

Phase 3 
(%) 

Avg.  
number of 
patterns in 
solution 

 
Avg. 
scrap 

Patterns 
from 

Phase 3 
(%) 

Avg. 
number of 
patterns in 
solution 

 
Avg. 
scrap 

Patterns 
from 

Phase 3 
(%) 

Avg. 
number of 
patterns in 
solution 

1 85 50 2 85 50 2 116 50 2 

2 27 27 4,75 50 27 4,75 104 39 4,75 

3 12 18 6,4 34 27 5,6 43 34 5 

4 257 27 6,5 463 34 6,5 1378 41 6 

4.6 Contribution of each refinement algorithm to the performance of the 

proposed approach 

In Section 3, three algorithms {A1, A2, A3} were proposed to be run in parallel in 
Phase 3 to improve the solutions obtained by the GA of Phase 2. Therefore, it is 
necessary to check how far all they contribute to get better solutions in Phase 3 or if, 
on the contrary, one stands out from the other. In this sense, Table 5 shows the 
contribution of the three refinement algorithms {A1, A2, A3} to the new solutions 
obtained in Phase 3 as mentioned in Subsection 4.1, for 400 test problems. It can be 
conclude that there is no clear superiority of one algorithm over the others and, 
therefore, the use of all three is appropriate. 

 
Table 5 Contribution of each refinement algorithm in Phase 3 

 Percentage of new solutions 
Grouping algorithm (A1) 29% 
Residual genetic algorithm (A2) 28% 
Shorter lengths search algorithm (A3) 43% 

4.7 Computational costs 

In principle, the 1dimensional MSSCSP here studied can be solved off-line and, 
therefore, the computational cost of the method used to solve it would not be critical. 
However, Table 6 shows average computing times (over all generated test problems) 
of each phase of the proposed approach. Algorithms were implemented using 
commercial software MATLAB

® (release 2007b) in a PC with Intel® Core
TM

 2 Duo 

@2.00GHz processor. The execution of all the algorithms is quite fast, around 77 
seconds. Similarly, Poldi and Arenales (2009) obtained a computation average time of 
37seconds for their residual heuristics algorithms (RGH1, RGH2, RGH3). Note that, 
the residual GA (A2) has a longer running time because it applies both GAs of Phases 
1 and Phase 2 over 10 solutions. Since algorithms A1, A2 and A3 are independent 
they could be implemented in parallel to reduce the computation time. However, it is 
considered that the improvement in the computation time obtained, i.e. 



100*(0,2859+0,0037)/77,5899=0.3732% (see Table 6), does not worth such parallel 
implementation. 
 

Table 6 Computational costs of each phase of the proposed approach 

 
time (s) 

time per  
iteration (ms) 

Previous phase-  Problem generator 0,1218   

Phase 1- GA to generate cutting patter 3,356 33,56 

Phase 2- GA to solve MSSCSP 5,4325 10,865 

Phase 3.1- Incomplete patterns algorithm 0,6384  

Phase 3.2- Grouping algorithm (A1) 0,0037  

Phase 3.2- Residual GA (A2) 67,749*  

Phase 3.2- Shorter lengths search algorithm (A3) 0,2859  

Phase 3.3- Selection of the best refinement algorithm 0,0026  

Phase 3- Refinement algorithms 68,6796  

Total 77,5899   

 *Note: The computation time of A2 algorithm is not ten times that of Phase1 plus Phase2 
because usually the number patterns for residual problems are less than 250 and, therefore, in 
Phase1 complete enumeration is made. 

5 Results and comparison with other approaches 

In this section, the parameter values for the proposed algorithms are the same as those 
used in previous section. Table 7 shows the results obtained with the proposed 
approach for 400 instances obtained from the ten classes of Table 2. These results are 
compared to those obtained with residual and constructive heuristics of type First Fit 
Decreasing (FFD) and Greedy and with those obtained by Poldi and Arenales (2009) 
using their residual heuristics (RGH1, RGH2, RGH3). Best results appear in boldface 
numbers in Table 7. In particular, the hybrid approach obtains the best result in 70% 
of instances. The remaining 30% of instances are those in which p=7 and m={10,20}, 
but according to data in Subsection 2.1 this is not frequent in the local metalwork 
company. Therefore, it is conclude that the proposed approach is appropriate at least 
for instances similar to real data found in the metalwork company.  

6 Conclusions 

In this paper, a hybrid solution based on genetic algorithms is developed to solve 
efficiently the problem of cutting structural beams arising in a local metalwork 
company. In contrast to previous works, the proposed approach handles over and 
underproduction of beams and reusability of remnants in the optimization process. 
For this purpose, several novel refinement algorithms based on different search and 
clustering strategies have been introduced and a new encoding with a variable number 



of genes has been developed for cutting patterns. An analysis of the performance of 
different algorithmic configurations allowed us to properly adjust several input 
parameters of the GAs. In addition, statistical data evidenced the adequacy and 
convenience of the proposed algorithms, since all them contribute to the good 
performance of the hybrid solution. Furthermore, it has been shown that the execution 
of all the proposed algorithms is quite fast. Finally, comparative results have shown 
that the proposed approach competes favourably with other known heuristics. 

We consider that the proposed high-level relay hybrid approach could be useful for 
other multiple sizes CSP with higher dimension. For this purpose, the pattern 
generation phase should obviously be redefined to the particular conditions of the 
problem but the rest of the methodology would remain basically the same.  This issue 
is an interesting field for future work.  
 

Table 7 The average waste result comparison with other approaches 

  Total scrap        

  Constructive  Residual  Residual Heuristics  Hybrid  

Instance  FFD Greedy  FFD Greedy RGH1 RGH2 RGH3 Approach 

1  118,75 113,35 123,25 116,25 113,05 114,40 108,7 85,40 

2  161,05 152,30 146,80 165,20 137,85 129,20 138,60 27,00 

3  179,45 146,05 147,95 142,75 117,65 116,05 115,90 11,60 

4  71319,35 31493,55 36648,90 46662,30 625,55 646,85 617,20 257,00 

5  96475,80 101711,50 57310,90 60145,25 785,10 808,40 812,75 339,60 

6  118647,90 134773,10 52624,25 51184,85 247,75 255,15 247,65 476,40 

7  42429,35 52808,85 7551,20 8762,75 709,05 683,05 709,30 594,68 

8  74434,35 73920,20 45636,20 47154,75 545,00 552,85 576,30 540,00 

9  87379,30 107851,45 47095,25 35678,10 241,35 258,50 247,90 303,20 

10  92130,75 91638,20 42535,50 39284,45 135,95 140,85 132,60 242,00 

Being best  0,0% 0,0% 0,0% 0,0% 10% 0% 20% 70% 

References 

Aktin, T., Özdemir, R. G.: An integrated approach to the one dimensional cutting stock 
problem in coronary stent manufacturing. Eur. J. Oper. Res. 196, 737–743 (2009) 

Alves, C., Valério de Carvalho, J. M.: A Stabilized Branch-and-Price-and-Cut Algorithm for 
the Multiple Length Cutting Stock Problem. Comput. Oper. Res. 35, 1315–1328 (2008)  

Anand, S., McCord, C., Sharma, R. et al.: An Integrated Machine Vision Based System for 
Solving the Nonconvex Cutting Stock Problem using Genetic Algorithms. J. Manuf. Syst. 
18, 396–415 (1999)  

Belov, G., Scheithauer, G.: A Cutting Plane Algorithm for the One-Dimensional Cutting Stock 
Problem with Multiple Stock Lengths. Eur. J. Oper. Res. 141, 274–294 (2002)  

Christofides, N., Hadjiconstantinou, E.: An Exact Algorithm for Orthogonal 2-D Cutting 
Problems using Guillotine Cuts. Eur. J. Oper. Res. 83, 21–38 (1995) 



Elizondo, R., Parada, V., Pradenas, L., Artigues, C.: An evolutionary and constructive approach 
to a crew scheduling problem in underground passenger transport. J. Heur. 16, 575–591 
(2010) 

Fan, L., Mumford, C. L: A metaheuristic approach to the urban transit routing problem. J. Heur. 
16, 353–372 (2010) 

Gau, T., Wäscher, G.: CUTGEN1: A Problem Generator for the Standard One-Dimensional 
Cutting Stock Problem. Eur. J. Oper. Res. 84, 572–579 (1995)  

Gilmore, P. C., Gomory, R. E.: A linear programming approach to the cutting stock problem. 
Oper. Res. 9, 849–859 (1961) 

Gilmore, P. C., Gomory, R. E.: A linear programming approach to the cutting stock problem, 
PartII. Oper. Res. 11, 863–888 (1963) 

Ghiani, G., Laganà, G., Laporte, G., Mari, F.: Ant colony optimization for the arc routing 
problem with intermediate facilities under capacity and length restrictions. J. Heur. 16, 211–
233 (2010) 

Gonçalves, J. F., Resende, G. C.: Biased random-key genetic algorithms for combinatorial 
optimization. J. Heur. In Press (DOI: 10.1007/s10732-010-9143-1) (2011) 

Gradisar, M., Kljajic, M., Resinovic, G. et al.: A Sequential Heuristic Procedure for One-
Dimensional Cutting. European Eur. J. Oper. Res. 114, 557–568 (1999)  

Haessler, R. W.: One-Dimensional Cutting Stock Problems and Solution Procedures. Math. 
Comput. Model. 16, 1–8 (1992)  

Haessler, R. W.: Solving the Two-Stage Cutting Stock Problem. Omega 7, 145–151 (1979)  
Hinterding, R., Khan, L.: Genetic algorithms for cutting stock problems: with and without 

contiguity. In: Yao, X., (ed.) Progress in evolutionary computation. LNAI, vol. 956, pp. 
166-186. Berlin: Springer, Berlin (1995)  

Holthaus, O.: Decomposition Approaches for Solving the Integer One-Dimensional Cutting 
Stock Problem with Different Types of Standard Lengths. Eur. J. Oper. Res. 141, 295–312 
(2002) 

Kantorovich, L.V.: Mathematical methods of organizing and planning production (1939) 
(Translation to English in Manage. Sci. 6, 366–422 (1960)) 

Liang, K., Yao, X., Newton, C. et al.: A New Evolutionary Approach to Cutting Stock 
Problems with and without Contiguity. Comput. Oper. Res. 29, 1641–1659 (2002)  

Poldi, K., Arenales, M.: Heuristics for the One-Dimensional Cutting Stock Problem with 
Limited Multiple Stock Lengths. Comput. Oper. Res. 36, 2074–2081 (2009) 

Suliman, S. M. A.: Pattern Generating Procedure for the Cutting Stock Problem. Int. J. Prod. 
Econ. 74, 293–301 (2001)  

Talbi, E.-G.: A Taxonomy of Hybrid Metaheuristics. J. Heur. 8, 541–564 (2002)  
Vahrenkamp, R.: Random Search in the One-Dimensional Cutting Stock Problem. Eur. J. Oper. 

Res. 95, 191–200 (1996)   
Vanderbeck, F.: Exact Algorithm for Minimizing the Number of Set Ups in the One 

Dimensional Cutting Stock Problems. Oper. Res. 48, 915–926 (2000)  
Wagner, B. J.: A Genetic Algorithm Solution for One-Dimensional Bundled Stock Cutting. 

Eur. J. Oper. Res. 117, 368–381 (1999)  
Wäscher, G., Haußner, H., Schumann, H.: An Improved Typology of Cutting and Packing 

Problems. Eur. J. Oper. Res. 183, 1109–1130 (2007) 


