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Abstract 

Cultivated nutsedge is a common crop in Valencia (Spain). The aim of this research, which was 

conducted over two consecutive years, was to compare the productive response of the nutsedge crop with 

drip irrigation and traditional furrow irrigation, calculating the yield and the irrigation water use 

efficiency (IWUE). The volumetric soil water content was monitored with capacitance probes. Four 

irrigation strategies were considered: three in drip irrigation [D70, D80, and D90 with refill points at 

70%, 80%, and 90% of the field capacity, respectively] and one in furrow irrigation (refill point at 60% 

field capacity); in the second year, the irrigation management was automated. On average, strategy D90 

produced the highest yield and D70 the lowest, while the highest IWUE was obtained with D80 and the 

lowest with furrow irrigation. Considering the automation of irrigation management, strategy D90 led to 

the highest yield and to the highest IWUE. 
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Introduction  

Nutsedge(Cyperus esculentus L. var. sativus) is also known as tiger nut or chufa. It is a common 

crop in the Valencia Region (Spain), where nutsedge tubers are used to produce a beverage called 

“horchata” or “horchata de chufas” (nutsedge milk). The milky aqueous extract has a pleasant flavour that 

brings to mind vanilla and almonds. This refreshing and wholesome beverage has recently become 

popular in other countries, such as France, the UK, the USA and Argentina. Recent studies have reported 

increasing interest in nutsedge cultivation, mostly for food technology and biodiesel production in Brazil, 

Cameroon, China, Egypt, Hungary, the Republic of Korea, Poland, Turkey and the USA (Pascual-Seva et 

al. 2009). Research on various aspects of nutsedge cultivation, like crop management techniques, cultivar 

selection and plant characterisation, is reviewed in Pascual et al. (1999), and studies on nutsedge nutrition 

and fertilisation have also been conducted (Pascual-Seva et al. 2009).  

Traditionally, nutsedge has been furrow irrigated, although until recently no data on the volumes 

of water used for irrigation were available. In the region where nutsedge is grown, water is readily 

available and inexpensive, and the cost is calculated in terms of the farm surface area rather than the 

actual volume of water used. However, due to extended periods of drought and the shift of water usage 

from irrigation to environmental, industrial and municipal applications, use of irrigation water may soon 

become subject to regulation. 

 Molden et al. (2003) listed different strategies for improving water productivity values, including 

increasing the productivity per unit of water consumed (by improving water management, establishing 

better timing of supplies to reduce stress at critical stages of crop growth, thus leading to higher yields) 

and lowering non-beneficial depletion (by reducing water flow to sinks with techniques that diminish 

irrecoverable deep percolation and surface runoff). Within this context, a line of research was initiated to 

identify the best practices for the management of the irrigation of the nutsedge crop. Pascual-Seva et al. 

(2013a, b) presented irrigation application efficiency (AE) and water distribution uniformity indices in 

furrow irrigation (FI), determined in the traditional nutsedge cultivation area, where flow delivered by 

open channel had been neither measured nor controlled. Likewise, irrigation was optimised by the 

development and validation of an empirical function estimating irrigation time as a function of flow 

discharge. 

Water use efficiency (WUE) and irrigation water use efficiency (IWUE) are common indicators 

employed to assess the efficiency of the use of irrigation water in crop production (Bos 1980; Tolk and 
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Howell 2003). WUE was defined by Viets (1962) as the weight of dry matter or marketable crop 

produced per unit volume of water used in evapotranspiration. The denominator in this ratio is difficult to 

determine with precision, particularly when the crop coefficient is unknown. However, for a specific 

region and to identify differences between irrigation methods and/or irrigation management, it can be 

substituted for the sum of the effective rainfall, the irrigation applied and the soil water depletion from the 

root zone during the growing season (Howell 2001). The IWUE is defined as the increase in yield under 

irrigated production compared to that under dryland production (Bos 1980), but this expression has also 

been used to relate the yield to the volume of irrigation water applied (Iapplied; Tolk and Howell 2003). 

Using drip irrigation (DI) is one of the possible strategies for improving WUE and IWUE values. 

DI was first used in nutsedge cultivation in a previous experiment performed in 2006 on a research plot 

(Pascual-Seva et al. 2008). This experiment analysed the productive response of nutsedge and its 

corresponding IWUE to different irrigation strategies (IS). Irrigation scheduling was based on the 

depletion of the volumetric soil water content (VSWC), which was monitored continuously with 

capacitance probes, each irrigation event being initiated when the VSWC dropped to 65%, 77.5% or 90% 

of the field capacity (FC). In this study, it was stated that DI could be an alternative to traditional 

irrigation in nutsedge crops. Nevertheless, the 65% strategy resulted in a yield lower than that usually 

obtained by farmers, therefore, these IS needed to be adjusted.  

The present study describes the response of nutsedge under DI compared to that grown under 

traditional FI. The growth of the whole plant was analysed, the yield and the water volumes used were 

determined, and both the WUE and the IWUE were calculated. 

 

Materials and methods 

The experiments were conducted over two consecutive years (2007 and 2008) in two adjacent 

commercial plots next to the campus of the Universitat Politècnica de València, Spain (39º38´N, 

0º22´W), within the main nutsedge producing area. These plots are representative of the plots in the 

region.  

Variations in the VSWC were used to determine the in situ FC (Veihmeyer and Hendrickson 

1931) and refill point (VSWC before each irrigation event), which determined the corresponding IS. 

Three different DI strategies were used (D70, D80 and D90) and irrigation began when the VSWC values 

at a soil depth of 0.10 m [Pascual-Seva et al. (2013b) stated that the maximum root density and water 
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uptake by nutsedge plants occurred at a depth of 0.10 m] dropped to 70%, 80% and 90% of the FC value. 

FI was scheduled so that each event began when the VSWC at a soil depth of 0.10 m reached 

approximately 60% of the FC. Each IS was replicated four times in a split plot design, each replication 

consisting in two ridges, which were surrounded by a similar ridge to eliminate border effects.  

To avoid soil replant disorders resulting from serial nutsedge cropping, two different plots were 

used, both of which were next to the university experimental farm in order to facilitate the use of its DI 

installation, which is not common in the area. The two plots were owned by different farmers and, 

therefore, have different backgrounds. Tubers (120 kg tubers ha
-1

) were planted in ridges that were 0.20 m 

high, while the ridge top centre spacing was 0.60 m. In both experiments, the furrow length was 80 m, 

and the furrow slope was 0.1%. The soils at the site are deep, with a coarse texture (Table 1), and are 

classified as Anthropic Torrifluvents according to the USDA Soil Taxonomy (Soil Survey Staff 2010). 

The analyses indicate that the soils have a slightly or moderately alkaline pH and are highly fertile (high 

organic matter content and high available phosphorous and potassium concentrations; Table 1). The soil 

was apparently uniform in depth all over the plot because of seedbed preparation, which entails two 

crossed passes with a rotary tiller, and the sieving of the soil when the tubers are harvested. 

According to Papadakis’s agro-climatic classification (MOPT 1992), the climate is subtropical 

Mediterranean (Su, Me) with hot, dry summers and an average annual rainfall of approximately 450 mm, 

irregularly distributed throughout the year, with approximately 40% falling in autumn. Figure 1 shows the 

most significant climatological data about the growing seasons expressed as monthly values: temperature 

and precipitation registered in the experimental plot, and reference evapotranspiration (ETo) calculated by 

the Penman-Monteith formulation from the weather information obtained in an automated meteorological 

station located near the experimental plot. 

The water for DI was pumped from a well (EC = 1.6 dS m
-1

; SAR(adjusted) = 2.9; pH = 7.4). The 

water for FI came from the Mestalla canal, which flows from the Turia river (EC = 1.4 dS m
-1

; 

SAR(adjusted) = 2.7; pH = 7.2). Neither irrigation water source showed any restriction in terms of salinity for 

non-sensitive crops, such as nutsedge, or permeability (Ayers and Westcot 1994). There were, however, 

certain restrictions in water delivery in FI; in particular, growers could only irrigate for three straight 

days, followed by three days with no water available for irrigation.  

In the DI plots, plants were irrigated by a single lateral line per plant row using a turbulent flow 

dripline (AZUDRIP Compact; Sistema Azud S.A., Murcia, Spain) with emitters (2.2 L h
-1

) spaced 0.25 m 
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apart. The VSWC was continuously monitored with capacitance probes. One multi-depth capacitance 

probe (Cprobe; Agrilink Inc. Ltd., Adelaide, Australia) was installed inside a PVC access tube in a ridge 

of one repetition of each IS in the DI plots. These probes had sensors whose mid-points were placed at 

depths of 0.10, 0.20 and 0.30 m below the top of the ridge, and each was connected to a radio telemetry 

unit, which read the value of each sensor every 5 min and stored an average value every 15 min, as 

reported in Hussein-Mounzer et al. (2008). The stored raw data were sent by radio through a relay station 

and then to a gateway connected to a computer for data analysis with the addVANTAGE software from 

ADCON telemetry GMbH (Vienna, Austria) (Vera et al. 2009). Before installation in the field, each 

sensor inside its PVC access tube was normalised by taking voltage readings while exposed to air (Va) 

and water (Vw) at ≈ 22ºC (Abrisqueta et al. 2012). The normalisation equation is defined as: scaled 

voltage = (Va - Vs) / (Va - Vw), where Vs is the voltage in the soil. Once the crop was established, the 

probes were calibrated in the field by the gravimetric method, readings being taken from each sensor (at 

different IS and depths) and non-disturbed soil samples in the same ridge the probes were in, at a 

maximum distance of 0.4 m from it. An undisturbed soil sample core (Ø 53 mm; height 51 mm) was 

taken every week, over a period of five weeks, with a soil sample ring kit (Eijkelkamp; Giesbeek, The 

Netherlands). Soil samples were dried at 105ºC in a forced-air oven (Model 297; JP Selecta, Barcelona, 

Spain) to obtain the sample water content (m
3
 m

-3
), which was compared with the corresponding scaled 

voltage value. 

The irrigation scheduling was managed by maintaining the soil water content (scaled voltage) at 

a depth of 0.10 m between FC and the refill point. The amount applied in each irrigation event for the 

2007 experiment was 14.7 mm on average (60 min), while in 2008 the installation management was 

automated, each event being stopped when the sum of the VSWC values at 0.10, 0.20 and 0.30 m reached 

the corresponding FC value. The rainfall and emitter flow rate were recorded using automatic tipping 

bucket gauges connected to the radio telemetry unit.  

In FI plots, the flow of water was continuously gauged by a sensor (ISCO 2150 area velocity 

flow module; Teledyne ISCO Inc., Lincoln, NE, USA). The discharge data were measured and stored at 

15 s intervals. Each irrigation dose was determined by integrating the flow and the application time. The 

furrows were blocked at the ends and, therefore, there was no runoff. One capacitance sensor ECH2O EC-

5 in a ridge, with ECH2O Utility software (Decagon Devices Inc., Washington, USA), was placed at a 

depth of 0.10 m and connected to an Em50 data-logger (Decagon Devices Inc., Washington, USA) to 
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monitor the VSWC, which was provided in m
3
 m

-3
 (factory calibration provides ± 3% accuracy for 

mineral soils) and therefore used directly. The irrigation was scheduled so that each event began when the 

VSWC at a soil depth of 0.10 m reached approximately 60% of the FC, bearing in mind that water 

delivery was restricted to a three-day-on / three-day-off schedule.  

Planting was performed on 23 [113 day of the year (DOY)] and 24 April (115 DOY) in 2007 and 

2008, respectively. Planting and harvesting were performed by the same farmer and the same machinery, 

while the remaining cultivation tasks were performed by the corresponding farm owner. Standard 

cultivation practices were followed during the crop period, as described in Pascual et al. (1997). Nutrient 

management was in accordance with local practices. The basal dressing, applied the day before planting, 

consisted of 2 kg m
-2

 sheep manure (57.2% Dw; 60.9% o.m. Dw) and 90 g m
-2

 15:15:15 (N: P2O5: K2O). 

The top dressing in DI was based on Hoagland’s No. 2 nutrient solution (Maynard and Hochmuth 1997) 

[EC: 2.31 dS m
-1

; pH adjusted to 6.1; macronutrient concentrations (all in mM): NO3
-
, 14.0; H2PO4

-
, 1.0; 

SO4
2-

, 2.45; K
+
, 6.0; Ca

2+
, 4.0; Mg

2+
, 2.0; micronutrient concentrations (all in M): Fe

2+
, 15; Mn

2+
, 10; 

Zn
2+

, 5; B
3+

, 30; Cu
2+

, 0.75; Mo
6+

, 0.5] applied, up to 3.12 g m
-2

 of N, during the first two weeks of July 

through the irrigation system. In FI, the top dressing consisted of 3.12 g m
-2

 N in NO3K form and was 

applied with the 8 July 2007 and 16 July 2008 irrigation events. 

Plants within 1 m of the plant row were sampled from each experimental plot regularly for six 

months. Plants were divided into three parts and analysed separately: (i) shoots with all of their leaves 

(hereinafter referred to as leaves); (ii) roots and rhizomes as a whole, given the difficulty of separating 

them (hereinafter referred to as roots); and (iii) tubers. Plant height was measured and the shoots and 

tubers were counted at each sampling (data not shown). After washing, each sampled plant part (leaves, 

roots or tubers) was dried at 65ºC in a forced-air oven until constant weight to obtain dry weights and 

tuber dry-matter content. The harvest index (HI) was calculated for each sampling as the ratio of tuber 

yield to total biomass, including root system, on a dry matter basis (g g
-1

; Van der Veeken and Lommen 

2009).  

In the 2007 experiment, straw-burning took place on 20 November 2007; the tubers were 

harvested and washed on 16 and 17 January 2008, respectively; in the 2008 experiment, these dates were 

7 November 2008, and 27 and 28 January 2009, respectively. As the crop coefficient (Kc) of nutsedge is 

unknown, the WUE was calculated as the relationship between marketable yield (fresh tuber) and total 

water input (irrigation + rainfall; Ko and Piccinni 2009); the IWUE was calculated as the relationship 
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between marketable yield (fresh tuber) and Iapplied (Cabello et al. 2009). For each event, AE was estimated 

as the ratio between the amount of water that could be stored in the root zone and the Iapplied.  

The data were analysed by an analysis of variance using Statgraphics 5.1 plus (Statistical 

Graphics Corporation 2005).  

Results and discussions 

Table 2 shows the different linear calibration equations for the diverse multi-depth capacitance 

probes, which showed high correlation coefficients (r: 0.87-0.99) and significance level (P ≤ 0.01). These 

correlations can be considered appropriate, even more taking into account the possible errors associated 

with obtaining and processing the samples (Quemada et al. 2010).In general, the relationship between 

VSWC and the corresponding scaled voltage is not linear (Bell et al. 1987; Vera et al. 2009), yet, as 

occurred in this study, the calibration curves may be regarded as linear over the relatively restricted range 

of soil moisture changes normally experienced for a given soil (Bell et al. 1987). As was expected given 

the apparent uniformity of the soil, when comparing the calibration equation slopes, there were no 

significant differences (P ≤ 0.05) for the different sensor depths or for the different IS, and thus a single 

calibration could be reported for the combined depths and IS. Nevertheless, the low correlation 

coefficients obtained for each year, including the different IS, made the use of separate equations the most 

advisable option. The FC and refill point values for each depth, IS and experiment are shown in Table 3.  

Figure 2 shows the VSWC throughout the growth period for all of the IS and for both years, as 

well as the daily rainfall. In DI for both growing seasons, VSWC at a depth of 0.30 m was higher than at 

shallower depths and it increased with increasing refill point, with lower values in 2008 than in 2007 due 

to the automation of irrigation management. On 14 July 2007 (196 DOY), the D90 strategy showed an 

increase in VSWC (especially at depths of 0.2 and 0.3 m) due to a solenoid valve breakage. Although in 

FI water delivery was restricted to the three-day-on / three-day-off schedule, the refill point was close to 

the scheduled irrigation programme.  

Seasonal rainfall was higher in 2007 (Fig. 1), although the second part of spring 2008 was 

notably wetter, which delayed the start of irrigation by one month (Fig. 2) and reduced the number of 

irrigation events and, consequently, the Iapplied. Considering ETo from planting to the last irrigation event 

in each year [12 Oct (DOY 285) in 2007 and 19 September (DOY 263) in 2008; water requirement 

considered as ETo instead of ETc, since Kc of nutsedge is unknown], it can be stated that larger amounts 
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of water were required in 2007 (ETo  = 722 mm) than in 2008 (ETo = 630 mm). In FI plots, there were 10 

irrigation events in 2007 and 8 events in 2008, and the Iapplied was 1027 mm in 2007 and 800 mm in 2008, 

which represented 142% and 127% of the ETo, respectively. In DI plots, there were 29, 36 and 60 

irrigation events for D70, D80 and D90, respectively, in 2007, and 25, 29 and 44 events in 2008. The 

corresponding Iapplied were 384, 504 and 763 mm in 2007, and 313, 375 and 450 mm in 2008, which 

represented 53.2%, 69.8% and 105.7% of ETo, respectively, in 2007 and 49.7%, 59.6% and 71.4% in 

2008. The smaller Iapplied in 2008 is mainly related to the shortening of the irrigation period due to the 

spring rains, and also to the lower ETo. Percentages obtained in 2008 show a better adjustment of the 

Iapplied to the water requirements (ETo). The differences observed between the IS can be explained in part 

by the different AE obtained in each IS, with values of 75%, 64%, 27% and 19.5% for D70, D80, D90 

and FI, respectively, in 2007; 83%, 56%, 53% and 20% for D70, D80, D90 and FI, respectively, in 2008. 

Most of these AE values are very low, but the shallowness of the roots (≈ 0.20 m) is a factor that should 

be noted and taken into account. The improvement in AE achieved for DI in 2008 compared to 2007 was 

due to the reduction in deep percolation by automating the irrigation management in 2008, thereby 

reducing the application time (on average 14.3%, from 56.6 min to 48.5 min) and consequently the Iapplied 

(on average from 13.85 L m
-2

 to 11.87 L m
-2

) in each event. AE obtained in FI were lower than those 

obtained in a parallel study performed with furrow-irrigated nutsedge crop, 31% and 26% in 2007 and 

2008, respectively (Pascual-Seva et al. 2013b), and they could clearly be improved as the authors stated in 

that study. In DI, AE could probably also be improved, by shortening the irrigation time in each event, 

which could be achieved by considering other irrigation stops, such as scheduling it based on the 0.2 m 

depth sensor or on the sum of the depths of 0.1 and 0.2 m.  

Soil evaporation was probably lower in DI than in FI. This was in agreement with the findings of 

Bernstein and Francois (1973) in a study to compare drip, furrow and sprinkler irrigation (bell pepper 

being chosen as the experimental plant) which indicated that the saving in water occurred while the crop 

was young. Results also showed that for mature crops water requirements were similar for the three 

methods of irrigation, and water saving by DI would depend largely on the inefficiency of the method it 

replaces. In DI the percentage of wetted surface is clearly lower than that in furrow irrigation, and so the 

soil evaporation both in the initial stage and in the crop development stage is lower. When the topsoil 

dries out, less water is available for evaporation, and evaporation from the exposed soil decreases in 

proportion to the amount of water remaining in the surface soil (Allen et al. 1998). Evaporation occurs 
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predominantly from the exposed soil fraction, i.e., the fraction of the soil not covered by vegetation and 

that is wetted by irrigation or precipitation, which at the beginning of the crop development stage in the FI 

plots is practically the whole surface, while in DI plots it will not be higher than 25%. In cotton, during 

the development period, DI with a fraction of the field surface wetted by the irrigation of 0.3 can reduce 

the value of Kc (soil evaporation coefficient + basal crop coefficient) by 11%, in comparison to that 

obtained in furrow irrigation, and by 36% in the soil evaporation coefficient (Allen et al. 1998).  

The plant height increased up to 105 cm in 2007 and 90 cm in 2008, following a seasonal 

sigmoid curve (data not shown) in agreement with Pascual-Seva et al. (2013a); no differences were 

observed among IS. Plant biomass increased during the cultivation phases to 2.3 kg m
-2 

in 2007 and 1.92 

kg m
-2

 in 2008 (Fig. 3a); these values corresponded to the D90 strategy, with leaves, tubers and roots 

representing 39.2%, 59.0% and 1.8% of this amount, respectively, in 2007 and 46.2%, 51.6% and 2.2%, 

respectively, in 2008 (Fig. 4). With DI, there were only three irrigation strategies used for each growing 

season; thus, there were not enough values to obtain a consistent mathematical function relating the 

biomass to the Iapplied. Nevertheless, a positive linear increase in biomass (y = biomass in g m
-2

) with Iapplied 

(x = Iapplied in mm) was observed for each year [y = 1679.1 + 0.8407x (r = 0.87; P ≤ 0.01) for 2007; 

y = 1799.4 + 0.2503x (r = 0.95; P ≤ 0.01) for 2008]. When considering both years as a whole, a quadratic 

trend was observed, since the AE for D90 in 2007 was very low, and consequently the larger Iapplied did 

not lead to biomass production, but this model was not statistically significant (P ≤ 0.05) and the best 

adjustment corresponded to a linear relationship [y = 1551 + 1.0047x (r = 0.80; P ≤ 0.01)]. 

The aboveground biomass accounted for most of the plant biomass obtained with the four 

treatments during the first half of the growing period. By the middle of August (approximately 225 

DOY), the tuber biomass made up most of the plant biomass due to processes of translocation to the 

tubers and leaf senescence (Fig. 3 and Fig. 4). From the end of July (210 DOY), FI led to the highest HI 

values (Fig. 3d), initially due to the higher tuber yield and later to the lower aboveground biomass.  

The HI ranged from 0.46 to 0.66 at the time of commercial harvest, values being 0.66, 0.52, 0.59 

and 0.59 for FI, D70, D80 and D90, respectively, in 2007 and 0.56, 0.46, 0.49 and 0.51, in 2008. These 

2008 values are lower than normal (Pascual-Seva et al. 2013a), most likely because the tuber biomass did 

not increase in the last phase of the cultivation cycle; the value for D70 is particularly low, and could be 

related with a shortage of irrigation water. The average values for 2007 are similar to or slightly lower 

than those reported for potato (0.61-0.87; Condori et al. 2008; Mushagalusa et al. 2008; Van der Veeken 



10 
 

and Lommen 2009), which is also grown for tuber production. Nutsedge, similarly to potato, is a highly 

productive species in which the tubers contain the largest portion of accumulated biomass. The HI values 

obtained with the four irrigation strategies did not differ significantly, which agrees with the results 

reported for many other crops, as marketable yield is often directly related to plant biomass (Clemmens 

and Molden 2007).  

Values of yield, HI, average tuber weight, small tuber percentage, tuber dry matter content, 

Iapplied, IWUE and WUE corresponding to the moment of commercial harvest for the different irrigation 

strategies are given in Table 4.  

Both growing season (GS) and IS significantly affected (P ≤ 0.01) tuber yield. Differences for GS 

(on average 2.31 kg m
-2

 in 2007 and 1.74 kg m
-2

 in 2008) could be expected because yield, besides 

irrigation, depends on other factors such as climatic conditions, planting date, soil characteristics, 

fertilisation, pest and disease incidence, etc. It has been reported that obtaining different nutsedge yields 

for different years in any given plot is common (Pascual-Seva et al. 2013a), and in this study crop 

management was carried out by different farmers on two plots with different backgrounds. The average 

yield obtained with D80 (2.13 kg m
-2

) is considered to be a good yield in growers’ fields; thus, the 

average yield obtained with D90 (2.58 kg m
-2

) can be considered very high. Both strategies led to greater 

yields than D70 and FI (without any differences between them). This is most likely due to the fact that DI 

provides the crop with a more regular soil moisture profile during the growing season (Fig. 2). In 

agreement with Bresler (1977), the maintenance of continuously high water potential (and then VSWC) 

during the growing season is an important and advantageous characteristic of DI, and crop yield-irrigation 

relationships depend on both the average of the soil-water regime indexes and the time deviations from 

them. Generally, surface irrigation causes large time fluctuations in the soil-water regime (Bresler 1977). 

In this study, the VSWC fluctuation was larger in FI than in DI, both lower refill point values (60% of FC 

for FI, and 70%, 80% and 90% of FC, for the different strategies of DI) and higher VSWC values being 

registered in FI after each irrigation event, indeed considerably higher than FC (Fig. 2). The low yield 

obtained in D70 was a consequence of a water shortage more than VSWC fluctuations. 

In DI, when each GS is analysed separately, yield (y = yield in kg m
-2

) increased linearly with 

Iapplied (x = Iapplied in mm) [y = 1.1151 + 0.2226x (r = 0.93; P ≤ 0.01) in 2007; y = -0.8155 + 0.0071x 

(r = 0.96; P ≤ 0.01) in 2008; Fig. 5]. These linear relationships agree with those reported by Shock et al. 

(1998) for potato (considering the sum of irrigation and precipitation). Tolk and Howell (2003) reported 
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both linear and curvilinear relationships. Howell et al. (1995) stated, on corn, a linear relationship for one 

year and a quadratic relationship for the same study repeated the following year. Non-linear relationships 

are explainable if the HI varies with the water deficits (Tolk and Howell, 2003). In our experiment, HI did 

not differ between IS, and therefore when each year is analysed separately the yield-Iapplied relationships 

are linear. However, HI is statistically affected (P ≤ 0.05) by the GS, thus when considering data from 

both GS together, the relationship is curvilinear [y = -1.9183 + 0.0138x + 1·10
-5

x
2 
(R

2
 = 93.45%; P ≤ 0.01); 

Fig. 5]. It is likely that a considerable amount of Iapplied is not consumed by ET and that at maximum 

irrigation applications (especially in D90 in 2007) a fraction of the Iapplied does not lead to yield increases, 

as reported by Tolk and Howell (2003).  

The GS affected (Table 4) the average tuber weight (P ≤ 0.01), the small tuber percentage 

(P ≤ 0.01) and the tuber dry matter content (P ≤ 0.01), which resulted in the greatest average tuber weight 

and tuber dry matter content, and the lowest small tuber percentage, thereby indicating a better quality of 

the tubers in 2007, besides the greatest yield obtained, as mentioned above. The significant (P ≤ 0.05) 

GS*IS interaction shows that average tuber weight in FI was lower (P ≤ 0.01) than in all DI strategies in 

2008, but it was only lower (P ≤ 0.01) than in D90 in 2007. Tuber dry matter content depends on the 

degree of tuber maturity and on tuber water loss before harvest, which in turn depends on the VSWC. 

Although the capacitance sensors were withdrawn before burning, small differences are foreseeable 

between VSWC in the period before harvest due to small variations between rainfalls registered in this 

period in both GS. Hence, differences (P ≤ 0.01) in tuber dry matter content were likely to be related to the 

higher degree of maturation of the 2007 tubers at harvesting. In fact, higher percentages of small tubers 

(≤ 6 mm) were obtained in 2008 (7.5%) than in 2007 (4.7%), which is related to a delay in tuber growth 

and maturation. Given the existence of a positive linear increment in “horchata” production yield with 

tuber dry matter content, this parameter should be considered in nutsedge tuber trade relations, as the 

small tuber percentage is currently considered. 

Both GS (P ≤ 0.05) and IS (P ≤ 0.01) influenced IWUE (Table 4), with the highest values in 2007 

and D80. The interaction GS*IS was also significant (P ≤ 0.01), leading to higher values of D70 and D80 

(4.92 and 4.77 kg m
-3

, respectively) than D90 (3.68 kg m
-3

) in 2007, while the opposite behaviour was 

observed in 2008, with the highest IWUE obtained with D90 (5.26 kg m
-3

), which differed significantly 

from D70 (4.45 kg m
-3

) but not from D80 (4.96 kg m
-3

). These results show how the larger yield obtained 

in 2007 for D90 did not compensate the larger Iapplied due to the low AE. In 2008, with the automation of 
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irrigation, AE was improved and the larger Iapplied for D90, compared to D70 and D80, was compensated 

with a greater yield. The range of average IWUE values for DI strategies was narrow (4.47 – 4.86 kg m
-3

) 

when both GS are considered jointly; differences in IWUE between their lowest and highest average 

values for DI were 8.7%. However, when each year is analysed separately, these differences increased by 

up to 33.7% in 2007 and 18.2% in 2008. 

For DI strategies, IWUE (y = IWUE in kg m
-3

) decreased with increasing Iapplied (x = Iapplied in 

mm) in 2007 [y = 6.3386 - 0.0034x (r = -0.93; P ≤ 0.01)], when low AE were obtained, especially for D90, 

but it increased with Iapplied in 2008 [y = 2.6760 + 0.0058x (r = 0.72; P ≤ 0.01)] (Fig. 5), when irrigation 

management was automated. Considering data from both years as a whole, the best adjustment 

corresponded to a quadratic increase in IWUE in relation to Iapplied [y = 1.103 + 0.0016x - 2·10
5
x

2
 

(R
2
 = 0.72; P ≤ 0.01)]. This agrees with results reported for potato by both Yuan et al. (2003) and 

Shahnazari et al. (2007). Howell et al. (1990) indicated that maximum WUE tends to occur at maximum 

ET, and maximum IWUE usually occurs at an ET that is generally less than the maximum ET, thereby 

suggesting that irrigating to achieve the maximum yield would not be the most efficient use of irrigation 

water (Tolk and Howell 2003). In the present study, D90 in 2007 presented the highest yield but the 

lowest IWUE for DI, due to the larger Iapplied, as a consequence of the low AE. The maximum IWUE was 

obtained for D90 in 2008, when the irrigation management was automated, and then Iapplied was closer to 

water requirements, resulting in higher AE than in 2007. 

The IS and the GS*IS interaction affected (P ≤ 0.01) WUE (Table 4), with no differences 

between D80 (2.40 kg m
-3

) and D90 (2.22 kg m
-3

) values in 2007, whereas in 2008 D80 resulted in lower 

values (2.29 kg m
-3

) than D90 (2.67 kg m
-3

), when, as mentioned above, irrigation management was 

automated. 

The results show that IWUE and WUE behave differently with different strategies. If it is 

considered that in the context of irrigation IWUE is economically more relevant than WUE (Farré and 

Faci, 2009), the value of which (calculated as the relationship between yield and total water input, i.e.  

irrigation + rainfall) depends on the variation in the amounts and distribution of seasonal rainfall, then 

IWUE appears to be a more useful indicator of water use than WUE. 

The current cost of irrigation water is calculated in terms of the farm surface area, 60 € ha
-1

 year
-

1
, which, taking into account the average Iapplied in FI, means that the approximate water cost would be 

0.005 € m
-3

. Considering the difference between the average IWUE in DI (4.67 kg m
-3

) and in FI (1.89 kg 
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m
-3

) and the stable average tuber price in recent years (0.60 € kg
-1

), in the present study conditions the 

application of DI would suppose an average increment in the gross revenue of 2674 € ha
-1

 or 1.7 € m
-3

. 

Considering an average value of the energy requirement for DI (0.105 kWh m
-3

; Solomon, 2007) and for 

pumping water in the cultivation area (0.4 kWh m
-3

; Corominas, 2009) as well as the energy price (0.1305 

€ KWh
-1

with no time restrictions; MINETUR, 2014), the average energy costs of this DI system could be 

considered as 0.066 € m
-3

. Taking this into account as well as the increase in revenue, the utilisation of DI 

would suppose an average gross margin increment of 2368 € ha
-1 

or 1.63 € m
-3

. The current average cost 

of the DI systems in Valencia (Spain) is around 2500 € ha
-1

 (which coincides with the cost shown by 

Solomon, 2007). Then, it can be stated that DI is an interesting alternative to the traditional irrigation used 

with nutsedge crops. 

Conclusions 

With the irrigation management used in this study (both in drip and furrow irrigation), drip 

irrigation led to both higher yields and higher IWUE than those obtained with furrow irrigation. When the 

irrigation has been scheduled on the basis of the VSWC instead being based on time, considerably less 

deep percolation occurred and thus important water savings were achieved.  

The objective of researchers and growers is to increase either yields or profits. When water 

availability is not the limiting factor, irrigating to achieve a maximum yield (although decreasing IWUE) 

may be the most profitable option. If, in the future, water were the limiting factor, irrigating to achieve 

maximum IWUE might be the best option. In this sense, when irrigation management was automated, the 

least restrictive strategy (D90) led not only to the highest yield but also to the highest IWUE.  

Future research should aim to determine the Kc of nutsedge, including the separation of 

evaporation and transpiration, which would facilitate an evapotranspiration-based irrigation management 

system in addition to improvements in irrigation water use efficiency.    
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Tables 

Table 1 Textural and chemical characteristics of soils used in each experiment. 

 2007 2008 

Textural characteristics   

Sand (%) 87.3 85.3 

Silt (%) 10.0 10.0 

Clay (%) 2.7 4.7 

Texture Sand Loamy sand 

Chemical characteristics    

pH 8.4 7.8 

EC (1:5) (dS m
-1

) 0.14 0.41 

Organic matter (%) 1.7 2.2 

Total calcium carbonate (%) 33.9 5.3 

Active calcium carbonate (%) 5.3 3.5 

Phosphorous (sodium bicarbonate; ppm) 89 264 

Potassium (ammonium acetate; ppm) 264 382 

 

Table 2 Calibration equations (y = volumetric soil water content in m
3
 m

-3
; x = scaled voltage in %; 5 

points used for each equation) for the diverse sensors in multi-depth capacitance probes used at depths of 

0.10, 0.20 and 0.30 m, corresponding to D70, D80 and D90 drip irrigation strategies in 2007 and 2008 

experiments.   

  2007 2008 

D70 0.10 m y= 0.0065x + 0.0141 y= 0.0028x + 0.1351 

  r= 0.94 ** r= 0.95 ** 

 0.20 m y= 0.0124x - 0.1807 y= 0.0050x + 0.0663 

  r= 0.89 ** r= 0.96 ** 

 0.30 m y= 0.0047x + 0.0387 y= 0.0049x + 0.0479 

  r= 0.95 ** r= 0.96 ** 

D80 0.10 m y= 0.0055x + 0.0775 y= 0.0066x + 0.0166 

  r= 0.97 ** r= 0.93 ** 

 0.20 m y= 0.0151x – 0.1449 y= 0.0116x – 0.1429 

  r= 0.98 ** r= 0.99 ** 

 0.30 m y= 0.0194x – 0.2779 y= 0.0100x – 0.1309 

  r= 0.99 ** r= 0.94 ** 

D90 0.10 m y= 0.0043x + 0.0690 y= 0.0155x – 0.1509 

  r= 0.98 ** r= 0.90 ** 

 0.20 m y= 0.0182x – 0.2682 y= 0.0074x – 0.0245 

  r= 0.87 ** r= 0.99 ** 

 0.30 m y= 0.0105x + 0.0087 y= 0.0085x – 0.0918 

  r= 0.98 ** r= 0.95 ** 
The irrigation strategies designated D70, D80, and D90 consisted in starting each irrigation event when the VSWC at 

a 0.10 m depth rose to 70, 80, and 90% of field capacity, respectively. 

Table 3 Field capacity [FC; in Scaled Voltage (SV) and m
3
 m

-3)
 and refill point (RP; in % of FC and m

3
 

m
-3

) values for each drip irrigation strategy (D70, D80, D90) and for furrow irrigation (FI) in the growing 

seasons (2007 and 2008). 

 2007  2008 

 FC  RP  FC  RP 

 SV m
3
 m

-3
  % m

3
 m

-3
  SV m

3
 m

-3
  % m

3
 m

-3
 

D70 22.8 0.162  70 0.114  21.5 0.195  70 0.137 

D80 23.2 0.205  80 0.164  23.3 0.170  80 0.136 

D90 22.1 0.164  90 0.148  25.9 0.251  90 0.226 

FI - 0.250  60 0.150  - 0.250  60 0.150 
The irrigation strategy designated D70, D80, and D90 consisted in starting each irrigation event when the VSWC at a 

0.10 m depth rose to 70%, 80%, and 90% of FC, respectively. 
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Table 4 Influence of growing season (GS) and irrigation strategies (IS) on yield, average tuber weight 

(ATW), small tuber percentage (STP), tuber dry matter content (TDMC), harvest index (HI), irrigation 

water use efficiency (IWUE), and water use efficiency (WUE) of nutsedge under different irrigation 

strategies. Average values of 4 replicates. Irrigation water applied (Iapplied) in the different irrigation 

strategies. 

  Yield ATW STP TDMC HI Iapplied IWUE WUE 

  Kg m
-2

 g % % - mm Kg m
-3

 Kg m
-3

 

Growing season (GS)  
          

2007 2.31 a 0.67 a 4.74 b 64.16 a 0.59 a 670 3.86 a 2.04 
 

2008 1.74 b 0.60 b 7.46 a 49.45 b 0.51 b 485 4.09 b 1.98 
 

LSD 0.10 
 0.03  

1.45 
 

2.24 
 

0.06 
 

- 0.20 
 

0.10 
 

Irrigation strategy (IS) 
          

D70 1.64 c 0.62 bc 5.17 b 59.33 
 

0.51 
 

349 4.68 ab 2.00 b 

D80 2.13 b 0.67 a 5.26 b 57.05 
 

0.54 
 

440 4.86 a 2.34 a 

D90 2.58 a 0.65 ab 4.07 b 55.35 
 

0.55 
 

607 4.47 b 2.44 a 

FI 1.75 c 0.59 c 9.89 a 55.49 
 

0.61 
 

914 1.89 c 1.25 c 

LSD 0.14 
 

0.04 
 

2.05 
 

3.17 
 

0.08 
 

- 0.28 
 

0.14 
 

GS * IS 
               

2007*D70 1.89 
 

0.64 
 

4.19 
 

67.94 
 

0.52 
 

384 4.92 
 

2.14 
 

2007*D80 2.40 
 

0.68 
 

4.40 
 

64.95 
 

0.59 
 

504 4.77 
 

2.40 
 

2007*D90 2.80 
 

0.71 
 

3.44 
 

62.93 
 

0.59 
 

763 3.68 
 

2.22 
 

2007*FI 2.14 
 

0.65 
 

6.93 
 

60.82 
 

0.66 
 

1027 2.09 
 

1.40 
 

2008*D70 1.40 
 

0.61 
 

6.16 
 

50.71 
 

0.50 
 

313 4.45 
 

1.86 
 

2008*D80 1.86 
 

0.65 
 

6.12 
 

49.14 
 

0.49 
 

375 4.96 
 

2.29 
 

2008*D90 2.37 
 

0.60 
 

4.69 
 

47.77 
 

0.51 
 

450 5.26 
 

2.67 
 

2008*FI 1.36 
 

0.53 
 

12.86 
 

50.16 
 

0.56 
 

800 1.70 
 

1.10 
 

LSD 0.20 
 

0.05 
 

2.90 
 

4.48 
 

0.17 
 

- 0.40 
 

0.20 
 

ANOVA                               

Parameters (f.d.) % Total sum of the squares 

GS (1) 33.80 ** 34.90 ** 17.30 ** 82.90 ** 18.30 * - 0.80 * 0.40 ns 

IS (3) 58.00 ** 24.30 ** 46.90 ** 3.90 ns 17.70 ns - 86.00 ** 85.20 ** 

GSxIS (3) 1.90 ns 13.60 * 8.20 ns 2.30 ns 2.20 ns - 9.90 ** 8.90 ** 

Error (24) 6.30 
 

27.20 
 

27.60 
 

10.80 
 

61.80 
 

- 3.30 
 

5.60 
 

Standard deviation 0.14   0.04   1.99   3.07   0.12   - 0.28   0.14   

All weight values are based on fresh weight. 

The drip irrigation strategy designated D70, D80, and D90 consisted in starting each irrigation event when the VSWC 

at 0.10 m depth rose to 70%, 80%, and 90% field capacity, respectively; FI refers to furrow irrigation. 

Mean values followed by different lower-case letters in each column indicate significant differences at P 0.05 using 

the LSD test. 

ns: no significant difference. * (**): Indicates significant differences at P≤0.05 (P≤0.01). 
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Figure captions 

Fig. 1 Monthly precipitation (P in mm), reference evapotranspiration (ETo in mm), and average 

temperature (T in ºC) from January 2007 to January 2009. 

Fig. 2 Volumetric soil water content (VSWC) throughout the growth period in 2007 and 2008. VSWC 

(0.10, 0.20 and 0.30 m depth) corresponding to D70, D80, and D90 drip irrigation strategies and VSWC 

in furrow irrigation (0.10 m depth) and water input for each rainfall event. The irrigation strategies 

designated D70, D80, and D90 consisted in starting each irrigation event when the VSWC at a 0.10 m 

depth rose to 70%, 80%, and 90% of field capacity, respectively.  

Fig. 3 Biomass accumulation of whole plants (a), leaves (b), and tubers (c), and harvest index (d), 

throughout the growth period in 2007 and 2008, corresponding to D70, D80, and D90 drip irrigation and 

furrow irrigation (FI). The irrigation strategy designated D70, D80, and D90 consisted in starting each 

irrigation event when the VSWC at a 0.10 m depth rose to 70%, 80%, and 90% of field capacity. Vertical 

bars represent ±SE; their absence indicates that the bar size was less than that of the symbol used.   

Fig. 4 Biomass accumulation (g DW m
-2

) and partitioning in whole plants, leaves, roots, or tubers of 

nutsedge in 2007 and 2008, corresponding to the D90 drip irrigation strategy. Vertical bars represent ±SE; 

their absence indicates that the bar size was less than that of the symbol used. 

Fig. 5 Relationship between yield (kg m
-2

) and irrigation water applied (Iapplied in mm) for 2007, 2008 and 

for both years together. Relationship between irrigation water use efficiency (IWUE in kg m
-3

) and Iapplied 

for 2007, 2008 and for both years together. 

 

 

 

 

 


