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SUMMARY  

Movement proteins (MP) encoded by plant viruses interact with host proteins to 

facilitate or interfere intra- and/or intercellular viral movement. Here, by using yeast 

two hybrid assays and bimolecular fluorescence complementation we present in vivo 

evidences of the interaction between the Alfalfa mosaic virus (AMV) MP and 

Arabidopsis Patellin 3 (atPATL3) and 6 (atPATL6), two proteins that contain a SEC14 

domain. Proteins with SEC 14 domains are implicated in membrane trafficking, 

cytoskeleton dynamics, lipid metabolism and lipid-mediated regulatory functions. 

Interestingly, over-expression of either atPATL3 and/or 6 interfered with the MP to 

reach plasmodesmata resulting in a reduction of the size of the infection foci. 

Consistently, viral RNAs accumulation levels increased in the single and double 

Arabidopsis knockout mutants for atPATL3 and/or 6. Overall, our results indicate that 

this MP-PATLs interaction would interfere with the correct subcellular target of the MP 

making the intracellular transport of the viral MP containing-complexes less efficient 

and thus diminishing cell-to-cell movement. 

Con formato: Sangría: Primera línea: 
0 cm
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INTRODUCTION 

To establish a systemic infection, plant viruses must traffic from initially 

infected cells to neighbouring cells through plasmodesmata (PDs) channels until they 

reach the vascular system (Fernandez-Calviño et al., 2011; Pallas et al., 2011). This 

intercellular movement is an active process requiring one o more viral encoded 

movement proteins (MP) that interact with other viral factors (genome and other viral 

proteins) and with host proteins, altering in some instances the plant physiology (Pallas 

and Garcia, 2011; Whitham and Wang, 2004). In the last years different approaches 

have permitted to identify host proteins that interact with several MPs of the 30K 

superfamily (Melcher, 2000) and affect the viral movement in some cases (reviewed in 

Whitham and Wang, 2004; Boevink and Oparka, 2005; Lucas, 2006). Thus, the Tomato 

spotted wilt virus MP interacts with a DnaJ-like protein (Soellick et al., 2000) and with 

At-4/1, a protein showing homology to myosin and kinesin motor proteins proposed as 

a component of the PD transport machinery (von Bargen et al., 2001; Paape et al., 

2006). The MP of Tobacco mosaic virus (TMV) interacts with cytoskeleton components 

like the microtubule-associated protein MPB2C (Kragler et al., 2003), microtubule end-

binding protein 1 (EB1) (Brandner et al., 2008), and actin filaments (McLean et al., 

1995) and with cell-wall associated proteins such as pectin metylesterase (PME) (Chen 

et al., 2000) and calreticulin (Chen et al., 2005). Moreover, it also interacts with a 

protein kinase associated to the PD (Lee et al., 2005), with a DnaJ-like protein (Shimizu 

et al., 2009), with a plant ankyrin repeat-containing protein (ANK) (Ueki and Citovsky, 

2011) and with synaptotagmin, a calcium sensor that regulates vesicle endo and 

exocytosis (Lewis and Lazarowitz, 2010). Interaction with ANK and PME positively 

contributes to the TMV intercellular and systemic movement, respectively. The 

interaction with ANK cause a decrease in callose deposition, whereas that PME 
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regulates the viral unloading from the phloem (Ueki and Citovsky, 2011; Chen and 

Citovsky, 2003). Synaptotagmin is also required to the TMV systemic spread (Lewis 

and Lazarowitz, 2010). In contrast, calreticulin, MPB2C and EB1 negatively regulate 

the target of the TMV MP to the PDs (Kragler et al., 2003; Chen et al., 2005; Curin et 

al., 2007; Brandner et al., 2008). Additionally, it was described the interaction between 

the Brome mosaic virus MP and NbNaCa1, a protein that shows similarity to the ά-

chain of nascent-polypeptide associated complex involved in the regulation of the MP 

localization in PDs (Kaido et al., 2007). The MP of Cauliflower mosaic virus has been 

reported to interact with an Arabidopsis protein related to mammalian proteins 

described as rab acceptors (Huang et al., 2001). Tomato mosaic virus MP has been 

shown to interact with putative transcriptional coactivators (KELP and MBF1) and 

protein kinases (Matshushita et al., 2001, 2002, 2003; Yoshioka et al., 2004). 

Overexpression of KELP interferes with the viral cell-to-cell movement (Sasaki et al., 

2009). By using a yeast-based approach it has recently found that the expression of 

Prunnus necrotic ringspot virus MP triggers the GCN pathway trough the activation of 

the Gcn2p kinase (Aparicio et al., 2011). 

AMV is the only member of the genus Alfamovirus in the family Bromoviridae. 

The AMV genome consists of three single-stranded RNAs of plus sense polarity. 

Replicase subunits P1 and P2 are encoded by the monocistronics RNAs 1 and 2, 

respectively, whereas RNA 3 encodes the MP and serves as a template for the synthesis 

of the non-replicating subgenomic RNA4 (sgRNA4) from which the coat protein (CP) 

is translated. AMV MP belongs to the 30K superfamily and is implicated in the 

intercellular viral movement (reviewed in Bol, 2005). Mutational analysis showed that 

the AMV MP has the ability to form tubular structures in protoplast which was 

correlated with the cell-to-cell movement capacity (Sanchez-Navarro and Bol, 2001). 
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However, identification of host factors interacting with AMV MP has not been reported 

until now.  

In the present work we report the interaction between the AMV MP and two 

members of the Arabidopsis Patellin (PATLs) family: Patellin 3 and 6 (atPATL3 and 

atPATL6). PATLs are related to Sec14p (Peterman et al., 2004), which is the defining 

member of a family of phosphatidylinositol transfer proteins (Allen-Baume et al., 

2002). Proteins related to Sec14p play a role  in lipid signalling and metabolism and in 

membrane trafficking (Routt and Bankaitis, 2004). Biochemical fractioning and 

intracellular localization experiments showed that Patellin 1 (atPATL1) from 

Arabidopsis and zucchini (Cucurbita pepo) are peripheral membrane-associated 

proteins suggesting that PATLs would be implicated in vesicle/membrane trafficking 

events (Peterman et al., 2004, 2006). In fact, atPATL1 is critical in the formation and 

maturation of the cell plate during late telophase in Arabidopsis cells root (Peterman et 

al., 2004). Our subcellular localization analysis of the AMV MP in presence of 

atPATL3 or 6  indicate that these host proteins would interfere with the PD targeting of 

the MP diminishing the cell-to-cell movement. Accordingly, we found that transient 

over-expression of either atPATL3 and/or 6 reduced the size of the infection foci 

whereas viral RNAs accumulation levels increased in the single and double Arabidopsis 

knockout mutants for atPATL3 and/or 6. 

 

RESULTS 

AMV MP interacts with Patellin 3 and 6 from Arabidopsis. 

In order to shed light on the molecular mechanism driving the intercellular 

movement of the virus, we decided to search for host proteins that interact with AMV 

MP. Previous analysis addressed to identify host proteins involved in AMV transport by 
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yeast two-hybrid screens (Y2H) with full-length MP as bait yielded inconclusive results 

(Zuidmeer-Jongejan,. 2002). We reasoned that the hydrophobic domain (HD) 

characteristic of the 30K superfamily (Sanchez-Navarro and Pallás, 1997),which has 

been shown in some viruses to be implicated in MP membrane association (Fujiki et al., 

2006; Martinez-Gil et al., 2009), probably would interfere in the protein-protein 

interactions screened by the conventional GAL 4- based Y2H system. Thus, we decided 

to use a deleted version of the AMV MP lacking the HD as bait to screen a cDNA 

library of mRNA from Arabidopsis thaliana leaves by a GAL 4 based Y2H system 

(MATCHMAKER Two-Hybrid System 3, Clontech). From 3 x 10
6
 yeast transformants, 

we identified diverse potential interacting partners (our unpublished results). These 

included a deleted versions  of the atPATL3 (at1g72160) (three clones) and atPATL6 

(at3g51670) (two clones) lacking the N-terminal 285 or 210 residues, respectively 

(Supplemental Fig. 1A, ct-atPATL3 and 6). Attempts to corroborate these interactions 

with the full-length MP, by using the same Y2H system, showed that the viral protein 

interacted with ct-atPATL6 and more weakly with ct-atPATL3 but not with the full-

length atPATL3 (Supplemental Fig. 1B). In order to confirm the interactions with the 

entire proteins we decided to use  an alternative  split-protein sensor system, which was 

specially designed to detect interactions between putative membrane-associated 

proteins. In this system the two interacting partners are expressed as fusion proteins 

with the N- and C-terminal fragments of the (β/ά)8-barrel enzyme N-(5-

phosphoribosyl)- anthranilate isomerase (Trp1p) from Saccharomyces cerevisiae. The 

interaction between both fused proteins reconstitutes Trp1 activity permitting yeast cells 

to grow on medium lacking tryptophan (Tafelmeyer et al., 2004). For this purpose, the 

N-terminal Trp1 fragment (NTrp) was fused to the N-terminus of the full-length 

atPATL3 or 6 to create NTrp:PATL3 and NTrp:PATL6, whereas that C-terminal Trp1 
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fragment (CTrp) was fused to the C-terminus of the full-length AMV MP resulting 

MP:Ctrp (see Fig. 1). Plasmids were co-transformed into yeast cells and positive 

transformants were selected after incubation at 28ºC for 3 days on minimal synthetic 

medium with tryptophan SD+AHW). Positive protein interactions were detected under 

the same growth conditions but with minimal synthetic medium lacking tryptophan 

(SD+AH). As shown in Fig. 1, yeast cells co-transformed with MP:CTrp1 and 

NTrp:PATL3 or NTrp:PATL6 growth in interaction selective medium (SD+HA), 

whereas no growth was observed in the negative interaction controls: NTrp:PATL3 or 

NTrp:PATL6 co-transformed with the protein p53 (p53:CTrp) and MP:CTrp plus 

NTrp:eCFP (this plasmid express the the NTrp1 fragment fused to de N-terminus of the 

cyan fluorescent protein, eCFP). .  

Next, we used bimolecular complementation analysis (BiFC) as a second 

approach to corroborate these interactions in planta (Hu et al., 2002; Aparicio et al., 

2006). Thus, the N-terminal  fragment of the yellow fluorescent protein (YFP) (NtYFP) 

was fused to the C-terminus  of AMV MP, whereas that the C-terminal fragment of the 

YFP (CtYFP) was fused to the N-terminus of atPATL3 and atPATL6 (see Fig. 2A). 

Agrobacterium mixtures of pMP-NtYFP plus pCtYFP-PATL3 or pCtYFP-PATL6 

cultures were infiltrated in Nicotiana benthamiana leaves and fluorescence in epidermal 

cells was monitored by confocal laser-scanning microscopy (CLMS) at 2 days post-

infiltration. We found that the reconstituted fluorescence was detected at the cell 

periphery and in punctate structures resembling PDs when the MP was co-expressed 

either with atPATL3 or atPATL6 (Fig. 2B, panels a and b). No fluorescence was 

detected neither when atPATL3 and 6 were co-infiltrated with the free NtYFP fragment 

nor when the MP was co-expressed with pCtYFP:ct38MPp (Supplemental Fig. 2, panels 

a, b and c; pCtYFP:ct38MPp express the CtYFP fragment fused to the last 38 residues 
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of the PNRSV MP; Aparicio et al., 2010). In Arabidopsis, Patellin family comprises six 

members characterized by a variable N-terminal domain followed by a Sec14 lipid-

binding domain and a C-terminal GOLD domain (Fig 2A) (Peterman et al., 2004). 

Since the GOLD domain is believed to be implicated in protein-protein interactions 

(Anantharaman and Aravind, 2002), we studied by BiFC technique whether the GOLD 

domain of the atPATL3 is involved in the interaction with the AMV MP. The GOLD 

domain of atPATL3 comprises amino acids from 353 to 487 (Fig. 2A) (see 

http://www.uniprot.org/uniprot/Q56Z59). Therefore,  the CtYFP fragment was fused to 

the N- terminal region of the atPATL3 lacking the GOLD domain (CtYFP:NtatPATL3),  

or to the GOLD domain alone (CtYFP:GOLDatPATL3) (see Fig. 2A). Every construct 

was co-infiltrated joint the MP:NtYFP, and unexpectedly the fluorescence was 

reconstituted with CtYFP:NtatPATL3 but not with CtYFP:GOLDatPATL3 (Fig 2B, 

panels c and de, respectively). Western blot analysis confirmed that all fusion proteins 

were expressed properly (Fig. 2C). Overall, these results indicate that atPATL3 and 6 

interact in planta with the AMV MP confirming the interactions by the Y2H system. 

Moreover, the GOLD domain is not strictly required to establish the interaction between 

MP and atPATL3 in the BiFC assay. 

Previously, it was shown that the AMV MP accumulates at PDs (van der Wel et 

al., 1998). In fact, agro-expression of the MP fused to the green fluorescent protein 

(GFP) (MP:GFP) in N. bentahmiana leaves showed a punctate structure pattern over the 

cell wall which represents PDs filled with MP:GFP (see Sánchez-Navarro and Bol, 

2001; Herranz et al., 2005; Oparka et al., 1997). In this work we co-expressed the AMV 

MP:GFP and the MP of Tobacco mosaic virus fused to the red fluorescent protein 

(DsRed), a well-established PD marker (Roberts et al., 2001; Crawford and Zambryski, 

2001; Boiko et al., 2000; Lucas, 2006), As expected, both proteins co-localize in PDs 

http://www.sciencedirect.com/science/article/pii/S0042682298991176
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(Supplemental Fig. 3A). As stated above the BiFC analysis showed that a pool of the 

MP-atPATLs complexes locate in PDs. This observation opens the question whether 

atPATL3 and 6 accumulate at these structures. Previous studies reported that PATL1 

seems to be a cytoplasmic protein that can associate with cellular membranes (Peterman 

et al., 2004, 2006). Then, we analyzed the subcellular localization of atPATL3 and 6 by 

transient agroexpression of the proteins fused with the GFP at its C-terminus 

(atPATL3:GFP and atPATL6:GFP) . Images by CMLS showed that the both fusion 

proteins accumulated at the cellular periphery (Supplemental Fig 3B, panels a and c). 

Nevertheless,  despite that both atPATL:GFP strongly mark the cell periphery it seems 

they do not accumulate at PDs. (Supplemental Fig. 3B panels b and d). In summary, the 

punctate pattern observed by the BiFC assay represents PDs filled with MP/atPATL 

complexes. Furthermore, the fact that a pool of atPATL3 and 6 changes its subcellular 

localization as a result of the interaction with the viral protein suggest that the MP 

would be interacting with these atPATLs somewhere out of the PDs and that the 

MP/atPATL complexes are transported towards the PD.  

 

MP-atPATLs interaction interferes with the viral infection 

Next step was to examine whether atPATLs-MP interactions could have an 

effect on the viral infection. Fisrtly, we  tested the effect of the over-expression of 

atPATL3 and atPATL6. For this purpose, two leaves from three plants per construct of 

transgenic Nicotiana tabacum plants expressing the AMV P1 and P2 proteins (P12 

plants, Taschner et al., 1991) were inoculated with RNA transcripts from a modified 

AMV RNA 3 clone that express the GFP together with the MP and the CP (Sanchez-

Navarro et al, 2001) (Fig. 3A). This construct permits to visualize infection foci and 

measure their area (Figure 3B). At 24 hours post-inoculation leaves were co-infiltrated 
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at 0.4 OD with binary plasmids expressing atPATL3, atPATL6, a mixture of both 

(atPATL3-6) or the luciferase (LUC) as negative control.  

By fluorescence microscopy, images of 50 individual infection foci/leaf were 

acquired at 4 days post-inoculation (dpi) and their area was measured using Image J 

software (Wayne, Rasband, National Institutes of Health, Bethesda, MD, USA; 

http://rsbweb.nih.gov/ij). Foci were grouped into three different categories attending 

their area size. As shows graph in Fig. 3C the percentage of fluorescent foci with an 

area smaller than 2 mm
2
 was 25% in control LUC infiltrated leaves whereas it rose until 

42%, 52% and 67% in the corresponding atPATL3, atPATL6 and atPATL3-6 infiltrated 

leaves, respectively. In contrast, the percentage of foci with an area higher than 3 mm
2
 

was 46% for LUC leaves but it decreased until 29%, 4% and 14% in the different 

atPATLs infiltrated leaves. This experiment was repeated two times with similar result. 

Overall, these results indicated that over-expression of both atPATLs diminished the 

cell-to-cell movement.  

The decreased foci size could be caused by a reduction of the cell-to-cell 

movement capacity as a consequence of an impaired targeting of the MP to the PDs. In 

order to determine if the AMV MP sub-cellular localization was affected by the over-

expression of atPATLs, we compared the distribution pattern of MP:GFP alone or co-

agroinfiltrated with atPATL3 or 6. In cells expressing the MP:GFP alone the protein 

was exclusively localizedat PDs (Fig. 4, upper panels). In contrast, when any of the two 

atPATLs was co-expressed with MP.GFP, we found that in most cells the fluorescence 

was located in addition to PDs, in spherical inclusion bodies. Moreover, at higher 

magnification irregular filamentous structures could also be observed (Fig. 4, middle 

and lower panels, respectively. Only the effect with atPATL3 is shown). These results 

suggest that atPATLs are interfering with the PD localization of a pool of the MP.  

http://rsbweb.nih.gov/ij
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Finally, we analyzed how the absence of atPATL3 and 6 affected the viral 

accumulation. Thus, Arabidopsis T-DNA insertion mutants for atPATL3 (atpatl3, 

SALK093994), atPATL6 (atpatl6, SAIL_284_B11) were isolated and the double 

mutant constructed (atpatl3-6). PCR analysis using atPATLs and T-DNA left border 

specific primers was carried out to verify the homozygosity of the mutants. RT-PCR 

analysis confirmed the absence of detectable atPATL3 and 6 mRNAs corroborating that 

mutations resulted in loss of expression (data not shown). Moreover, these mutants 

germinated in MS medium and growth in soil showing a similar phenotype to the wild 

type (wt) (Figure 5A). A. thaliana mutants and wt were inoculated with compatible 

AMV PV0196 isolate (DSMZ GmbH, Plant Virus Collection, Germany) virions. At 4 

dpi total RNA extracted from inoculated leaves was analyzed by Northern blot to detect 

the accumulation of the viral RNA 3 and 4 using a Digoxygenin-labelled AMV CP 

probe. Northern blot in Fig. 5B shows RNA 3 and 4 accumulation levels of five 

independent plants from one experiment. Northern blot signal was quantified using 

Image J software (Fig 5C). The graph illustrates that AMV RNAs accumulated at higher 

levels in atpatl3, atpatl6 and atpatl3-6 than in wt plants. This experiment was repeated 

again with similar results. Overall our results indicate that the interaction between 

atPATL3 or 6 with MP negatively affects the AMV accumulation in Arabidopsis plants. 

 

DISCUSSION 

The Arabidopsis Patellin family is composed by six members (designed as 

PATL1-6) characterized by showing a variable N-terminal region followed by a Sec14-

like domain and a C-terminal GOLD domain (Peterman et al., 2004). The yeast protein 

Sec14p is the prototype module known as the SEC14 domain which is a lipid binding 

domain. Proteins with Sec14 domain are involved in membrane trafficking, 
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cytoskeleton dynamics, lipid metabolism and lipid-mediated regulatory functions 

(reviewed in Philips et al., 2006; Bankaitis et al., 2007; Mousley et al., 2007). In 

contrast, GOLD domains are characteristic in several proteins involved in Golgi 

function and vesicle traffic and they are presumed to act as protein-protein interaction 

domains (Anantharaman and Aravind, 2002). PATLs are distributed across the plant 

kingdom although very little is known about its in vivo functions. Database mining 

indicates that in Arabidopsis atPATL3 and atPATL6 are expressed at some degree in 

the whole plant, including roots, at the vegetative stage, in the entire rosette and 

internodes after plant transition to flowering and in flowers, siliques and seeds (Winter 

et al., 2007). Biochemical and intracellular localization experiments carried out with 

PATL1 from Arabidopsis and zucchini reported that this protein binds 

phosphatidylinositol and exist in a cytoplasmic pool that can associate with cellular 

membranes playing a critical role in formation and maturation of the cell plate during 

late telophase in Arabidopsis cells roots (Peterman et al., 2004; 2006). PATLs would 

interact with membranes through the Sec-14 domain acting as adaptors for recruiting 

GOLD-domain binding proteins to specific membrane sites. On the other hand, cell-to-

cell traffic of viral genomes requires the interaction of the MPs with the host 

cytoskeleton components and endomembrane system to to reach the PDs (reviewed in 

Boevink and Oparka, 2005; Lucas, 2006; Hofmann et al., 2007).  

We have shown that atPATL3 and 6 interact with the AMV MP in yeast and in 

planta. Moreover, BiFC results reproduce the typical punctuate accumulation pattern at 

the cell peryphery of the viral protein suggesting that MP/atPATLs complexes 

accumulated at the PDs. The fact that at least atPATL3 does not accumulates at PDs 

when is expressed alone suggest that probably this pattern is a result of the interaction 
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with the MP which in its transport towards the PDs drags the atPATLs molecules 

modifiying its subcellular localization. 

Surprisingly, the BiFC analysis also showed that a deleted atPATL3 version 

lacking the GOLD domain (NtatPATL3) was still able to interact with the MP whereas 

the GOLD domain alone did not. Besides, the GAL 4-based Y2H system showed that a 

truncated version of atPATL3 and 6 containing the C-terminal part of the Sec14 and the 

entire GOLD domains where able to interact with the AMV MP (Supplemental Fig 1). 

Overall, these observations would indicate that the GOLD domain is not strictly 

necessary to establish the MP-atPATL3 interaction and that at least part of the Sec14 

domain is required to occur  this interaction. However, we cannot discard that the 

construct containing the GOLD domain alone could codify a protein with an inefficient 

folding not suitable to interact with the MP . The presence of part of the Sec14 C-

terminal domain could permit to achieve the correct folding of the GOLD rendering a 

functional domain. 

In addition to the accumulation of the MP/atPATL complexes at the PDs, we 

have also found that over-expression of atPATLs retains the MP in spherical and 

filamentous structures (Fig. 4). We cannot rule out the possibility that  the abnormal 

high amount of these structures could be induced by an elevated level of MP and 

atPATLs, as consequence of the agro-infiltration expression procedures.   

Over-expression and absence of the atPATLs induced an opposite effect on viral 

infection. Overall, our results show that both atPATL3 and 6 difficulty the cell-to-cell 

movement and reduce viral accumulation. In this sense, tt is tempting to speculate that 

the interaction of AMV MP with atPATL3 or 6 would interfere with the intercellular 

movement of the viral MP containing-complexes anchoring them to cellular membranes 

and PDs, which negatively affects to the viral transport towards and through PDs. Thus, 
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PATLs would operate as a defensive barrier against AMV infection. Impairment in viral 

spread has been reported as a result of  over-expression of different plant proteins which 

directly interact with viral MPs; in most cases this interference has been found to be 

associated with changes in the intracellular localization patterns of MPs (Kragler et al., 

2003; Chen et al., 2005; Curin et al., 2007; Brandner et al., 2008; Sasaki et al., 2009, 

see Pallas and Garcia, 2011 for a review). Future experiments will permit to unravel the 

mechanism by which PATLs interfere with AMV transport and subcellular localization. 
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EXPERIMENTAL PROCEDURES 

Plasmid construction 

The full-length ORFs of atPATL3 and 6 were amplified by RT-PCR from 

Arabidopsis total extracted RNA with specific sense and antisense primers, containing 

the restriction site SfiI. The amplified fragments were exchanged by the eCFP (cyan 

fluorescent variant protein) gene in the pNtrp-eCFP plasmid digested with SfiI and 

dephosphorylated. The resultant clones, pNtrp-atPATL3 and pNtrp-atPATL6, contain 

the 42 N-terminal amino acids of the (β/ά)8-barrel enzyme N-(5_-phosphoribosyl)- 

anthranilate isomerase (Trp1p) from Saccharomyces cerevisiae fused at the N-terminus 

of the host proteins PATLs. The AMV MP gene was amplified from the AMV cDNA3 

(Sánchez-Navarro et al., 2001) with specific primers containing the SfiI sequence and 

inserted in the pI-Ctrp3 plasmid, previously digested with SfiI and dephosphorylated. 

The resultant clone contains the 179 C-terminal amino acid of Trp1p protein fused at C-

terminus of the MP. 

A modified pSK plasmid (psk35S) containing the cauliflower mosaic virus 35S 

promoter followed by a multiple cloning site including NcoI and NheI restriction sites 

and the potato proteinase inhibitor terminator (Popit)  was used to generate GFP and 

BiFC fusion proteins. Full-length GFP, NtYFP or CtYFP fragments were PCR-

amplified with specific pairs of sense/antisense primers containing PagI (compatible 

with NcoI) /NcoI restriction sites or NheI/ XbaI (compatible with NheI) restriction sites. 

PCR products were cloned into NcoI linearized psk35S plasmid to obtain 

psk35S:NtYFP-(NcoI-NheI)-Popit and psk35S:CtYFP-( NcoI-NheI)-Popit or into NheI 

linearized pks35S plasmid to obtain psk35S:(NcoI-NheI)-GFP-Popit, psk35S:(NcoI-

NheI)-NtYFP-Popit and psk35S:( NcoI-NheI)-CtYFP-Popit. atPATL3, atPATL6, 

Con formato: Sangría: Primera línea: 
1,25 cm
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NatPATL3, and GOLDatPATL3  ORFs were PCR-amplified with specific sense and 

antisense primers containing a NcoI and NheI restriction sites respectively, and cloned 

either in psk35S:CtYFP-( NcoI-NheI)-Popit or psk35S:(NcoI-NheI)-GFP-Popt. AMV 

MP was PCR-amplified and cloned into psk35S:( NcoI-NheI)-NtYFP-NOS. Finally, the 

resultant psk35S:fusion proteins- cassettes were introduced into the XhoI digested 

pMOG800 binary vector. Plasmid px032/GFP-MP-CP has been described in Sánchez-

Navarro et al., 2001. Binary plasmids expressing the AMV MP fused to the GFP (MP-

GFP) and CtYFP:38aaMPp have been previously described (Herranz et al., 2005 and 

Aparicio et al., 2010, respectively). 

Split-protein sensor yeast two-hybrid based system 

pNtrp-PATL3 or pNtrp-PATL6 plasmid was co-transformed with pI-AMV MP-

Ctrp3 clone into ……yeast cells strain auxotroph for showing Tryptophan (W), 

Histidine (H), Adenine (A), Uracile (URA3) and Leucine (L) auxothophies. Positive 

transformants were selected after incubation at 28ºC for 3 days on minimal synthetic 

medium lacking without Uracile and Leucine (SD+AHW). Positive protein interactions 

were detected under the same growth conditions and minimal synthetic medium but 

withoutlacking tryptophan (SD+HA).  

Agroinfiltration and laser scanning confocal analysis  

Binary plasmids were transformed into Agrobacterium tumefaciens C58 cells by 

electrophoration and spread on LB plates containing 50 μug/ml of kanamycin and 25 

μug/ml of rifampicin (LBkr). For BiFC analysis positive colonies were grown in liquid 

LBkr at 28 °C for 24 hours and the bacterial cultures were suspended in infiltration 

buffer (10 mM MgCl2, 10mM MES pH 5,6) at 0.4 OD600 into 3 week old Nicotiana 

benthamiana plants. The YFP expression was analyzed at 2 days post-infiltration with a 

Con formato: Fuente: Cursiva

Con formato: Fuente: Cursiva

Con formato: Sangría: Primera línea: 
1,25 cm
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Leica TCS SL confocal laser scanning microscope (Leica), (GFP excitation and 

emission at 488 and 535 nm, respectively). 

Plant inoculation 

Arabidopsis or N. tabacum P12 plants were grown in pots in a growth chamber 

at 24ºC with a photoperiod of 16 h light/8 h dark. Inoculation of Arabidopsis plants was 

carried out with purified virions of AMV PV0196 isolate (DSMZ GmbH, Plant Virus 

Collection, Germany). Three leaves of four week olds Arabidopsis plants were 

mechanically inoculated with 30 mM Sodium phosphate buffer pH 7. P12 plants were 

inoculated with transcripts of the modified RNA 3 expressing the GFP (GFP-MP-CP). 

Plasmid R3 GFP-MP-CP was linearized with PstI and transcribed with T7 RNA 

polymerase (Roche) following the manufacturer’s recommendations. Transcripts (5 

ug/leaf) were mechanically inoculated on two leaves of two P12 plants.  

Transient over-expression of Patellins in P12 plants 

At 24 hours post-inoculation P12 leaves were infiltrated with Agrobacterium 

cultures expressing the Luciferase protein, atPATL3 or 6 prepared in infiltration buffer 

at 0,4 OD600 . GFP expression of infection sites was visualized at 4 dpi with a LEICA 

MZ16F fluorescence stereomicroscope. The area of the foci was measured using Image 

J software (Wayne, Rasband, National Institutes of Health, Bethesda, MD, USA; 

http://rsbweb.nih.gov/ij) 

Northern and western blots 

Inoculated leaves were harvested at indicated times. Leaves were ground in 

liquid nitrogen with mortar and pestle. Total RNA was extracted from 0.1 g leaf 

material using Trizol Reagent (Sigma). RNAs were denatured by formaldehyde 

treatment and analyzed by northern blot hybridization as described previously 

(Sambrook et al., 1989). RNAs were visualized on blots using a Digoxygenin labelled 

http://rsbweb.nih.gov/ij
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riboprobe corresponding to the AMV CP ORF. Sintesis of Digoxygenin labelled 

riboprobes, hybridization and Digoxygenin detection procedures were carried out as 

previously described (Pallas et al., 1998).  

For western blot analysis total proteins were extracted from 50 mg leaf tissue. 

Samples were homogenized with 100 μl of Laemmli buffer (Laemmli, 1970), boiled 3 

min and 25 μl of extracts were resolved in a 14% SDS-PAGE. Gels were 

electrotransferred to PDVF membranes (Amersham) following the manufacturer’s 

recommendations. Detection of NtYFP-fused proteins was carried out with anti-GFP N-

terminal antibody (Sigma; Sant-Louis, Missouri; product number G1544) whereas 

CtYFP-fusion proteins were detected using an anti GFP antibody (Roche; Cat No 

11814460001). Detection procedures were carried out following the manufacturer’s 

recommendations.  
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FIGURE LEGENDS 

Fig. 1. Trp1 yeast two hybrid assays. Diferent dilutions (on the top) of the co-

transformed yeast cells with the indicated pair of plasmids (on the left) were spotted on 

synthetic minimal medium containing (SD+AHW) or lacking lacking Tryptophan 

(SD+HA) to confirm a proper transformation or a positive interaction, respectively. 

Self-interaction of MP (MP:NTrp + MP:CTrp) and interaction of NTrp:atPATL3 or 

NTrp:atPATL6 with p53:CTrp and MP:CTrp with NTrp:eGFP were used as positive 

and negative controls, respectively.  

 

Fig. 2. Analysis of the MP-PATLs interaction by the BiFC technique. (A) Schematic 

representation of the clones expressed joint the AMV MP:NtYFP. The first two 

constructs represent the full-length atPATL3 and 6 showing the domain architecture: the 

characteristic threonine rich N-terminus, central Sec 14 and C-terminal GOLD domains. 

The next two constructs represents the deleted versions of atPATL3 lacking the GOLD 

domain or the threonine-rich and sec-14 domains, respectively. Numbers correspond to 

the amino acid residue positions. (B) BiFC analysis to identify the atPATL3 domains 

implicated in MP-PATL3 interaction. Images of epidermal N. benthamiana leaves 

captured by confocal laser scanning microscope. Leaves were infiltrated with 

MP:NtYFP joint (a) CtYFP:atPATL3 ,(b) CtYFP:atPATL6, (c) CtYFP:NtatPATL3 or 

(d) CtYFP:GOLDatPATL6. White arrows indicate reconstituted fluorescence in 

punctate bodies representing PDs. Bar = 10 µm. (E) Western analysis of the expression 

of the corresponding fusion proteins analyzed in (B). The detection was made with 
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specific antibodies detecting NtYFP and CtYFP fusion proteins (Nt and Ct, panels, 

respectively) Lanes 1 to 4 leaves infiltrated with MP:NtYFP plus CtYFP:atPATL3, 

CYFP:atPATL6, CYFP.NatPATL3 or CYFP:GOLDatPATL3, respectively. Lane 5 

non-infiltrated leaves. Asterisk denotes an unspecific host protein.  

 

Fig. 3. Effect of the PATLs over-expression on viral infection (A) The schematic 

representation shows the AMV RNA 3 expressing the GFP (R3-GFP). The open reading 

frames corresponding to the green fluorescent protein (GFP), the movement protein 

(MP) and the coat protein (CP) are represented by big boxes. (B) Representative images 

of the foci size induced by the inoculation the RNA transcripted fromthe R3-GFP 

construct in N. tabacum P12 leaves infiltrated with binary plasmids expressing  LUC or 

a mixture of atPATL3 plus 6.(C) Graph showing the percentage of foci grouped into 

three different ranges of area size. The foci area were measured in N. tabacum P12 

plants, inoculated with transcripts of R3-GFP and agro-infiltrated with binary plasmids 

expressing atPATL3, atPATL6, a mixture of both (atPATL3-6) or the luciferase (LUC) 

as negative control. 

  

Fig. 4. Confocal laser scanning microscope images of epidermal N. benthamiana leaves 

infiltrated with the Agrobacterium cultures expressing the proteins  indicated on the left. 

Upper panels shows punctuated bodies representing PDs filled with MP:GFP. Middle 

and lower panels show the spherical inclusion bodies and cytoplasmic irregular 

filamentous structures, respectively, observed when the MP:GFP was co-expressed with 

atPATL3 (denoted by white arrows).  
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Fig. 5. Study of the viral accumulation in Arabidopsis knockouts for atPATLs (A) 

Photograph of 10-days-old seedlings of the Arabidopsis wild type (wt) and knockouts. 

Seedlings were grown on agar plates with MS medium under controlled growth 

conditions. (B) Detection of AMV accumulation in Arabidopsis wt and knockout lines 

by Northern blot analysis of five infected plants. RNA 3 and 4 are indicated on the left. 

Lower panel is the Ethidium bromide (EtBr) stained gel as loading control. (C) Graph 

showing the average of viral RNAs accumulation measured from the Northern blot in B. 

Standard deviation values are shown. Significant differences are indicated by *P<0.05. 

 

Supplemental Fig. 1. Study of the MP-PATLs interaction by the conventional GAL 4- 

based Y2H system (A) Schematic representation of the full-length Arabidopsis 

atPATL3 showing the domain architecture of the protein (see 

www.uniprot.org/uniprot/Q56Z59)..   . pAD:ct-atPATL3 and pAD:ct-atPATL6 

represent the deleted versions of atPATL3 and atPATL6 lacking the N-terminal 285 or 

210 amino acids, respectively, found as interacting  partners of the AMV MP (B) Co-

transformed yeast cells (AH109) with the pBD:MP or empty pBD (pGBKT7) plasmids 

and pAD:atPATL3, pAD:ct-atPATL3 and 6 were spotted on minimal synthetic dropout 

(SD) medium containing (SD+HA) or lacking (SD) histidine and adenine to confirm a 

proper co-transformation or a positive interaction, respectively. Cells were growth at 

28ºC for 4 days. . Interaction with the empty pBD vector was used as negative control. 

 

Supplemental Fig. 2. Negative controls used in the BiFC analysis. N. benthaminana 

leaves were co-infiltrated with the NtYFP fragment plus CtYFP:PATL3 or 

CtYFP:PATL6 (panel a and b, respectively) and MP:NtYFP plus CtYFP.38aaMPp 

(panel c). MP-NtYFP plus CtYFP:atPATL3 was used as positive interaction (panel d). 

http://www.uniprot.org/uniprot/Q56Z59
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In all cases agrobacterium cultures were infiltrated at 0.5 OD600 and images were 

collected at 2 days post-infiltration by CLSM (GFP excitation and emission at 488 and 

535 nm respectively). 

 

Supplemental Fig. 3. Subcellular localization AMV MP, atPATL3 and atPATL6. (A) 

Co-localization at plasmodesmata of the AMV and TMV MPs. Leaves of N. 

benthamiana plants were co-infiltrated with agrobacterium cultures carrying binary 

vectors that express the MPs of AMV and TMV fused to the GFP (MP–GFP) and the 

dsRed (MPTMV–dsRed), respectively at 0.2 OD600. Images were collected at 2 days 

post-inoculation by CLSM (GFP excitation and emission at 488 and 535 nm, 

respectively; DsRed excitation and emission at 557 nm and 579 nm, respectively). (B) 

Subcellular localization of atPATL3 and 6 with the GFP was fused at their C-termius 

(atPATL3:GFP and atPATL6:GFP) and infiltrated in N. benthamiana leaves. CLSM 

images shows that the proteins present a strong signal at the cell periphery (panels a and 

c). Magnification of the cell periphery shows that both, atPATL3:GFP and 

atPATL6:GFP do not seem to accumulate at PDs (panels b and c). In all cases 

agrobacterium cultures were infiltrated at 0.2 OD600 and images were collected at 2 

days post-inoculation (GFP excitation and emission at 488 and 535 nm, respectively). 

 

 


