Performance assessment of nitrate leaching models for highly vulnerable soils used in low input farming based on lysimeter data

Piet Groenendijka,*, Marius Heinend, Gernot Klammlerb, Johann Fankb, Hans Kupfersbergerb, Vassilios Pisinarasc, Alexandra Gemitzic, Salvador Peña-Harod, Alberto García-Pratse, Manuel Pulido-Velazquezf, Alessia Peregog, Marco Acutisg, Marco Trevisanh

a Alterra, P.O. Box 47, 6700 AA Wageningen, The Netherlands
b Joanneum Research, Forschungsgesellschaft mbH, Leonhardstraße 59, 8010 Graz, Austria
c Democritus University of Thrace, Department of Environmental Engineering, Vas. Sofias 12, Xanthi, 67100, Greece
d Institute of Environmental Engineering, ETH Zurich, Wolfgang-Pauli-Str. 15, CH-8093 Zurich, Switzerland
e Universitat Politècnica de València, Department of Hydraulic Engineering and Environment, Camino de Vera, 46022 Valencia, Valencia, Spain
f Universitat Politècnica de València, Research Institute of Water and Environmental Engineering (IIAMA), Camino de Vera, 46022 Valencia, Valencia, Spain
g University of Milan, Department of Agricultural and Environmental Science, Via G. Celoria 2 20133, Milan, Italy
h Università Cattolica del Sacro Cuore, sede di Piacenza, Via Emilia Parmense, 84 29100, Piacenza, Italy

*Corresponding author: Piet Groenendijk, Alterra, P.O. Box 47, 6700 AA Wageningen, The Netherlands, Email: piet.groenendijk@wur.nl Tel.: +31 317 486434

Abstract
The agricultural sector faces the challenge of ensuring food security without an excessive burden on the environment. Simulation models provide excellent instruments for researchers to gain more insight into relevant processes and best agricultural practices and provide tools for planners for decision making support. The extent to which models are capable of reliable extrapolation and prediction is important for exploring new farming systems or assessing the impacts of future land and climate changes.

A performance assessment was conducted by testing six detailed state-of-the-art models for simulation of nitrate leaching (ARMOSA, COUPEMODEL, DAISY, EPIC, SIMWASER/STOTRASIM, SWAP/ANIMO) for lysimeter data of the Wagna experimental field station in Eastern Austria, where the soil is highly vulnerable to nitrate leaching.

Three consecutive phases were distinguished to gain insight in the predictive power of the models: 1) a blind test for 2005 – 2008 in which only soil hydraulic characteristics, meteorological data and information about the agricultural management were accessible; 2) a calibration for the same period in which essential information on field observations was additionally available to the modellers; and 3) a validation for 2009 – 2011 with the corresponding type of data available as for the blind test. A set of statistical metrics (mean absolute error, root mean squared error, index of agreement, model efficiency, root relative squared error, Pearson’s linear correlation coefficient) was applied for testing the results and comparing the models.

None of the models performed good for all of the statistical metrics. Models designed for nitrate leaching in high input farming systems had difficulties in accurate predicting leaching in low input farming systems that are strongly influenced by the retention of nitrogen in catch crops and nitrogen fixation by legumes. An accurate calibration does not guarantee a good predictive power of the model. Nevertheless all models were able to identify years and crops with high and low leaching rates.

Keywords

Lysimeter, model comparison, nitrate leaching, performance assessment, predictive power, simulation model

1. Introduction

Agriculture is the major land use in Europe (ca. 50% of overall land area) and has strongly increased its use of external inputs (fertiliser, pesticides and water) over the last 50 years. The environmental effects of intensive agriculture include a decline in biodiversity, eutrophication of ecosystems and surface waters, acidification,
global warming, air pollution and diffuse nitrate pollution of groundwater. A global challenge is to produce
enough food for the ever-growing population and at the same time minimizing the loss of reactive nitrogen (N)
to the environment. Since the 1980s, agriculture in Western Europe has managed to reduce its N surpluses,
owing to stringent national and European community policies (Vitousek et al., 2009; Grizzetti et al., 2011).

The main aim of the Nitrates Directive (EU, 1991: Directive 91/676/EEC) is to reduce water pollution caused or
induced by nitrates and phosphorus from agricultural sources. The Nitrates Directive legally restricts farm
application of manure to 170 kg ha\(^{-1}\) of nitrogen, or in case of derogation to inputs up to 250 kg ha\(^{-1}\) (Oenema,
2004). An implementation measure of the Nitrates Directive is the establishment of codes of Good Agricultural
Practice. Recommended measures include, among others, the application of crop rotations, the cultivation of a
soil winter cover and catch crops to prevent nitrate leaching and run-off during wet seasons. Catch crops create a
new challenge in the assessment of environmental effects of crop rotations. In theory, catch crops take up N that
would otherwise be lost, and, after incorporation of the crop residues into the soil, make this N available to the
succeeding crop via mineralization. However, the influence of a catch crop on the nitrogen supply to the
succeeding crop can vary greatly and range from a positive to a negative effect (Nett et al., 2011). The effect is
determined by the N uptake capacity, the rooting depth of a catch crop, the weather and soil conditions as well as
the rooting depth of the succeeding crop (Thorup-Kristensen, 2006).

Models are an important tool for assessment of environmental impacts of a certain agricultural practice and are
also an instrument for increasing the understanding of the biological, pedological and hydrological factors that
affect productivity and the risk of nitrate leaching. For this reason, for more than 30 years simulation models
have been developed and applied in the research on nitrate leaching. The different model descriptions are a
reflection of the intended purpose, the physical conditions and the available data for model application and the
knowledge and skill of the model developer. Technical implementations have evolved from stand-alone model
codes to modelling platforms comprising modular models able to include and compare different process
descriptions.

Calibration and validation of models contributes to their reliability. In addition also an analysis of the
implemented process descriptions and the mutual comparison of models provides information on the predictive
power. Several model comparison studies have been conducted in which nitrate leaching models were compared
(De Willigen and Neeteson, 1985; Vereecken et al., 1991; De Willigen, 1991; Diekkrüger et al., 1995; Moreels
et al., 2003; Kersebaum et al., 2007; Jabro et al., 2012). Most of them were related to ordinary agricultural
conditions with a single crop on a typical agricultural soil. Thus, there is no information (comparison) available for situations in soils that are highly vulnerable to nitrate leaching in combination with low-input conditions and the use of catch crops.

It is widely recognised that despite the deterministic nature of process oriented models they often have a limited validity range for certain climatic, pedological, hydrological and agronomic circumstances characterised by high inputs. It is not clear whether the models are able to produce relatively reliable predictions for low input conditions. A better insight into the model performance for such uncommon circumstances underpins conclusions about the predictive power.

In this study a number of models were inter-compared for low input conditions of one of the lysimeters of the Wagna experimental research station, Austria (Klammler and Fank, 2014; this issue) for three typical conditions for which they were not designed: 1) the crop rotation which included an uncommon crop (oil pumpkin), 2) catch crops for which the N-uptake was not measured, and 3) the soil consisted of a shallow soil vulnerable to nitrate leaching on top of a high conductive gravel layer. The objectives of this study were: 1) to assess the performance of state-of-the-art nitrate leaching models as they are used in the scientific research community, for the above mentioned conditions, 2) to inter-compare the models for analysing their predictive power, and 3) to identify strengths and weaknesses of bio-physically based models.

2. Materials and Methods

2.1 Description of the lysimeter

Observations were used of a lysimeter located in the agricultural experimental field station in Wagna in Eastern Austria (46° 46.113'N, 15° 33.140'E; altitude 265 m; Klammler and Fank, 2014 (this issue)). Since 1987 different cultivation strategies are investigated concerning nitrogen-fertilizer input, nitrate leaching and crop yields. In 2004, the cultivation changed into comparing low-input farming and organic farming, each covering 50% of the test site. Since then, two of the test plots have been equipped with two weighable, monolithic, high-precision lysimeters (2 m depth, 1 m² surface). The lysimeter in the conventional tillage test plot (KON-system) is subject for this study. Cultivation practices including crop species, sowing and harvest dates, and fertilizer applications in the test plot are presented in Table 1.
The lysimeters are equipped with soil water samplers, soil moisture probes, matrix sensors/tensiometer and soil temperature probes at four measuring depths (0.35, 0.6, 0.9, 1.8 m). An accompanied measuring profile for soil moisture, matrix potential and soil temperature is also installed outside the lysimeters (same depths as inside the lysimeter) to determine if the conditions inside the lysimeter are representative for the rest of the field. At the bottom of the lysimeter (depth 1.8 m) a suction cups rake was installed which kept the pressure head at this depth equal to that outside the lysimeter. The water sucked off was collected, weighted and sampled for the determination of the nitrate concentration. While quantity of seepage water was recorded automatically in 0.1 mm resolution by a tipping bucket, nitrogen concentration in the accumulated leachate was analysed in an approximately weekly interval. Furthermore, a weather station is installed at agricultural test site in Wagna for the recording of air temperature, relative humidity, shortwave solar radiation, wind speed, wind direction, precipitation, sunshine duration and atmospheric pressure at high temporal resolution (Klammler and Fank, 2014; this issue). Annual precipitation rates and cumulative probabilities of the rates relative to the values of the period 1961 – 2011 are presented in Table 2.

Annual rainfall amounts during the calibration years can be considered as moderate, the first year of the validation period is characterised by an extreme high rainfall and during the last year of the validation a low precipitation amount was recorded.

2.2 Description of models

This performance assessment study was conducted as part of the EU-FP7 GENESIS project (2009 – 2014) by six partners. Six well-known detailed models for European research on field-scale crop and soil water and soil nitrogen dynamics were chosen: ARMOSA, CoupModel (COUP), DAISY, EPIC, SIMWASER-STOTRASIM and SWAP-ANIMO. It goes beyond the scope of this paper to give full details on the process descriptions of the six models used. Brief descriptions will be given in text and inter-comparison of processes and various other characteristics can be found in Supplemental Materials. All models are one-dimensional.

- ARMOSA has recently been developed specifically for the Lombardy region in Italy to assess the regional soil vulnerability to nitrate leaching (Perego et al., 2013). The model allows the simulation at field and multi-field level. The model is based on the SWAP (version 2.07) approach for simulating the water flow (Van Dam, 2000), on STAMINA for simulating the crop development and growth (Ferrara et al., 2011; Richter et
al., 2010) and on SOILN for simulation of the soil organic matter and nitrogen cycle and nitrate leaching (Bergström et al., 1991).

- **CoupModel (COUP)**, a coupled heat and mass transfer model for soil plant-atmosphere systems, was initially developed to simulate conditions in forest soils, but it has been further developed to simulate conditions in any type of soil, independent of plant cover (Jansson and Karlberg, 2004). COUP applicability is very wide as it includes water, heat, tracer, chloride, nitrogen and carbon modules that can be incorporated in the modelling process. COUP development, calibration procedures and applications are presented by Jansson (2012).

- **DAISY** is a soil-plant-atmosphere system model designed to simulate crop production, soil water dynamics, and nitrogen dynamics in crop production at various agricultural management practices and strategies (Hansen et al., 1990). The agricultural management model allows for building complex management scenarios (Hansen, 2002). The model has been validated in a number of major comparative tests (Diekkrüger et al., 1995; Hansen et al., 1991a,b; Jensen et al., 1997; Smith et al., 1997; Svendsen et al., 1995; Vereecken et al., 1991; De Willigen, 1991).

- **EPIC** (Williams et al., 1984; 1989) is a cropping system simulation model, which was developed to estimate soil productivity as affected by erosion throughout the United States during the 1980's. EPIC is a field scale model, but linked to a GIS it has been applied in several regional model applications (Burkart et al., 1999; Sohier et al., 2009). Furthermore the EPIC model has been applied to study the effect of agricultural practices and biofuels cultivation on N leaching at the European scale (Bouraoui and Aloe, 2007; Van der Velde et al., 2009).

- **SIMWASER** (Stenitzer, 1988) simulates the water flow in soil. A unique feature of the model is the description of actual rooting depths based on both root biomass simulated for a crop and on the penetration resistance of the soil. STOTRASIM (Feichtinger, 1998) is fully coupled to SIMWASER and simulates nitrogen and basic carbon dynamics of agriculturally used soils. The model has already been applied to the region of southeast Styria (Fank et al., 2006). The name of these coupled models is abbreviated as SIM-STO.

- The **SWAP** model, version 3.2 (Van Dam et al., 2008) simulates water flow in the soil – plant – atmosphere domain in an integrated manner. The ANIMO model (Groenendijk et al., 2005) is sequentially coupled to SWAP and was designed to quantify the relation between fertiliser application rate, soil management and the leaching of nitrogen (N) and phosphorus (P) to groundwater and surface water systems. The ANIMO model
is part of the National Dutch modelling system **STONE** for the evaluation of fertiliser policy measures (Wolf et al., 2003). The name of the sequentially coupled models is abbreviated as **SW-ANIM**.

In addition to soil processes also the description of crop development is considered, because the plant related processes such as evaporation, nitrogen and nitrogen supply with crop residues exert a major influence on the water balance and nutrient dynamics in the soil.

Except for **SW-ANIM**, all models simulate the growth of plant biomass. Although **SW-ANIM** has the possibility to calculate the biomass development in a detailed manner, the modellers had chosen to use a simple option of a supposed development of leaf area index, crop height and rooting depth, because the parameters required for detailed simulation of oil pumpkin and catch crops were not available. Except for **EPIC**, the models describe water flow with either the Richards’ (1931) equation or the Darcy (1856) - Buckingham (1907) equation, in which the soil water retention and the hydraulic conductivity relations are described according to Mualem (1976) - Van Genuchten (1980). **EPIC** simulates soil water flow as a storage routing process in which percolation occurs when the soil water content of the root zone exceeds the field capacity. In **EPIC** the soil water characteristics are calculated on the basis of texture data and the organic matter content in accordance with Saxton and Rawls (2006).

All models consider ammonium and nitrate as separate mineral nitrogen pools, and simulate organic bounded nitrogen associated with the organic carbon cycle. **SW-ANIM** simulates also the transport and transformation of dissolved organic nitrogen. The method of simulating biological N-fixation is one of the striking differences between the models. The **DAISY** model was applied in a way that biological N-fixation was ignored and the **SW-ANIM** model accounted for this process by the specification of continuous organic material additions representing imposed fixation rates. The other models use relationships based on the crop type, the crop development stage and the soil mineral N status. Ammonia volatilization is not implemented in the **COUP** model code used for this study. Some models consider only the loss of ammonia as a fraction of farmyard manure application (**DAISY, SW-ANIM**) while the other models take account for environmental factors as temperature, wind speed and soil moisture. **SIM-STO** uses standardized loss factors that account for the time from the last soil tillage event.

Uptake of ammonium and nitrate depends on the demand for mineral N for crop production and is related to the development stage, by some models expressed by a relationship with the water uptake, and the mineral N content of the soil.
Mineralisation is simulated in close correspondence to the organic matter cycle. All models describe the amount of mineralized nitrogen as the excess nitrogen produced from the organic matter decay and transformations to more stable soil organic matter pools. Nitrification is commonly described as a first order process which rate depends on temperature, soil moisture status and ammonium concentration. Denitrification plays no significant role in the soil of the Wagna lysimeters (Leis, 2009), but can be simulated by the models used. A variety of descriptions are implemented but all assume a relationship with temperature, soil moisture content, nitrate concentration and the potential denitrification rate as a function of organic matter content (Heinen, 2006).

The lysimeter was installed in 2004 and it was ensured that the original soil layers was put back. During the excavation and filling the soil had been in contact with open air. None of the models paid attention to this event in 2004. To establish the starting conditions on 1-1-2005, three of the six models (i.e., ARMOSA EPIC, STO-SIM, SW-ANIM) started in 1987. COUP was run for five years prior to the start in 2005 and DAISY was run two-years prior to the simulation.

2.3 Experimental design of study

The modelling study comprised of: 1) a blind test with non-calibrated models to get an impression of the performance of the models as they are used in situations where extensive data sets are missing, which often occurs in practice, 2) a calibration period, and 3) a validation period. Inter-comparisons were done between measured and simulated leaching of water and nitrate, including nitrate concentration of the percolate. The outcome of the simulations by all models was collected and analysed by a single person.

2.3.1 Step 1: Blind test

The models first performed a simulation based on a minimum set of data: crop rotation, soil cultivation, fertilization rates, meteorological data, soil profile description and soil moisture retention laboratory measurements of some soil samples. The aim is to establish the bandwidth of differences with the observations without an assessment of the individual models. The SIM-STO model was excluded from the blind test as the operators of this model were the owners of all data and SIM-STO was already partly calibrated for the test site.

After all models delivered their outcome, one external operator compared the predictions against the measured data (seasonal cumulated water flux and nitrogen flux at the bottom of the lysimeter, seasonal flow averaged nitrate concentration) for the period 2005 - 2008. It was not the intention of the blind test to qualify or assess the performance of the individual models and, therefore, the outcome of this test will be presented anonymously.
Specifically only data on seasonal percolation, flow-averaged nitrate concentration and seasonal nitrate leaching were considered.

2.3.2 Step 2: Calibration

Each of the six modelling groups calibrated the models for a limited number of parameters. The successive operations, the objective function and the number of parameters were not prescribed, but were chosen freely by the modelling groups, either based on expert judgement or on a sensitivity analysis. Further details of how the calibration has been carried out for the different models can be found in Supplemental Materials.

2.3.3 Step 3: Validation

The validation was performed for the period 2009 - 2011, where only information about crop rotation, application of fertilizers, soil cultivation and meteorology was made available for the modelling groups after step 2 (calibration) was finished. The procedure for the validation is thus similar to that of the blind test, with the difference that the models were calibrated prior to validation and that the SIM-STO model was included in the validation.

2.3.4 Step 4: Model comparison

The six models were compared for their performance with respect to 1) the soil moisture retention curves at depths 0.35, 0.90 and 1.8 m; 2) the volumetric water contents at depths 0.35, 0.9 and 1.8 m; 3) the nitrate concentrations at depths 0.35, 0.9 and 1.8 m; 4) the daily water fluxes at depth 1.8 m; 5) the leached water amounts for the time intervals of collected water samples; 6) the nitrate concentrations of the collected water samples; 7) the nitrate-N fluxes at the bottom of the lysimeter for the time intervals of collected water samples.

The comparison of results at the depth of 60 cm was excluded because measurements for this depth were only available up to Sept. 2009. Seasonal leached water amounts, nitrogen yields and nitrate-N fluxes were compared to discuss the predictive power for practice oriented model applications. A nitrogen balance was set up for all models. Water fluxes at 1.8 m depth were evaluated for daily and for seasonal values. Nitrate leaching fluxes and nitrate concentrations in the leachate were evaluated at the time intervals for which the soil water was sampled.

The sampling time intervals were irregular in time and the models were not able to present concentrations at these specific time events. Therefore, concentrations values for these time intervals were derived according to a volumetric averaging procedure. The nitrate concentrations at depths 0.35 m and 0.9 m can be used to get an impression whether the transport and transformation processes in soil, which ultimately lead to the leaching at depth 1.8 m, have been described adequately. Due to the nature of the model formulations, EPIC was not able to...
present the concentrations at the depths of measurement. The number of observations at depth 0.35 m in the calibration period was too little and were not considered.

In the models, much knowledge of soil processes is described which all contribute to the nitrate leaching at depth 1.8 m. To understand the similarities and differences between simulation results and measurements, it is important to assess the processes. We have done this through the establishment of nitrogen balances per season.

2.4 Statistical metrics

The behaviour of the main model outputs can be characterized by a number of statistical metrics to indicate the models’ ability to capture different aspects. A complete assessment of model performance should include at least one absolute error measure and one goodness-of-fit measure (Legates and McCabe, 1999). There are a wide range of statistical indicators used in studies on soil water and soil nitrogen, but not always a justification is given for the indicators chosen. For *state variables* many authors use mean (absolute) error \((M(A)E) \), root mean square error \((RMSE) \), index of agreement \((IoA; \) Willmott, 1982), and less often the Nash-Sutcliff efficiency \((NSE; \) Nash-Sutcliff, 1970) (e.g., Donatelli et al., 2004; Gribb et al., 2009; Herbst et al., 2005; Khodaverdiloo et al., 2011; Patil and Rajput, 2009; Ritter et al., 2003; Vereecken et al., 2010). For *rate variables* authors generally use \(MAE \), mean difference \((MD) \), absolute maximum error \((AME) \), \(RMSE \), \(IoA \), \(NSE \), coefficient of determination \((R^2) \), percentage of error \((PE) \), percentage of bias \((P_{bias}) \) (e.g., Akkal-Corfini et al., 2010; Ale et al., 2012; Dawson et al., 2007, 2010; Jabro et al., 2012; Jachner et al., 2007; Kersebaum et al., 2007; Krause et al., 2005; Moriasi et al., 2007; Qi et al., 2012; Reusser et al., 2009; Stumpp et al., 2009; Van der Laan et al., 2011; Wang et al., 2006; Willmott et al., 1985). It appears that a few measures are used both for state as for rate variables, which we have chosen to use here as well: \(MAE \), \(RMSE \), \(IoA \), and \(NSE \) (only for rates), given by:

1. Mean absolute error:

\[
MAE = \frac{1}{n} \sum_{i=1}^{n} |P_t - O_t|
\]

2. Root mean squared error:

\[
RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (P_t - O_t)^2}
\]

\[
IoA = 1 - \frac{\sum_{i=1}^{n} (P_t - O_t)^2}{\sum_{i=1}^{n} (|P_t - \bar{O}| + |O_t - \bar{P}|)^2}
\]

\[
NSE = 1 - \frac{\sum_{i=1}^{n} (O_t - P_t)^2}{\sum_{i=1}^{n} (O_t - \bar{O})^2}
\]

where \(n \) is the number of observations, \(O_t \) is the observed value, \(P_t \) is the model predicted value, and \(\bar{O} \) and \(\bar{P} \) are the mean values of observations and predictions, respectively. All four measures compare the predictions \(P_t \) and
observations O_t at the individual level, and try to express the ‘spread’ in $(P_t - O_t)$ (Janssen and Heuberger, 1995).

The MAE accounts for the deviations $(P_t - O_t)$ in an absolute value sense. This measure is less sensitive to outliers than $RMSE$, IoA and NSE. The latter indices measures $(P_t - O_t)$ in a quadratic sense, and, thus, are sensitive to outliers. If model errors are significant, it is more difficult to objectively assess the agreement between model and data on basis of $RMSE$. As an alternative, Willmott (1982) proposed IoA to express this agreement more directly. The dimensionless IoA has limits 0, indicating no agreement, and 1, indicating perfect agreement. The dimensionless NSE ranges between 1 and $-\infty$, where $NSE = 1$ denotes a “perfect” model fit and for $NSE < 0$ the average of the observations would be a better predictor than the model (Krause et al., 2005).

Taylor (2001) presented a graphical method in which several statistical metrics have been combined. Such a Taylor diagram summarizes how closely a set of simulations matches the observations, and it is especially useful in evaluating multiple aspects of complex models. In normalized form, it presents the Pearson’s linear correlation coefficient (R) and the root relative square error ($RRSE$) as a function of the ratio of standard deviations of predictions and observations σ_P and σ_O, respectively, where

5. Pearson’s linear correlation coefficient

$$ R = \frac{\sum_{t=1}^{n}(O_t - \overline{O})(P_t - \overline{P})}{\sqrt{\sum_{t=1}^{n}(O_t - \overline{O})^2 \sum_{t=1}^{n}(P_t - \overline{P})^2}} $$

6. Root relative square error:

$$ RRSE = \frac{\sqrt{\sigma_P^2 + \sigma_O^2 + 2\sigma_P \sigma_O R}}{\sigma_O} $$

where σ_O and σ_P are the standard deviations of the observations and model predictions, respectively. A value of (1,0) in such a figure indicates a full agreement of model results with observations.

3. Results and discussion

3.1. Blind test

Figure 1 presents the range of predicted seasonal water fluxes, flow-averaged nitrate concentration and nitrate-N fluxes by the five models considered as compared to the observations for the blind test period.

Maximum deviations between simulated and observed seasonal percolation volumes of almost 400 mm were found. Two of the five models showed a relatively good agreement of the seasonal percolation with the measurements. Three of the five models overestimated the percolation in all seasons. One model underestimated
the percolation volume in all seasons and only one model was able to simulate the seasonal percolation accurately. The range of model results was independent of the seasonal percolation.

Seasonal flow averaged nitrate concentrations were underestimated by all models in two of the four seasons. For the first season, all models underestimated the concentration by 10 – 40 mg L\(^{-1}\). The variation of simulated concentrations and N-fluxes was large. Maximum deviations of seasonal nitrate-N leaching of about 25 kg ha\(^{-1}\) were found. All models underestimated the leaching rate in 2005 by 8 – 22 kg ha\(^{-1}\). The same holds for the fourth season, but only one model was able to calculate the nitrate-N flux with a reasonable agreement with the measurements. In the second season (maize), four models underestimated and one model overestimated the nitrate concentration and nitrate-N flux. The third season, which was the second season with maize showed a rather different pattern. The measured nitrate concentration and nitrate-N flux under maize in the 3rd season was much lower than for the maize crop in the 2nd season, but the modelled results still showed a large variation with a less skewed distribution of underestimation and overestimation. In the blind test information was lacking about crop-uptake rates and the nitrogen excess per season. The results showed that without this information and without a proper calibration the models were not able to predict nitrate concentrations and leaching rates accurately.

3.2 Calibration and validation

3.2.1 Soil water and soil physical relations

In the blind test the modellers had only laboratory measurements of the water retention curve at their disposal, but in the calibration phase also in situ measured soil moisture contents (θ) and pressure heads (h) were available at four depths. The laboratory measurements were performed for drying samples only, while under field conditions data pairs of θ(h) were detected during wetting and drying cycles so that these were affected by hysteresis (Basile et al., 2003, 2006). Figure 2 depicts the calibrated θ(h) curves for three depths. The results at the depth of 0.6 m were comparable to the results of 0.35 m deep and are not shown here. The observed h at depth 0.35 m ranged from -20 cm to -2000 cm. At depth 0.9 m h ranged from -2 cm to -1000 cm and at depth 1.8 m h ranged from -10 to -100 cm. The variation of the θ(h) observed population is largest at depth 0.35 m.

<<Figure 2>>

Results for the EPIC model are represented by three points as EPIC does not use a continuous description of the θ(h) curve. The greatest value for the saturated water content was obtained by the EPIC model with a value
greater than 0.3 cm3 cm$^{-3}$ at depth 1.8 m. This parameter is far outside the range that was established by the other models. A comparison between the calibrated and observed $\theta(h)$ curves was made by calculating a θ for each value of the measured h. The performing indices based on computed θ and measured θ are presented in Table 3.

In general the resulting MAE, RMSE and IoA showed equal trends. The ARMOSA model fitted well at depths 0.35 m and 0.9 m, but performed worse at depth 1.8 m. The performance of the COUP model appeared to be weak. At depth 0.9 m the DAISY model was better than the COUP model, but worse than the other models. The IoA for the SIM-STO and SW-ANIM models was highest at depth 0.9 m and somewhat lower for the other depths. It should be noted that a good match of the calibrated $\theta(h)$ curves with measured data pairs does not a-priori mean that a good agreement between the time series of measured and calculated θ will be obtained.

The simulated θ was compared with daily averaged values of measured θ (Table 4). For depth 0.35 m an increasing trend was detected from 2008 and onwards which is attributed to the aging of the sensor, and, therefore, the results for this depth were disqualified for the validation period.

Except for ARMOSA and EPIC in the validation phase, the highest IoA values for simulation of the water contents were achieved at depth 0.9 m. For SIM-STO and SW-ANIM, the IoA values were similar to the calibration results of the $\theta(h)$ curves (Table 3). However, the performance by COUP increased and that by DAISY decreased compared to Table 3. Except for the ARMOSA and the DAISY models at depth 0.35 m and the SW-ANIM model at depth 1.8 m, in general the resulting performance indices showed a better agreement between simulated and observed values for the period 2005 – 2008 than for the comparison based on soil moisture retention curves. The indices of the validation period 2009 – 2011 were in the same range, or somewhat lower at depth 0.9 m, as for the calibration period (Table 4).

Figure 3 presents the cumulative water fluxes as predicted by the models and as measured as a function of time.

The pattern of cumulative water fluxes per growing season complies generally with the annual precipitation amounts (Table 2) with the exception of maize in 2006 and its preceding crop in the winter of 2005/2006. During the intermediate period after oil pumpkin in 2005 and before maize in 2006, the precipitation amounted to about
430 mm. It appears that the evapotranspiration of the intermediate crop (English ryegrass) was relatively low which resulted in a relatively high leaching volume at the start of the maize crop. The simulated cumulative water flux per season corresponded well to the measured water fluxes for most of the models which is also true for the extreme wet year 2009. However, DAISY showed some overestimation in particular seasons due to difficulties in parameterizing maize crop parameters. EPIC performed better in the calibration than in the validation period. SW-ANIM underestimated the cumulative water flux in the two first seasons, but overestimated slightly in some other seasons. No model was able to simulate the dry no-flux period during the second half of 2011. Deviations between the simulated and observed soil moisture contents were relatively small and have a limited impact on the cumulative water fluxes. Underestimations and overestimations of the seasonal water fluxes are explained by overestimation and underestimations of the seasonal evapotranspiration. This depends on the difficulty of establishing accurate crop growth parameters. Table 5 presents the statistical performance indices for the daily water fluxes and for averaged water fluxes per sampling interval for both the calibration and the validation periods.

The performance improved for the averaged fluxes per sampling period of the calibration phase relative to the performance of the daily fluxes, but deteriorated for the validation phase. This is counter-intuitive because the peaks of the daily fluxes pattern are flattened by aggregation and one should expect a better performance for the averaged values per sampling interval.

Figure 4 presents the Taylor diagrams for the daily water fluxes and for averaged water fluxes per sampling interval for both the calibration and the validation periods.

For all models the R-values were between 0.5 and 0.9 and the $RRSE$-values were between 0.5 and 1.0. For daily water fluxes the σ_p/σ_o-ratio for the validation period was somewhat higher than for the calibration period, but for the fluxes averaged for the sampling intervals it can be seen that ARMOSA, DAISY, COUP and EPIC resulted in lower σ_p/σ_o-ratio’s for the validation period than for the calibration period.

The range of seasonal water fluxes for the cultivation periods predicted by the models for all seasons was around the observed values (Figure 5). With respect to the blind test, calibration of the models resulted in a smaller range and in a shift towards the observations.
The ranges were relatively large for maize and its preceding catch crops in 2006 and 2010. In four of the seven seasons DAISY had the lowest value for the leaching and in one season the highest value. Both COUP and EPIC resulted in three seasons the highest value. SIM-STO had the smallest deviation between predicted and measured seasonal water leaching and DAISY resulted in the largest deviation.

Differences between observed and model predicted water contents, water fluxes and water volumes per sampling interval indicate over- or under-estimation of the water excess in the soil column. Besides uncertainties in soil hydraulic properties and in observations, there was also lack of information about actual plant and root system development as a function of time.

The different modelling groups were not able to find a simultaneous optimal solution which minimizes both water contents deviations and water flux deviations. This may be due to uncertainties in soil hydraulic properties, and the disregarding of hysteresis in the models. The soil at the Wagna experimental station consists of a clayey-sand on top of a gravel layer. Durner et al. (2007) concluded that for layered soils with distinct heterogeneity no unique effective soil hydraulic properties exist. If only fluxes across the boundaries of the system are required, heterogeneous systems can be modelled with quasi-homogeneous ones, even if the internal system state is not matched properly. However, for nutrient dynamics (solute dispersion, biological and chemical reactions) an accurate internal system state description is mandatory (Durner et al., 2007).

3.2.2 Soil temperature

The soil temperature is an important variable determining the rate of biological processes (N dynamics), for the crop development in the period of germination, and for soil moisture flow under winter conditions. A comparison of simulated and measured soil temperatures was carried out as well (data not shown). In general, the models were well able to simulate soil temperatures and resulted in performance indices much higher than for moisture contents. The simulation performance at shallow depth was less than the performance at greater depths: most models showed a delayed warming up in some spring seasons with respect to the measurements, which is attributed to the incomplete description of surface temperatures, for most of the models used the air temperature as the boundary condition.
3.2.3 Nitrate concentrations and nitrate-N fluxes

Figure 3 presents the cumulative nitrate fluxes and the nitrate concentration of the leachate as predicted by the models and as measured as a function of time. Based on a visual inspection the nitrate concentrations are simulated well by COUP and SW-ANIM for the calibration period. The SIM-STO results for this period were poor and the results of the other models were in between. The results for the validation period showed a completely different picture when compared to the corresponding results for the calibration period. The results of DAISY and SIM-STO were relatively the best, while EPIC and SW-ANIM results were weak. ARMOSA, COUP and SW-ANIM overestimated the concentration peak in autumn 2009 and SW-ANIM simulated a peak for autumn 2010, while there was no peak visible in the measurements.

ARMOSA, DAISY, EPIC and SIM-STO showed more spiky results for the calibration period than the measured values, while COUP and SW-ANIM showed calmer and more evenly time courses. The results resembled partly the modeller’s choice for defining either the nitrate fluxes or the nitrate concentrations in the objective function of the calibration procedure. The COUP and SW-ANIM modellers used the nitrate concentrations for calibrations, while the ARMOSA, DAISY, EPIC and SIM-STO modelling groups used the nitrate fluxes. For DAISY and EPIC, the nitrate concentrations were calculated afterwards by dividing the nitrate flux by the water flux. The nitrate concentrations in the calibration phase simulated by SIM-STO showed a bad performance, while the results for the validation phase were much better. The higher peak concentrations during the calibration phase were not approached by SIM-STO. On the other hand, SW-ANIM showed a good agreement of nitrate concentrations during the calibration phase, while there is a mismatch during the validation phase. The concentration peaks during the validation phase were severely overestimated by SW-ANIM due to an overestimation of the biological fixation rates of some non-leguminous catch crops in this period.

The nitrate-N flux at depth 1.8 m represents the nitrogen transport to deeper soil layers and is relevant for predictions of nitrate concentrations in deeper groundwater. ARMOSA, DAISY, EPIC and SIM-STO underestimated the nitrate N-flux under winter barley preceded by a catch crop in 2007-2008, but SW-ANIM overestimated the nitrate N-flux during this period. The COUP model was able to calculate the nitrate-N flux in five of the seven seasons that cover the calibration and validation period. ARMOSA and DAISY calculated the total seasonal nitrate-N flux well in three of the seven seasons, while EPIC, SIM-STO and SW-ANIM calculated this flux well in two of the seven seasons. The last season appeared to be the most difficult one, because of the exceptional dry conditions. The leaching after the 2009 oil pumpkin crop also showed significant
deviations between model predictions and measurements. The largest deviations of seasonal nitrate-N fluxes occurred in the results of COUP and SW-ANIM for the exceptional wet year 2009.

Table 6 presents the statistical indicators for both the nitrate concentrations and the nitrate-N leaching rates, based on the sampling time series. The largest deviations between predicted and simulated nitrate concentrations were found for the SIM-STO results in the calibration period for which the IoA amounted to 0.43. Remarkably the smallest deviations were found for the same model for the validation period for which IoA amounted to 0.78.

The underestimation of the nitrate-N flux by SIM-STO is most likely due to immobilization processes that are overemphasized for the 2005 and 2008 periods. Thus, less nitrate was released to the soil water phase which led to the underestimation of the nitrate concentration in the leachate.

The COUP model showed the best performance for the nitrate concentrations of the calibration period with IoA = 0.97 directly followed by the SW-ANIM model. The results from EPIC and SW-ANIM for concentrations in the validation period were weak with RMSE > 20 mg L⁻¹. The statistical indices of the nitrate-N leaching rates showed a similar picture. The SIM-STO model performed relatively weak during the calibration phase. For the leaching rates in this period DAISY and SW-ANIM had the best performance and for the validation period ARMOSA and DAISY performed relatively the best. The NSE values (data not shown) for both the concentration and the leaching rates in the validation period were almost all negative, showing that the calibrated models had great difficulties to predict concentrations and leaching rates for the more extreme conditions of the validation period.

Statistical performance of predicted nitrate concentrations and leaching rates were expressed in Taylor diagrams in Figure 6. Calibrated nitrate concentrations by COUP and SW-ANIM had R-values greater than 0.9 and were closest to the (1,0) point. Except for SIM-STO, the models showed σₑ/σₒ ratios for the calibration step that did not deviate much from 1; for SIM-STO the σₑ/σₒ ratio was much lower than 1 and R < 0.

The plots clearly show the much weaker performance for the validation period than for the calibration period, expressed by lower R-values and higher σₑ/σₒ ratios. SIM-STO showed the best performance for concentrations in the validation period with R > 0.7, σₑ/σₒ close to one, and RRSE = 0.75, while for the other model RRSE > 1. For the nitrate fluxes in the calibration period RRSE values were between 0.64 and 0.86, while
for the validation period, the values were between 1 and 2 even with a peak of 8.6 for SW-ANIM (data point not seen in Figure 6). The R-values of the nitrate fluxes in the validation period were in the range 0.18 (EPIC) to 0.50 (COUP). The σ_P/σ_O ratio ratios were in the range 0.75 to 2.3 with a peak of 8.8 for SW-ANIM (data point not seen in Figure 6). The values for σ_P/σ_O ratio greater than 1 for both the concentrations and the nitrate fluxes indicate that the variation of the simulated values is greater than the variation of the observed values.

Table 7 presents the performance indices for the nitrate concentrations at depths 0.35 m and 0.9 m. The IoA values indicate that the best agreement between simulated and measured values was achieved for the calibration period, but MAE-values and $RMSE$-values were highest for the calibration results at depth 0.9 m and lowest for the validation results at depth 0.9 m. This apparent contradiction is due to the number of measurements on which the indices were calculated. Further analysis was based on IoA because the ranking of these values corresponded better to the results of the leaching water at depth 1.80 m.

Calibrated concentrations yielded IoA-values ranging from 0.44 (SIM-STO) to 0.84 (SW-ANIM). The results for the validation period resulted in somewhat lower IoA values, except for SIM-STO which shows better results for the validation than for the calibration period. The ARMOSA results were the most constant for the different depths and periods. Both COUP and SW-ANIM show significantly poorer IoA values for the validation than for the calibration period. DAISY and SIM-STO showed slightly better results for the concentrations at depth 0.9 m than for the concentrations at depth 0.35 m. The other models performed slightly better for depth 0.35 m. Except for SW-ANIM, the IoA for the validation period at 0.35 m were in the same range as for the results at depth 0.9 m.

Over- and overestimation of simulated average nitrate concentrations and nitrate-N leaching rates for the calibration period is due to a number of reasons. A formal reason is the formulation of the object function. The calibration method applied for most models attempted to minimize the sum of squared differences $(P_t-O_t)^2$ for either the nitrate concentrations or the nitrate-N fluxes. A minimal sum does not guarantee a perfect match of the average concentrations. The different modelling groups have chosen different objective functions when calibrating for nitrate observations. Most models based the summation $(P_t-O_t)^2$ values on the sampling periods but SIM-STO used the summed $(P_t-O_t)^2$ values for the nitrate-N leaching rate per growing season only.
Three out of four models that used nitrate flux in their objective function resulted in \(\text{IoA} \) values in the range 0.76-0.87 for the calibrated nitrate fluxes, while the other model resulted in \(\text{IoA} = 0.43 \) (Table 6). Two out of three models that used nitrate concentration in their objective function resulted in \(\text{IoA} \) values in the range 0.95-0.97, while the third model resulted in \(\text{IoA} = 0.87 \) (Table 6). However, a good calibration on nitrate concentrations did not result in good performance on nitrate fluxes. Both for the calibration and for the validation periods it appeared that all models had difficulties in predicting the nitrate fluxes at the bottom of the lysimeter, even if some of them were calibrated based on the measured nitrate fluxes.

Vereecken et al. (1991) evaluated five complex models from which SW-ANIM, EPIC and DAISY are also included in our performance assessment. A comparison between simulated and observed nitrate leaching rates measured in two sandy soils in Denmark and one sandy soil in the Netherlands revealed that SW-ANIM, EPIC and DAISY performed similar, although DAISY appeared to be a bit superior in behaviour. In general much better statistical metric values were reported than in our study. This may be due to the circumstances of the field trials which were representative for conventional agriculture during the eighties and because the calibration and the comparison was carried out for seasonal values.

Diekkrüger et al. (1995) compared the results produced by 19 simulation models, others than those used in this study, for a loam soil and a sand soil in Southern and Eastern Saxony in Germany. Variation in the leaching rates at 0.9 m depth reflected mainly the differences in soil water fluxes at that depth. Apart from the seasonal differences between the models that were able to simulate a three year period continuously, the cumulative leaching was nearly the same for these models. The results of soil nitrogen simulations were significantly influenced by the results of water flow and plant growth simulations. Diekkrüger et al. (1995) concluded that for long term forecasts the exact determination of the boundary conditions is as important as the model approach itself. Our finding that the unmeasured inputs concerning biological N-fixation are important for the soil nitrogen dynamics is consistent with this conclusion. In our study, differences between model seasonal and long term results are attributed to some extend to different assumptions about fixation rates.

Kersebaum et al., (2007) conducted a comparison of simulation models for 18 different models from which SW-ANIM and SIM-STO are included in our study. SW-ANIM was applied to the Müncheberg data-set (Kroes and Roelsma, 2007) and SIM-STO was applied to the data-set of the lysimeter station Berlin-Dahlem for water flow simulation and to the Bad Lauchstädt data-set for simulation of soil nitrogen dynamics (Stenitzer et al., 2007). Results for the mean bias, \(\text{RMSE} \), \(\text{IoA} \) and \(\text{NSE} \) showed weak performances for the soil mineral nitrogen
simulation in the 0-90 cm upper soil layer for nearly all models which were subjected to the Müncheberg data-set. Kersebaum et al. (2007) concluded that comparison of simulated results by models which are intended for field scale and regional scale with measured data often shows unsatisfactory results due to deviating conditions and parameters. It does not automatically mean that the models or the parameters are wrong because the data and parameters are only partly related to the site specific conditions of the measurements. In our study significant amount of data was available, but critical information about rooting depth and pattern, atmospheric deposition rates, mineralization and fixation rates was missing as well as the nitrogen uptake rates and residue amounts of the catch crops. Due to these uncertainties, it is difficult to draw clear conclusions about the predictive power of the models.

3.2.4 Nitrogen balances

Table 8 presents the soil nitrogen balances per season for each of the models.

| Table 8 |

Exact fertilizer and manure inputs were not represented by EPIC, because the model assumes standard compositions which are not equal to the experimental data. This holds also for SW-ANIM which assumes fixed nitrogen compositions but this was overcome by introducing new manure types, so that the fertilizer input was close to the observed values.

The estimates for atmospheric deposition ranged from 4.2 kg ha$^{-1}$ a$^{-1}$ (COUP) to 23.4 kg ha$^{-1}$ a$^{-1}$ (DAISY), averaged for seven growing seasons. Only literature values were available and most modelling groups have used the model default values or the figure they are familiar with for their own country. ARMOSA calculated for the validation phase lower wet deposition rates than for the calibration phase due to lower precipitation amounts. Some models assumed only dry deposition at a constant rate, while other models also imposed nitrogen input by rainfall.

The most stressing differences are for biological N-fixation. Some models do not describe the biological N-fixation process as such but modellers had possibilities to assume fixation rates by introducing a nitrogen rich organic material which was amended continuously during the growing season. The DAISY and the EPIC modelling groups did not take account for N-fixation, either due to a lack model formulations implemented or to a lack of knowledge about this process. SIM-STO assumed only for the first season some biological N-fixation by the crop mixture that included white clover. The COUP and the SW-ANIM modelling groups took account
for N-fixation, including for periods for which one wouldn’t expect (English ryegrass). In SW-ANIM the
biological N-fixation is lumped with the mineralization of some of the crop residues that descended from the
most recent and previous catch crops. The model output does not allow to unravel the biological N-fixation as
such and mineralisation of earlier catch crop residues.

The COUP model did not take account for ammonia volatilization. The other models did, and showed a range of
2% to 35% of the nitrogen in the animal manure amended to the soil. The highest volatilization rates were
simulated by SIM-STO: 27% and 35% of the animal manure N in 2008 and 2011, respectively. This could
possibly explain the underestimation of nitrate leaching in 2008, but not in 2011. For these years, the differences
of the model predictions amounted to more than 22 and 37 kg ha\(^{-1}\) a\(^{-1}\), respectively, which is higher or in the
same range as the measured nitrate-N leaching. Volatilization was calculated by EPIC and ARMOSA (about 4
kg ha\(^{-1}\)) for the first growing season of the validation period, while no farm fertilizer was applied.

The models encountered difficulties with the simulation of nitrogen crop off-take. Deviations of simulated
uptake rates from the observed values of more than 50 kg ha\(^{-1}\) occurred for three years by ARMOSA (2006,
2010), and for one year (2011) by COUP and SW-ANIM. The EPIC model was not able to simulate nitrogen
crop off-take by oil pumpkin, because this crop is unknown in the standard database of crop parameters that
comes with the model. The DAISY model failed to simulate a reasonable crop off-take by maize in 2007, while
the N off-take in the preceding year was overestimated by 60 kg ha\(^{-1}\). The calibrated parameters for crop uptake
were not optimal for the maize as is also apparent from the calculated crop off-take in 2010 where the
overestimation amounted nearly 100 kg ha\(^{-1}\). Despite the fact that SW-ANIM included the N-yield in the object
function of the calibration procedure, the modelled crop off-take differed from the measured crop off-take by -14
to +19 kg ha\(^{-1}\). The SW-ANIM underestimated crop off-take in the validation period. Crop off-take is governing
the soil nitrogen balance to a large extent and an erroneous calculation of the N off-take means that a possible
correct nitrate leaching should be considered as little robust.

Denitrification is only of significance for the DAISY and EPIC results, while other models simulated zero or
negligible denitrification rates. For most of the models, these estimates were biased by the opinion of the data
holders who made plausible from their analysis of soil nitrogen balances that denitrification is not a significant
factor (Leis, 2009). The degree of saturation (S) at depth 0.35 m exceeds 80% for most of the time and only
COUP and SIM-STO have default threshold values for S higher than 80% while other models use lower default
threshold values for S (Heinen, 2006). Except for DAISY and EPIC, also ARMOSA and SW-ANIM should have calculated some denitrification when using default values. Except for the first year, the denitrification calculated by EPIC exceeded the nitrate-N leaching.

The change of the total N amount in soil included both organic and mineral forms and was calculated as the residual from the balance. A positive sign means an increase of the total amount whereas a negative sign indicates a depletion of the stock. The model results showed large differences and the largest difference occurred in 2010 where DAISY calculated a depletion of 105 kg ha-1 while SW-ANIM calculated an increase of 103 kg ha-1. The increase of the amount resulted from the assumed biological fixation and the inputs caused by the cultivation of catch crops. When no additional inputs by fixation or by catch crops was assumed, a depletion will occur (DAISY and EPIC).

Except for SIM-STO in 2005 and 2008, differences between calculated seasonal nitrate-N leaching rates were relatively small for the calibration phase. The deviations were much larger for the validation phase, where SW-ANIM overestimated the leaching by 39 and 29 kg ha-1 in 2009 and 2010, respectively. The observed small leaching rate in 2010 was not approached by any model. Transport of ammonium, organic dissolved N or by surface runoff was calculated at a maximum of 8 kg ha-1 by the COUP model for the first year of the validation period.

The long term nitrogen balances were summarized at the bottom of Table 8 to further compare the difference of the modellers perceptions of the plant and soil nitrogen cycle.

The seven year balance depicted the major differences between the models clearly. Despite the crop failure in 2007 simulated by DAISY, this model showed the highest summed seven year amount, while the summated crop off-take by SIM-STO lagged behind with 200 kg ha-1 relative to the recorded amount. For the individual years the ARMOSA results differed considerably from the observations, but the summated seven year crop off-take resembled the measured value rather good.

Most models have been designed for the field scale for which an average N-yield is calculated. The spatial scale of the lysimeter (1 m2) differs from the field scale and the variation of crop off-take rates at this scale is much larger than for the field scale. This is illustrated by the oil pumpkin crop in 2005. Only two seeds were planted in the lysimeter. One of the plants died at the start of the generative phase and no harvest was obtained from this.
plant. This event influenced the yield at the lysimeter scale pretty much, but the yield at the field scale was barely influenced and it can be expected that field scale models encountered difficulties.

The total nitrogen loss by denitrification ranged from 0 to 249 kg ha\(^{-1}\) and was subject to the modellers’ perception of the possibility of denitrification in the soil at the Wagna experimental field station.

The low input farming system was capable to produce relatively high yields for maize and grains, and for oil pumpkin a N-yield of 51 to 57 kg ha\(^{-1}\) was recorded, but the observed nitrate-N leaching exceeded the N-excess, the latter defined as the total addition of mineral fertilizers and animal manure minus the crop off-take.

ARMOSA, DAISY and **EPIC** predicted higher nitrate N-leaching than the N-excess (Fig. 7), while the other models showed a more or less equal value (**SW-ANIM**) or a lower value (**COUP, SIM-STO**). One of the main difficulties was to describe the role of the intermediate catch crops in the crop rotation on the delivery of N. Some of the intermediate crops fixate atmospheric N which leads to an input to the soil and other crops are only able to preserve some of the N excess which remains in soil after the catch crops for the next growing season. No data on the N uptake rates and the quality of the resulting green biomass of these intermediate crops were available. Each of the modellers had to make assumptions for the effect of these crops on the soil N cycle. The estimates of the seven years summed additional input to the soil by biological N-fixation varied from 0-2 kg ha\(^{-1}\) (**DAISY, EPIC**) to 371 kg ha\(^{-1}\) (**SW-ANIM**) (Table 8).

None of the models simulated long term soil N-stock at equilibrium. The models that did not take biological N-fixation into consideration showed a decrease of the soil N-stock of -342 kg ha\(^{-1}\) (**EPIC**) and -177 kg ha\(^{-1}\) (**DAISY**). The other models that take account for this input showed an increase ranging from 165 to 419 kg ha\(^{-1}\).

The comparison of the N mass balance components showed large differences between the models. Despite calibration on nitrate leaching, the nitrate leaching predicted was still different from that measured. Crop off-take, although measured, was only used by two models in the calibration procedure, but even then the predicted off-take differed from the observed one. For the other N processes (deposition, biological fixation, volatilization, other transport processes and denitrification) no measured data were available for comparison and calibration. For these aspects, significant differences between the models were observed, either through differences in process descriptions or in handling input by the modelling groups. The resulting storage change thus was also different for the models. The variation of the mass balance components for each model over the years was large.
A favourable assessment of a good correspondence between a predicted and a measured quantity is difficult, because it may be good for the wrong reasons. For example, ARMOSA predicted rather well the overall crop N off-take but was not able to predict the N off-takes of the individual growing seasons.

3.2.5 Performance assessment

In order to compare the performance of models a quantifiable method is needed. The simplest method would be to rank the models based on a performance index. This method is not preferred, as a model may get a high ranking despite a poor performance. Thus, a classification based on some performance index is to be preferred.

Any value of NSE and IoA (except their values 0 and 1) is difficult to interpret (Legates and McCabe, 1999), and thus it is clear that no default classification boundary values exist to evaluate good, moderate and poor model performance for a set of interrelated variables related to water contents, water fluxes, nitrate concentration and nitrate fluxes at the scale of a lysimeter.

Bellocchi et al. (2010) reviewed the methods and different indicators used for the validation of different types of biophysical models. Confalonieri et al. (2010) used NSE and RRMSE, together with four other indices to assess the quality of simulation of different models in simulating soil water contents. In hydrological studies, it is common practise to assess the model performance on the basis NSE, where NSE > 0.75 indicates a “good” performance and NSE < 0.36 indicates a “weak” similarity of model results with observations (Van Lieu and Gabrecht, 2003). Moriasi et al. (2007) reviewed the qualification of the model performance of stream discharges and contaminant loads, based on statistical indices for a number of modelling studies. They qualified model simulation on the basis of NSE and PE but their qualifications are not directly applicable to this study due to differences of spatial scale (catchment versus field) and differences of time scale (month versus day or weekly sample interval). In the literature it is noticeable that classifications and qualifications depend on the considered variables and of the time and space scale. Here we preferred to set up a classification for IoA. A number of model studies on the dynamics of soil nitrogen and nitrate leaching have been published that use the IoA, alone, or combined with other parameters (Kersebaum et al., 2007; Mantovi et al., 2006; Nolan et al., 2010; Sogbedji et al., 2006). Typical state variables which correspond with instantaneous observations have been distinguished from water fluxes and nitrate concentrations analysed in composed water samples. For the latter we assumed IoA values above 0.9 as accurate and IoA values below 0.75 as inaccurate. For soil water contents and nitrate concentrations we assume IoA values greater than 0.8 as accurate and IoA values smaller than 0.6 as inaccurate. Krause et al.
(2005) stated that even for $IoA > 0.65$ models can result in poor performance, they sure will for $IoA < 0.6$, which was here chosen as the lowest boundary. The IoA scoring for the calibration and validation periods are listed in Table 9. The scoring differed for the different models. Two models (SIM-STO, SW-ANIM) performed well for the calibration of the $\theta(h)$ curves and the simulated θ at different depths, however, this doesn’t guarantee good performance for the other state and rate variables in the calibration and validation periods. For the validation period all models performed weak to moderate on the water volume and weak on the nitrate N-flux per sampling interval, moderate to good on the daily water flux and weak to moderate on the nitrate concentration in the water samples. The models ARMOSA, COUP, DAISY and EPIC had more weak qualifications than good qualifications, while SIM-STO and SW-ANIM had more good qualifications. We have also assessed the accuracy of the seasonal amounts on the basis of the mean absolute error (MAE). The seven seasons included the oil pumpkin crop twice, which was an unknown or a particular crop for most of the modelling groups. The seven year series contained an extremely wet year (2009) and a dry summer (2011). For the performance assessment for average crop and rainfall conditions MAE of the five best values (MAE_5) out of seven (MAE_7) are presented in Table 10 to examine if the models perform better for average conditions. In some cases the improvement was more than 50%, and the ranking of the models slightly changed. Despite the fact that MAE is less sensitive to outliers than e.g. IoA, extreme situations (unknown crop, wet or dry years) can have a large impact on MAE.

3.2.6 Methodological aspects for explanation of differences

Data

Experimental data collected from a well-controlled lysimeter were used for the purposes of our study. However, the number of measured state and rate variables were less than those present in the six models. For example, no data were available on field-scale hydraulic conductivity, deposition and biological fixation. This means that the outcome of the models is uncertain as not all components of the internal mass balance could be optimized. We have observed in the blind test that based on a limited availability of data, which resembles situations that would occur in practice, the predictions of the models was poor compared to actual observations. That would imply that...
usage of such simulation models for predictions on nitrate leaching at unknown, regional scales must be regarded with care. In this study the rainfall excess was positive in most times of the year, such that the imposed bottom boundary condition in the lysimeter resulted in leaching. For other situations where capillary rise may occur, the models have not been inter-compared. Finally, it is noticed that the soil hydraulic properties as determined in the laboratory on small soil samples does not guarantee well-predicted soil water contents and soil water fluxes even for a well-controlled lysimeter situation. Partly, this may be due to the lack of knowledge of hysteresis or its description in the models.

Procedure

Despite the structured set-up of this study (blind test, calibration, validation) there remained flexibility in the approach chosen by the different modelling groups. For example, no formal sensitivity analysis was prescribed, meaning that each group was free to choose a set of parameters to be calibrated. This has introduced a subjective element in this study. Although it was agreed beforehand that the water fluxes and the nitrate concentrations in the lysimeter effluent were the most important parts of the model comparison, the objective function for optimization was chosen freely by the modellers. Some modelling group have chosen to include also the information about soil water contents and crop uptake in the optimization procedure. The comparison is, therefore, not a pure comparison of the model codes, but also a comparison of how modellers used their models.

In this study much effort has been put in calibrating and validating six models for a well-controlled lysimeter situation. Any conclusions of this study are thus at first applicable for these kind of (local) situations. Additional research is required to inter-compare these models for deviant situations, for example, for regional assessments of impact of fertilization strategies.

Decreased performance when averaging

One should expect a better performance for the averaged water fluxes per sampling interval than for the daily water fluxes because peaks of the daily fluxes pattern are flattened by aggregation. This was indeed observed in better performance indices for the calibration period (Table 5). However, the opposite occurred for the validation period (Table 5). This counter-intuitive response of performance indices to the averaging of water fluxes of the validation phase may be due to the following three reasons.

1) The distributions of the time increments of sampling in both phases differed slightly, where in the validation phase samples were taken more frequently with smaller time steps (data not shown). The pattern of sampling
intervals was neither regular nor random. The pattern was more or less dependent on practical circumstances and availability of manpower and on average samples were taken once in seven days. Under extreme rainfall conditions the intervals were shortened and under extreme dry conditions the intervals were longer because no percolation water was present.

2) The probability density distributions of the daily water fluxes and averaged water fluxes for the calibration and validation periods appeared to be unequal (data not shown). This was concluded from a non-parametric analogue of a one-way analysis of variance performed by the one-way analysis of variance by ranks after Kruskal-Wallis (1952). The different statistical behaviour may result in variant effects of volume weighted averaging on the performance indices.

3) Certain days or periods may have had a great effect on the averaging. A leave-one-out calculation procedure was performed to qualitatively explore the effect of certain days and periods on the performance of the models. In the series of data pairs of observed and simulated water fluxes, one data pair is left out and the IoA was calculated for the remainder of the population. This procedure is repeated for each of the data pairs and the results are subtracted from the IoA-value based on the total series of data pairs belonging to either the daily fluxes of the calibration or the validation phase or to the averaged values of the phases. Only the results greater than 0.001, in absolute sense, haven been plotted in Figure 8.

The exclusion of a particular data pair can result in both an improvement (negative values) or a deterioration (positive values) of the ΔIoA. Furthermore, it is notable that the ΔIoA of daily fluxes responded differently compared to the ΔIoA for averaged fluxes per sampling interval. For almost all models the exclusion of the value simulated for 19 Sept 2006 would affect the ΔIoA. The effect of excluding the value of this period is much smaller for the ΔIoA based on the averaged values per sampling interval. The maximum effect in the series of daily values occurs for a certain day of the calibration period and the maximum effect in the series of averaged values per sampling interval is calculated for a time interval in Sept. 2010 which belongs to the validation phase. The maximal effect of leaving one value out is greater for the validation period than for the calibration period.

Based on this analysis, it is plausible that the averaging of water fluxes has a different effect on the performance indices of the calibration phase than on those of the validation phase.
4. Summary and Conclusions

The novel aspect of this study is that six detailed process oriented dynamic models were tested (1) for the Wagna test-site which is known to be highly vulnerable to nitrate leaching, (2) for a crop particular for the Styrian low input agriculture system, (3) for a situation where different catch crops were part of the crop rotation, and (4) for the weather conditions which significantly differed between the calibration and the validation phase.

This study was not performed to determine which model is the best. We like to quote Kersebaum et al. (2007) who stated: “The comparison of different models applied on the same data set is not suitable to serve as a model contest or to find the best model. Although, the application of different indices for model performance helps to identify strengths and weaknesses of each model, an objective comparison is nearly impossible due to different levels of input requirements, calibration efforts and last but not least the uncertainties and errors within the measured data themselves.”

We conclude:

a. The blind test showed that simulation results without calibrating the model are generally far from acceptable. Therefore, model calibration is essential.

b. None of the models performed good for the different criteria considered in this study. This may be due to the combined effect of the model structure which is not tuned to the circumstances of the Wagna experimental fields and the lack of knowledge to establish an appropriate set of parameters. Furthermore, not all inputs were measured, so there were too many degrees of freedom.

c. The soil of the Wagna lysimeter is highly vulnerable to nitrate leaching. The seven year summed nitrate leaching rate (123 kg ha\(^{-1}\)) exceeds the seven year summed fertilization excess. Models designed for nitrate leaching in high input farming systems have difficulties with an accurate prediction of the nitrate leaching in low input farming systems.

d. Judgement of the performance solely on the basis of nitrate concentrations or nitrate fluxes is not sufficient for the assessment of the predictive power of the models. Other results as soil water contents (daily), water and nitrogen fluxes (daily and seasonal), soil temperatures (daily), nitrogen yields (seasonal) should also be taken into account. This should be reflected by the objective function of the model calibration.
e. Traditional Richard’s / Darcy Buckingham equation based models that make use of the Mualem-van Genuchten descriptions and disregard phenomena as hysteresis, preferential flow and multiple phase flow encounter difficulties with an accurate and consistent simulation of both water contents and water fluxes for the soil and conditions of the Wagna lysimeter.

f. Some models which performed relatively well in the calibration phase of the study failed to simulate the nitrate concentrations and fluxes in the validation phase (SW-ANIM), while other models behaved relatively bad in the calibration phase and showed better results in the validation phase (SIM-STO). An accurate calibration does not guarantee a good predictive power of the model.

g. The catch crop mixtures and the non-harvested English ryegrass play an important role in the nutrient dynamics of the soil. This role is addressed weakly by the simulation models: (1) due to a lack of experimental data on nitrogen uptake rates and mineralization of residues of these intermediate crops, and (2) lack of knowledge to describe the relevant processes related to the foreign crops.

h. Assessment of future climate and land use changes requires a good predictive power of the models and a certain level of robustness. Although the robustness is not clear for the tested models, the process oriented dynamic models used in this study are useful for hypothesis testing.

5. Acknowledgements

This research was made possible by the GENESIS project of the EU 7th Framework Programme (Project No. 226536; FP7-ENV-2008-1). We are grateful for the experimental data provided by Joanneum Raum (Graz, Austria). The modelling team of Democritus University of Thrace would like to thank Per-Erik Jansson (Royal Institute of Technology, Stockholm, Sweden;) for his valuable help during the application of CoupModel.

6. References

Khodaverdiloo H, Homaeae M, Van Genuchten MT, Dashtaki SG. Deriving and validating pedotransfer functions for some calcareous soils, J Hydrol 2011;399:93-99

Williams JR, Jones CA, Dyke PTl.. A modeling approach to determining the relationship between erosion and soil productivity. Trans. ASAE 1984;27:129-144.

34
Table 1. Crop rotation and fertilizer applications on the soil of the KON-lysimeter. CC and MC refer to catch crop and main crop, and FYM and MF refer to farmyard manure and mineral fertilizer, respectively.

<table>
<thead>
<tr>
<th>Type</th>
<th>Crop</th>
<th>Sowing date</th>
<th>Date of harvesting or amending crop residues to soil</th>
<th>Date of fertilizer application</th>
<th>Type and amount of fertilizer (kg ha⁻¹ N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Mixture: summer common tare, white clover, sunflower</td>
<td>06-Aug-04</td>
<td>06-Apr-05</td>
<td>25-Apr-05 03-Jun-05</td>
<td>FYM: 27.4 MF: 35.1</td>
</tr>
<tr>
<td>MC</td>
<td>Oil pumpkin</td>
<td>30-Apr-05</td>
<td>13-Sep-05</td>
<td>24-Apr-06 08-Jun-06</td>
<td>FYM: 54.5 MF: 75.6</td>
</tr>
<tr>
<td>CC</td>
<td>English ryegrass</td>
<td>03-Jun-05</td>
<td>09-Apr-06</td>
<td>16-Apr-07 26-May-07</td>
<td>FYM: 120.7 MF: 59.0</td>
</tr>
<tr>
<td>MC</td>
<td>Maize (grain)</td>
<td>24-Apr-06</td>
<td>02-Oct-06</td>
<td>22-May-09 01-Jun-09</td>
<td>MF: 36.0 MF: 16.0</td>
</tr>
<tr>
<td>CC</td>
<td>Mixture: forage rye, winter turnip rape</td>
<td>03-Oct-06</td>
<td>09-Apr-07</td>
<td>16-Apr-07 26-May-07</td>
<td>FYM: 119.1 MF: 62.0</td>
</tr>
<tr>
<td>MC</td>
<td>Maize (grain)</td>
<td>16-Apr-07</td>
<td>21-Sep-07</td>
<td>16-May-07 28-Feb-08</td>
<td>FYM: 84.6 MF: 38.0</td>
</tr>
<tr>
<td>MC</td>
<td>Winter barley</td>
<td>08-Oct-07</td>
<td>30-Jun-08</td>
<td>22-May-09 01-Jun-09</td>
<td>MF: 36.0 MF: 16.0</td>
</tr>
<tr>
<td>CC</td>
<td>Mixture: winter turnip rape, mustard, sunflower</td>
<td>04-Aug-08</td>
<td>20-Apr-09</td>
<td>22-May-09 01-Jun-09</td>
<td>MF: 36.0 MF: 16.0</td>
</tr>
<tr>
<td>MC</td>
<td>Oil pumpkin</td>
<td>28-Apr-09</td>
<td>07-Sep-09</td>
<td>22-May-09 01-Jun-09</td>
<td>MF: 36.0 MF: 16.0</td>
</tr>
<tr>
<td>CC</td>
<td>English ryegrass</td>
<td>05-Jun-09</td>
<td>31-Dec-09</td>
<td>22-May-09 01-Jun-09</td>
<td>MF: 36.0 MF: 16.0</td>
</tr>
<tr>
<td>MC</td>
<td>Maize (grain)</td>
<td>17-Apr-10</td>
<td>23-Sep-10</td>
<td>16-Apr-10 26-May-10</td>
<td>FYM: 62.6 MF: 81.0</td>
</tr>
<tr>
<td>CC</td>
<td>Mixture: mustard, phacelia, sunflower, buckwheat, ryegrass</td>
<td>08-Aug-11</td>
<td>After 31-Dec-11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Annual precipitation rates (mm a\(^{-1}\)) and their cumulative probability percentages based on precipitations values of 1961 – 2011.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Calibration</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2005</td>
<td>2006</td>
</tr>
<tr>
<td>Precipitation (mm a(^{-1}))</td>
<td>883</td>
<td>839</td>
</tr>
<tr>
<td>Cumulative probability</td>
<td>44%</td>
<td>31%</td>
</tr>
</tbody>
</table>
Table 3. Statistical parameters (MAE, RMSE, IoA) for the comparison of volumetric water contents derived from calibrated soil moisture retention curves (Figure 2) and observed volumetric water contents at depths 0.35 m \((n = 922)\), 0.9 m \((n = 1413)\) and 1.8 m \((n = 1456)\) depth. EPIC is excluded as it does not use soil moisture retention relationships.

<table>
<thead>
<tr>
<th>Model</th>
<th>MAE (cm³ cm⁻³)</th>
<th>RMSE (cm³ cm⁻³)</th>
<th>IoA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.35 m</td>
<td>0.9 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td>ARMOSA</td>
<td>0.0064</td>
<td>0.0166</td>
<td>0.0308</td>
</tr>
<tr>
<td>COUP</td>
<td>0.0341</td>
<td>0.0753</td>
<td>0.0391</td>
</tr>
<tr>
<td>DAISY</td>
<td>0.0295</td>
<td>0.0340</td>
<td>0.0166</td>
</tr>
<tr>
<td>SIM-STO</td>
<td>0.0212</td>
<td>0.0119</td>
<td>0.0064</td>
</tr>
<tr>
<td>SW-ANIM</td>
<td>0.0072</td>
<td>0.0062</td>
<td>0.0033</td>
</tr>
</tbody>
</table>

Table 4. Statistical parameters (MAE, RMSE, IoA) for the comparison of simulated and in situ measured values of volumetric water contents at depths 0.35 m, 0.9 m and 1.8 m for periods 2005 – 2008 (calibration) and 2009 – 2011 (validation).

<table>
<thead>
<tr>
<th>Model</th>
<th>MAE (cm³ cm⁻³)</th>
<th>RMSE (cm³ cm⁻³)</th>
<th>IoA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.35 m</td>
<td>0.9 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td></td>
<td>Calibration 2005 – 2008 ((n = 1461))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARMOSA</td>
<td>0.0119</td>
<td>0.0247</td>
<td>0.0107</td>
</tr>
<tr>
<td>COUP</td>
<td>0.0230</td>
<td>0.0104</td>
<td>0.0023</td>
</tr>
<tr>
<td>DAISY</td>
<td>0.0956</td>
<td>0.0152</td>
<td>0.0105</td>
</tr>
<tr>
<td>EPIC</td>
<td>0.0613</td>
<td>0.1563</td>
<td>0.0909</td>
</tr>
<tr>
<td>SIM-STO</td>
<td>0.0180</td>
<td>0.0063</td>
<td>0.0028</td>
</tr>
<tr>
<td>SW-ANIM</td>
<td>0.0101</td>
<td>0.0106</td>
<td>0.0072</td>
</tr>
<tr>
<td></td>
<td>Validation 2009 – 2011 ((n = 955))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARMOSA</td>
<td>x 0.0260</td>
<td>x 0.0130</td>
<td>x 0.0291</td>
</tr>
<tr>
<td>COUP</td>
<td>x 0.0124</td>
<td>x 0.0030</td>
<td>x 0.0165</td>
</tr>
<tr>
<td>DAISY</td>
<td>x 0.0152</td>
<td>x 0.0137</td>
<td>x 0.0193</td>
</tr>
<tr>
<td>EPIC</td>
<td>x 0.1535</td>
<td>x 0.0924</td>
<td>x 0.1570</td>
</tr>
<tr>
<td>SIM-STO</td>
<td>x 0.0093</td>
<td>x 0.0039</td>
<td>x 0.0134</td>
</tr>
<tr>
<td>SW-ANIM</td>
<td>x 0.0141</td>
<td>x 0.0075</td>
<td>x 0.0176</td>
</tr>
</tbody>
</table>

x Measurements at depth 0.35 m were disqualified from 2009 onwards due to aging of the sensor, and, therefore, no performance indices were calculated.
Table 5. Statistical parameters (MAE, RMSE, IoA, NSE) for the comparison of simulated and observed daily fluxes and fluxes averaged per sampling interval at depth 1.8 m for periods 2005 – 2008 (calibration) and 2009 – 2011 (validation).

<table>
<thead>
<tr>
<th>Model</th>
<th>Daily water fluxes</th>
<th>Averaged water fluxes per sampling interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAE (mm d(^{-1}))</td>
<td>RMSE (mm d(^{-1}))</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Calibration 2005 – 2008</td>
<td>n = 1461</td>
<td>n = 199</td>
</tr>
<tr>
<td>ARMOSA</td>
<td>0.45 1.00 0.82 0.41</td>
<td>0.43 0.81 0.84 0.48</td>
</tr>
<tr>
<td>COUP</td>
<td>0.45 0.98 0.80 0.44</td>
<td>0.43 0.75 0.85 0.55</td>
</tr>
<tr>
<td>DAISY</td>
<td>0.57 1.16 0.68 0.21</td>
<td>0.54 0.90 0.74 0.35</td>
</tr>
<tr>
<td>EPIC</td>
<td>0.54 0.99 0.83 0.42</td>
<td>0.46 0.75 0.89 0.55</td>
</tr>
<tr>
<td>SIM-STO</td>
<td>0.34 0.87 0.86 0.55</td>
<td>0.30 0.62 0.91 0.69</td>
</tr>
<tr>
<td>SW-ANIM</td>
<td>0.38 0.91 0.86 0.51</td>
<td>0.37 0.72 0.88 0.58</td>
</tr>
<tr>
<td>Validation 2009 – 2011</td>
<td>n = 1084</td>
<td>n = 128</td>
</tr>
<tr>
<td>ARMOSA</td>
<td>0.70 1.75 0.79 0.41</td>
<td>1.66 3.82 0.68 0.39</td>
</tr>
<tr>
<td>COUP</td>
<td>0.70 1.57 0.84 0.52</td>
<td>1.41 3.47 0.79 0.50</td>
</tr>
<tr>
<td>DAISY</td>
<td>0.73 1.77 0.77 0.39</td>
<td>1.74 4.34 0.56 0.21</td>
</tr>
<tr>
<td>EPIC</td>
<td>0.85 1.79 0.77 0.38</td>
<td>1.80 4.00 0.63 0.33</td>
</tr>
<tr>
<td>SIM-STO</td>
<td>0.51 1.43 0.90 0.61</td>
<td>1.69 3.94 0.76 0.35</td>
</tr>
<tr>
<td>SW-ANIM</td>
<td>0.57 1.59 0.88 0.51</td>
<td>1.77 4.16 0.74 0.27</td>
</tr>
</tbody>
</table>

Table 6. Statistical parameters (MAE, RMSE, IoA) for the comparison of observed nitrate concentrations and nitrate N leaching rates with simulated values by calibrated models for the Wagna Lysimeter for periods 2005 – 2008 (calibration) and 2009 – 2011 (validation).

<table>
<thead>
<tr>
<th>Model</th>
<th>Nitrate concentrations</th>
<th>Nitrate-N leaching rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAE (mg L(^{-1}))</td>
<td>RMSE</td>
</tr>
<tr>
<td>Calibration 2005 – 2008 (n = 199)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARMOSA</td>
<td>15.71 20.37 0.78 0.41</td>
<td>0.043</td>
</tr>
<tr>
<td>COUP</td>
<td>6.74 9.60 0.97</td>
<td>0.041</td>
</tr>
<tr>
<td>DAISY</td>
<td>13.92 16.82 0.87</td>
<td>0.037</td>
</tr>
<tr>
<td>EPIC</td>
<td>19.55 25.63 0.76</td>
<td>0.049</td>
</tr>
<tr>
<td>SIM-STO</td>
<td>27.34 34.61 0.43</td>
<td>0.044</td>
</tr>
<tr>
<td>SW-ANIM</td>
<td>7.88 10.48 0.95</td>
<td>0.035</td>
</tr>
<tr>
<td>Validation 2009 – 2011 (n = 128)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARMOSA</td>
<td>11.17 15.85 0.52</td>
<td>0.058</td>
</tr>
<tr>
<td>COUP</td>
<td>12.36 18.68 0.52</td>
<td>0.076</td>
</tr>
<tr>
<td>DAISY</td>
<td>8.54 11.40 0.78</td>
<td>0.045</td>
</tr>
<tr>
<td>EPIC</td>
<td>18.24 22.07 0.52</td>
<td>0.089</td>
</tr>
<tr>
<td>SIM-STO</td>
<td>8.86 10.44 0.78</td>
<td>0.058</td>
</tr>
<tr>
<td>SW-ANIM</td>
<td>19.97 29.37 0.43</td>
<td>0.205</td>
</tr>
</tbody>
</table>
Table 7. Statistical parameters (MAE, RMSE, IoA) for the comparison of observed nitrate concentrations (mg L$^{-1}$) in water extracted by suction cups at depths 0.35 m and 0.9 m with simulated concentration.

<table>
<thead>
<tr>
<th>Model</th>
<th>Calibration (0.9 m; n = 47)</th>
<th>Validation (0.35 m; n = 91)</th>
<th>Validation (0.9 m; n = 108)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAE</td>
<td>RMSE</td>
<td>IoA</td>
</tr>
<tr>
<td>ARMOSA</td>
<td>36.8</td>
<td>50.6</td>
<td>0.66</td>
</tr>
<tr>
<td>COUP</td>
<td>28.0</td>
<td>35.2</td>
<td>0.80</td>
</tr>
<tr>
<td>DAISY</td>
<td>32.2</td>
<td>43.9</td>
<td>0.68</td>
</tr>
<tr>
<td>SIM-STO</td>
<td>50.6</td>
<td>66.7</td>
<td>0.44</td>
</tr>
<tr>
<td>SW-ANIM</td>
<td>25.5</td>
<td>30.5</td>
<td>0.84</td>
</tr>
</tbody>
</table>
Table 8. Comparison of seasonal soil nitrogen balances observed and calculated by the six benchmark models.

For each year the main crop is indicated, but these where preceded by catch crops (including leguminous crops).

<table>
<thead>
<tr>
<th>Crop and period</th>
<th>Balance term (kg ha⁻¹)</th>
<th>Observed</th>
<th>Simulated ARMOSA</th>
<th>COUP</th>
<th>DAISY</th>
<th>EPIC</th>
<th>SIM-STO</th>
<th>SW-ANIM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calibration 2005 – 2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1.2005 (+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil pumpkin</td>
<td>Fertilization (+)</td>
<td>35.1+27.4</td>
<td>63.0</td>
<td>62.5</td>
<td>62.9</td>
<td>53.1</td>
<td>62.4</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>Deposition (+)</td>
<td></td>
<td>10.2</td>
<td>3.1</td>
<td>16.9</td>
<td>0.0</td>
<td>5.0</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>Biological fixation</td>
<td></td>
<td>41.5</td>
<td>1.7</td>
<td>0.1</td>
<td>1.8</td>
<td>31.3</td>
<td>81.3</td>
</tr>
<tr>
<td></td>
<td>Volatilization (-)</td>
<td></td>
<td>2.7</td>
<td>0.0</td>
<td>1.0</td>
<td>1.5</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Crop off-take (-)</td>
<td>50.9</td>
<td>59.7</td>
<td>55.3</td>
<td>83.3</td>
<td>0.0</td>
<td>44.3</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td>NO₃-N leaching (-)</td>
<td>22.2</td>
<td>17.2</td>
<td>27.9</td>
<td>25.8</td>
<td>30.3</td>
<td>3.6</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>Other transport (-)</td>
<td></td>
<td>0.0</td>
<td>3.2</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Denitrification (-)</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>13.0</td>
<td>11.8</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Storage change</td>
<td>35.2</td>
<td>-19.1</td>
<td>-43.2</td>
<td>15.4</td>
<td>50.6</td>
<td>67.8</td>
<td></td>
</tr>
<tr>
<td>Maize</td>
<td>Fertilization (+)</td>
<td>75.6+54.5</td>
<td>131.0</td>
<td>130.1</td>
<td>130.7</td>
<td>112.3</td>
<td>130.1</td>
<td>130.1</td>
</tr>
<tr>
<td></td>
<td>Deposition (+)</td>
<td></td>
<td>15.4</td>
<td>4.8</td>
<td>26.5</td>
<td>8.0</td>
<td>10.7</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>Biological fixation</td>
<td></td>
<td>28.4</td>
<td>32.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>112.9</td>
</tr>
<tr>
<td></td>
<td>Volatilization (-)</td>
<td>9.6</td>
<td>0.0</td>
<td>9.8</td>
<td>8.8</td>
<td>4.9</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crop off-take (-)</td>
<td>137.8</td>
<td>211.6</td>
<td>116.0</td>
<td>197.9</td>
<td>125.5</td>
<td>72.7</td>
<td>134.8</td>
</tr>
<tr>
<td></td>
<td>NO₃-N leaching (-)</td>
<td>25.7</td>
<td>27.9</td>
<td>25.8</td>
<td>22.7</td>
<td>33.6</td>
<td>25.1</td>
<td>29.7</td>
</tr>
<tr>
<td></td>
<td>Other transport (-)</td>
<td></td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.2</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Denitrification (-)</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>13.6</td>
<td>45.8</td>
<td>0.0</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Storage change</td>
<td>-74.5</td>
<td>19.9</td>
<td>86.68</td>
<td>-94.6</td>
<td>38.1</td>
<td>92.4</td>
<td></td>
</tr>
<tr>
<td>Maize</td>
<td>Fertilization (+)</td>
<td>59.0+120.7</td>
<td>185.0</td>
<td>179.7</td>
<td>179.4</td>
<td>136.6</td>
<td>179.7</td>
<td>184.5</td>
</tr>
<tr>
<td></td>
<td>Deposition (+)</td>
<td></td>
<td>14.2</td>
<td>4.3</td>
<td>22.2</td>
<td>6.4</td>
<td>8.7</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>Biological fixation</td>
<td></td>
<td>52.9</td>
<td>24.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>32.8</td>
</tr>
<tr>
<td></td>
<td>Volatilization (-)</td>
<td>10.9</td>
<td>0.0</td>
<td>2.7</td>
<td>18.5</td>
<td>5.5</td>
<td>28.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crop off-take (-)</td>
<td>92.7</td>
<td>61.4</td>
<td>107.6</td>
<td>2.1</td>
<td>99.7</td>
<td>75.7</td>
<td>96.7</td>
</tr>
<tr>
<td></td>
<td>NO₃-N leaching (-)</td>
<td>5.9</td>
<td>4.4</td>
<td>7.1</td>
<td>6.3</td>
<td>5.4</td>
<td>8.8</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>Other transport (-)</td>
<td></td>
<td>0.0</td>
<td>3.2</td>
<td>0.0</td>
<td>1.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Denitrification (-)</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>15.3</td>
<td>33.6</td>
<td>0.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Storage change</td>
<td>175.4</td>
<td>90.8</td>
<td>175.2</td>
<td>98.4</td>
<td>99.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize</td>
<td>Fertilization (+)</td>
<td>38.0+84.6</td>
<td>123.0</td>
<td>122.6</td>
<td>123.5</td>
<td>78.2</td>
<td>122.6</td>
<td>123.2</td>
</tr>
<tr>
<td></td>
<td>Deposition (+)</td>
<td></td>
<td>11.3</td>
<td>3.3</td>
<td>15.0</td>
<td>3.9</td>
<td>5.3</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>Biological fixation</td>
<td></td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>14.0</td>
</tr>
<tr>
<td>Winter barley</td>
<td>Volatilization (-)</td>
<td>0.2</td>
<td>0.0</td>
<td>2.6</td>
<td>5.4</td>
<td>22.7</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crop off-take (-)</td>
<td>132.3</td>
<td>66.2</td>
<td>104.7</td>
<td>139.0</td>
<td>114.2</td>
<td>81.8</td>
<td>118.4</td>
</tr>
<tr>
<td></td>
<td>NO₃-N leaching (-)</td>
<td>18.9</td>
<td>13.5</td>
<td>18.5</td>
<td>11.7</td>
<td>12.3</td>
<td>5.7</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>Other transport (-)</td>
<td></td>
<td>0.0</td>
<td>3.4</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Denitrification (-)</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>11.7</td>
<td>40.6</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Storage change</td>
<td>54.4</td>
<td>-0.7</td>
<td>-26.4</td>
<td>-90.8</td>
<td>17.7</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Validation 2009 – 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil pumpkin</td>
<td>Fertilization (+)</td>
<td>52.0+0.0</td>
<td>52.0</td>
<td>52.0</td>
<td>52.0</td>
<td>51.3</td>
<td>52.0</td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>Deposition (+)</td>
<td></td>
<td>12.4</td>
<td>5.9</td>
<td>40.1</td>
<td>13.6</td>
<td>18.4</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td>Biological fixation</td>
<td></td>
<td>52.1</td>
<td>41.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>22.7</td>
</tr>
<tr>
<td></td>
<td>Volatilization (-)</td>
<td>4.4</td>
<td>0.0</td>
<td>0.0</td>
<td>3.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Crop off-take (-)</td>
<td>56.9</td>
<td>113.6</td>
<td>59.9</td>
<td>97.2</td>
<td>0.0</td>
<td>72.3</td>
<td>45.7</td>
</tr>
<tr>
<td></td>
<td>NO₃-N leaching (-)</td>
<td>33.1</td>
<td>44.2</td>
<td>61.5</td>
<td>26.4</td>
<td>16.0</td>
<td>32.5</td>
<td>72.1</td>
</tr>
<tr>
<td></td>
<td>Other transport (-)</td>
<td></td>
<td>0.0</td>
<td>8.0</td>
<td>0.1</td>
<td>1.9</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Denitrification (-)</td>
<td></td>
<td>0.0</td>
<td>0.2</td>
<td>70.6</td>
<td>31.1</td>
<td>0.0</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>Storage change</td>
<td>-45.8</td>
<td>-30.4</td>
<td>-102.1</td>
<td>11.9</td>
<td>-34.4</td>
<td>-20.7</td>
<td></td>
</tr>
<tr>
<td>Maize</td>
<td>Fertilization (+)</td>
<td>81.0+62.6</td>
<td>144.0</td>
<td>143.6</td>
<td>143.1</td>
<td>112.7</td>
<td>143.6</td>
<td>154.3</td>
</tr>
<tr>
<td></td>
<td>Deposition (+)</td>
<td></td>
<td>7.6</td>
<td>4.7</td>
<td>26.6</td>
<td>8.1</td>
<td>11.0</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>Biological fixation</td>
<td></td>
<td>0.0</td>
<td>41.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>88.9</td>
</tr>
<tr>
<td></td>
<td>Volatilization (-)</td>
<td>7.2</td>
<td>0.0</td>
<td>2.2</td>
<td>4.8</td>
<td>4.5</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crop off-take (-)</td>
<td>142.4</td>
<td>127.6</td>
<td>96.9</td>
<td>240.3</td>
<td>85.0</td>
<td>78.6</td>
<td>115.5</td>
</tr>
<tr>
<td></td>
<td>NO₃-N leaching (-)</td>
<td>3.6</td>
<td>17.0</td>
<td>14.6</td>
<td>8.7</td>
<td>19.3</td>
<td>13.1</td>
<td>32.9</td>
</tr>
<tr>
<td></td>
<td>Other transport ^ (-)</td>
<td>Denitrification (-)</td>
<td>Storage change ^ #</td>
<td>Denitrification (-)</td>
<td>Storage change ^ #</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilization* (+)</td>
<td>62.0 (+)119.1</td>
<td>181.0</td>
<td>180.4</td>
<td>181.8</td>
<td>111.8</td>
<td>181.1</td>
<td>181.7</td>
<td></td>
</tr>
<tr>
<td>Deposition (+)</td>
<td>5.9</td>
<td>3.5</td>
<td>16.7</td>
<td>4.6</td>
<td>6.1</td>
<td>11.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological fixation (+)</td>
<td>0.0</td>
<td>12.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>18.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatilization (-)</td>
<td>8.1</td>
<td>0.0</td>
<td>4.6</td>
<td>5.5</td>
<td>41.4</td>
<td>19.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop off-take (-)</td>
<td>155.8</td>
<td>152.0</td>
<td>44.5</td>
<td>161.5</td>
<td>170.3</td>
<td>143.0</td>
<td>83.6</td>
<td></td>
</tr>
<tr>
<td>NO(_3)-N leaching (-)</td>
<td>13.9</td>
<td>6.1</td>
<td>3.2</td>
<td>7.6</td>
<td>30.3</td>
<td>13.3</td>
<td>31.0</td>
<td></td>
</tr>
<tr>
<td>Other transport ^ (-)</td>
<td>0.0</td>
<td>2.5</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denitrification (-)</td>
<td>0.0</td>
<td>0.0</td>
<td>13.5</td>
<td>38.4</td>
<td>0.0</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage change ^ #</td>
<td>20.7</td>
<td>146.5</td>
<td>11.2</td>
<td>-128.8</td>
<td>-10.4</td>
<td>75.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Fertilization* (+)</th>
<th>Deposition (+)</th>
<th>Biological fixation (+)</th>
<th>Storage change ^ #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seven year totals 2005–2011</td>
<td>871.6</td>
<td>879.0</td>
<td>870.9</td>
<td>873.5</td>
</tr>
<tr>
<td>All</td>
<td>174.9</td>
<td>154.6</td>
<td>0.1</td>
<td>1.8</td>
</tr>
<tr>
<td>1.1.2005 – (+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.7.2011</td>
<td>768.8</td>
<td>792.1</td>
<td>584.8</td>
<td>921.2</td>
</tr>
<tr>
<td>Volatilization (-)</td>
<td>43.2</td>
<td>0.0</td>
<td>22.9</td>
<td>48.5</td>
</tr>
<tr>
<td>Crop off-take (-)</td>
<td>123.3</td>
<td>130.3</td>
<td>158.6</td>
<td>109.1</td>
</tr>
<tr>
<td>NO(_3)-N leaching (-)</td>
<td>0.0</td>
<td>31.7</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>Other transport ^ (-)</td>
<td>0.0</td>
<td>0.3</td>
<td>161.3</td>
<td>249.2</td>
</tr>
<tr>
<td>Denitrification (-)</td>
<td>165.3</td>
<td>279.7</td>
<td>-177.0</td>
<td>-342.2</td>
</tr>
</tbody>
</table>

\(\dagger\) + indicates input; - indicates output

* Fertilization includes the addition of mineral fertilizer (first number) and the amendment of animal manure (second number)

\$ Other transport includes the leaching of NH\(_4\)-N and dissolved organic matter and the transport of N-components by surface runoff water flow

A positive value refers to an increase of the nitrogen stock in soil and a negative value indicates its depletion
Table 9. Qualitative assessment of the model performance (IoA) for daily or weekly results for the calibration and validation periods.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Indicator</th>
<th>Item</th>
<th>ARMOSA</th>
<th>COUP</th>
<th>DAISY</th>
<th>EPIC</th>
<th>SIM-STO</th>
<th>SW-ANIM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Soil moisture retention</td>
<td>0.35 m</td>
<td>+</td>
<td>-</td>
<td>o</td>
<td>n.a.</td>
<td>o</td>
</tr>
<tr>
<td>Calibration</td>
<td></td>
<td>relation</td>
<td>0.9 m</td>
<td>o</td>
<td>-</td>
<td>o</td>
<td>n.a.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>-:</td>
<td>IoA < 0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o:</td>
<td>0.6 ≤ IoA < 0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+:</td>
<td>IoA ≥ 0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simulated</td>
<td>water contents</td>
<td>1.8 m</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitrate concentration</td>
<td>0.9 m</td>
<td>o</td>
<td>+</td>
<td>o</td>
<td>n.a.</td>
<td>-</td>
</tr>
<tr>
<td>Validation</td>
<td></td>
<td>Soil water contents</td>
<td>0.9 m</td>
<td>-</td>
<td>o</td>
<td>-</td>
<td>+</td>
<td>o</td>
</tr>
<tr>
<td></td>
<td>-:</td>
<td>IoA < 0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o:</td>
<td>0.6 ≤ IoA < 0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+:</td>
<td>IoA ≥ 0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nitrate</td>
<td>concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in water samples</td>
<td>Nitrate-N flux per sampling interval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water flux, daily</td>
<td>Water volume per sampling interval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water volumes per sampling interval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n.a.: not applicable

Table 10. Mean absolute errors (MAE) of seasonal percolated water, N crop off-take and leached nitrate-N amounts for seven seasons (MAE$_{7}$) and for the best five seasons (MAE$_{5}$).

<table>
<thead>
<tr>
<th>Seasonal quantity</th>
<th>Indicators</th>
<th>ARMOSA</th>
<th>COUP</th>
<th>DAISY</th>
<th>EPIC</th>
<th>SIM-STO</th>
<th>SW-ANIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percolated water</td>
<td>MAE$_{7}$</td>
<td>21.3</td>
<td>24.2</td>
<td>63.9</td>
<td>48.6</td>
<td>14.6</td>
<td>40.3</td>
</tr>
<tr>
<td>(mm)</td>
<td>MAE$_{5}$</td>
<td>16.0</td>
<td>14.3</td>
<td>30.5</td>
<td>30.5</td>
<td>11.8</td>
<td>32.8</td>
</tr>
<tr>
<td>N crop off-take</td>
<td>MAE$_{7}$</td>
<td>36.5</td>
<td>32.7</td>
<td>47.7</td>
<td>31.0</td>
<td>33.0</td>
<td>21.5</td>
</tr>
<tr>
<td>(kg ha$^{-1}$)</td>
<td>MAE$_{5}$</td>
<td>23.1</td>
<td>14.3</td>
<td>29.0</td>
<td>20.6</td>
<td>20.5</td>
<td>10.3</td>
</tr>
<tr>
<td>Leached NO$_{3}$-N</td>
<td>MAE$_{7}$</td>
<td>6.6</td>
<td>8.2</td>
<td>4.6</td>
<td>10.3</td>
<td>6.6</td>
<td>14.2</td>
</tr>
<tr>
<td>(kg ha$^{-1}$)</td>
<td>MAE$_{5}$</td>
<td>4.4</td>
<td>3.6</td>
<td>3.7</td>
<td>7.8</td>
<td>2.8</td>
<td>6.3</td>
</tr>
</tbody>
</table>

42
Figures captions

Figure 1 Blind test comparison of seasonal water fluxes, flow averaged nitrate concentration and nitrate-N fluxes simulated by five models (excluding SIM-STO) with observations. Results of individual models are indicated by markers.

Figure 2 Measured values and calibrated soil moisture retention curves at depths 0.35 m, 0.9 m and 1.8 m.

Figure 3 Comparison of simulated and measured inner season cumulative water fluxes, nitrate concentrations and inner season cumulative nitrate-N fluxes at depth 1.8 m in the low input farming lysimeter at the Wagna experimental field station.

Figure 4 Taylor plots of the statistical performance of the simulated water fluxes at depth 1.8 m for daily values (left) and for sampling interval averaged values (right). Circles refer to the calibration results and triangles refer to the validation results. A = ARMOSA, C = COUP, D = DAISY, E = EPIC, SS = SIM-STO, SA = SW-ANIM

Figure 5 Comparison of simulated and measured seasonal water fluxes (mm) at depth 1.8 m in the low input farming lysimeter at the Wagna experimental field station.

Figure 6 Taylor plot of the statistical performance parameters for the simulated nitrate concentrations (left) and nitrate-N fluxes (right) at depth 1.8 m. Circles refer to the calibration results and Triangles refer to the validation results. Indicators of SW-ANIM nitrate-N fluxes fall outside the range (2.5; 8.5). A = ARMOSA, C = COUP, D = DAISY, E = EPIC, SS = SIM-STO, SA = SW-ANIM

Figure 7 Seven years balances for fertilization minus crop off-take and nitrate-N leaching (all in kg ha⁻¹), summed since the start of the calibration period.

Figure 8 Effect of a leave-one-out calculation of a certain data pair of observed and simulated water fluxes on the Index of Agreement, IoA (see text for further explanation).
Performance assessment of nitrate leaching models for highly vulnerable soils used in low input farming based on lysimeter data

Piet Groenendijk¹,*, Marius Heinen², Gernot Klammler³, Johann Fank⁴, Hans Kupfersberger⁵, Vassilios Pisinaras⁶, Alexandra Gemitzi⁷, Salvador Peña-Haro⁸, Alberto García-Prats⁹, Manuel Pulido-Velazquez⁹, Alessia Perego⁶, Marco Acutis⁶, Marco Trevisan⁸

¹ Alterra, P.O. Box 47, 6700 AA Wageningen, The Netherlands
² Joanneum Research, Forschungsgesellschaft mbH, Leonhardstraße 59, 8010 Graz, Austria
³ Democritus University of Thrace, Department of Environmental Engineering, Vas. Sofias 12, Xanthi, 67100, Greece
⁴ Institute of Environmental Engineering, ETH Zurich, Wolfgang-Pauli-Str. 15, CH-8093 Zurich, Switzerland
⁵ Universitat Politècnica de València, Department of Hydraulic Engineering and Environment, Camino de Vera, 46022 Valencia, Valencia, Spain
⁶ Universitat Politècnica de València, Research Institute of Water and Environmental Engineering (IIAM), Camino de Vera, 46022 Valencia, Valencia, Spain
⁷ University of Milan, Department of Agricultural and Environmental Science, Via G. Celoria 2 20133, Milan, Italy
⁸ Università Cattolica del Sacro Cuore, sede di Piacenza, Via Emilia Parmense, 84 29100, Piacenza, Italy

*Corresponding author: Piet Groenendijk, Alterra, P.O. Box 47, 6700 AA Wageningen, The Netherlands, Email: piet.groenendijk@wur.nl Tel.: +31 317 486434

Abstract
The agricultural sector faces the challenge of ensuring food security without an excessive burden on the environment. Simulation models provide excellent instruments for researchers to gain more insight into relevant processes and best agricultural practices and provide tools for planners for decision making support. The extent to which models are capable of reliable extrapolation and prediction is important for exploring new farming systems or assessing the impacts of future land and climate changes.

A performance assessment was conducted by testing six detailed state-of-the-art models with capabilities for simulation of nitrate leaching (ARMOSA, COUPMODEL, DAISY, EPIC, SIMWASER/STOTRASIM, SWAP/ANIMO) for lysimeter data of the Wagna experimental field station in Eastern Austria, where the soil is highly vulnerable to nitrate leaching.

Three consecutive phases were distinguished to gain insight in the predictive power of the models: 1) a blind test for 2005 – 2008 in which only soil hydraulic characteristics, meteorological data and information about the agricultural management were accessible; 2) a calibration for the same period in which essential information on field observations was additionally available to the modellers; and 3) a validation for 2009 – 2011 with the corresponding type of data available as for the blind test. A set of statistical metrics (mean absolute error, root mean squared error, index of agreement, model efficiency, root relative squared error, Pearson’s linear correlation coefficient) was applied defined for testing the results and comparing the models.

None of the models performed good for all of the statistical metrics. Models designed for nitrate leaching in high input farming systems had difficulties in accurate predicting leaching in low input farming systems that are strongly influenced by the retention of nitrogen in catch crops and nitrogen fixation by legumes. An accurate calibration does not guarantee a good predictive power of the model. Nevertheless all models were able to identify years and crops with high and low leaching rates.

Keywords
Lysimeter, model comparison, nitrate leaching, performance assessment, predictive power, simulation model

1. Introduction
Agriculture is the major land use in Europe (ca. 50% of overall land area) and has strongly increased its use of external inputs (fertiliser, pesticides and water) over the last 50 years. The environmental effects of intensive agriculture include a decline in biodiversity, eutrophication of ecosystems and surface waters, acidification,
global warming, air pollution and diffuse nitrate pollution of groundwater. A global challenge is to produce
enough food for the ever-growing population and at the same time minimizing the loss of reactive nitrogen (N)
to the environment. Since the 1980s, agriculture in Western Europe has managed to reduce its N surpluses,
owing to stringent national and European community policies (Vitousek et al., 2009; Grizzetti et al., 2011).
The main aim of the Nitrates Directive (EU, 1991: Directive 91/676/EEC) is to reduce water pollution caused or
induced by nitrates and phosphorus from agricultural sources. The Nitrates Directive legally restricts farm
application of manure to 170 kg ha\(^{-1}\) of nitrogen, or in case of derogation to inputs up to 250 kg ha\(^{-1}\) (Oenema,
2004). An implementation measure of the Nitrates Directive is the establishment of codes of Good Agricultural
Practice. Recommended measures include, among others, the application of crop rotations, the cultivation of a
soil winter cover and catch crops to prevent nitrate leaching and run-off during wet seasons. Catch crops create a
new challenge in the assessment of environmental effects of crop rotations. In theory, catch crops take up N that
would otherwise be lost, and, after incorporation of the crop residues into the soil, make this N available to the
succeeding crop via mineralization. However, the influence of a catch crop on the nitrogen supply to the
succeeding crop can vary greatly and range from a positive to a negative effect (Nett et al., 2011). The effect is
determined by the N uptake capacity, the rooting depth of a catch crop, the weather and soil conditions as well as
the rooting depth of the succeeding crop (Thorup-Kristensen, 2006).
Models are an important tool for assessment of environmental impacts of a certain agricultural practice and are
also an instrument for increasing the understanding of the biological, pedological and hydrological factors that
affect productivity and the risk of nitrate leaching. For this reason, for more than 30 years simulation models
have been developed and applied in the research on nitrate leaching. The different model descriptions are a
reflection of the intended purpose, the physical conditions and the available data for model application and the
knowledge and skill of the model developer. Technical implementations have evolved from stand-alone model
codes to modelling platforms comprising modular models able to include and compare different process
descriptions.
Calibration and validation of models contributes to their reliability. In addition also an analysis of the
implemented process descriptions and the mutual comparison of models provides information on the predictive
power. Several model comparison studies have been conducted in which nitrate leaching models were compared
(De Willigen and Neeteson, 1985; Vereecken et al., 1991; De Willigen, 1991; Diekkrüger et al., 1995; Moreels
et al., 2003; Kersebaum et al., 2007; Jabro et al., 2012). Most of them were related to ordinary agricultural
conditions with a single crop on a typical agricultural soil. Thus, there is no information (comparison) available for situations in soils that are highly vulnerable to nitrate leaching in combination with low-input conditions and the use of catch crops.

It is widely recognised that despite the deterministic nature of process oriented models they often have a limited validity range for certain climatic, pedological, hydrological and agronomic circumstances characterised by high inputs. It is not clear whether the models are able to produce relatively reliable predictions for low input conditions. A better insight into the model performance for such uncommon circumstances underpins conclusions about the predictive power.

In this study a number of models were inter-compared for low input conditions of one of the lysimeters of the Wagna experimental research station, Austria (Fank and Klammler and Fank, 2014; this issue) for three typical conditions for which they were not designed: 1) the crop rotation which included an uncommon crop (oil pumpkin), 2) catch crops for which the N-uptake was not measured, and 3) the soil consisted of a shallow soil vulnerable to nitrate leaching on top of a high conductive gravel layer. The objectives of this study were: 1) to assess the performance of state-of-the-art nitrate leaching models as they are used in the scientific research community, for the above mentioned conditions, 2) to inter-compare the models for analysing their predictive power, and 3) to identify strengths and weaknesses of bio-physically based models.

2. Materials and Methods

2.1 Description of the lysimeter

Observations were used of a lysimeter located in the agricultural experimental field station in Wagna in Eastern Austria (46° 46.113’N, 15° 33.140’E; altitude 265 m; Klammler and Fank, 2014 (this issue)). Since 1987 different cultivation strategies are investigated concerning nitrogen-fertilizer input, nitrate leaching and crop yields. In 2004, the cultivation changed into comparing low-input farming and organic farming, each covering 50% of the test site. Since then, two of the test plots have been equipped with two weighable, monolithic, high-precision lysimeters (2 m depth, 1 m² surface). The lysimeter in the conventional tillage test plot (KON-system) is subject for this study. Cultivation practices including crop species, sowing and harvest dates, and fertilizer applications in the test plot are presented in Table 1.

<<Table 1>>
The lysimeters are equipped with soil water samplers, soil moisture probes, matrix sensors/tensiometer and soil temperature probes at four measuring depths (0.35, 0.6, 0.9, 1.8 m). An accompanied measuring profile for soil moisture, matrix potential and soil temperature is also installed outside the lysimeters (same depths as inside the lysimeter) to determine if the conditions inside the lysimeter are representative for the rest of the field. At the bottom of the lysimeter (depth 1.8 m) a suction cups rake was installed which kept the pressure head at this depth equal to that outside the lysimeter. The water sucked off was collected, weighted and sampled for the determination of the nitrate concentration. While quantity of seepage water was recorded automatically in 0.1 mm resolution by a tipping bucket, nitrogen concentration in the accumulated leachate was analysed in an approximately weekly interval. Furthermore, a weather station is installed at agricultural test site in Wagna for the recording of air temperature, relative humidity, shortwave solar radiation, wind speed, wind direction, precipitation, sunshine duration and atmospheric pressure at high temporal resolution (Fank and Klammler and Fank, 2014; this issue). Annual precipitation rates and cumulative probabilities of the rates relative to the values of the period 1961 – 2011 are presented in Table 2.

<<Table 2>>

Annual rainfall amounts during the calibration years can be considered as moderate, the first year of the validation period is characterised by an extreme high rainfall and during the last year of the validation a low precipitation amount was recorded.

2.2 Description of models

This performance assessment study was conducted as part of the EU-FP7 GENESIS project (2009 – 2014) by six partners. Six well-known detailed models for European research on field-scale crop and soil water and soil nitrogen dynamics were chosen: ARMOSA, CoupModel (COUP), DAISY, EPIC, SIMWASER-STOTRASIM and SWAP-ANIMO. It goes beyond the scope of this paper to give full details on the process descriptions of the six models used. Brief descriptions will be given in text and inter-comparison of processes and various other characteristics can be found in Supplemental Materials. All models are one-dimensional.

- ARMOSA has recently been developed specifically for the Lombardy region in Italy to assess the regional soil vulnerability to nitrate leaching (Perego et al., 2013). The model allows the simulation at field and multi-field level. The model is based on the SWAP (version 2.07) approach for simulating the water flow (Van Dam, 2000), on STAMINA for simulating the crop development and growth (Ferrara et al., 2011; Richter et
al., 2010) and on SOILN for simulation of the soil organic matter and nitrogen cycle and nitrate leaching
(Bergström et al., 1991).

- **CoupModel (COUP)**, a coupled heat and mass transfer model for soil plant-atmosphere systems, was
 initially developed to simulate conditions in forest soils, but it has been further developed to simulate
 conditions in any type of soil, independent of plant cover (Jansson and Karlberg, 2004). COUP applicability
 is very wide as it includes water, heat, tracer, chloride, nitrogen and carbon modules that can be incorporated
 in the modelling process. COUP development, calibration procedures and applications are presented by
 Jansson (2012).

- **DAISY** is a soil-plant-atmosphere system model designed to simulate crop production, soil water dynamics,
 and nitrogen dynamics in crop production at various agricultural management practices and strategies
 (Hansen et al., 1990). The agricultural management model allows for building complex management
 scenarios (Hansen, 2002). The model has been validated in a number of major comparative tests (Dekkrüger
 et al., 1995; Hansen et al., 1991a,b; Jensen et al., 1997; Smith et al., 1997; Svendsen et al., 1995; Vereecken

- **EPIC** (Williams et al., 1984; 1989) is a cropping systems simulation model, which was developed to
 estimate soil productivity as affected by erosion throughout the United States during the 1980’s. EPIC is a
 field scale model, but linked to a GIS it has been applied in several regional model applications (Burkart
 et al., 1999; Sohier et al., 2009). Furthermore the EPIC model has been applied to study the effect of
 agricultural practices and biofuels cultivation on N leaching at the European scale (Bouraoui and Aloe,
 2007; Van der Velde et al., 2009).

- **SIMWASER** (Stenitzer, 1988) simulates the water flow in soil. A unique feature of the model is the
 description of actual rooting depths based on both root biomass simulated for a crop and on the penetration
 resistance of the soil. STOTRASIM (Feichtinger, 1998) is fully coupled to SIMWASER and simulates
 nitrogen and basic carbon dynamics of agriculturally used soils. The model has already been applied to the
 region of southeast Styria (Fank et al., 2006). The name of these coupled models is abbreviated as SIM-STO.

- The **SWAP** model, version 3.2 (Van Dam et al., 2008) simulates water flow in the soil – plant – atmosphere
 domain in an integrated manner. The ANIMO model (Groenendijk et al., 2005) is sequentially coupled to
 SWAP and was designed to quantify the relation between fertiliser application rate, soil management and the
 leaching of nitrogen (N) and phosphorus (P) to groundwater and surface water systems. The ANIMO model
is part of the National Dutch modelling system **STONE** for the evaluation of fertiliser policy measures (Wolf et al., 2003). The name of the sequentially coupled models is abbreviated as **SW-ANIM**.

In addition to soil processes also the description of crop development is considered, because the plant related processes such as evaporation, nitrogen and nitrogen supply with crop residues exert a major influence on the water balance and nutrient dynamics in the soil.

Except for **SW-ANIM**, all models simulate the growth of plant biomass. Although **SW-ANIM** has the possibility to calculate the biomass development in a detailed manner, the modellers had chosen to use a simple option of a supposed development of leaf area index, crop height and rooting depth, because the parameters required for detailed simulation of oil pumpkin and catch crops were not available. Except for **EPIC**, the models describe water flow with either the Richards’ (1931) equation or the Darcy (1856) - Buckingham (1907) equation, in which the soil water retention and the hydraulic conductivity relations are described according to Mualem (1976) - Van Genuchten (1980). **EPIC** simulates soil water flow as a storage routing process in which percolation occurs when the soil water content of the root zone exceeds the field capacity. In **EPIC** the soil water characteristics are calculated on the basis of texture data and the organic matter content in accordance with Saxton and Rawls (2006).

All models consider ammonium and nitrate as separate mineral nitrogen pools, and simulate organic bounded nitrogen associated with the organic carbon cycle. **SW-ANIM** simulates also the transport and transformation of dissolved organic nitrogen. The method of simulating biological N-fixation is one of the striking differences between the models. The **DAISY** model was applied in a way that biological N-fixation was ignored and the **SW-ANIM** model accounted for this process by the specification of continuous organic material additions representing imposed fixation rates. The other models use relationships based on the crop type, the crop development stage and the soil mineral N status. Ammonia volatilization is not implemented in the **COUP** model code used for this study. Some models consider only the loss of ammonia as a fraction of farmyard manure application (**DAISY, SW-ANIM**) while the other models take account for environmental factors as temperature, wind speed and soil moisture. **SIM-STO** uses standardized loss factors that account for the time from the last soil tillage event.

Uptake of ammonium and nitrate depends on the demand for mineral N for crop production and is related to the development stage, by some models expressed by a relationship with the water uptake, and the mineral N content of the soil.
Mineralisation is simulated in close correspondence to the organic matter cycle. All models describe the amount of mineralized nitrogen as the excess nitrogen produced from the organic matter decay and transformations to more stable soil organic matter pools. Nitrification is commonly described as a first order process which rate depends on temperature, soil moisture status and ammonium concentration. Denitrification plays no significant role in the soil of the Wagna lysimeters (Leis, 2009), but can be simulated by the models used. A variety of descriptions are implemented but all assume a relationship with temperature, soil moisture content, nitrate concentration and the potential denitrification rate as a function of organic matter content (Heinen, 2006).

The lysimeter was installed in 2004 and it was ensured that the original soil layers was put back. During the excavation and filling the soil had been in contact with open air. None of the models paid attention to this event in 2004. To establish the starting conditions on 1-1-2005, three of the six models (i.e., ARMOSA EPIC, STO-SIM, SW-ANIM) started in 1987. COUP was run for five years prior to the start in 2005 and DAISY was run two-years prior to the simulation.

2.3 Experimental design of study

The modelling study comprised of: 1) a blind test with non-calibrated models to get an impression of the performance of the models as they are used in situations where extensive data sets are missing, which often occurs in practice, 2) a calibration period, and 3) a validation period. Inter-comparisons were done between measured and simulated leaching of water and nitrate, including nitrate concentration of the percolate. The outcome of the simulations by all models was collected and analysed by a single person.

2.3.1 Step 1: Blind test

The models first performed a simulation based on a minimum set of data: crop rotation, soil cultivation, fertilization rates, meteorological data, soil profile description and soil moisture retention laboratory measurements of some soil samples. The aim is to establish the bandwidth of differences with the observations without an assessment of the individual models. The SIM-STO model was excluded from the blind test as the operators of this model were the owners of all data and SIM-STO was already partly calibrated for the test site. After all models delivered their outcome, one external operator compared the predictions against the measured data (seasonal cumulated water flux and nitrogen flux at the bottom of the lysimeter, seasonal flow averaged nitrate concentration) for the period 2005 - 2008. It was not the intention of the blind test to qualify or assess the performance of the individual models and, therefore, the outcome of this test will be presented anonymously.
Specifically only data on seasonal percolation, flow-averaged nitrate concentration and seasonal nitrate leaching were considered.

2.3.2 Step 2: Calibration

Each of the six modelling groups calibrated the models for a limited number of parameters. The successive operations, the objective function and the number of parameters were not prescribed, but were chosen freely by the modelling groups, either based on expert judgement or on a sensitivity analysis. Further details of how the calibration has been carried out for the different models can be found in Supplementary Material.[2]

2.3.3 Step 3: Validation

The validation was performed for the period 2009 - 2011, where only information about crop rotation, application of fertilizers, soil cultivation and meteorology was made available for the modelling groups after step 2 (calibration) was finished. The procedure for the validation is thus similar to that of the blind test, with the difference that the models were calibrated prior to validation and that the SIM-STO model was included in the validation.

2.3.4 Step 4: Model comparison

The six models were compared for their performance with respect to:

1. the soil moisture retention curves at depths 0.35, 0.90 and 1.8 m;
2. the volumetric water contents at depths 0.35, 0.9 and 1.8 m;
3. the nitrate concentrations at depths 0.35, 0.9 and 1.8 m;
4. the daily water fluxes at depth 1.8 m;
5. the leached water amounts for the time intervals of collected water samples;
6. the nitrate concentrations of the collected water samples;
7. the nitrate-N fluxes at the bottom of the lysimeter for the time intervals of collected water samples.

The comparison of results at the depth of 60 cm was excluded because measurements for this depth were only available up to Sept. 2009. Seasonal leached water amounts, nitrogen yields and nitrate-N fluxes were compared to discuss the predictive power for practice oriented model applications. A nitrogen balance was set up for all models. Water fluxes at 1.8 m depth were evaluated for daily and for seasonal values. Nitrate leaching fluxes and nitrate concentrations in the leachate were evaluated at the time intervals for which the soil water was sampled.

The sampling time intervals were irregular in time and the models were not able to present concentrations at these specific time events. Therefore, concentrations values for these time intervals were derived according to a volumetric averaging procedure. The nitrate concentrations at depths 0.35 m and 0.9 m can be used to get an impression whether the transport and transformation processes in soil, which ultimately lead to the leaching at depth 1.8 m, have been described adequately. Due to the nature of the model formulations, EPIC was not able to...
present the concentrations at the depths of measurement. The number of observations at depth 0.35 m in the calibration period was too little and were not considered.

In the models, much knowledge of soil processes is described which all contribute to the nitrate leaching at depth 1.8 m. To understand the similarities and differences between simulation results and measurements, it is important to assess the processes. We have done this through the establishment of nitrogen balances per season.

2.4 Statistical metrics

The behaviour of the main model outputs can be characterized by a number of statistical metrics to indicate the models’ ability to capture different aspects. A complete assessment of model performance should include at least one absolute error measure and one goodness-of-fit measure (Legates and McCabe, 1999). There are a wide range of statistical indicators used in studies on soil water and soil nitrogen, but not always a justification is given for the indicators chosen. For state variables many authors use mean (absolute) error (M\(A\)E), root mean square error (RMSE), index of agreement (IoA; Willmott, 1982), and less often the Nash-Sutcliffe modelling efficiency (NSE; Nash-Sutcliffe, 1970) (e.g., Donatelli et al., 2004; Gribb et al., 2009; Herbst et al., 2005; Khodaverdiloo et al., 2011; Patil and Rajput, 2009; Ritter et al., 2003; Vereecken et al., 2010). For rate variables authors generally use MAE, mean difference (MD), absolute maximum error (AME), RMSE, IoA, NSE, coefficient of determination \(R^2\), percentage of error (PE), percentage of bias (Pbias) (e.g., Akkal-Corfini et al., 2010; Ale et al., 2012; Dawson et al., 2007, 2010; Jabro et al., 2012; Jachner et al., 2007; Kersebaum et al., 2007; Krause et al., 2005; Moriasi et al., 2007; Qi et al., 2012; Reusser et al., 2009; Stumpp et al., 2009; Van der Laan et al., 2011; Wang et al., 2006; Willmott et al., 1985). It appears that a few measures are used both for state and for rate variables, which we have chosen to use here as well: MAE, RMSE, IoA, and NSE (only for rates), given by:

1. Mean absolute error:
 \[MAE = \frac{1}{n} \sum_{t=1}^{n} |P_t - O_t| \]

2. Root mean squared error:
 \[RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (P_t - O_t)^2} \]

 \[IoA = 1 - \frac{\sum_{t=1}^{n} (P_t - O_t)^2}{\sum_{t=1}^{n} ((P_t - \bar{O})^2 + (O_t - \bar{O})^2)} \]

 \[NSE = 1 - \frac{\sum_{t=1}^{n} (O_t - P_t)^2}{\sum_{t=1}^{n} (O_t - \bar{O})^2} \]

where \(n\) is the number of observations, \(O_t\) is the observed value, \(P_t\) is the model predicted value, and \(\bar{O}\) and \(\bar{P}\) are the mean values of observations and predictions, respectively. All four measures compare the predictions \(P_t\) and
observations O_t at the individual level, and try to express the ‘spread’ in $(P_t - O_t)$ (Janssen and Heuberger, 1995). The MAE accounts for the deviations $(P_t - O_t)$ in an absolute value sense. This measure is less sensitive to outliers than RMSE, IoA and NSE. The latter indices measures $(P_t - O_t)$ in a quadratic sense, and, thus, are sensitive to outliers. If model errors are significant, it is more difficult to objectively assess the agreement between model and data on basis of RMSE. As an alternative, Willmott (1982) proposed IoA to express this agreement more directly. The dimensionless IoA has limits 0, indicating no agreement, and 1, indicating perfect agreement. The dimensionless NSE ranges between 1 and $-\infty$, where $NSE = 1$ denotes a “perfect” model fit and for $NSE < 0$ the average of the observations would be a better predictor than the model (Krause et al., 2005).

Taylor (2001) presented a graphical method in which several statistical metrics have been combined. Such a Taylor diagram summarizes how closely a set of simulations matches the observations, and it is especially useful in evaluating multiple aspects of complex models. In normalized form, it presents the Pearson’s linear correlation coefficient (R) and the root relative square error ($RRSE$) as a function of the ratio of standard deviations of predictions and observations σ_P and σ_O, respectively, where

\[
R = \frac{\sum_{t=1}^{n}(O_t - \bar{O})(P_t - \bar{P})}{\sqrt{\sum_{t=1}^{n}(O_t - \bar{O})^2} \sqrt{\sum_{t=1}^{n}(P_t - \bar{P})^2}}
\]

\[
RRSE = \frac{\sqrt{\sigma_O^2 + \sigma_P^2 + 2\sigma_P \sigma_O R}}{\sigma_O}
\]

where σ_O and σ_P are the standard deviations of the observations and model predictions, respectively. A value of $(1,0)$ in such a figure indicates a full agreement of model results with observations.

3. Results and discussion

3.1. Blind test

Figure 1 presents the range of predicted seasonal water fluxes, flow-averaged nitrate concentration and nitrate-N fluxes by the five models considered as compared to the observations for the blind test period.

Maximum deviations between simulated and observed seasonal percolation volumes of almost 400 mm were found. Two of the five models showed a relatively good agreement of the seasonal percolation with the measurements. Three of the five models overestimated the percolation in all seasons. One model underestimated
the percolation volume in all seasons and only one model was able to simulate the seasonal percolation accurately. The range of model results was independent of the seasonal percolation.

Seasonal flow averaged nitrate concentrations were underestimated by all models in two of the four seasons. For the first season, all models underestimated the concentration by 10 – 40 mg L\(^{-1}\). The variation of simulated concentrations and N-fluxes was large. Maximum deviations of seasonal nitrate-N leaching of about 25 kg ha\(^{-1}\) were found. All models underestimated the leaching rate in 2005 by 8 – 22 kg ha\(^{-1}\). The same holds for the fourth season, but only one model was able to calculate the nitrate-N flux with a reasonable agreement with the measurements. In the second season (maize), four models underestimated and one model overestimated the nitrate concentration and nitrate-N flux. The third season, which was the second season with maize showed a rather different pattern. The measured nitrate concentration and nitrate-N flux under maize in the 3\(^{rd}\) season was much lower than for the maize crop in the 2\(^{nd}\) season, but the modelled results still showed a large variation with a less skewed distribution of underestimation and overestimation. In the blind test information was lacking about crop-uptake rates and the nitrogen excess per season. The results showed that without this information and without a proper calibration the models were not able to predict nitrate concentrations and leaching rates accurately.

3.2 Calibration and validation

3.2.1 Soil water moisture and soil physical relations

In the blind test the modellers had only laboratory measurements of the water retention curve at their disposal, but in the calibration phase also in situ measured soil moisture contents (θ) and pressure heads (h) were available at four depths. The laboratory measurements were performed for drying samples only, while under field conditions data pairs of θ(h) were detected during wetting and drying cycles so that these were affected by hysteresis (Basile et al., 2003, 2006). Figure 2 depicts the calibrated θ(h) curves for three depths. The results at the depth of 0.6 m were comparable to the results of 0.35 m deep and are not shown here. The observed h at depth 0.35 m ranged from -20 cm to -2000 cm. At depth 0.9 m h ranged from -2 cm to -1000 cm and at depth 1.8 m h ranged from -10 to -100 cm. The variation of the θ(h) observed population is largest at depth 0.35 m.

Results for the EPIC model are represented by three points as EPIC does not use a continuous description of the θ(h) curve. The greatest value for the saturated water content was obtained by the EPIC model with a value...
greater than 0.3 cm3 cm$^{-3}$ at depth 1.8 m. This parameter is far outside the range that was established by the other models. A comparison between the calibrated and observed $\theta(h)$ curves was made by calculating a θ for each value of the measured h. The performing indices based on computed θ and measured θ are presented in Table 3.

In general the resulting MAE, $RMSE$ and IoA showed equal trends. The ARMOSA model fitted well at depths 0.35 m and 0.9 m, but performed worse at depth 1.8 m. The performance of the COUP model appeared to be weak. At depth 0.9 m the DAISY model was better than the COUP model, but worse than the other models. The IoA for the SIM-STO and SW-ANIM models was highest at depth 0.9 m and somewhat lower for the other depths. It should be noted that a good match of the calibrated $\theta(h)$ curves with measured data pairs does not a-priori mean that a good agreement between the time series of measured and calculated θ will be obtained.

The simulated θ was compared with daily averaged values of measured θ (Table 4). For depth 0.35 m an increasing trend was detected from 2008 and onwards which is attributed to the aging of the sensor, and, therefore, the results for this depth were disqualified for the validation period.

Except for ARMOSA and EPIC in the validation phase, the highest IoA values for simulation of the water contents were achieved at depth 0.9 m. For SIM-STO and SW-ANIM, the IoA values were similar to the calibration results of the $\theta(h)$ curves (Table 3). However, the performance by COUP increased and that by DAISY decreased compared to Table 3. Except for the ARMOSA and the DAISY models at depth 0.35 m and the SW-ANIM model at depth 1.8 m, in general the resulting performance indices showed a better agreement between simulated and observed values for the period 2005 – 2008 than for the comparison based on soil moisture retention curves. The indices of the validation period 2009 – 2011 were in the same range, or somewhat lower at depth 0.9 m, as for the calibration period (Table 4).

Figure 3 presents the cumulative water fluxes as predicted by the models and as measured as a function of time.

The pattern of cumulative water fluxes per growing season complies generally with the annual precipitation amounts (Table 2) with the exception of maize in 2006 and its preceding crop in the winter of 2005/2006. During the intermediate period after oil pumpkin in 2005 and before maize in 2006, the precipitation amounted to about
It appears that the evapotranspiration of the intermediate crop (English ryegrass) was relatively low which resulted in a relatively high leaching volume at the start of the maize crop. The simulated cumulative water flux per season corresponded well to the measured water fluxes for most of the models which is also true for the extreme wet year 2009. However, DAISY showed some overestimation in particular seasons due to difficulties in parameterizing maize crop parameters. EPIC performed better in the calibration than in the validation period. The simulated cumulative water flux per season corresponded well to the measured water fluxes for most of the models: DAISY underestimated the water flux under maize in 2006 and 2010, while EPIC overestimated the water flux for most of the growing seasons. SW-ANIM underestimated the cumulative water flux in the two first seasons, but overestimated slightly in some other seasons.

Except for the EPIC model, the cumulative water fluxes in the extreme wet year 2009 were simulated well by the models. No model was able to simulate the dry no-flux period during the second half of 2011. Deviations between the simulated and observed soil moisture contents were relatively small and have a limited impact on the cumulative water fluxes. Underestimations and overestimations of the seasonal water fluxes are explained by overestimation and underestimations of the seasonal evapotranspiration. This depends on the difficulty of establishing accurate crop growth parameters. Table 5 presents the statistical performance indices for the daily water fluxes and for averaged water fluxes per sampling interval for both the calibration and the validation periods.

The performance improved for the averaged fluxes per sampling period of the calibration phase relative to the performance of the daily fluxes, but deteriorated for the validation phase. This is counter-intuitive because the peaks of the daily fluxes pattern are flattened by aggregation and one should expect a better performance for the averaged values per sampling interval.

Figure 4 presents the Taylor diagrams for the daily water fluxes and for averaged water fluxes per sampling interval for both the calibration and the validation periods.

For all models the R-values were between 0.5 and 0.9 and the $RRSE$-values were between 0.5 and 1.0. For daily water fluxes the c/c_0-ratio for the validation period was somewhat higher than for the calibration period, but for
The fluxes averaged for the sampling intervals it can be seen that ARMOSA, DAISY, COUP and EPIC resulted in lower \(\sigma_p/\sigma_o \)-ratio's for the validation period than for the calibration period.

The range of seasonal water fluxes for the cultivation periods predicted by the models for all seasons was around the observed values (Figure 5). With respect to the blind test, calibration of the models resulted in a smaller range and in a shift towards the observations.

\begin{figure}
\centering
\caption{The ranges were relatively large for maize and its preceding catch crops in 2006 and 2010. In four of the seven seasons DAISY had the lowest value for the leaching and in one season the highest value. Both COUP and EPIC resulted in three seasons the highest value. SIM-STO had the smallest deviation between predicted and measured seasonal water leaching and DAISY resulted in the largest deviation}
\end{figure}

Differences between observed and model predicted water contents, water fluxes and water volumes per sampling interval indicate over- or under-estimation of the water excess in the soil column. Besides uncertainties in soil hydraulic properties and in observations, there was also lack of information about actual plant and root system development as a function of time.

The different modelling groups were not able to find a simultaneous optimal solution which minimizes both water contents deviations and water flux deviations. This may be due to uncertainties in soil hydraulic properties, and the disregarding of hysteresis in the models. The soil at the Wagna experimental station consists of a clayey-sand on top of a gravel layer. Durner et al. (2007) concluded that for layered soils with distinct heterogeneity no unique effective soil hydraulic properties exist. If only fluxes across the boundaries of the system are required, heterogeneous systems can be modelled with quasi-homogeneous ones, even if the internal system state is not matched properly. However, for nutrient dynamics (solute dispersion, biological and chemical reactions) an accurate internal system state description is mandatory (Durner et al., 2007).

3.2.2 Soil temperature

The soil temperature is an important variable determining the rate of biological processes (N dynamics), for the crop development in the period of germination, and for soil moisture flow under winter conditions. A comparison of simulated and measured soil temperatures was carried out as well (data not shown). In general, the models were well able to simulate soil temperatures and resulted in performance indices much higher than for moisture contents. The simulation performance at shallow depth was less than the performance at greater
depths: most models showed a delayed warming up in some spring seasons with respect to the measurements, which is attributed to the incomplete description of surface temperatures, for most of the models used the air temperature as the boundary condition.

3.2.3 Water fluxes

Figure 3 presents the cumulative water fluxes as predicted by the models and as measured as a function of time. The pattern of cumulative water fluxes per growing season complies generally with the annual precipitation amounts (Table 2) with the exception of maize in 2006 and its preceding crop in the winter of 2005/2006. During the intermediate period after oil pumpkin in 2005 and before maize in 2006, the precipitation amounted to about 430 mm. It appears that the evapotranspiration of the intermediate crop (English ryegrass) was relatively low which resulted in a relatively high leaching volume at the start of the maize crop. The simulated cumulative water flux per season corresponded well to the measured water fluxes for most of the models: DAISY underestimated the water flux under maize in 2006 and 2010, while EPIC overestimated the water flux for most of the growing seasons. SWANIM underestimated the cumulative water flux in the two first seasons, but overestimated slightly in some other seasons.

Except for the EPIC model, the cumulative water fluxes in the extreme wet year 2009 were simulated well by the models. No model was able to simulate the dry no-flux period during the second half of 2011.

Table 5 presents the statistical performance indices for the daily water fluxes and for averaged water fluxes per sampling interval for both the calibration and the validation periods. The performance improved for the averaged fluxes per sampling period of the calibration phase relative to the performance of the daily fluxes, but deteriorated for the validation phase. This is counter-intuitive because the peaks of the daily fluxes pattern are flattened by aggregation and one should expect a better performance for the averaged values per sampling interval.

Figure 4 presents the Taylor diagrams for the daily water fluxes and for averaged water fluxes per sampling interval for both the calibration and the validation periods.
For all models the R-values were between 0.5 and 0.9 and the RRSE-values were between 0.5 and 1.0. For daily water fluxes the σ_o/σ_p-ratio for the validation period was somewhat higher than for the calibration period, but for the fluxes averaged for the sampling intervals it can be seen that ARMOSA, DAISY, COUP and EPIC resulted in lower σ_o/σ_p-ratios for the validation period than for the calibration period.

The range of seasonal water fluxes for the cultivation periods predicted by the models for all seasons was around the observed values (Figure 5). With respect to the blind test, calibration of the models resulted in a smaller range and in a shift towards the observations.

The ranges were relatively large for maize and its preceding catch crops in 2006 and 2010. In four of the seven seasons DAISY had the lowest value for the leaching and in one season the highest value. Both COUP and EPIC resulted in three seasons the highest value. SIM-STO had the smallest deviation between predicted and measured seasonal water leaching and DAISY resulted in the largest.

3.2.34 Nitrate concentrations and nitrate-N fluxes

Figure 3 presents the cumulative nitrate fluxes and the nitrate concentration of the leachate as predicted by the models and as measured as a function of time. Based on a visual inspection the nitrate concentrations are simulated well by COUP and SW-ANIM for the calibration period. The SIM-STO results for this period were poor and the results of the other models were in between. The results for the validation period showed a completely different picture when compared to the corresponding results for the calibration period. The results of DAISY and SIM-STO were relatively the best, while EPIC and SW-ANIM results were weak. ARMOSA, COUP and SW-ANIM overestimated the concentration peak in autumn 2009 and SW-ANIM simulated a peak for autumn 2010, while there was no peak visible in the measurements.

ARMOSA, DAISY, EPIC and SIM-STO showed more spiky results for the calibration period than the measured values, while COUP and SW-ANIM showed calmer and more evenly time courses. The results resembled partly the modeller’s choice for defining either the nitrate fluxes or the nitrate concentrations in the objective function of the calibration procedure. The COUP and SW-ANIM modellers used the nitrate concentrations for calibrations, while the ARMOSA, DAISY, EPIC and SIM-STO modelling groups used the nitrate fluxes. For DAISY and EPIC, the nitrate concentrations were calculated afterwards by dividing the
nitrate flux by the water flux. The nitrate concentrations in the calibration phase simulated by SIM-STO showed a bad performance, while the results for the validation phase were much better. The higher peak concentrations during the calibration phase were not approached by SIM-STO. On the other hand, SW-ANIM showed a good agreement of nitrate concentrations during the calibration phase, while there is a mismatch during the validation phase. The concentration peaks during the validation phase were severely overestimated by SW-ANIM due to an overestimation of the biological fixation rates of some non-leguminous catch crops in this period.

The nitrate-N flux at depth 1.8 m represents the nitrogen transport to deeper soil layers and is relevant for predictions of nitrate concentrations in deeper groundwater. ARMOSA, DAISY, EPIC and SIM-STO underestimated the nitrate N-flux under winter barley preceded by a catch crop in 2007-2008, but SW-ANIM overestimated the nitrate N-flux during this period. The COUP model was able to calculate the nitrate-N flux in five of the seven seasons that cover the calibration and validation period. ARMOSA and DAISY calculated the total seasonal nitrate-N flux well in three of the seven seasons, while EPIC, SIM-STO and SW-ANIM calculated this flux well in two of the seven seasons. The last season appeared to be the most difficult one, because of the exceptional dry conditions. The leaching after the 2009 oil pumpkin crop also showed significant deviations between model predictions and measurements. The largest deviations of seasonal nitrate-N fluxes occurred in the results of COUP and SW-ANIM for the exceptional wet year 2009.

Table 6 presents the statistical indicators for both the nitrate concentrations and the nitrate-N leaching rates, based on the sampling time series. The largest deviations between predicted and simulated nitrate concentrations were found for the SIM-STO results in the calibration period for which the IoA and the NSE amounted to 0.43, and 0.76, respectively. Remarkably the smallest deviations were found for the same model for the validation period for which IoA and NSE amounted to 0.78. The underestimation of the nitrate-N flux by SIM-STO is most likely due to immobilization processes that are overemphasized for the 2005 and 2008 periods. Thus, less nitrate was released to the soil water phase which led to the underestimation of the nitrate concentration in the leachate and 0.08, respectively.

<<Table 6>>

The COUP model showed the best performance for the nitrate concentrations of the calibration period with IoA = 0.97 and NSE = 0.86 directly followed by the SW-ANIM model. The results from EPIC and SW-ANIM for concentrations in the validation period were weak with RMSE > 20 mg L⁻¹ and NSE < 2. The statistical indices of the nitrate-N leaching rates showed a similar picture. The SIM-STO model performed relatively weak during
the calibration phase. For the leaching rates in this period DAISY and SW-ANIM had the best performance and for the validation period ARMOSA and DAISY performed relatively the best. The NSE values (data not shown) for both the concentration and the leaching rates in the validation period were almost all negative, showing that the calibrated models had great difficulties to predict concentrations and leaching rates for the more extreme conditions of the validation period.

Statistical performance of predicted nitrate concentrations and leaching rates were expressed in Taylor diagrams in Figure 6. Calibrated nitrate concentrations by COUP and SW-ANIM had R-values greater than 0.9 and were closest to the (1,0) point. Except for SIM-STO, the models showed σ_p/σ_o ratios for the calibration step that did not deviate much from 1; for SIM-STO the σ_p/σ_o ratio was much lower than 1 and $R < 0$.

The plots clearly show the much weaker performance for the validation period than for the calibration period, expressed by lower R-values and higher σ_p/σ_o ratio’s. SIM-STO showed the best performance for concentrations in the validation period with $R > 0.7$, σ_p/σ_o close to one, and $RRSE = 0.75$, while for the other model $RRSE > 1$. For the nitrate fluxes in the calibration period $RRSE$ values were between 0.64 and 0.86, while for the validation period, the values were between 1 and 2 even with a peak of 8.6 for SW-ANIM (data point not seen in Figure 6). The R-values of the nitrate fluxes in the validation period were in the range 0.18 (EPIC) to 0.50 (COUP). The σ_p/σ_o ratio ratios were in the range 0.75 to 2.3 with a peak of 8.8 for SW-ANIM (data point not seen in Figure 6). The values for σ_p/σ_o ratio greater than 1 for both the concentrations and the nitrate fluxes indicate that the variation of the simulated values is greater than the variation of the observed values.

Table 7 presents the performance indices for the nitrate concentrations at depths 0.35 m and 0.9 m. The IoA values indicate that the best agreement between simulated and measured values was achieved for the calibration period, but MAE-values and $RMSE$-values were highest for the calibration results at depth 0.9 m and lowest for the validation results at depth 0.9 m. This apparent contradiction is due to the number of measurements on which the indices were calculated. Further analysis was based on IoA because the ranking of these values corresponded better to the results of the leaching water at depth 1.80 m.

Calibrated concentrations yielded IoA-values ranging from 0.44 (SIM-STO) to 0.84 (SW-ANIM). The results for the validation period resulted in somewhat lower IoA values, except for SIM-STO which shows better results.
for the validation than for the calibration period. The ARMOSA results were the most constant for the different depths and periods. Both COUP and SW-ANIM show significantly poorer IoA values for the validation than for the calibration period. DAISY and SIM-STO showed slightly better results for the concentrations at depth 0.9 m than for the concentrations at depth 0.35 m. The other models performed slightly better for depth 0.35 m. Except for SW-ANIM, the IoA for the validation period at 0.35 m were in the same range as for the results at depth 0.9 m.

Over- and overestimation of simulated average nitrate concentrations and nitrate-N leaching rates for the calibration period is due to a number of reasons. A formal reason is the formulation of the object function. The calibration method applied for most models attempted to minimize the sum of squared differences \((P_t - O_t)^2\) for either the nitrate concentrations or the nitrate-N fluxes. A minimal sum does not guarantee a perfect match of the average concentrations. The different modelling groups have chosen different objective functions when calibrating for nitrate observations. Most models based the summation \((P_t - O_t)^2\) values on the sampling periods but SIM-STO used the summed \((P_t - O_t)^2\) values for the nitrate-N leaching rate per growing season only.

Three out of four models that used nitrate flux in their objective function resulted in moderate IoA values in the range 0.76-0.87 for the calibrated nitrate fluxes, while the others model resulted in poor JoA = 0.43 values (Table 9). Two out of three models that used nitrate concentration in their objective function resulted in good IoA values in the range 0.95-0.97, while the third model resulted in a moderate IoA = 0.87 value (Table 9).

However, a good calibration on nitrate concentrations did not result in good performance on nitrate fluxes. Both for the calibration and for the validation periods it appeared that all models had difficulties in predicting the nitrate fluxes at the bottom of the lysimeter, even if some of them were calibrated based on the measured nitrate fluxes.

Vereecken et al. (1991) evaluated five complex models from which SW-ANIM, EPIC and DAISY are also included in our performance assessment. A comparison between simulated and observed nitrate leaching rates measured in two sandy soils in Denmark and one sandy soil in the Netherlands revealed that SW-ANIM, EPIC and DAISY performed similar, although DAISY appeared to be a bit superior in behaviour. In general much better statistical metric values were reported than in our study. This may be due to the circumstances of the field trials which were representative for conventional agriculture during the eighties and because the calibration and the comparison was carried out for seasonal values.
Diekkrüger et al. (1995) compared the results produced by 19 simulation models, others than those used in this study, for a loam soil and a sand soil in Southern and Eastern Saxony in Germany. Variation in the leaching rates at 0.9 m depth reflected mainly the differences in soil water fluxes at that depth. Apart from the seasonal differences between the models that were able to simulate a three year period continuously, the cumulative leaching was nearly the same for these models. The results of soil nitrogen simulations were significantly influenced by the results of water flow and plant growth simulations. Diekkrüger et al. (1995) concluded that for long term forecasts the exact determination of the boundary conditions is as important as the model approach itself. Our finding that the unmeasured inputs concerning biological N-fixation are important for the soil nitrogen dynamics is consistent with this conclusion. In our study, differences between model seasonal and long term results are attributed to some extend to different assumptions about fixation rates.

Kersebaum et al., (2007) conducted a comparison of simulation models for 18 different models from which SW-ANIM and SIM-STO are included in our study. SW-ANIM was applied to the Müncheberg data-set (Kroes and Roelsma, 2007) and SIM-STO was applied to the data-set of the lysimeter station Berlin-Dahlem for water flow simulation and to the Bad Lauchstädt data-set for simulation of soil nitrogen dynamics (Stenitzer et al., 2007). Results for the mean bias, RMSE, IoA and NSE showed weak performances for the soil mineral nitrogen simulation in the 0-90 cm upper soil layer for nearly all models which were subjected to the Müncheberg data-set. Kersebaum et al. (2007) concluded that comparison of simulated results by models which are intended for field scale and regional scale with measured data often shows unsatisfactory results due to deviating conditions and parameters. It does not automatically mean that the models or the parameters are wrong because the data and parameters are only partly related to the site specific conditions of the measurements. In our study significant amount of data was available, but critical information about rooting depth and pattern, atmospheric deposition rates, mineralization and fixation rates was missing as well as the nitrogen uptake rates and residue amounts of the catch crops. Due to these uncertainties, it is difficult to draw clear conclusions about the predictive power of the models.

3.2.45 Nitrogen balances

Table 8 presents the soil nitrogen balances per season for each of the models.

Exact fertilizer and manure inputs were not represented by EPIC, because the model assumes standard compositions which are not equal to the experimental data. This holds also for SW-ANIM which assumes fixed
nitrogen compositions but this was overcome by introducing new manure types, so that the fertilizer input was close to the observed values.

The estimates for atmospheric deposition ranged from 4.2 kg ha\(^{-1}\) a\(^{-1}\) (COUP) to 23.4 kg ha\(^{-1}\) a\(^{-1}\) (DAISY), averaged for seven growing seasons. Only literature values were available and most modelling groups have used the model default values or the figure they are familiar with for their own country. ARMOSA calculated for the validation phase lower wet deposition rates than for the calibration phase due to lower precipitation amounts.

Some models assumed only dry deposition at a constant rate, while other models also imposed nitrogen input by rainfall.

The most stressing differences are for biological N-fixation. Some models do not describe the biological N-fixation process as such but modellers had possibilities to assume fixation rates by introducing a nitrogen rich organic material which was amended continuously during the growing season. The DAISY and the EPIC modelling groups did not take account for N-fixation, either due to a lack model formulations implemented or to a lack of knowledge about this process. SIM-STO assumed only for the first season some biological N-fixation by the crop mixture that included white clover. The COUP and the SW-ANIM modelling groups took account for N-fixation, including for periods for which one wouldn’t expect (English ryegrass). In SW-ANIM the biological N-fixation is lumped with the mineralization of some of the crop residues that descended from the most recent and previous catch crops. The model output does not allow to unravel the biological N-fixation as such and mineralisation of earlier catch crop residues.

The COUP model did not take account for ammonia volatilization. The other models did, and showed a range of 2% to 35% of the nitrogen in the animal manure amended to the soil. The highest volatilization rates were simulated by SIM-STO: 27% and 35% of the animal manure N in 2008 and 2011, respectively. This could possibly explain the underestimation of nitrate leaching in 2008, but not in 2011. For these years, the differences of the model predictions amounted to more than 22 and 37 kg ha\(^{-1}\) a\(^{-1}\), respectively, which is higher or in the same range as the measured nitrate-N leaching. Volatilization was calculated by EPIC and ARMOSA (about 4 kg ha\(^{-1}\)) for the first growing season of the validation period, while no farm fertilizer was applied.

The models encountered difficulties with the simulation of nitrogen crop off-take. Deviations of simulated uptake rates from the observed values of more than 50 kg ha\(^{-1}\) occurred for three years by ARMOSA (2006, 2008, 2009), EPIC (2005, 2009, 2010) and SIM-STO (2006, 2008, 2010), for two years by DAISY (2007, 2010), and for one year (2011) by COUP and SW-ANIM. The EPIC model was not able to simulate nitrogen
crop off-take by oil pumpkin, because this crop is unknown in the standard database of crop parameters that
comes with the model. The DAISY model failed to simulate a reasonable crop off-take by maize in 2007, while
the N off-take in the preceding year was overestimated by 60 kg ha\(^{-1}\). The calibrated parameters for crop uptake
were not optimal for the maize as is also apparent from the calculated crop off-take in 2010 where the
overestimation amounted nearly 100 kg ha\(^{-1}\). Despite the fact that SW-ANIM included the N-yield in the object
function of the calibration procedure, the modelled crop off-take differed from the measured crop off-take by -14
to +19 kg ha\(^{-1}\). The SW-ANIM underestimated crop off-take in the validation period. Crop off-take is governing
the soil nitrogen balance to a large extent and an erroneous calculation of the N off-take means that a possible
correct nitrate leaching should be considered as little robust.

Denitrification is only of significance for the DAISY and EPIC results, while other models simulated zero or
negligible denitrification rates. For most of the models, these estimates were biased by the opinion of the data
holders who made plausible from their analysis of soil nitrogen balances that denitrification is not a significant
factor (Leis, 2009). The degree of saturation (S) at depth 0.35 m exceeds 80% for most of the time and only
COUP and SIM-STO have default threshold values for S higher than 80% while other models use lower default
threshold values for S (Heinen, 2006). Except for DAISY and EPIC, also ARMOSA and SW-ANIM should
have calculated some denitrification when using default values. Except for the first year, the denitrification
calculated by EPIC exceeded the nitrate-N leaching.

The change of the total N amount in soil included both organic and mineral forms and was calculated as the
residual from the balance. A positive sign means an increase of the total amount whereas a negative sign
indicates a depletion of the stock. The model results showed large differences and the largest difference occurred
in 2010 where DAISY calculated a depletion of 105 kg ha\(^{-1}\) while SW-ANIM calculated an increase of 103 kg
ha\(^{-1}\). The increase of the amount resulted from the assumed biological fixation and the inputs caused by the
cultivation of catch crops. When no additional inputs by fixation or by catch crops was assumed, a depletion will
occur (DAISY and EPIC).

Except for SIM-STO in 2005 and 2008, differences between calculated seasonal nitrate-N leaching rates were
relatively small for the calibration phase. The deviations were much larger for the validation phase, where SW-
ANIM overestimated the leaching by 39 and 29 kg ha\(^{-1}\) in 2009 and 2010, respectively. The observed small
leaching rate in 2010 was not approached by any model. Transport of ammonium, organic dissolved N or by
surface runoff was calculated at a maximum of 8 kg ha\(^{-1}\) by the COUP model for the first year of the validation period.

The long term nitrogen balances were summarized at the bottom of Table 8 to further compare the difference of the modellers perceptions of the plant and soil nitrogen cycle.

The seven year balance depicted the major differences between the models clearly. Despite the crop failure in 2007 simulated by DAISY, this model showed the highest summed seven year amount, while the summated crop off-take by SIM-STO lagged behind with 200 kg ha\(^{-1}\) relative to the recorded amount. For the individual years the ARMOSA results differed considerably from the observations, but the summated seven year crop off-take resembled the measured value rather good.

Most models have been designed for the field scale for which an average N-yield is calculated. The spatial scale of the lysimeter (1 m\(^2\)) differs from the field scale and the variation of crop off-take rates at this scale is much larger than for the field scale. This is illustrated by the oil pumpkin crop in 2005. Only two seeds were planted in the lysimeter. One of the plants died at the start of the generative phase and no harvest was obtained from this plant. This event influenced the yield at the lysimeter scale pretty much, but the yield at the field scale was barely influenced and it can be expected that field scale models encountered difficulties.

The total nitrogen loss by denitrification ranged from 0 to 249 kg ha\(^{-1}\) and was subject to the modellers’ perception of the possibility of denitrification in the soil at the Wagna experimental field station.

The low input farming system was capable to produce relatively high yields for maize and grains, and for oil pumpkin a N-yield of 51 to 57 kg ha\(^{-1}\) was recorded, but the observed nitrate-N leaching exceeded the N-excess, the latter defined as the total addition of mineral fertilizers and animal manure minus the crop off-take.

ARMOSA, DAISY and EPIC predicted higher nitrate N-leaching than the N-excess (Fig. 7), while the other models showed a more or less equal value (SW-ANIM) or a lower value (COUP, SIM-STO). One of the main difficulties was to describe the role of the intermediate catch crops in the crop rotation on the delivery of N.

Some of the intermediate crops fixate atmospheric N which leads to an input to the soil and other crops are only able to preserve some of the N excess which remains in soil after the catch crops for the next growing season. No data on the N uptake rates and the quality of the resulting green biomass of these intermediate crops were available. Each of the modellers had to make assumptions for the effect of these crops on the soil N cycle. The
estimates of the seven years summed additional input to the soil by biological N-fixation varied from 0-2 kg ha\(^{-1}\) (DAISY, EPIC) to 371 kg ha\(^{-1}\) (SW-ANIM) (Table 8).

None of the models simulated long term soil N-stock at equilibrium. The models that did not take biological N-fixation into consideration showed a decrease of the soil N-stock of -342 kg ha\(^{-1}\) (EPIC) and -177 kg ha\(^{-1}\) (DAISY). The other models that take account for this input showed an increase ranging from 165 to 419 kg ha\(^{-1}\).

The comparison of the N mass balance components showed large differences between the models. Despite calibration on nitrate leaching, the nitrate leaching predicted was still different from that measured. Crop off-take, although measured, was only used by two models in the calibration procedure, but even then the predicted off-take differed from the observed one. For the other N processes (deposition, biological fixation, volatilization, other transport processes and denitrification) no measured data were available for comparison and calibration.

For these aspects, significant differences between the models were observed, either through differences in process descriptions or in handling input by the modelling groups. The resulting storage change thus was also different for the models. The variation of the mass balance components for each model over the years was large.

A favourable assessment of a good correspondence between a predicted and a measured quantity is difficult, because it may be good for the wrong reasons. For example, ARMOSA predicted rather well the overall crop N off-take but was not able to predict the N off-takes of the individual growing seasons.

3.2.5 Performance assessment

In order to compare the performance of models a quantifiable method is needed. The simplest method would be to rank the models based on a performance index. This method is not preferred, as a model may get a high ranking despite a poor performance. Thus, a classification based on some performance index is to be preferred.

Any value of NSE and IoA (except their values 0 and 1) is difficult to interpret (Legates and McCabe, 1999), and thus it is clear that no default classification boundary values exist to evaluate good, moderate and poor model performance for a set of interrelated variables related to water contents, water fluxes, nitrate concentration and nitrate fluxes at the scale of a lysimeter. One of the difficulties of statistical metrics for model assessment is the judgement of values, whether they indicate a “good”, “moderate” or “weak” performance.

Bellocchi et al. (2010) reviewed the methods and different indicators used for the validation of different types of biophysical models. Confalonieri et al. (2010) used NSE and RRMSE, together with four other indices to assess
the quality of simulation of different models in simulating soil water contents. In hydrological studies, it is common practise to assess the model performance on the basis NSE, where $NSE > 0.75$ indicates a “good” performance and $NSE < 0.36$ indicates a “weak” similarity of model results with observations (Van Lieuw and Gabrecht, 2003). Moriasi et al. (2007) reviewed the qualification of the model performance of stream discharges and contaminant loads, based on statistical indices for a number of modelling studies. They qualified model simulation on the basis of NSE and PE but their qualifications are not directly applicable to this study due to differences of spatial scale (catchment versus field) and differences of time scale (month versus day or weekly sample interval). In the literature it is noticeable that classifications and qualifications depend on the considered variables and of the time and space scale. Here we preferred to set up a classification for IoA. A number of model studies on the dynamics of soil nitrogen and nitrate leaching have been published that use the IoA, alone, or combined with other parameters (Kersebaum et al., 2007; Mantovi et al., 2006; Nolan et al., 2010; Sogbedji et al., 2006).

Following these authors, we have chosen the IoA for a qualitative assessment of the different model outputs. Typical state variables which correspond with instantaneous observations have been distinguished from water fluxes and nitrate concentrations analysed in composed water samples. For the latter we assumed IoA values above 0.9 as accurate and IoA values below 0.75 as inaccurate. For soil water contents and nitrate concentrations we assume IoA values greater than 0.8 as accurate and IoA values smaller than 0.6 as inaccurate. Krause et al. (2005) stated that even for IoA > 0.65 models can result in poor performance, they sure will for IoA < 0.6, which was here chosen as the lowest boundary. The IoA scoring for the calibration and validation periods are listed in Table 9.

The scoring differed for the different models. Two models (SIM-STO, SW-ANIM) performed well for the calibration of the $\theta(h)$ curves and the simulated θ at different depths, however, this doesn’t guarantee good performance for the other state and rate variables in the calibration and validation periods. For the validation period all models performed weak to moderate on the water volume and weak on the nitrate N-flux per sampling interval, and moderate to good on the daily water flux and weak to moderate on the nitrate concentration in the water samples. The models ARMOSA, COUP, DAISY and EPIC had more weak qualifications than good qualifications, while SIM-STO and SW-ANIM had more good qualifications.
We have also assessed the accuracy of the seasonal amounts on the basis of the mean absolute error (MAE). The
seven seasons included the oil pumpkin crop twice, which was an unknown or a particular crop for most of the
modelling groups. The seven year series contained an extremely wet year (2009) and a dry summer (2011). For
the performance assessment for average crop and rainfall conditions MAE of the five best values (MAE5) out of
seven (MAE7) are presented in Table 10 to examine if the models perform better for average conditions. In some
cases the improvement was more than 50%, and the ranking of the models slightly changed. Despite the fact that
MAE is less sensitive to outliers than e.g. IoA, extreme situations (unknown crop, wet or dry years) can have a
large impact on MAE.

<<Table 10>>

4. General discussion

5.1 Water contents and water fluxes

Differences between observed and model predicted water contents, water fluxes and water volumes per sampling
interval indicate over- or under-estimation of the water excess in the soil column. Besides uncertainties in soil
hydraulic properties and in observations, there was also lack of information about actual plant and root system
development as a function of time.

The different modelling groups were not able to find a simultaneous optimal solution which minimizes both
water contents deviations and water flux deviations. This may be due to uncertainties in soil hydraulic properties,
and the disregarding of hysteresis in the models. The soil at the Wagna experimental station consists of a clayey
sand on top of a gravel layer. Durner et al. (2007) concluded that for layered soils with distinct heterogeneity no
unique effective soil hydraulic properties exist. If only fluxes across the boundaries of the system are required,
heterogeneous systems can be modelled with quasi-homogeneous ones, even if the internal system state is not
matched properly. However, for nutrient dynamics (solute dispersion, biological and chemical reactions) an
accurate internal system state description is mandatory (Durner et al., 2007).

5.2 Nitrate concentrations and fluxes

The different modelling groups have chosen different objective functions when calibrating for nitrate
observations. Two out of four models that used nitrate flux in their objective function resulted in moderate IoA
values for the nitrate fluxes, while the others resulted in poor IoA values (Table 9). Two out of three models that
used nitrate concentration in their objective function resulted in good IoA values, while the third model resulted in a moderate IoA value (Table 9). However, a good calibration on nitrate concentrations did not result in good performance on nitrate fluxes. Both for the calibration and for the validation periods it appeared that all models had difficulties in predicting the nitrate fluxes at the bottom of the lysimeter, even if some of them were calibrated based on the measured nitrate fluxes.

Vereecken et al. (1991) evaluated five complex models from which SW-ANIM, EPIC and DAISY are also included in our performance assessment. A comparison between simulated and observed nitrate leaching rates measured in two sandy soils in Denmark and one sandy soil in the Netherlands revealed that SW-ANIM, EPIC and DAISY performed similar, although DAISY appeared to be a bit superior in behaviour. In general much better statistical metric values were reported than in our study. This may be due to the circumstances of the field trials which were representative for conventional agriculture during the eighties and because the calibration and the comparison was carried out for seasonal values.

Diekkrüger et al. (1995) compared the results produced by 19 simulation models, other than those used in this study, for a loam soil and a sand soil in Southern and Eastern Saxony in Germany. Variation in the leaching rates at 0.9 m depth reflected mainly the differences in soil water fluxes at that depth. Apart from the seasonal differences between the models that were able to simulate a three year period continuously, the cumulative leaching was nearly the same for these models. The results of soil nitrogen simulations were significantly influenced by the results of water flow and plant growth simulations. Diekkrüger et al. (1995) concluded that for long term forecasts the exact determination of the boundary conditions is as important as the model approach itself. Our finding that the unmeasured inputs concerning biological N-fixation are important for the soil nitrogen dynamics is consistent with this conclusion. In our study, differences between model seasonal and long term results are attributed to some extent to different assumptions about fixation rates.

Kersebaum et al. (2007) conducted a comparison of simulation models for 18 different models from which SW-ANIM and SIM-STO are included in our study. SW-ANIM was applied to the Müncheberg data set (Kroes and Roelsma, 2007) and SIM-STO was applied to the data set of the the lysimeter station Berlin-Dahlem for water flow simulation and to the Bad Lauchstädt data set for simulation of soil nitrogen dynamics (Steniitzer et al., 2007). Results for the mean bias, RMSE, IoA and NSE showed weak performances for the soil mineral nitrogen simulation in the 0-90 cm upper soil layer for nearly all models which were subjected to the Müncheberg data set. Kersebaum et al. (2007) concluded that comparison of simulated results by models which are intended for
field scale and regional scale with measured data often show unsatisfactory results due to deviating conditions and parameters. It does not automatically mean that the models or the parameters are wrong because the data and parameters are only partly related to the site specific conditions of the measurements. In our study significant amount of data was available, but critical information about rooting depth and pattern, atmospheric deposition rates, mineralization and fixation rates was missing as well as the nitrogen uptake rates and residue amounts of the catch crops. Due to these uncertainties, it is difficult to draw clear conclusions about the predictive power of the models.

5.3 Seasonal nitrogen balances

The comparison of the N mass balance components showed large differences between the models. Despite calibration on nitrate leaching, the nitrate leaching predicted was still different from that measured. Crop off-take, although measured, was only used by two models in the calibration procedure, but even then the predicted off-take differed from the observed one. For the other N processes (deposition, biological fixation, volatilization, other transport processes and denitrification) no measured data were available for comparison and calibration.

For these aspects, significant differences between the models were observed, either through differences in process descriptions or in handling input by the modelling groups. The resulting storage change thus was also different for the models. The variation of the mass balance components for each model over the years was large.

A favourable assessment of a good correspondence between a predicted and a measured quantity is difficult, because it may be good for the wrong reasons. For example, ARMOSA predicted rather well the overall crop N off-take but was not able to predict the N off-takes of the individual growing seasons.

3.2.6.5.4 Methodological aspects for explanation of differences

5.4.1 Data

Experimental data collected from a well-controlled lysimeter were used for the purposes of our study. However, the number of measured state and rate variables were less than those present in the six models. For example, no data were available on field-scale hydraulic conductivity, deposition and biological fixation. This means that the outcome of the models is uncertain as not all components of the internal mass balance could be optimized. We have observed in the blind test that based on a limited availability of data, which resembles situations that would occur in practice, the predictions of the models was poor compared to actual observations. That would imply that usage of such simulation models for predictions on nitrate leaching at unknown, regional scales must be regarded with care. In this study the rainfall excess was positive in most times of the year, such that the imposed bottom
boundary condition in the lysimeter resulted in leaching. For other situations where capillary rise may occur, the models have not been inter-compared. Finally, it is noticed that the soil hydraulic properties as determined in the laboratory on small soil samples does not guarantee well-predicted soil water contents and soil water fluxes even for a well-controlled lysimeter situation. Partly, this may be due to the lack of knowledge of hysteresis or its description in the models.

5.4.2 Procedure

Despite the structured set-up of this study (blind test, calibration, validation) there remained flexibility in the approach chosen by the different modelling groups. For example, no formal sensitivity analysis was prescribed, meaning that each group was free to choose a set of parameters to be calibrated. This has introduced a subjective element in this study. Although it was agreed beforehand that the water fluxes and the nitrate concentrations in the lysimeter effluent were the most important parts of the model comparison, the objective function for optimization was chosen freely by the modellers. Some modelling group have chosen to include also the information about soil water contents and crop uptake in the optimization procedure. The comparison is, therefore, not a pure comparison of the model codes, but also a comparison of how modellers used their models.

In this study much effort has been put in calibrating and validating six models for a well-controlled lysimeter situation. Any conclusions of this study are thus at first applicable for these kind of (local) situations. Additional research is required to inter-compare these models for deviant situations, for example, for regional assessments of impact of fertilization strategies.

5.4.3 Decreased performance when averaging

One should expect a better performance for the averaged water fluxes per sampling interval than for the daily water fluxes because peaks of the daily fluxes pattern are flattened by aggregation. This was indeed observed in better performance indices for the calibration period (Table 5). However, the opposite occurred for the validation period (Table 5). This counter-intuitive response of performance indices to the averaging of water fluxes of the validation phase may be due to the following three reasons.

1) The distributions of the time increments of sampling in both phases differed slightly, where in the validation phase samples were taken more frequently with smaller time steps (data not shown). The pattern of sampling intervals was neither regular nor random. The pattern was more or less dependent on practical circumstances and availability of manpower and on average samples were taken once in seven days. Under extreme rainfall
conditions the intervals were shortened and under extreme dry conditions the intervals were longer because no
percolation water was present.

2) The probability density distributions of the daily water fluxes and averaged water fluxes for the calibration
and validation periods appeared to be unequal (data not shown). This was concluded from a non-parametric
analogue of a one-way analysis of variance performed by the one-way analysis of variance by ranks after
Kruskal-Wallis (1952). The different statistical behaviour may result in variant effects of volume weighted
averaging on the performance indices.

3) Certain days or periods may have had a great effect on the averaging. A leave-one-out calculation procedure
was performed to qualitatively explore the effect of certain days and periods on the performance of the models.
In the series of data pairs of observed and simulated water fluxes, one data pair is left out and the IoA was
calculated for the remainder of the population. This procedure is repeated for each of the data pairs and the
results are subtracted from the IoA-value based on the total series of data pairs belonging to either the daily
fluxes of the calibration or the validation phase or to the averaged values of the phases. Only the results greater
than 0.001, in absolute sense, haven been plotted in Figure 8.

The exclusion of a particular data pair can result in both an improvement (negative values) or a deterioration
(positive values) of the ΔIoA. Furthermore, it is notable that the ΔIoA of daily fluxes responded differently
compared to the ΔIoA for averaged fluxes per sampling interval. For almost all models the exclusion of the value
simulated for 19 Sept 2006 would affect the ΔIoA. The effect of excluding the value of this period is much
smaller for the ΔIoA based on the averaged values per sampling interval. The maximum effect in the series of
daily values occurs for a certain day of the calibration period and the maximum effect in the series of averaged
values per sampling interval is calculated for a time interval in Sept. 2010 which belongs to the validation phase.
The maximal effect of leaving one value out is greater for the validation period than for the calibration period.
Based on this analysis, it is plausible that the averaging of water fluxes has a different effect on the performance
indices of the calibration phase than on those of the validation phase.
5.4. Summary and Conclusions

The novel aspect of this study is that six detailed process oriented dynamic models were tested (1) for the Wagna test-site which is known to be highly vulnerable to nitrate leaching, (2) for a crop particular for the Styrian low input agriculture system, (3) for a situation where different catch crops were part of the crop rotation, and (4) for the weather conditions which significantly differed between the calibration and the validation phase.

This study was not performed to determine which model is the best. We like to quote Kersebaum et al. (2007) who stated: "The comparison of different models applied on the same data set is not suitable to serve as a model contest or to find the best model. Although, the application of different indices for model performance helps to identify strengths and weaknesses of each model, an objective comparison is nearly impossible due to different levels of input requirements, calibration efforts and last but not least the uncertainties and errors within the measured data themselves."

We conclude:

a. The blind test showed that simulation results without calibrating the model are generally far from acceptable. Therefore, model calibration is essential.

b. None of the models performed good for the different criteria considered in this study. This may be due to the combined effect of the model structure which is not tuned to the circumstances of the Wagna experimental fields and the lack of knowledge to establish an appropriate set of parameters. Furthermore, not all inputs were measured, so there were too many degrees of freedom.

c. The soil of the Wagna lysimeter is highly vulnerable to nitrate leaching. The seven year summed nitrate leaching rate (123 kg ha\(^{-1}\)) exceeds the seven year summed fertilization excess. Models designed for nitrate leaching in high input farming systems have difficulties with an accurate prediction of the nitrate leaching in low input farming systems.

d. Judgement of the performance solely on the basis of nitrate concentrations or nitrate fluxes is not sufficient for the assessment of the predictive power of the models. Other results as soil water contents (daily), water and nitrogen fluxes (daily and seasonal), soil temperatures (daily), nitrogen yields (seasonal) should also be taken into account. This should be reflected by the objective function of the model calibration.
Traditional Richard’s/Darcy Buckingham equation based models that make use of the Mualem-van Genuchten descriptions and disregard phenomena as hysteresis, preferential flow and multiple phase flow encounter difficulties with an accurate and consistent simulation of both water contents and water fluxes for the soil and conditions of the Wagna lysimeter.

Some models which performed relatively well in the calibration phase of the study failed to simulate the nitrate concentrations and fluxes in the validation phase (SW-ANIM), while other models behaved relatively bad in the calibration phase and showed better results in the validation phase (SIM-STO). An accurate calibration does not guarantee a good predictive power of the model.

The catch crop mixtures and the non-harvested English ryegrass play an important role in the nutrient dynamics of the soil. This role is addressed weakly by the simulation models: (1) due to a lack of experimental data on nitrogen uptake rates and mineralization of residues of these intermediate crops, and (2) lack of knowledge to describe the relevant processes related to the foreign crops.

Assessment of future climate and land use changes requires a good predictive power of the models and a certain level of robustness. Although the robustness is not clear for the tested models, the process oriented dynamic models used in this study are useful for hypothesis testing.

6.5. **Acknowledgements**

This research was made possible by the GENESIS project of the EU 7th Framework Programme (Project No. 226536; FP7-ENV-2008-1). We are grateful for the experimental data provided by Joanneum Raum (Graz, Austria). The modelling team of Democritus University of Thrace would like to thank Per-Erik Jansson (Royal Institute of Technology, Stockholm, Sweden) for his valuable help during the application of CoupModel.

7.6. **References**

Williams JR, Jones CA, Dyke PTl.. A modeling approach to determining the relationship between erosion and soil productivity. Trans. ASAE 1984;27:129-144.

Table 1. Crop rotation and fertilizer applications on the soil of the KON-lysimeter. CC and MC refer to catch crop and main crop, and FYM and MF refer to farmyard manure and mineral fertilizer, respectively.

<table>
<thead>
<tr>
<th>Type</th>
<th>Crop</th>
<th>Sowing date</th>
<th>Date of harvesting or amending crop residues to soil</th>
<th>Date of fertilizer application</th>
<th>Type and amount of fertilizer (kg ha(^{-1}) N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Mixture: summer common tare, white clover, sunflower</td>
<td>06-Aug-04</td>
<td>06-Apr-05</td>
<td>25-Apr-05 03-Jun-05</td>
<td>FYM: 27.4 MF: 35.1</td>
</tr>
<tr>
<td>MC</td>
<td>Oil pumpkin</td>
<td>30-Apr-05</td>
<td>13-Sep-05</td>
<td>24-Apr-06 08-Jun-06</td>
<td>FYM: 54.5 MF: 75.6</td>
</tr>
<tr>
<td>CC</td>
<td>English ryegrass</td>
<td>03-Jun-05</td>
<td>09-Apr-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>Maize (grain)</td>
<td>24-Apr-06</td>
<td>02-Oct-06</td>
<td>16-Apr-07 26-May-07 28-Feb-08 09-Feb-08</td>
<td>FYM: 120.7 MF: 59.0 FYM: 84.6 MF: 38.0</td>
</tr>
<tr>
<td>CC</td>
<td>Mixture: forage rye, winter turnip rape</td>
<td>03-Oct-06</td>
<td>09-Apr-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>Maize (grain)</td>
<td>16-Apr-07</td>
<td>21-Sep-07</td>
<td>16-Apr-07 26-May-07</td>
<td>FYM: 120.7 MF: 59.0</td>
</tr>
<tr>
<td>MC</td>
<td>Winter barley</td>
<td>08-Oct-07</td>
<td>30-Jun-08</td>
<td>28-Feb-08 09-Feb-08</td>
<td>FYM: 84.6 MF: 38.0</td>
</tr>
<tr>
<td>CC</td>
<td>Mixture: winter turnip rape, mustard, sunflower</td>
<td>04-Aug-08</td>
<td>20-Apr-09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>Oil pumpkin</td>
<td>28-Apr-09</td>
<td>07-Sep-09</td>
<td>22-May-09 01-Jun-09</td>
<td>MF: 36.0 MF: 16.0</td>
</tr>
<tr>
<td>CC</td>
<td>English ryegrass</td>
<td>05-Jun-09</td>
<td>31-Dec-09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>Maize (grain)</td>
<td>17-Apr-10</td>
<td>23-Sep-10</td>
<td>16-Apr-10 26-May-10 11-Mar-11 11-Apr-11</td>
<td>FYM: 62.6 MF: 81.0 FYM: 119.1 MF: 62.0</td>
</tr>
<tr>
<td>MC</td>
<td>Triticale</td>
<td>09-Oct-10</td>
<td>13-Jul-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Mixture: mustard, phacelia, sunflower, buckwheat, ryegrass</td>
<td>08-Aug-11</td>
<td>After</td>
<td>31-Dec-11</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Annual precipitation rates (mm a\(^{-1}\)) and their cumulative probability percentages based on precipitations values of 1961 – 2011.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Calibration</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2005</td>
<td>2006</td>
</tr>
<tr>
<td>Precipitation</td>
<td>mm a(^{-1})</td>
<td>883</td>
</tr>
<tr>
<td>Cumulative probability</td>
<td>44%</td>
<td>31%</td>
</tr>
</tbody>
</table>
Table 3. Statistical parameters (MAE, RMSE, IoA) for the comparison of volumetric water contents derived from calibrated soil moisture retention curves (Figure 2) and observed volumetric water contents at depths 0.35 m ($n = 922$), 0.9 m ($n = 1413$) and 1.8 m ($n = 1456$) depth. **EPIC** is excluded as it does not use soil moisture retention relationships.

<table>
<thead>
<tr>
<th>Model</th>
<th>MAE (cm³ cm⁻³)</th>
<th>RMSE (cm³ cm⁻³)</th>
<th>IoA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.35 m</td>
<td>0.9 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td>ARMOSA</td>
<td>0.0064</td>
<td>0.0166</td>
<td>0.0308</td>
</tr>
<tr>
<td>COUP</td>
<td>0.0341</td>
<td>0.0753</td>
<td>0.0391</td>
</tr>
<tr>
<td>DAISY</td>
<td>0.0295</td>
<td>0.0340</td>
<td>0.0166</td>
</tr>
<tr>
<td>SIM-STO</td>
<td>0.0212</td>
<td>0.0119</td>
<td>0.0064</td>
</tr>
<tr>
<td>SW-ANIM</td>
<td>0.0072</td>
<td>0.0062</td>
<td>0.0033</td>
</tr>
</tbody>
</table>

Table 4. Statistical parameters (MAE, RMSE, IoA) for the comparison of simulated and in situ measured values of volumetric water contents at depths 0.35 m, 0.9 m and 1.8 m for periods 2005 – 2008 (calibration) and 2009 – 2011 (validation).

<table>
<thead>
<tr>
<th>Model</th>
<th>MAE (cm³ cm⁻³)</th>
<th>RMSE (cm³ cm⁻³)</th>
<th>IoA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.35 m</td>
<td>0.9 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td></td>
<td>Calibration 2005 – 2008 ($n = 1461$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARMOSA</td>
<td>0.0119</td>
<td>0.0247</td>
<td>0.0107</td>
</tr>
<tr>
<td>COUP</td>
<td>0.0230</td>
<td>0.0104</td>
<td>0.0023</td>
</tr>
<tr>
<td>DAISY</td>
<td>0.0956</td>
<td>0.0152</td>
<td>0.0105</td>
</tr>
<tr>
<td>EPIC</td>
<td>0.0613</td>
<td>0.1563</td>
<td>0.0909</td>
</tr>
<tr>
<td>SIM-STO</td>
<td>0.0180</td>
<td>0.0063</td>
<td>0.0028</td>
</tr>
<tr>
<td>SW-ANIM</td>
<td>0.0101</td>
<td>0.0106</td>
<td>0.0072</td>
</tr>
<tr>
<td></td>
<td>Validation 2009 – 2011 ($n = 955$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARMOSA</td>
<td>x 0.0260</td>
<td>0.0130</td>
<td>x 0.0291</td>
</tr>
<tr>
<td>COUP</td>
<td>x 0.0124</td>
<td>0.0030</td>
<td>x 0.0165</td>
</tr>
<tr>
<td>DAISY</td>
<td>x 0.0152</td>
<td>0.0137</td>
<td>x 0.0193</td>
</tr>
<tr>
<td>EPIC</td>
<td>x 0.1535</td>
<td>0.0924</td>
<td>x 0.1570</td>
</tr>
<tr>
<td>SIM-STO</td>
<td>x 0.0093</td>
<td>0.0039</td>
<td>x 0.0134</td>
</tr>
<tr>
<td>SW-ANIM</td>
<td>x 0.0141</td>
<td>0.0075</td>
<td>x 0.0176</td>
</tr>
</tbody>
</table>

* Measurements at depth 0.35 m were disqualified from 2009 onwards due to aging of the sensor, and, therefore, no performance indices were calculated.
Table 5. Statistical parameters (MAE, RMSE, IoA, NSE) for the comparison of simulated and observed daily fluxes and fluxes averaged per sampling interval at depth 1.8 m for periods 2005 – 2008 (calibration) and 2009 – 2011 (validation).

<table>
<thead>
<tr>
<th>Model</th>
<th>Daily water fluxes</th>
<th>Averaged water fluxes per sampling interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAE (mm d(^{-1}))</td>
<td>RMSE (mm d(^{-1}))</td>
</tr>
<tr>
<td></td>
<td>Calibration 2005 – 2008 (n = 1461)</td>
<td>Validation 2009 – 2011 (n = 1084)</td>
</tr>
<tr>
<td>ARMOSA</td>
<td>0.45</td>
<td>1.00</td>
</tr>
<tr>
<td>COUP</td>
<td>0.45</td>
<td>0.98</td>
</tr>
<tr>
<td>DAISY</td>
<td>0.57</td>
<td>1.16</td>
</tr>
<tr>
<td>EPIC</td>
<td>0.54</td>
<td>0.99</td>
</tr>
<tr>
<td>SIM-STO</td>
<td>0.34</td>
<td>0.87</td>
</tr>
<tr>
<td>SW-ANIM</td>
<td>0.38</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Table 6. Statistical parameters (MAE, RMSE, IoA) for the comparison of observed nitrate concentrations and nitrate N leaching rates with simulated values by calibrated models for the Wagna Lysimeter for periods 2005 – 2008 (calibration) and 2009 – 2011 (validation).

<table>
<thead>
<tr>
<th>Model</th>
<th>Nitrate concentrations</th>
<th>Nitrate-N leaching rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAE (mg L(^{-1}))</td>
<td>RMSE</td>
</tr>
<tr>
<td></td>
<td>Calibration 2005 – 2008 (n = 199)</td>
<td>Validation 2009 – 2011 (n = 128)</td>
</tr>
<tr>
<td>ARMOSA</td>
<td>15.71</td>
<td>20.37</td>
</tr>
<tr>
<td>COUP</td>
<td>6.74</td>
<td>9.60</td>
</tr>
<tr>
<td>DAISY</td>
<td>13.92</td>
<td>16.82</td>
</tr>
<tr>
<td>EPIC</td>
<td>19.55</td>
<td>25.63</td>
</tr>
<tr>
<td>SIM-STO</td>
<td>27.34</td>
<td>34.61</td>
</tr>
<tr>
<td>SW-ANIM</td>
<td>7.88</td>
<td>10.48</td>
</tr>
</tbody>
</table>

ARMOSA	11.17	15.85	0.52	0.058	0.102	0.61
COUP	12.36	18.68	0.52	0.076	0.187	0.53
DAISY	8.54	11.40	0.78	0.045	0.095	0.54
EPIC	18.24	22.07	0.52	0.089	0.155	0.41
SIM-STO	8.88	10.44	0.78	0.058	0.138	0.56
SW-ANIM	19.97	29.37	0.43	0.205	0.800	0.12
Table 7. Statistical parameters (MAE, RMSE, IoA) for the comparison of observed nitrate concentrations (mg L\(^{-1}\)) in water extracted by suction cups at depths 0.35 m and 0.9 m with simulated concentration.

<table>
<thead>
<tr>
<th>Model</th>
<th>Calibration (0.9 m; (n = 47))</th>
<th>Validation (0.35 m; (n = 91))</th>
<th>Validation (0.9 m; (n = 108))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAE</td>
<td>RMSE</td>
<td>IoA</td>
</tr>
<tr>
<td>ARMOSA</td>
<td>36.8</td>
<td>50.6</td>
<td>0.66</td>
</tr>
<tr>
<td>COUP</td>
<td>28.0</td>
<td>35.2</td>
<td>0.80</td>
</tr>
<tr>
<td>DAISY</td>
<td>32.2</td>
<td>43.9</td>
<td>0.68</td>
</tr>
<tr>
<td>SIM-STO</td>
<td>50.6</td>
<td>66.7</td>
<td>0.44</td>
</tr>
<tr>
<td>SW-ANIM</td>
<td>25.5</td>
<td>30.5</td>
<td>0.84</td>
</tr>
</tbody>
</table>
Table 8. Comparison of seasonal soil nitrogen balances observed and calculated by the six benchmark models.

For each year the main crop is indicated, but these were preceded by catch crops (including leguminous crops).

<table>
<thead>
<tr>
<th>Crop and period</th>
<th>Balance term</th>
<th>Observed (kg ha(^{-1}))</th>
<th>Simulated ARMOSA</th>
<th>COUP</th>
<th>DAISY</th>
<th>EPIC</th>
<th>SIM-STO</th>
<th>SW-ANIM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calibration 2005 – 2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil pumpkin</td>
<td>Fertilization(^{+}) (+)</td>
<td>35.1±27.4</td>
<td>63.0</td>
<td>62.5</td>
<td>62.9</td>
<td>53.1</td>
<td>62.4</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>Deposition (+)</td>
<td>10.2</td>
<td>3.1</td>
<td>16.9</td>
<td>5.0</td>
<td>6.8</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biological fixation (+)</td>
<td>41.5</td>
<td>1.7</td>
<td>0.1</td>
<td>1.8</td>
<td>31.3</td>
<td>81.3</td>
<td></td>
</tr>
<tr>
<td>1.1.2005</td>
<td>Volatilization (-)</td>
<td>2.7</td>
<td>0.0</td>
<td>1.0</td>
<td>1.5</td>
<td>1.9</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>13.9.2005</td>
<td>Crop off-take (-)</td>
<td>50.9</td>
<td>59.7</td>
<td>55.3</td>
<td>83.0</td>
<td>0.0</td>
<td>44.3</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td>NO(_3)-N leaching (-)</td>
<td>22.2</td>
<td>17.2</td>
<td>27.9</td>
<td>25.8</td>
<td>30.3</td>
<td>3.6</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>Other transport(^{+}) (+)</td>
<td>0.0</td>
<td>3.2</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denitrification (-)</td>
<td>0.0</td>
<td>0.0</td>
<td>13.0</td>
<td>11.8</td>
<td>0.0</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storage change(^{c})</td>
<td>35.2</td>
<td>-19.1</td>
<td>-43.2</td>
<td>15.4</td>
<td>50.6</td>
<td>67.8</td>
<td></td>
</tr>
<tr>
<td>Maize</td>
<td>Fertilization(^{+}) (+)</td>
<td>75.6±54.5</td>
<td>131.0</td>
<td>130.1</td>
<td>130.7</td>
<td>112.3</td>
<td>130.1</td>
<td>130.1</td>
</tr>
<tr>
<td></td>
<td>Deposition (+)</td>
<td>15.4</td>
<td>4.8</td>
<td>26.5</td>
<td>8.0</td>
<td>10.7</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>14.9.2005</td>
<td>Biological fixation (+)</td>
<td>28.4</td>
<td>32.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>112.9</td>
<td></td>
</tr>
<tr>
<td>2.10.2006</td>
<td>Volatilization (-)</td>
<td>9.6</td>
<td>0.0</td>
<td>9.8</td>
<td>8.8</td>
<td>4.9</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crop off-take (-)</td>
<td>137.8</td>
<td>211.6</td>
<td>116.0</td>
<td>197.9</td>
<td>125.5</td>
<td>72.7</td>
<td>134.8</td>
</tr>
<tr>
<td></td>
<td>NO(_3)-N leaching (-)</td>
<td>25.7</td>
<td>27.9</td>
<td>25.8</td>
<td>22.7</td>
<td>33.6</td>
<td>25.1</td>
<td>29.7</td>
</tr>
<tr>
<td></td>
<td>Other transport(^{+}) (+)</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.2</td>
<td>0.0</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denitrification (-)</td>
<td>0.0</td>
<td>0.0</td>
<td>13.6</td>
<td>45.8</td>
<td>0.0</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storage change(^{c})</td>
<td>74.5</td>
<td>-1.9</td>
<td>-86.8</td>
<td>38.1</td>
<td>92.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter barley</td>
<td>Fertilization(^{+}) (+)</td>
<td>59.0±120.7</td>
<td>183.0</td>
<td>179.7</td>
<td>179.4</td>
<td>136.6</td>
<td>179.7</td>
<td>184.5</td>
</tr>
<tr>
<td></td>
<td>Deposition (+)</td>
<td>14.2</td>
<td>4.3</td>
<td>22.2</td>
<td>6.4</td>
<td>8.7</td>
<td>15.3</td>
<td></td>
</tr>
<tr>
<td>3.10.2006</td>
<td>Biological fixation (+)</td>
<td>52.9</td>
<td>24.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>21.9.2007</td>
<td>Volatilization (-)</td>
<td>10.9</td>
<td>0.0</td>
<td>2.7</td>
<td>18.5</td>
<td>5.5</td>
<td>28.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crop off-take (-)</td>
<td>92.7</td>
<td>61.4</td>
<td>107.6</td>
<td>2.1</td>
<td>99.7</td>
<td>75.7</td>
<td>96.7</td>
</tr>
<tr>
<td></td>
<td>NO(_3)-N leaching (-)</td>
<td>5.9</td>
<td>4.4</td>
<td>7.1</td>
<td>6.3</td>
<td>5.4</td>
<td>8.8</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>Other transport(^{+}) (+)</td>
<td>0.0</td>
<td>3.2</td>
<td>0.0</td>
<td>1.5</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denitrification (-)</td>
<td>0.0</td>
<td>0.0</td>
<td>15.3</td>
<td>33.6</td>
<td>0.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storage change(^{c})</td>
<td>175.4</td>
<td>90.8</td>
<td>175.2</td>
<td>-15.7</td>
<td>98.4</td>
<td>99.6</td>
<td></td>
</tr>
<tr>
<td>Maize</td>
<td>Fertilization(^{+}) (+)</td>
<td>81.0±62.6</td>
<td>144.0</td>
<td>143.6</td>
<td>143.1</td>
<td>112.7</td>
<td>143.6</td>
<td>154.3</td>
</tr>
<tr>
<td></td>
<td>Deposition (+)</td>
<td>7.6</td>
<td>4.7</td>
<td>26.6</td>
<td>8.1</td>
<td>11.0</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>8.9.2009</td>
<td>Biological fixation (+)</td>
<td>0.0</td>
<td>41.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>88.9</td>
<td></td>
</tr>
<tr>
<td>23.9.2010</td>
<td>Volatilization (-)</td>
<td>7.2</td>
<td>0.0</td>
<td>2.2</td>
<td>4.8</td>
<td>4.5</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crop off-take (-)</td>
<td>142.4</td>
<td>127.6</td>
<td>96.9</td>
<td>240.3</td>
<td>85.0</td>
<td>78.6</td>
<td>115.5</td>
</tr>
<tr>
<td></td>
<td>NO(_3)-N leaching (-)</td>
<td>3.6</td>
<td>17.0</td>
<td>14.6</td>
<td>8.7</td>
<td>19.3</td>
<td>13.1</td>
<td>32.9</td>
</tr>
<tr>
<td></td>
<td>2005–2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilization (+)</td>
<td>62.0</td>
<td>119.1</td>
<td>181.0</td>
<td>180.4</td>
<td>181.8</td>
<td>111.8</td>
<td>181.1</td>
<td>181.7</td>
</tr>
<tr>
<td>Deposition (+)</td>
<td>5.9</td>
<td>3.5</td>
<td>16.7</td>
<td>4.6</td>
<td>6.1</td>
<td>11.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological fixation (+)</td>
<td>62.0</td>
<td>+119.1</td>
<td>181.0</td>
<td>180.4</td>
<td>181.8</td>
<td>111.8</td>
<td>181.1</td>
<td>181.7</td>
</tr>
<tr>
<td>Deposition (+)</td>
<td>5.9</td>
<td>3.5</td>
<td>16.7</td>
<td>4.6</td>
<td>6.1</td>
<td>11.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological fixation (+)</td>
<td>62.0</td>
<td>+119.1</td>
<td>181.0</td>
<td>180.4</td>
<td>181.8</td>
<td>111.8</td>
<td>181.1</td>
<td>181.7</td>
</tr>
<tr>
<td>Crop off-take (-)</td>
<td>152.0</td>
<td>44.5</td>
<td>161.5</td>
<td>170.3</td>
<td>143.0</td>
<td>83.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₃-N leaching (-)</td>
<td>6.1</td>
<td>3.2</td>
<td>7.6</td>
<td>30.3</td>
<td>13.3</td>
<td>31.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other transport (-)</td>
<td>0.0</td>
<td>2.5</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denitrification (-)</td>
<td>0.0</td>
<td>0.0</td>
<td>13.5</td>
<td>5.5</td>
<td>41.4</td>
<td>19.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denitrification (-)</td>
<td>0.0</td>
<td>0.0</td>
<td>13.5</td>
<td>5.5</td>
<td>41.4</td>
<td>19.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage change (#)</td>
<td>20.7</td>
<td>146.5</td>
<td>11.2</td>
<td>-128.8</td>
<td>-10.4</td>
<td>75.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seven year totals 2005–2011

<table>
<thead>
<tr>
<th></th>
<th>2005–2011</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilization (+)</td>
<td>871.6</td>
<td>879.0</td>
<td>870.9</td>
<td>873.5</td>
<td>656.1</td>
<td>871.4</td>
</tr>
<tr>
<td>Deposition (+)</td>
<td>77.0</td>
<td>29.6</td>
<td>164.0</td>
<td>49.6</td>
<td>67.0</td>
<td>111.1</td>
</tr>
<tr>
<td>Biological fixation (+)</td>
<td>174.9</td>
<td>154.6</td>
<td>0.1</td>
<td>1.8</td>
<td>31.3</td>
<td>370.9</td>
</tr>
<tr>
<td>Crop off-take (-)</td>
<td>768.8</td>
<td>792.1</td>
<td>584.8</td>
<td>921.2</td>
<td>594.8</td>
<td>568.4</td>
</tr>
<tr>
<td>NO₃-N leaching (-)</td>
<td>130.3</td>
<td>158.6</td>
<td>109.1</td>
<td>147.3</td>
<td>102.2</td>
<td>209.0</td>
</tr>
<tr>
<td>Other transport (-)</td>
<td>0.0</td>
<td>31.7</td>
<td>0.1</td>
<td>10.0</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Denitrification (-)</td>
<td>0.0</td>
<td>0.3</td>
<td>161.3</td>
<td>249.2</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Storage change (#)</td>
<td>165.3</td>
<td>279.7</td>
<td>-177.0</td>
<td>-342.2</td>
<td>218.0</td>
<td>418.6</td>
</tr>
</tbody>
</table>

† + indicates input; - indicates output

* Fertilization includes the addition of mineral fertilizer (first number) and the amendment of animal manure (second number)

$ Other transport includes the leaching of NH₄-N and dissolved organic matter and the transport of N-components by surface runoff water flow

A positive value refers to an increase of the nitrogen stock in soil and a negative value indicates its depletion
Table 9. Qualitative assessment of the model performance (IoA) for daily or weekly results for the calibration and validation periods.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Indicator</th>
<th>Item</th>
<th>ARMOSA</th>
<th>COUP</th>
<th>DAISY</th>
<th>EPIC</th>
<th>SIM-STO</th>
<th>SW-ANIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>-: IoA < 0.6</td>
<td>Soil moisture retention</td>
<td>0.35 m</td>
<td>+</td>
<td>-</td>
<td>o</td>
<td>n.a.</td>
<td>o</td>
</tr>
<tr>
<td></td>
<td>o: 0.6 ≤ IoA < 0.8</td>
<td>Simulated water contents</td>
<td>0.35 m</td>
<td>o</td>
<td>o</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>+: IoA ≥ 0.8</td>
<td>Nitrate concentration</td>
<td>0.9 m</td>
<td>o</td>
<td>+</td>
<td>o</td>
<td>n.a.</td>
<td>-</td>
</tr>
<tr>
<td>Validation</td>
<td>-: IoA < 0.75</td>
<td>Soil water contents</td>
<td>0.9 m</td>
<td>-</td>
<td>o</td>
<td>o</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>o: 0.75 ≤ IoA < 0.9</td>
<td>Nitrate concentration in water samples</td>
<td>1.8 m</td>
<td>-</td>
<td>+</td>
<td>o</td>
<td>o</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>+: IoA ≥ 0.9</td>
<td>Nitrate-N flux per sampling interval</td>
<td>0.9 m</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.a.</td>
<td>-</td>
</tr>
</tbody>
</table>

n.a.: not applicable

Table 10. Mean absolute errors (MAE) of seasonal percolated water, N crop off-take and leached nitrate-N amounts for seven seasons (MAE_7) and for the best five seasons (MAE_5).

<table>
<thead>
<tr>
<th>Seasonal quantity</th>
<th>Indicators</th>
<th>ARMOSA</th>
<th>COUP</th>
<th>DAISY</th>
<th>EPIC</th>
<th>SIM-STO</th>
<th>SW-ANIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percolated water (mm)</td>
<td>MAE_7</td>
<td>21.3</td>
<td>24.2</td>
<td>63.9</td>
<td>48.6</td>
<td>14.6</td>
<td>40.3</td>
</tr>
<tr>
<td></td>
<td>MAE_5</td>
<td>16.0</td>
<td>14.3</td>
<td>30.5</td>
<td>30.5</td>
<td>11.8</td>
<td>32.8</td>
</tr>
<tr>
<td>N crop off-take (kg ha(^{-1}))</td>
<td>MAE_7</td>
<td>36.5</td>
<td>32.7</td>
<td>47.7</td>
<td>31.0</td>
<td>33.0</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>MAE_5</td>
<td>23.1</td>
<td>14.3</td>
<td>29.0</td>
<td>20.6</td>
<td>20.5</td>
<td>10.3</td>
</tr>
<tr>
<td>Leached NO(_3)-N (kg ha(^{-1}))</td>
<td>MAE_7</td>
<td>6.6</td>
<td>8.2</td>
<td>4.6</td>
<td>10.3</td>
<td>6.6</td>
<td>14.2</td>
</tr>
<tr>
<td></td>
<td>MAE_5</td>
<td>4.4</td>
<td>3.6</td>
<td>3.7</td>
<td>7.8</td>
<td>2.8</td>
<td>6.3</td>
</tr>
</tbody>
</table>
Figures captions

Figure 1 Blind test comparison of seasonal water fluxes, flow averaged nitrate concentration and nitrate-N fluxes simulated by five models (excluding SIM-STO) with observations. Results of individual models are indicated by markers.

Figure 2 Measured values and calibrated soil moisture retention curves at depths 0.35 m, 0.9 m and 1.8 m.

Figure 3 Comparison of simulated and measured inner season cumulative water fluxes, nitrate concentrations and inner season cumulative nitrate-N fluxes at depth 1.8 m in the low input farming lysimeter at the Wagna experimental field station.

Figure 4 Taylor plots of the statistical performance of the simulated water fluxes at depth 1.8 m for daily values (left) and for sampling interval averaged values (right). Circles refer to the calibration results and triangles refer to the validation results. A = ARMOSA, C = COUP, D = DAISY, E = EPIC, SS = SIM-STO, SA = SW-ANIM.

Figure 5 Comparison of simulated and measured seasonal water fluxes (mm) at depth 1.8 m in the low input farming lysimeter at the Wagna experimental field station.

Figure 6 Taylor plot of the statistical performance parameters for the simulated nitrate concentrations (left) and nitrate-N fluxes (right) at depth 1.8 m. Circles refer to the calibration results and Triangles refer to the validation results. Indicators of SW-ANIM nitrate-N fluxes fall outside the range (2.5; 8.5). A = ARMOSA, C = COUP, D = DAISY, E = EPIC, SS = SIM-STO, SA = SW-ANIM.

Figure 7 Seven years balances for fertilization minus crop off-take and nitrate-N leaching (all in kg ha⁻¹), summed since the start of the calibration period.

Figure 8 Effect of a leave-one-out calculation of a certain data pair of observed and simulated water fluxes on the Index of Agreement, IoA (see text for further explanation).
Seasonal percolation (mm)

Flow averaged NO$_3$ concentration (mg L$^{-1}$)

Seasonal NO$_3$-N leaching (kg ha$^{-1}$)

Figure 1
Click here to download Figure: Fig_01_STOTEN-D-14-00814.pdf
Figure 2

Click here to download Figure: Fig_02_STOTEN-D-14-00814.pdf

Absolute pressure head (cm)

Volumetric water content (cm³ cm⁻³)

35 cm

90 cm

180 cm

- Measured
- ARMOSA
- COUP
- DAISY
- EPIC
- SIM-STO
- SW-ANIM
Figure 4
Click here to download Figure: Fig_04_STOTEN-D-14-00814.pdf
Seasonal water flux at 180 cm depth (mm)

Model range
- Observed
- ARMOSA
- COUP
- DAISY
- EPIC
- SIM-STO
- SW-ANIM

Calibration: 1.1.05, 14.9.05, 3.10.06, 22.9.07, 17.08, 13.9.05
Validation: 8.9.09, 30.6.08, 24.9.10, 13.7.11
Figure 6
Click here to download Figure: Fig_06_STOTEN-D-14-00814.pdf

SA at (2.5, 8.5) ↑△

A ARMOSA
C COUP
D DAISY
E EPIC
SS SIM-STO
SA SW-ANIM
Figure 7

Click here to download Figure: Fig_07_STOTEN-D-14-00814.pdf

Seven years summed balance (kg ha\(^{-1}\))

- Fertilization minus crop offtake
- Observed fertilization minus crop offtake
- Nitrate-N leaching
- Observed nitrate-N leaching

<table>
<thead>
<tr>
<th>Model</th>
<th>Fertilization minus crop offtake</th>
<th>Nitrate-N leaching</th>
<th>Observed fertilization minus crop offtake</th>
<th>Observed nitrate-N leaching</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMOSA</td>
<td>-50</td>
<td>150</td>
<td>-100</td>
<td>50</td>
</tr>
<tr>
<td>COUP</td>
<td>250</td>
<td>150</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td>DAISY</td>
<td>-100</td>
<td>50</td>
<td>-50</td>
<td>50</td>
</tr>
<tr>
<td>EPIC</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>SIM.STO.</td>
<td>300</td>
<td>50</td>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>SW.ANIM.</td>
<td>200</td>
<td>50</td>
<td>200</td>
<td>50</td>
</tr>
</tbody>
</table>