
Agent Reactive Capabilities in Dynamic Environments

Jorge Agüero, Miguel Rebollo, Carlos Carrascosa, Vicente Julián1

Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

Camino de Vera S/N 46022 Valencia (Spain)
{jaguero, mrebollo, carrasco, vinglada}@dsic.upv.es

Abstract

Currently, there are many intelligent agent models that provide a number of
components or abstractions to solve different types of problems. However,
few of them provide abstractions or concepts that allow considering how
to deal with complex dynamic environments (an environment that changes
continuously in terms of available resources, global behavioural rules, etc.)
In this work, we propose two abstractions that provide the developer with
a new way of modeling reactive agent capabilities in dynamic environments.
The first abstraction focuses on how to process the environmental stimuli as
events; the second abstraction specifies how to launch tasks in response to
events, which is an approach that is based on event-condition-action rules.
Moreover, we present an example that is based on a call center CBR-based
application, and a performance evaluation of the proposal is also provided.

Keywords:
Agent Models, Reactive Agent Architectures, Case-Based Reasoning

1. Introduction

The design of systems to solve problems in dynamic environments is a
complex task. This is most evident when addressing real problems where the
dynamic nature of the environment makes solutions that are appropriate at
a given time and that are inappropriate for another instant in time[6]. These
systems must deal with an environment that changes continuously in terms of

1Corresponding author: Tel.: +34 96 387 73 50; fax: +34 96 387 73 59.

Preprint submitted to Neurocomputing April 1, 2015

its available resources, global behavioural rules, norms, etc. The environment
includes multiple actors and artifacts which may frequently enter or leave the
scene unexpectedly[2].

However, most of the agent design methodologies do not include con-
cepts or abstractions that deal with aspects of dynamic environments. In
these methodologies, the environment is usually an abstraction where agents
are located and interact with it. Our proposal offers tools to encapsulate
the cognitive capabilities of the agent in order to face a changing environ-
ment. Thereby providing the developer with abstractions to model interac-
tions in dynamic environments. We propose to extend the generic agent-π[3]
by adding task and event models in order to increase the expressiveness of
the model.

The first abstraction allows the agent to know how to process repeti-
tive stimuli coming from the environment (how to handle events that cause
changes in the environment). The taxonomy allows the agent to identify all
the events and the order in which events will be processed. The second ab-
straction allows the agent to decide how to launch actions or tasks in response
to changes in the environment (in an event-condition-action model). With
this proposal, we want to provide the developer with abstractions in order
to obtain specialized agent responsiveness in dynamic environments. The
high-level abstractions provided are platform-independent. The correspond-
ing rules to transform them into the concepts that are related to different
execution platforms (platform-dependent) must also be defined.

In order to evaluate the proposed abstractions, we have chosen a case
study that consists of the implementation of a CBR system for a help-desk
environment, which provides intelligent customer support. The CBR sys-
tem works with automatic incidences that are related to computer errors
(network-system failures and personal computer problems) in a department
that helps with the problem-solving process.

2. Agent-π: an Agent Model

In [3, 4], we proposed a set of meta-models, called πVOM (Platform-
Independent Virtual Organization Model), which were designed using the
detection of common concepts in an iterative cycle consisting of a bottom-up
analysis. Common elements in existing MAS methodologies (i.e., TROPOS[5],
GAIA [10], OperA[7]) were identified and incorporated to the πVOM model,
which is explained in detail in [4]. The main views/models of πVOM are:

2

Structure, Functionality, Normative, Agent, and Environment. Figure 1
shows the Agent model, called agent-π (Platform-Independent agent). This
figure provides an abstract view of the main components, concepts, and the
existing relationships of the agent-π model.

Figure 1: Concepts used in the agent-π model

The Agent model is a set of interrelated components, each of which serves
a specific function for the definition of the agent. The main components are:
Behaviours, Capabilities, and Tasks. The highest-level entity to be considered
is the agent. The organizations, group rules, or norms (other πVOM models)
are not taken into account in this paper due to space limitations.

Tasks represent the know-how of the Agent and they are the components
where actions are implemented. Capabilities represent the different situa-
tions of the agent and control where Tasks are applied. Capabilities follow
a pattern of event-condition-action. Behaviours are roles that group these
capabilities. The main reason for dividing the whole problem-solving method
is to provide an abstraction that organizes the problem-solving knowledge in
a modular and gradual way. In the Agent model, the Task concept is encap-
sulated in a Capability, which is an event-oriented component that expresses
the circumstances under which a Task must be launched for execution. A
set of Capabilities can be encapsulated into a Behaviour that models the
response of the agent to different situations.

3

3. Extending Task and Event models

As stated above, we propose two abstractions that allow highly dynamic
environments to be modelled. These abstractions are implemented on the
agent-π model (on the Task and Event meta-models), allowing the agent-π
architecture to be extended. This new architecture proposes a novel way to
model the reaction capacity of agent. This new agent-π provides a set of
different skills (capabilities). This set of skills give the developer the ability
to decide how to try to solve a specific problem.

3.1. Task Taxonomy

A fundamental component of the agent model is the Task. Tasks are the
elements that contain the code that is associated to the agent’s Capabilities.
A Task in execution belongs to only one Capability, and it can be viewed
as the agent’s answer to a problem. However, it is the designer who must
determine whether that problem must be solved only once or solved as many
times as it occurs. Different instances can be activated accordingly. Tasks
can be classified into the following types:

1. Multiple: Different instances of the same Task can be activated. For
example, if a Task has to answer a specific message by means of an
ACK (Acknowledge), the designer can decide that this answer can be
done in parallel to different messages. Thus, the designer would define
the task that is in charge of answering these messages as multiple.

2. Exclusive: There exists only one instance of the Task at a given time.
This kind of Task can be divided into two sub-kinds according to the
way new activations of instances are dealt with when the event and the
suitable condition are given: (i) Non-interrupting: The first instance
is continued until it finishes, thus delaying the possible execution of
new instances of the same Task ; (ii) Interrupting: The new instance
eliminates the old one. For instance, if the capability is to calculate a
solution to a problem and the generation of a new instance indicates
that the data being used in the old instance calculation are outdated,
then the calculation that is being done is no longer useful.

3.2. Event Taxonomy

An Event is any notification that is received by an agent informing the
agent that something that may be of interest has happened in the environ-
ment or inside the agent. This may cause the activation of a new Capability.

4

In a similar way to Tasks, one possible classification of events comes up when
the agent handles the new instances of the same event:

1. Multiple: There can be different instances of the same event in the
queue, and all of them have to be managed.

2. Exclusive: There exists only one instance of an event type waiting
to be attended to. Depending on the way new event instances are
managed, these events can be classified into two sub-types: (i) Non-

interrupting: If a new event instance arrives and there exists a pre-
vious instance of the same event in the queue, the new event is elim-
inated; (ii) Interrupting: If a new event instance arrives and there
exists a previous instance of the same event in the queue, the old event
is eliminated.

Thus, events may be generated according to different accions with dif-
ferent behaviors depending on the proposed taxonomies. According to the
previously presented, different types of capabilities can be defined. The fol-
lowing section introduces the different possible combinations.

4. Capability Taxonomy

We can now analyze in detail the different types of capabilities (resulting
from the combination of different types of events and tasks) that are available
to the developer to solve different problems. To analyze the different features
provided by our proposal, we assume that an agent Ai has various Tasks,
Capabilities, and Behaviours, and we define the following:

1. Let C = {C1, C2, . . . , CI} be the set of all the agent capabilities, such
that the i-nth capability is Ci ∈ C|i = {1, . . . , I} ∧ I ∈ N.

2. Let E be the set of all the events that handle the agent. These events
are grouped into queues E = {E1, E2, . . . , EK}, where EK is the event
queue of the capability Ck, such that EK ∈ E|K = {1, . . . , I} ∧ I ∈ N.

3. Let EK [t] = {ek[t0], . . . , ek[tn]} be an event queue at the instant of
time t, containing a series of events ek[ti] that are produced in the time
interval [t0, tn], such that ek[ti] ∈ EK |(0 ≤ i ≤ n) ∧ (tn ≤ ti) ∧ (tn >
t0 > 0)

5

4. Let T = {T1, T2, . . . , TJ} be the set of all the agent tasks, such that
Tj ∈ T |j = {1, . . . , I} ∧ I ∈ N.

5. Let T [t] be the set of agent active tasks at the instant t (with T [t] ⊆ T).

6. Let Tk[t] be an instance of the k-nth task that is launched at the instant
t by the capability Ck in response to the event ek[t] of the queue EK [t]
(with Tk[t] ∈ T [t] ⊆ T).

Finally, as stated above, our agent model is a process of Event-Condition-
Action (definition 6), which is managed by Capabilities. However, this Event-
Condition-Action process can be interpreted as a functional relationship, i.e.,
a Capability can be interpreted as a function y = Ck(x) (a function that
activates or initiates tasks). This function takes the event ek[t] as input
(argument x) and produces the task Tk[t] (value y) as output. Thus, an
active task is launched as Tk[t] = Ck(ek[t]) if the trigger condition is correct.
Summarizing, this can be described as (Capability as a function):

Tk[t] = Ck(ek[t]) =

{

∅ if event condition = false

Tk if event condition = true

With these definitions, it is possible to analyze different combinations of
the proposed abstractions that allow the developer to solve different problems
in dynamic environments. The implementation of this proposal assumes that
the agent life cycle is determined by a set of events with a frequency fe, which
are stored in its queue. These events are processed by the agent with a rate
given by the scheduler (fs) and a task is subsequently launched in response
to this event (which has a duration τ). To appreciate the usefulness of this
proposal, it is assumed that fe ≫ fs ≫ 1/τ , i.e., the speed with which the
events arrived is very high (additional tasks may be or may not atomic).
Therefore, the above description of the event and task taxonomy generates
nine types of Capabilities that we describe in the following subsections.

4.1. mmCapability: Multiple Events and Multiple Tasks.
In this case, there is an event queue at the instant t, such that EK [t] =

{ek[t0], . . . , ek[tn]} (with tn > t0), and the first event in the queue is selected
ek[t] = first(EK [t]) = ek[t0], which is verified by the capability Ck to activate
the task Tk[t] = Ck(ek[t0]) for its launch. The task and event queues (in the
agent) can be described as:

EK [t+ 1] = EK [t]− first(EK[t])

T [t+ 1] = T [t] ∪ {Tk[t]}

6

This scenario assumes that the agent reacts to all of the stimuli in the
environment and, therefore, has all the events in memory (queued). In re-
sponse to this monitoring, the agent reacts by launching as many tasks as
events processed.The agent has a complete monitoring of the environment
and responds to all the dynamics or changes.

4.2. imCapability: Interrupting Events and Multiple Tasks.

In this case, it is assumed that there is an event queue EK [t] = {ek[tn]}
that maintains only one significant event (the last one). However, we can
assume that there is a real event queue at the instant t, such that EK [t] =
{ek[t0], . . . , ek[tn]} (with tn > t0), and in order to model interrupting events,
it is only necessary to process the last event (and only one event) ek[t] =
last(EK [t]) = ek[tn] and then proceed to empty the queue of events that
remain or are stored EK [t] = ∅. Thus, once the relevant event is received,
it is verified by capability Ck to activate the task Tk[t] = Ck(ek[tn]) for its
launch. The task and event queues can be described as:

EK [t+ 1] = EK [t]− last(EK [t]) ⇒ EK [t+ 1] = ∅

T [t+ 1] = T [t] ∪ {Tk[t]}

In this scenario, the agent has good reactivity and launches as many new
taskes as are required by relevant events. However, this scenario has a limited
monitoring capability (only the last event is considered to be relevant).

4.3. nmCapability: Non-Interrupting Events and Multiple Tasks.

In this case, it is assumed that there is an event queue EK [t] = {ek[t0]}
that maintains only one significant event (the first one). However, we can
assume that there is a real event queue at the instant t, such that EK [t] =
{ek[t0], . . . , ek[tn]} (with tn > t0), and in order to model non-interrupting
events, it is only necessary to process the first event (and only one event)
ek[t] = first(EK [t]) = ek[t0] and then proceed to empty the queue of events
that remain or are stored EK [t] = ∅. Thus, once the relevant event is received,
it is verified by capacity Ck to activate the task Tk[t] = Ck(ek[t0]) for its
launch. The task and event queues can be described as:

EK [t+ 1] = EK [t]− first(EK[t]) ⇒ EK [t+ 1] = ∅

T [t+ 1] = T [t] ∪ {Tk[t]}

This type of capability has characteristics that are similar to the previous
capability. The only difference is that the event instance that is considered
to be relevant is the first one received.

7

4.4. miCapability: Multiple Events and Interrupting Tasks.

In this case, there is an event queue at the instant t, such that EK [t] =
{ek[t0], . . . , ek[tn]} (with tn > t0), and the first event in the queue is selected
ek[t] = first(EK [t]) = ek[t0], which is verified by the capability Ck to activate
the task Tk[t] = Ck(ek[t0]) for its launch. The task and event queues can be
described as:

EK [t+ 1] = EK [t]− first(EK[t])

T [t+ 1] =

{

(T [t]− {Tk}) ∪ {Tk[t]} if T [t] ∩ {Tk[t]} 6= ∅
T [t] ∪ {Tk[t]} otherwise

This scenario assumes that the agent monitors all of the event instances
received, but in response keeps running only one task (of a specific type).
This scenario is quite reactive, but it is costly since the agent must safely
stop when the task is interrupted.

4.5. iiCapability: Interrupting Events and Interrupting Tasks.

In this case, it is assumed that there is an event queue EK [t] = {ek[tn]}
that maintains only one significant event (the last one). However, we can
assume that there is a real event queue at the instant t, such that EK [t] =
{ek[t0], . . . , ek[tn]} (with tn > t0), and in order to model interrupting events,
it is only necessary to process the last event (and only one event) ek[t] =
last(EK [t]) = ek[tn] and then proceed to empty the queue of events that
remain or are stored EK [t] = ∅. Thus, once the relevant event is received,
it is verified by capacity Ck to activate the task Tk[t] = Ck(ek[tn]) for its
launch. The task and event queues can be described as:

EK [t+ 1] = EK [t]− last(EK [t]) ⇒ EK [t+ 1] = ∅

T [t+ 1] =

{

(T [t]− {Tk}) ∪ {Tk[t]} if T [t] ∩ {Tk[t]} 6= ∅
T [t] ∪ {Tk[t]} otherwise

In this scenario, the agent only maintains the last instance of an event type
that was received. Moreover, when a new event arrives, the agent stops the
task for this type of event and launches a new task. This new task will be
the task that best matches or adjusts the new event received.

4.6. niCapability: Non-Interrupting Events and Interrupting Tasks.

In this case, it is assumed that there is an event queue EK [t] = {ek[t0]}
that maintains only one significant event (the first one). However, we can
assume that there is a real event queue at the instant t, such that EK [t] =

8

{ek[t0], . . . , ek[tn]} (with tn > t0), and in order to model non-interrupting
events, it is only necessary to process the first event (and only one event)
ek[t] = first(EK [t]) = ek[t0] and then proceed to empty the queue of events
that remain or are stored EK [t] = ∅. Thus, once the relevant event is received,
it is verified by capacity Ck to activate the task Tk[t] = Ck(ek[t0]) for its
launch. The task and event queues can be described as:

EK [t+ 1] = EK [t]− first(EK[t]) ⇒ EK [t+ 1] = ∅

T [t+ 1] =

{

(T [t]− {Tk}) ∪ {Tk[t]} if T [t] ∩ {Tk[t]} 6= ∅
T [t] ∪ {Tk[t]} otherwise

This type of capability has characteristics that are similar to the previous
capability. The only difference is that the event instance that is considered
to be relevant is the first one received. This capability stops the previous
task (which no longer responds to the event) and launches a new task.

4.7. mnCapability: Multiple Events and Non-Interrupting Tasks.

In this case, there is an event queue at the instant t, such that EK [t] =
{ek[t0], . . . , ek[tn]} (with tn > t0), and the first event in the queue is selected
ek[t] = first(EK [t]) = ek[t0], which is verified by the capability Ck to activate
the task Tk[t] = Ck(ek[t0]) for its launch. The task and event queues can be
described as:

EK [t+ 1] = EK [t]− first(EK [t])

T [t+ 1] = T [t] ∪

{

∅ if T [t] ∩ {Tk[t]} 6= ∅
{Tk[t]} otherwise

In this case, the agent stores all events, but these events do not launch a
new task instance if there exists a previous instance of the same task still in
execution. In other words, the event is not treated until the task is finished.

4.8. inCapability: Interrupting Events and Non-Interrupting Tasks.

In this case, it is assumed that there is an event queue EK [t] = {ek[tn]}
that maintains only one significant event (the last one). However, we can
assume that there is a real event queue at the instant t, such that EK [t] =
{ek[t0], . . . , ek[tn]} (with tn > t0), and in order to model interrupting events,
it is only necessary to process the last event (and only one event) ek[t] =
last(EK [t]) = ek[tn] and then proceed to empty the queue of events that
remain or are stored EK [t] = ∅. Thus, once the relevant event is received,

9

it is verified by capacity Ck to activate the task Tk[t] = Ck(ek[tn]) for its
launch. The task and event queues can be described as:

EK [t+ 1] = EK [t]− last(EK [t]) ⇒ EK [t+ 1] = ∅

T [t+ 1] = T [t] ∪

{

∅ if T [t] ∩ {Tk[t]} 6= ∅
{Tk[t]} otherwise

Similarly to the previous capabilities, only one task instance is allowed
to be in execution. Moreover, in this case, only the last instance of an event
type is stored until treated.

4.9. nnCapability: Non-Interrupting Events and Non-Interrupting Tasks.

In this case, it is assumed that there is an event queue EK [t] = {ek[t0]}
that maintains only one significant event (the first one). However, we can
assume that there is a real event queue at the instant t, such that EK [t] =
{ek[t0], . . . , ek[tn]} (with tn > t0), and in order to model non-interrupting
events, it is only necessary to process the first event (and only one event)
ek[t] = first(EK [t]) = ek[t0] and then proceed to empty the queue of events
that remain or are stored EK [t] = ∅. Thus, once the relevant event is received,
it is verified by capacity Ck to activate the task Tk[t] = Ck(ek[t0]) for its
launch. The task and event queues can be described as:

EK [t+ 1] = EK [t]− first(EK [t]) ⇒ EK [t+ 1] = ∅

T [t+ 1] = T [t] ∪

{

∅ if T [t] ∩ {Tk[t]} 6= ∅
{Tk[t]} otherwise

In this scenario, the agent has a behavior that is similar to the behavior in
previous capability, however, the agent only stored the first instance of an
event type until treated. If the agent receives similar event instances, only
the first received is stored and the rest are discarded.

5. Case study

In this section, we will use an example in the domain of a customer sup-
port application to illustrate and test the proposed taxonomy. Specifically,
we consider a multi-agent system that acts on behalf of a group of technicians
that must solve problems in a help-desk environment that was presented in
[8]. The system control every process involved in providing technological and
customer-support services to an organization by means of a call center. Each
agent that represents an operator of the help-desk implements a CBR module

10

to solve each ticket. Each agent has its own knowledge resources to generate
a solution for the ticket and has a Domain-CBR engine that makes queries to
its domain-case case-base. The CBR engine acts as an intelligent module for
the agent, helping it with the problem-solving process. Agents must solve the
problems that the call center receives, which are commonly known as tick-
ets in call-center jargon. In addition, the organization has signed a Service
Level Agreement (SLA) with the customers that have contracted the support
service. If the proposed solution exceeds this allotted time, the organization
can receive a penalization, which becomes greater as time passes.

The system proposed in [8] has been extended to include the proposed
taxonomy. For automatic management of the system, tickets that are gen-
erated automatically in response to computer errors are treated as ”events”.
These events trigger the different capabilities of designed agents and launch
the appropriate task instances to solve the incidences that occur raised in
the different tickets. Both events and tasks (and, therefore, capabilities) are
defined according to the proposed taxonomy. By default, all the tickets gen-
erated by the customers are controlled by a mmCapability, which captures
all the events of the same type generating as many task instances as needed.
Nevertheless, this behavior is not appropriate in all situations. This exten-
sion improves some problematic situations that arose in the previous version
of the system, which include the following:

• On some occasions, the same task was repeatedly executed if a customer
generated tickets of the same type repeatedly. This situation can easily
be treated if the associated capability of the agent is defined as an
iiCapability. In this case, the system automatically only takes into
account the last generated event. Moreover, if there exists a task that
is still running in an attempt to solve the same incidence, this task
must be cancelled and a new instance is launched.

• Similar tasks were executed to solve the same problem when different
customers launched different tickets for a network failure, with the
subsequent loss of performance. This situation can be controlled by
defining a nnCapability. This capability allows modeling situations
where multiple automatic tickets/events generated by a network failure
must be controlled by a unique instance of a task that must take into
account the time when the failure was detected.

• In the older version of the system, a failure in the temperature of the

11

server room generated continuous events that had to be treated by the
system. In this new version, this event is controlled by an inCapability,
which allows a non-interrumpible task instance to be launched only
taking into account the last event received.

• Another problem was produced when the resolution of different inci-
dences required the use of a limited resource (i.e., manpower). This
situation caused serious problems in the previous version of the sys-
tem. This situation can now be designed as a mnCapability which
allows multiple instances of an event type to be managed and launches
a non-interrumpible task instance to control the limited resource.

Other capability types have been introduced in the system, but due to
space limitations, these are not explained here. The following subsection
briefly explains how the agent employs a CBR engine to solve the incidences
received in the call center.

5.1. CBR module for the problem-solving process

The CBR methodology for problem solving is typically divided into the
following phases of the CBR cycle [1]: Retrieve, Reuse, Revise, and Retain.
The design decisions adopted for each phase in our CBR engine were influ-
enced by the customer-support domain and our goal of providing flexibility.

In our CBR engine, a case is the representation of a set of tickets that have
the same features and the same successfully applied solutions. Each case has
a set of attribute-value pairs (variables of any value type) that describe the
characteristics of the problem. An indexing schema hierarchically organizes
the cases in the computer memory to facilitate retrieval. The indexing process
in our system consists of establishing a set of categories for each ticket that
classifies it as belonging to a certain type of problem, which is currently being
done manually. These categories are also stored in each case as attributes.
Figure 2 shows the structure of the case taking into account the previous
categorization, the set of questions and the list of possible solutions to employ.

The main goal of the retrieval phase is to obtain the set of stored cases
that are similar to the new one. The CBR module must be able to work
with heterogeneous tickets and can also be able to compute the similarity
among them. Moreover, the ticket attributes may have missing values. For
the retrieval algorithm, we have adapted and tested several known distance
measures in order to work with heterogeneous data. The most similar case

12

Category

123

Category Tree

Attributes

Question Value

Question #1 Yes/No

... ...

Question #n 1..100

Solutions

Id

8

...

12

Suitability

87%

...

78%

*

*

*

Document

Database

CASE

Figure 2: Structure of a case

or cases are selected by means of a k-nearest neighbor algorithm using these
distance measures to compute the similarity among cases. Currently, we
have implemented a Normalized Euclidean-based similarity measure and a
similarity measure that is based on the ratio model proposed by Tversky [9]
as shown in Eqs. (1) and (2):

EuclideanSimilarity(a, b) =
1

1 +

√

N
∑

i=1

w2

i distance(ai, bi)
2

(1)

where a and b are two cases of the case-base and wi ∈ [0, 1] is a weight
assigned to each attribute i of the cases in order to indicate its importance.

TverskySimilarity(a, b) =
α(#commonAt)

α(#commonAt) + β(#differentAt)
(2)

where #commonAt and #differentAt represent the number of similar and
different attributes of two cases and α and β are the corresponding weights
assigned to each group.

Once the most similar case is selected, its solution (the task to be exe-
cuted) is proposed to solve the new problem that has been reported to the
system in a simple reuse phase. If there exists different solutions, these can
be ordered using the suitability degree. In this work, we have employed only
the solution with the highest degree, but it is possible to propose the whole
list of suitable solutions. After this, the solution is copied and applied to
the new problem without any changes, but it is also configurable and any
adaption process can be introduced if necessary. When a solution has been
provided, the customer must indicate to the system whether that solution has
really solved the problem. By means of the revision and retention phases,

13

the system can learn the degree of suitability of the responses that the CBR
engine provides. To do this: (i) the system receives an input about the used
solution; (ii) if the solution applied to the ticket is already associated with
the retrieved case, the suitability degree of the solution is increased; (iii)
otherwise, the solution is added to the list of solutions of the case. Finally,
if there is no case that is similar enough to the new ticket, the system stores
this ticket and its solution in the case-base.

5.2. Evaluation

We have performed tests to evaluate the performance of the proposed
taxonomy, comparing the extended customer support application with the
earlier available version without the proposed taxonomy. In order to do the
evaluation, we used a synthetic database of tickets that came from computer
errors. Note that a ticket of this database is not equivalent to a case, since
a case is the prototyped representation of a set of tickets with the same fea-
tures and the same solution that has been applied satisfactorily in the past.
We used a ticket database to test the system performance. This performance
may be influenced by the number of tickets processed by the system or the
number of customers sending requests simultaneously. The tests were per-
formed using a cross-partition technique dividing the ticket database into
two databases for training (loading the case-base) and testing the system.
We repeated the tests for each similarity measure implemented in order to
analyze its behavior in the computer-error domain.

Figure 3a shows that as the number of tickets in the case-base of the CBR
system increases, the mean error in the answers provided by the system
decreases. This fact demonstrates that the system knowledge goes up as
the amount of processed data increases and therefore the system is learning
effectively. In this case, there is no difference between the tests with or
without the capability taxonomy. It can be observed that including the
taxonomy maintains the effectiveness of the sytem while at the same time
obtaining a better performance. This can be observed in Figure 3b, which
shows how the response time is improved when the number of customers
making simultaneous requests increases. As expected, the time increases
in proportion to the number of simultaneous customers. In addition, this
test shows that the system is able to answer the requests quickly, when the
capability taxonomy is employed, even when there is a considerable number
of simultaneous requests. The results of the tests also show that all the

14

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 50 100 150 200 250 300 350

M
ea

n
E

rr
or

 R
at

e
(%

)

Tickets in the case base

normalizedEuclidean
normalizedTversky

TaxonomyNormEuclidean
TaxonomyNormTversky

(a) Influence of the processed data on the
CBR-TM performance

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20 40 60 80 100 120

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Simultaneous Customers

normalizedEuclidean
normalizedTversky

TaxonomyNormEuclidean
TaxonomyNormTversky

(b) Influence of the amount of simultaneous
customers on the CBR-TM performance

Figure 3: Evaluation Results

similarity measures behave in a very similar way and any of them might be
suitable for this domain.

These results show that using the taxonomy: (i) improves the tickets/events
reception management; (ii) avoids the repetition of the execution of similar
tasks; (iii) uses the most appropriate information from the environment at
each moment; (iv) increases flexibility in the design; and (v) obtains a better
response time that facilitates compliance with SLAs, avoiding penalties and
improving the quality of the service.

6. Conclusions

This work presents a Capability Taxonomy that provides the developer
with a new way of modeling agent reactive capabilities in dynamic environ-
ments. Thus, with this Capability Taxonomy, the changes in the environ-
ment are not only solved by using the cognitive abilities of the agent, they
can also be solved by using the two abstractions (events and tasks) that pro-
vide agents with different capabilities of reaction. The agent knows how to
process repetitive stimuli coming from the environment and can decide how
to launch actions to the environment in response to changes in the environ-
ment (in an event-condition-action model). This process has been illustrated
with an example and validated with a prototype where the advantages of the
taxonomy employment have been tested.

15

Acknowledgments: This work was partially supported by MINECO/FEDER
TIN2012-36586-C03-01 of the Spanish government.

References

[1] Aamodt, A., & Plaza, E. (1994). Case-based reasoning: foundational
issues, methodological variations and system approaches. AI Communi-
cations, 7(1), 39-59.

[2] Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines.
Neurocomputing 72(13-15), 2729–2730 (2009)

[3] Agüero, J., Carrascosa, C., Rebollo, M., Julián, V.: Towards the Devel-
opment of Agent-Based Organizations through MDD.. In: International
Journal on Artificial Intelligence Tools, Vol. 22, No. 02. (2013)

[4] Agüero, J., Rebollo, M., Carrascosa, C., Julián, V.: Developing Perva-
sive Systems as Service-oriented Multi-Agent Systems. In: Proceedings
of MobiQuitous 2010, LNICST, Volume 73, pages 78-89 (2010)

[5] Castro, J., Kolp, M., Mylopoulos, J.: A Requirements-Driven Develop-
ment Methodology. In: Proceedings of CAiSE 2001 pp. 108–123 (2001)

[6] Corchado, E., Graña, M., Wozniak, M.: New trends and applications
on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63
(2012)

[7] Dignum, V.: A model for organizational interaction: based on agents,
founded in logic. Phd dissertation, Utrecht University (2003)

[8] S. Heras, J. A. Garćıa-Pardo, R. Ramos-Garijo, et al. Multi-domain
case-based module for customer support. Expert Systems with Applica-
tions, 36(3):6866–6873, 2009.

[9] Tversky, A. (1997). Features of similarity. Psychological Review, 84(4),
327-352.

[10] Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent
systems: The GAIA methodology. ACM Trans. Softw. Eng. Methodol.
12(3), 317–370 (2003)

16

