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1 Introduction

Population imaging and large data sets of medical images are a clear need. To further

develop personalized medicine, quantitative medical imaging needs to clinically assess

value, reproducibility and universality. By ensuring the development and implementation of

signal modeling and image features extraction strategies, quantitative imaging will help to

prevent or effectively treat diseases. Virtual biobanks, as repositories of digital information,

have increased the opportunities for sharing, federating and exploiting large data sets of

patients’ information. Medical Imaging Biobanks can be considered as virtual biobanks.

They recently emerged for advancing on the study of diseases, identification of early disease

biomarkers and surrogates, and development of population studies. These imaging biobanks

will evaluate the impact of new quantitative biomarkers, both resolved in space and time on

parametric and nosologic images, on early disease diagnosis, disease phenotyping, disease

grading, targeting therapies and evaluation of disease response to treatment.

Imaging and engineering technologies support retrospective and prospective

epidemiological studies on the population level. Specific markers obtained by large scale

image processing of pre-symptomatic diseases might be used to evaluate different biological

and pathological abnormalities, new disease phenotyping and early identification of people

at risk.

The European Strategy Forum on Research Infrastructures (ESFRI) mission leads

to the better use and development of research infrastructures, both at the European

and international levels. Within this initiative, Euro-BioImaging is an European project

establishing a distributed set of open access nodes. Although many new imaging

technologies and quantitative initiatives are arising, such as multiparametric approaches,

their application to clinical practice is limited, most remaining on the research field. One

important reason for this limitation is the need for standardized platforms in which different

procedures, protocols and techniques can be evaluated on suitable images. Such platforms

should be able to solve the strong requirements on data computing and storage. Our Euro-

BioImaging node main objective is to set up an innovative platform for the execution of

multicentre clinical trials and research projects based on medical imaging and imaging

biomarkers. This advanced imaging platform will enable to test and validate state-of-the-art

image analysis techniques, increase quality and accuracy of clinical trials through the use

of advanced quantitative imaging techniques, promote new visualization tools and, finally,

reduce overall costs.

Simlarly, in the last years several collaborative environments have been developed

together with powerful tools for the exchange of knowledge among medical institutions,

improving diagnosis and research. Most of them primary rely on medical images, and they

use Grid and Cloud computing infrastructures to organize the access and the use of the

various services offered by them. Such collaborative environments include the Biomedical

Informatics Research Network (BIRN) from Grethe (2005), the e-Science platform for

researchers of Alzheimer’s disease neuGRID (Redolfi et. al. (2009)), its recent successor

N4U or the integrated healthcare platform for European paediatrics Health-e-Child from

Marcus et al. (2007). Representative examples of medical imaging applications exclusively

using Cloud computing include the work of Silva et. al. (2012) for the storage of medical

studies using public Cloud providers, and a Windows Azure-based DICOM server from Teng

et al. (2010). Those platforms offer fixed environments which are infrastructure-dependent.
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2 Requirements

According to the European Society of Radiology (ESR) working group on Imaging Biobanks

definition, Imaging Biobanks are defined as organized databases of medical images and

associated imaging biomarkers (radiology and beyond) shared among multiple researcher,

that should be linked to a biorepository as stated in ESR WG on Imaging Biobanks (2014).

The definition already considers the interaction of specialists from different disciplines with

the platform.

2.1 Use cases as defined by applications of the platform

Therefore, the needs to be covered by this advanced imaging platform are directly related

to the most relevant use cases for medical imaging and that are considered in its design,

consisting on: clinical research, development of new imaging biomarkers, imaging-based

clinical trials and biobanks.

The platform will be an environment for clinical research, where the users will have the

capability of choosing the data they want to statistically process for their study, including not

only images but also associated imaging biomarkers and meta-data in a way of customized

research based on imaging. The data in the platform will be properly anonymised if not

having written informed consent and de-identified in the case of having a written informed

consent (e.g. those coming from clinical trials). The data will cover the entire spectrum of

human disease and provide a platform where state-of-the-art image analysis algorithms can

be evaluated on own data.

This population-based imaging biobank will be used also to fill the gap between research

and clinical application in quantitative imaging and imaging biomarkers. Nowadays, there

is a need to validate either existing or new quantitative imaging methods. As an example,

several imaging biomarkers exist as candidates to early evaluate treatment response in

oncology, but large cohorts are required in order to extract robust conclusions and relevant

evidence for clinical practice and clinical trials. Image processing scientists will have

the capability of uploading and sharing their own algorithms and methods with other

researchers, to be tested with the studies in our platform. The platform will also ease the

development and validation of novel image analysis techniques and their comparison with

implementations of other research groups applied to the same cohorts.

The number of clinical trials based on imaging is progressively increasing, due to the

better technological capabilities of the different modalities that allow for more precise

and accurate diagnosis. However, the use of quantitative imaging in clinical trials is still

an important challenge, since there is a lack in the standardization of image analysis

procedures. Our platform will include image analysis algorithms following criteria of the

scientific community and novel standardization initiatives like the QIBA (Quantitative

Imaging Biomarkers Alliance).

Finally, the mechanisms for the connection of this imaging platform with existing

biorepositories will be also considered. A biorepository is s biological material repository

that collects, processes, stores, and distributes biospecimens to support future scientific

investigation. Although a biorepository can contain or manage specimens from animals,

including humans, and many other living organisms, in some discussions, such as in ISBER

(2001), the term is reserved for human specimens.

Since the late 1990s, biorepositories have became an important resource in

medical research, supporting many types of contemporary research like genomics and
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personalized medicine. For example, many diseases are associated with single-nucleotide

polymorphisms, and performing genome-wide association studies using large collections

of samples which represent tens or hundreds of thousands of individuals can help to identify

disease biomarkers as stated by Greely (2007).

Hewitt (2011) and many other researchers have identified biobanking as a key area

for infrastructure development in order to promote drug discovery and drug development.

These data are currently available in local databases and the mechanisms of connectivity

and access to them will be addressed.

The connection of Biorepositories and medical image databanks enable the guidance to

the development of advanced imaging surrogates that could lead to early diagnosis and to

anticipate the most effective therapy.

2.2 Use cases as defined by the types of interaction

According to the way the resources will be used, three use cases are considered:

• Interactive usage. A project requires to analyse and process manually a set of images

from the case studies selected. A single Virtual Machine - with a specific virtual

hardware configuration- is needed. The Virtual Machine is properly configured with a

set of tools and Interactive access is required.

• Batch. A project requires applying a straight but computationally intensive processing

on a wide range of images. Unattended execution is possible and desirable. Once

the parameters are fixed, a simple combination of programs is executed over the

whole bunch of images. It will require multiple Virtual Machines and a local resource

management system (such as Torque, PBS, LSF, OGE, etc.)

• Pipeline. A project requires applying a complex processing on a set of images

requiring multiple steps and synchronizations with different requirements (for example,

it requires merging the results from previous steps). It will require multiple Virtual

Machines and a pipeline manager able to work with the infrastructure.

2.3 Image processing requirements

The platform will integrate data with a high degree of heterogeneity, like medical images

with all the interpretations of DICOM (http://dicom.nema.org) standards from the different

manufacturers, parametric maps of imaging biomarkers, 3D reconstructions of anatomy,

source codes of image processing algorithms, and associated clinical data and variables.

The main data types managed by the platform will be plain DICOM files (1 DICOM file

per image) and also NIFTii and Analyze formats (*.nii and *.hdr/*.img file extensions,

respectively), that can handle entire volumes in a single file and are widely extended among

medical image processing scientists community.

For data conversion, the mricron (McCausland Center for Brain Imaging, Columbia SC,

USA) package will be included in the platform. For data analysis the platform will include

a broad range of tools, such as the FSL (FMRIB Software Library, Analysis Group, Oxford,

UK) and SPM (Wellcome Trust Center for Neuroimaging, University College London,

London, UK) packages that are specially suited for neuroimaging analysis, and a connector

for Python scripts, in order to allow the evaluation of algorithms developed by the users of

the platform.
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2.4 Pipelining and processing

A pipeline-based architecture will be used for the development of quantitative imaging

procedures. Image analysis methods will be classified in those used for quality control data

(i.e. signal noise ratio plot), data pre-processing (i.e. segmentation, filtering, interpolation),

data analysis (i.e. brain volumes quantification, T2 mapping, perfusion analysis, lung

emphysema quantification) and data measurement (i.e. histogram based analysis, multi-

variate statistical analysis). Rules will be defined for the interconnection of the different

types of processing modules for pipeline creation.

3 Materials

According to the above requirements, the management of individual subprojects has to deal

with the following points:

• Each subproject will have specific requirements (in terms of resources and applications)

that have to be fulfilled individually.

• Multi-tenancy of the computing infrastructure does not need that data can be accessible

by different projects. Data, even anonymised, and produced results must be protected

from the access of unauthorized users.

• Projects may require resources or have external resources available, and the

applications should work seamlessly.

In this scenario, we define a software architecture that instantiates Virtual Appliances

customized for each subproject. A Virtual Appliance is a set of fully configured virtual

machines that run coordinately.

In all cases, the infrastructure management service will provide fully-configured Virtual

Appliances. The software required will be described as auto configuration recipes. In this

part we envisage two types of software components:

• Commodity components. The Valencia EuBio node (BIMCV) offers a range of widely

used open-source processing programs and toolkits such as FSL, SPM, mricron. Those

components are available in a market place as a set of customised recipes that are used

by the Infrastructure Manager for setting up the resources. Those recipes include the

minimum virtual hardware requirements, which can be overwritten in each specific

project if needed.

• Custom components. Each project can include their own components to the Virtual

Appliances. Users are encouraged to prepare configuration recipes to facilitate auto-

scaling automatic configuration. Nevertheless, users can manually administer their own

virtual resources adding more components. However, this last feature is limited to the

configuration running on end-users’ premises or public clouds, to reduce the risk of

running malicious software on BIMCV’s premises.

Therefore, our platform defines the following services:

• A Catalogue of images of preconfigured Virtual Machines including plain images for

further contextualization and complete stacks.
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• A recipe registry with automatic installation instructions for a wide range of processing

components.

• An Infrastructure manager for the deployment and reconfiguration of virtual

appliances.

• A service for the automatic management of elastic clusters based on the workload.

• A workflow manager able to deal with elastic hybrid pipelines.

• A computing infrastructure based on a cloud on-premise.

• A final user application that enables requesting the virtual appliances and deploying

them on the desired infrastructure.

The previous services are described in the following sub-sections.

3.1 Virtual Resource Management Catalogues

The widespread usage of virtualization requires creating Virtual Machine Images (VMIs),

which encapsulate the required hardware and software configuration required for the

applications. Different applications impose different software and hardware requirements,

which leads to a massive creation of VMIs which must be properly indexed in order to

leverage both their reuse and sharing. For that, Carrión et. al (2010) proposes a catalog

and repository of Virtual Machine Images (VMIs) that enables the users (and/or Cloud

administrators) to index and store the VMIs together with the appropriate metadata that

describes their hardware and software features. The VMRC system can be deployed within

a private Cloud to store the different VMIs required to provision the services. It can also

index VMIs stored within other Cloud providers. In addition, it can be employed to federate

different private Clouds so that a single VMRC entity can provide the images for different

Clouds. The catalog itself is hypervisor-agnostic and it uses the Open Virtual Format

(OVF) specification. The catalogue is extended with a repository of Ansible-based recipes

(Hochstein (2014)), which enables setting-up not only the proper basic VMI, but additionally

the software to be configured in the Virtual Appliance. In this way, software configurations

are described as a set of modules to be included in the final set-up.

3.2 Automatic Configuration of Virtual Appliances

Cloud infrastructures can be used to address the computational needs in multiple domains,

including scientific applications. However, the use of public or on-premises Infrastructure

as a Service (IaaS) clouds require non-trivial system administration skills. If a single Virtual

Machine (VM) is needed, custom configurations available in public clouds may be sufficient

to meet users’ requirements. When multiple VMs are needed, users have to configure

shared directories, batch queues, administer users and customise software. For that, the

Infrastructure Manager (IM), firstly presented in Caballer et. al (2014); de Alfonso et. al.

(2011), is a tool that ease the access of IaaS clouds by automating the selection of the proper

Virtual Machine Image, and the further deployment, configuration, software installation,

monitoring and update of Virtual Appliances.

IM provides an abstraction layer to enable the interoperability with different IaaS clouds.

This layer has been designed using a plug-in scheme that currently provides plug-ins for:
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OpenNebula, OCCI, Amazon EC2, Google Cloud, Docker, OpenStack and libvirt. This set

of plug-ins enables the access to a large number of cloud deployments and virtualization

platforms, thus enabling the user to start using a simple virtualization system and then

transparently migrating to the cloud. It integrates Ansible as the contextualization system

to enable the installation and configuration of all the user required applications providing

the user with a fully functional infrastructure. Despite that multiple cloud providers offer

services for the deployment of software configurations (e.g. HEAT from OpenStack or the

Software Management and Catalog service of OpenNebula), IM recipes are compatible to

all the platforms supported via plug-ins.

Figure 1 shows two examples of configuration recipes. The one in the left describes the

structure of a configuration of a medical imaging storage node, which includes four parts:

• The description of the virtual hardware.

• The deployment of the node.

• The common configuration recipes.

• The instantiation of variables specific of this node.

Despite that on-the-fly configuration introduces an overhead, this overhead is only

compulsory for creating the virtual images for the first time. VMs can be preserved

without requiring being active along the life-time of the project. Snapshots of the VMs

can be performed and registered in a catalogue for longer-term hybernation. An interesting

alternative, which is also supported in IM, is the use of docker containers. This will enable a

binary-compatibility level with cloud providers (including public clouds like the container

service of Amazon). IM can instantiate those containers and they can be registered in a

catalogue for further reuse.

3.3 Elastic Virtual Applicances

Elastic Cloud Computing Cluster (EC3) (Caballer et. al (2013)) is a tool to create elastic

virtual clusters on top of Infrastructure as a Service (IaaS) providers, either public (such

as Amazon Web Services) or on-premise (such as OpenNebula and OpenStack). We offer

recipes to deploy TORQUE (optionally with MAUI), SLURM and SGE clusters that can

be self-managed with CLUES: it starts with a front-end node and working nodes will be

dynamically deployed and provisioned to fit increasing load (number of jobs at the LRMS).

Working nodes will be undeployed when they are idle. This introduces a cost-efficient

approach for Cluster-based computing. Clusters can be complemented in a hybrid model

by the creation of VPNs that extend a virtual cluster (Amanda et. al. (2014)) deployed in

on-premise infrastructures and complemented with additional resources from a public cloud

provider. This model is feasible when the inter-node communication and the access to a

shared file system is small in comparison with the computational cost.

3.4 Infrastructure

The platform is designed to be ‘cloud-agnostic’, being able to work with multiple

infrastructures. In the present time, three kinds of infrastructures are considered: Local

infrastructure of BIM-CV. This infrastructure is provided by the UPV and the CIPF, with

a total capacity of 100 virtual instances. It is currently provisioned using OpenNebula.
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Figure 1 Description of the configuration of a Virtual Appliance. Example of a storage resources

configure storage (
@begin
---

- vars:
- CA_HASH: fea48927
- VO: trencadistest
- UNIQUE_GateKeeper_BackEnd: 0
- INSTANCIAS_IIS: 1
- GLOBUS_LOCATION: $IM_APP_GLOBUS_PATH
- ANT_HOME: $IM_APP_ANT_PATH
- JAVA_HOME: $IM_APP_JAVA_PATH
- UNIQUE_BackEnd: 0
- CONSUMER_SERVICE: eouid
- SERVICE_TYPE: EOUIDGenerator
tasks:
- include: grid_service.yml

@end
)

system storage (
cpu.arch='x86_64' and
cpu.count>=1 and
memory.size>=1024m and
net_interface.0.connection = 'publica' and
net_interface.0.dns_name = 
'eouidgeneratorservice#N#.trencadistest.trencadis.e s' and
net_interface.1.connection = 'privada' and
net_interface.1.dns_name = 'storage#N#.localdomain'  and
disk.0.os.name='linux' and
disk.0.os.flavour='CentOS' and
disk.0.os.version>='5' and
disk.0.applications contains (name='globus' and vers ion = 
'4.2.1' and preinstalled='yes') and
disk.0.applications contains (name='postgresql-serve r')
)

configure grid_service (
@begin
- include: backend.yml
- file: path=/etc/grid-security/certificates
state=directory
- get_url: url=${RSCF}/${VO}/CAs/${item} dest=/etc/g rid-
security/certificates/${item}

with_items:
- ${CA_HASH}.0
- ${CA_HASH}.r0
- ${CA_HASH}.signing_policy

...
- command: $GLOBUS_LOCATION/bin/globus-deploy-gar 
/home/trencadis/trencadis_infrastructure_services_$ {SERVIC
E_TYPE}.gar 
creates=$GLOBUS_LOCATION/lib/trencadis_infrastructu re_serv
ices_${SERVICE_TYPE}.jar

environment:
GLOBUS_LOCATION: $GLOBUS_LOCATION
ANT_HOME: $ANT_HOME
JAVA_HOME: $JAVA_HOME

...
- service: name=container state=started enabled=yes
@end
)

deploy eouid 1 'HSOR\PHQW

,QVWUXFWLRQV

6HUYLFH FRQILJXUDWLRQ

UHFLSH DYDLODEOH IURP

WKH OLEUDU\
1RGH

FRQILJXUDWLRQ

'HVFULSWLRQ

RI�9LUWXDO�

+DUGZDUH

External infrastructures. In this point we consider both public infrastructures such as

Amazon AWS and research infrastructures such as EGI Federated Clouds. The framework

supports already both AWS EC2 (Amazon proprietary API) and r-OCCI (the standard

interface for managing cloud infrastructures, supported by EGI Federated Clouds). We use

end-users’ own credentials for the former and robot certificates for the latter. End-users’ own

infrastructure. The infrastructure management service is able to deploy the VMs directly on

an end-user’s on-premise cloud (supporting both ONE and OpenStack, or even libvirt-based

resources).

The virtual infrastructures will expose a XNAT (eXtensible Neuroimaging Archive

Toolkit, http://xnat.org/) instance. Marcus et al. (2007) is an open source platform designed

to facilitate the management of image sets and associated data (assessments, reconstructions

and any other information). Initially it is designed to work with neuroimaging but the

open data model and customizable XML-based technologies allow to adapt the platform

for any type of bioimaging. XNAT follows a three-tier architecture that includes a data

file, an user interface and a middleware engine. The data file can be incorporated into the

platform through different ways, such as XML files, web forms, DICOM transfers from

image capture devices or image viewers like Oxiris and so on. Among its most important

features are the personalized safe access to information, quality control processes of data

and image information, classification and storage of data, ability to run custom searches,

communication with bioimaging generating systems, programmability of process flows
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using scripts (pipelines), the incorporation of intermediate results and conclusions to the

study, etc. All these features make XNAT an ideal platform for the management of clinical

trials.

4 Methods

The general procedure BIMCV addresses goes through the following steps:

• A proposal of a project requesting data is prepared using a set of standardized forms.

These forms include the needs for data, software and computing resources. The

proposals are presented in a two-stage model. In the first stage, the proposal is evaluated

by a technical committee, that checks the viability of the request, the availability of

data and the ethical compliance. After a positive answer, proposers must present a

more detailed version of the project which is evaluated by a scientific committee.

• The scientific committee revise the project and proposes a final assignment of resources

(if needed). Those resources are defined as a credit in hours that can be spent on

BIMCV’s computing infrastructures.

• Data is extracted and anonymised from the regional PACS and manually verified by

an expert, which complements the data with the necessary clinical information. The

result is a dataset that is copied into a virtual disk volume. This virtual disk volume

will be attached to the virtual infrastructure.

• A technical expert defines the proper configuration of the virtual appliance. A recipe

is created with the components selected and the features of the virtual hardware. This

recipe will be used to instantiate and reconfigure the virtual appliance.

• Deploy and monitor the virtual appliance in the infrastructure proposed. In case of using

BIMCV’s infrastructure, a real-time accounting is provided to check the availability

of resources.

Next section describes the deployment architecture.

Figure 2 Deployment of a project-specific Virtual Appliance
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4.1 Architecture Deployment

A virtual cluster is assigned to each project. This virtual cluster uses a base Virtual Image

from the Virtual Machine Resource Catalogue (VMRC) and contextualizes it with two types

of instances:

• A master node that manages the virtual cluster through a batch queue (using torque).

This master node is also instrumented with the automatic elasticity component [10].

This master node will interact with the IM to deploy or undeploy a number of working

nodes.

• A working node image that will be used for processing the individual batch jobs that

a pipeline generates. This stateless working nodes will be instantiated by the master

node.

Figure 2 shows the deployment of a project-specific Virtual Appliance. The data resulting

from a query to the regional PACS is prepared in a virtual disk volume, which will be part

of the Virtual Appliance. The autoconfiguration accesses the recipes database and using the

project specification configures two VM images with the front-end and the working nodes.

Those images are instantiated in the desired infrastructure. The service is infrastructure-

agnostic, supporting OCCI, EC2, ONE, OSTACK and libvirt interfaces currently, so it can

work with public clouds, the on-premise cloud of BIM-CV or end-users’ own resources.

End-users can connect through the front/end node, which provides the desired interface

according to the components and recipes available in the marketplace.

5 Conclusions and Further Work

The need of computing platforms in population imaging analysis is clearly justified by the

huge demand of resources that requires processing large cohorts of complex images. In this

sense, cloud computing has emerged as a solution to feed this request. However, the direct

usage of public cloud infrastructrues undercover several challenges that are addressed by

the work presented.

Each public cloud provider has its own (incompatible) way to represent VMIs. Migration

from one provider to another is not automatic since it will require converting VMIs and

reimplement the elasticity management. Moreover, the configuration of virtual clusters

require system administration skills. Vendor lock-in, lack of control, IaaS management and

security refrain Medical Imaging researchers to adopt cloud computing in a wider scale. In

this sense, the use of recipes and on-the both eases infrastructure deployment and isolates

from vendor’s VMI particularities. Moreover, infrastructures can be even deployed on local

on-premise infrastructures. Finally, recipes can be exposed in a library and re-used by

non-expert users to deploy complex configurations.

The deployment on the fly increases the delay on the availability of resources. However,

this delay is only suffered in the first instatiation of the virtual infrastructure and Caballer

et. al (2014) shows reasonable re-configuration delays when new resources are added

or removed from the infrastructure. The scenario of BIM-CV focuses on long-lasting

infrastructures that can be elasticaly increased or decreased.

Elasticity is a requirement for budget contention (either real or virtual credits) in any

cloud infrastructure. Elasticity should be automatic and depending on the workload. The
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use of pipelines facilitates the implementation of IaaS elasticity rules based on the length

of the processing queue. Results in Caballer et. al (2013) show very good performance,

especially in coordination with workflow engines.

Finally, the deployment of individual virtual infrastructures is a better approach than

sharing a physical infrastructure even in the case that computing and software requirements

of the subprojects concurr. Multitenancy at the level of the infrastructure enables isolating

users of different subprojects even more, and reduces the risks of crashes, infrastructure

overloading and maintenance failures with respect to the traditional mechanisms based on

quotas.

Therefore, the model of virtual elastic infrastructure fits well the requirements both of

the users and the infrastructure providers.

EuroBioImaging is currently in the intermim phase, and planning to start prototyping

services during 2015. The BIMCV has identified preliminary sub-projects to be used

as prototypes for the infrastructure proposed in the article. Currently, the platform is

implemented at the level of the provisioning services. Current work is being focused on the

access service to data. In this piloting phase, BIMCV will run standard medical-imaging

benchmarks and populate the software repository.

In a second stage, BIMCV is planning to upgrade the software architecture with the

support of vertical elasticity and the use of containers. Vertical elasticity will enable running

memory-demanding applications in a workflow without requiring the pre-reservation of

large-scale instances.
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