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Resumen

La dinámica de operadores lineales, o simplemente dinámica lineal, estu-
dia las órbitas generadas por las iteraciones de una transformación lineal.
La hiperciclicidad es el estudio de los operadores lineales que poseen una
órbita densa. Si bien G. D. Birkho� (en 1929, [25]), G. R. MacLane (en
1952, [72]) y S. Rolewicz (en 1969, [83]) obtuvieron ejemplos de operado-
res lineales hipercíclicos, podemos �jar el nacimiento de la dinámica lineal
en 1982 con la tesis de C. Kitai [68]. Desde entonces muchos matemáticos
han contribuido al desarrollo de esta �oreciente área del análisis.

La dinámica lineal conecta el análisis funcional y la dinámica. Al
igual que en sistemas dinámicos clásicos, podemos estudiar la dinámica
de operadores lineales desde un punto de vista topológico. En este con-
texto, hablamos de que un operador tiene la propiedad de especi�cación
(SP). Precisamente, al estudio de la propiedad de especi�cación en sis-
temas dinámicos lineales está dedicada la presente tesis doctoral. Una
aplicación continua en un espacio métrico satisface la propiedad de es-
peci�cación si para cualquier familia de puntos podemos aproximar, con
una cierta uniformidad, partes de sus órbitas por una sola órbita de un
punto periódico.
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La tesis es un compendio de artículos sobre la propiedad de especi�ca-
ción. Se estructura en cuatro partes precedidas de un capítulo dedicado
a introducir la notación, de�nir los conceptos y enunciar los resultados
de ámbito general que van a ser utilizados en el resto de la memoria.

Los operadores �shift� (desplazamiento) constituyen una de la clases
más importantes, como campo de pruebas, en sistemas dinámicos lineales
discretos. Debido a su estructura simple, siempre que se introduce un
nuevo concepto en dinámica lineal es habitual comprobarlo sobre shifts
ponderados. Por este motivo, en la primera parte de esta memoria, se
estudia la propiedad de especi�cación para operadores desplazamiento
unilaterales y bilaterales en espacios `p ponderados y la relación con
otras propiedades dinámicas como, por ejemplo, el caos de Devaney. Los
resultados que aparecen en el capítulo 2 han sido publicados en [8].

En el capítulo 3 se generalizan los resultados sobre la propiedad SP
a operadores desplazamiento en F -espacios separables de sucesiones. Un
F -espacio es un espacio vectorial, dotado de una F -norma, que es com-
pleto con la métrica inducida. La noción de F -norma tiene la ventaja
de que permite trabajar como en un espacio de Banach llevando cuidado
con la homogeneidad de la norma que ahora no se cumple. Los espacios
`p con 0 < p < 1 son ejemplos de F -espacios. La elección de estos es-
pacios se debe principalmente a que los resultados básicos en dinámica
lineal usan argumentos basados en el teorema de categoría de Baire y,
es conocido que, todo F -espacio es un espacio de Baire (la intersección
numerable de abiertos densos es densa). El contenido de este capítulo se



Resumen vii

encuentra publicado en [7].
Los sistemas dinámicos caóticos han recibido gran atención en los

últimos años. De acuerdo con Kolyada y Snoha [69] el término caos
fue usado por Li y Yorke en 1957 aunque ellos no dieron una de�nición
formal. Fue la de�nición de Devaney (en 1989) la que llegó a hacer-
se más popular. Un operador lineal es caótico si algún elemento tiene
una órbita densa, posee un conjunto denso de puntos periódicos y tiene
una cierta dependencia sensible de las condiciones iniciales. Banks et
al. [4] probaron que esta tercera condición es redundante. Así pues, un
operador hipercíclico es caótico si admite un conjunto denso de puntos
periódicos. La propiedad de especi�cación es una noción de caos (en el
sentido topológico) más potente que la debida a Devaney.

Otra variante más fuerte que la hiperciclicidad es la hiperciclicidad
frequente. Este concepto fue introducido por Bayart y Grivaux [13] mo-
tivados por el teorema ergódico de Birkho�. Un operador es frecuente-
mente hipercíclico si algún elemento tiene una órbita que corta muy a
menudo a cada conjunto abierto no vacío. En el capítulo 4 de esta tesis
se estudia con profundidad la propiedad de especi�cación para operado-
res lineales y continuos de�nidos en F -espacios separables. También se
incide en la conexión de dicha propiedad con otras propiedades dinámi-
cas como mezclante, caos de Devaney e hiperciclicidad frecuente. Los
resultados que presentamos, recogidos en [5], han sido aceptados para su
publicación en Journal of Mathematical Analysis and Applications.

Finalmente, en la cuarta parte de este trabajo, se extiende la propie-
dad de especi�cación a semigrupos de operadores fuertemente continuos
en espacios de Banach, esto es, C0-semigrupos. Estos operadores pue-
den verse como la versión continua del caso discreto correspondiente a
las iteraciones de un único operador; en otras palabras, el papel de las
iteraciones en el caso discreto lo asume el parámetro en el caso conti-
nuo. Ahora, la labor de los operadores desplazamiento en espacios de
sucesiones como clases de prueba la desempeñan los semigrupos de tras-
lación. Al igual que en capítulos anteriores, se estudia la relación de la
propiedad SP para C0-semigrupos con otras propiedades dinámicas: mez-
clante, caos de Devaney e hiperciclicidad frecuente. En [6] se encuentran
los resultados expuestos en el capítulo 5.





Resum

La dinàmica d'operadors lineals, o simplement dinàmica lineal, estudie
les òrbites generades per les iteracions d'una transformació lineal. La
hiperciclicitat es el estudi dels operadors lineal que posseeixen una òrbita
densa. Si bé G. D. Birkho� (en 1929, [25]), G. R. MacLane (en 1952, [72])
y S. Rolewicz (en 1969, [83]) van obtenir exemples d'operadors lineals
hipercíclics, podem �xar el naixement de la dinàmica lineal en 1982 amb
la tesi de C. Kitai [68]. Des de llavors molts matemàtics han contribuït
al desenvolupament d'esta �orent area de l'anàlisi.

La dinàmica lineal connecta el anàlisi funcional y la dinàmica. Igual
que en sistemes dinàmics clàssics, podem estudiar la dinàmica d'opera-
dors lineals des d'un punt de vista topològic. En eixe context, parlem que
un operador té la propietat d'especi�cació (SP). Precisament, al estudi de
la propietat d'especi�cació en sistemes dinàmics lineals està dedicada la
present tesi doctoral. Una aplicació continua en un espai mètric compleix
la propietat d'especi�cació si per a qualsevol família de punts podem
aproximar, amb certa uniformitat, parts de les seues òrbites per una sola
òrbita d'un punt periòdic.

ix



x Resum

y1

f(y1)
f2(y1)

x

f(x)

f2(x)

fk1(x)

f j2−1(y2)

f j2−1(x)

f j2(y2)

f j2+1(y2)

f j2+2(y2)

fk2(y2)

f j2(x)

f j2+1(x)

f j2+2(x)

fk2(x)

fk1(y1)δ

δ

δ

δ

δ

δ

δ

δ

fn−1(x)

La tesi es un compendi de articles sobre la propietat d'especi�cació.
S'estructura en quatre parts precedides d'un capítol dedicat a introduir
la notació, de�nir els conceptes i enunciar els resultats d'àmbit general
que seran utilitzats en la resta de la memòria.

Els operadors �shifts� (desplaçaments) constitueixen una de les cla-
sses més importants, com a camp de proves, en sistemes dinàmics lineals
discrets. Degut a la seua estructura simple, sempre que es introdueix un
nou concepte en dinàmica lineal es habitual comprovar-ho sobre shifts
ponderats. Per esta raó, en la primera part d'esta memòria, s'estudia la
propietat d'especi�cació per a operadors desplaçament unilaterals i bila-
terals en espais `p ponderats i la relació amb altres propietats dinàmiques
com, per exemple, el caos de Devaney. Els resultats que apareixen en el
capítol 2 han segut publicats en [8].

En el capítol 3 es generalitzen els resultats sobre la propietat SP a
operadors desplaçament en F -espais separables de successions. Un F -
espai es un espai vectorial, dotat d'una F -norma, que és complet amb la
mètrica induida. La noció de F -norma té l'avantatge que permet treballar
com en un espai de Banach anant en compte amb l'homogeneitat de la
norma que ara no es compleix. Els espais `p amb 0 < p < 1 són exemples
de F -espais. L'elecció d'aquests espais es deu principalment al fet que
els resultats bàsics en dinàmica lineal fan servir arguments basats en el
teorema de categoria de Baire i, és conegut que, tot F -espai és un espai de
Baire (la intersecció numerable d'oberts densos és densa). El contingut
d'aquest capítol es trobe publicat en [7].
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Els sistemes dinàmics caòtics han rebut gran atenció en els últims
anys. D'acord amb Kolyada i Snoha [69] el terme caos va ser utilitzat
per Li i Yorke en 1957 encara que ells no van donar una de�nició formal.
Va ser la de�nició de Devaney (en 1989) la que va arribar a fer-se més po-
pular. Un operador lineal és caòtic si algun element té una òrbita densa,
posseeix un conjunt dens de punts periòdics i té una dependència sensible
de les condicions inicials. Banks et al. [4] van provar que esta tercera
condició és redundant. Així doncs, un operador hipercíclic és caòtic si
admet un conjunt dens de punts periòdics. La propietat d'especi�cació
és una noció de caos (en el sentit topològic) més potent que la deguda a
Devaney.

Una altra variant més forta que la hiperciclicitat és la hiperciclicitat
freqüent. Aquest concepte va ser introduït per Bayart i Grivaux [13] mo-
tivats per el teorema ergòdic de Birkho�. Un operador és freqüentment
hipercíclic si algun element té una òrbita que talle molt sovint a cada
conjunt obert no vuit. En el capítol 4 d'esta tesi se estudie amb profun-
ditat la propietat d'especi�cació per a operadors lineals i continus de�nits
en F -espais separables. També s'incideix en la connexió de dita propi-
etat amb altres propietats dinàmiques com mesclant, caos de Devaney i
hiperciclicitat freqüent. Els resultats que presentem, arreplegats en [5],
han estat acceptats per a la seva publicació en Journal of Mathematical
Analysis and Applications.

Finalment, en la quarta part d'aquest treball, s'estén la propietat
d'especi�cació a semigrups d'operadors fortament continus en espais de
Banach, això és, C0-semigrups. Aquests operadors poden veure's com
la versió continua del cas discret corresponen a les iteracions d'un únic
operador; en altres paraules, el paper de les iteracions en el cas discret
ho assumeix el paràmetre en el cas continu. Ara, la labor del operadors
desplaçament en espais de successions com classes de prova l'exerceixen
els semigrups de translació. Igual que en capítols anteriors, s'estudia
la relació de la propietat SP per a C0-semigrups amb altres propietats
dinàmiques: mesclant, caos Devaney i hiperciclicitat freqüent. En [6] es
troben els resultats exposats en el capítol 5.





Summary

The dynamics of linear operators, namely linear dynamics, is mainly
concerned with the behaviour of iterates of linear transformations. Hy-
percyclicity is the study of linear operators that possess a dense orbit.
Although the �rst examples of hypercyclic operators are due to G. D.
Birkho� (in 1929, [25]), G. R. MacLane (in 1952, [72]) and S. Rolewicz
(in 1969, [83]), we can date the birth of the linear dynamics in 1982 with
the unpublished PhD thesis of C. Kitai [68]. Since then, many mathe-
maticians have contributed to the development of this �ourishing new
area of the analysis.

Linear dynamics connects functional analysis and dynamics. As for
the classical dynamical systems, one can study the dynamics of linear
operators from a topological point of view. In this context, we state that
an operator has the speci�cation property (SP). Precisely, the aim of this
PhD thesis is to study the speci�cation property on linear dynamical
systems. A continuous map on a compact metric space satis�es the
speci�cation property if one can approximate pieces of orbits by a single
periodic orbits with a certain uniformity.

xiii
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This Doctoral dissertation is a compendium of articles on the spec-
i�cation property. It is structured in four parts preceded by a chapter
which introduces the notation, de�nitions and the basic results that will
be needed throughout the thesis.

The shift operators on sequence spaces constitute one of the most
important test ground for discrete linear dynamical systems. Due to
its simple structure, every time you introduce a new property in linear
dynamics it is common to check it on weighted shifts operators. It is
for this reason that the �rst part of this research work is devoted to
study the speci�cation property for unilateral and bilateral backward
shift operators on weighted `p-spaces and the relationship with other
dynamical properties such as Devaney chaos. The results that appear in
Chapter 2 have been published in [8].

In Chapter 3 we extend the results on the SP to shift operators on
separable sequence F -spaces. An F -space is a vector space that is en-
dowed with an F -norm and that is complete under the induced metric.
The notion of an F -norm has the advantage that one can largely argue
as if one was working in a Banach space. One need to be aware of the
fact that the positive homogeneity of a norm is no longer available. The
spaces `p with 0 < p < 1 are F -spaces. We have chosen to go no further
that the F -space setting because the Baire Category Theorem is a ba-
sic tool in linear dynamics and it is well known that F -spaces are Baire
spaces (every intersection of countably many dense open sets is dense).
The contents of this chapter are gathered in [7].
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Chaotic dynamical systems have received a great deal of attention
in recent years. According to Kolyada and Snoha, the term chaos was
�rst used by Li and Yorke in 1975 although they did not give a formal
de�nition. Devaney's de�nition of chaos (in 1989) has become rather
popular. An operator is chaotic if some element has a dense orbit, it
has a dense set of periodic points, and it exhibits a certain sensitivity
to initial conditions. Banks et al. [4] proved that sensitivity to initial
conditions is redundant in Devaney's de�nition of chaos. Therefore, a
hypercyclic operator is chaotic if and only if it has a dense set of periodic
points. The speci�cation property is an interesting and rather strong
notion of chaos (in the topological sense).

We also consider a qualitative strengthening of hypercyclicity namely
frequent hypercyclicity. It was introduced by Bayart and Grivaux [13],
motivated by Birkho�'s ergodic theorem. An operator is frequently hy-
percyclic if there is some element whose orbit meets every non-empty
open set very often. In Chapter 4 the speci�cation property is deeply
studied for linear and continuous operators on separable F -spaces. In
addition, we are interested in �nding out its relation with other dynam-
ical properties such as mixing, Devaney chaos and frequent hypercyclic-
ity. The results that we have achieved are collected in [5] and have been
accepted to be publish in Journal of Mathematical Analysis and Appli-
cations.

Finally, in the last chapter of this dissertation, we examine the spec-
i�cation property for strongly continuous semigroups on Banach spaces,
that is, for C0-semigroups. They can viewed as the continuous-time ana-
logue of the discrete-time case of iterates of a single operator; in other
words, the parameter in the continuous case plays the role of the iter-
ations in the discrete case. Now the translation semigroups substitute
the shift operators as test classes. Once again, we study the relation-
ship between the speci�cation property and mixing, chaos and frequent
hypercyclicity properties of a C0-semigroup. The results of Chapter 5
will appear in [6].
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Chapter 1

Introduction and basic concepts

This chapter is devoted to introduce the notation, de�nitions and the
basic results that we will use throughout the thesis. Most of the results
related to linear dynamics can be found in [15] and [62].

1.1 Topological dynamics

Dynamical systems appear naturally in the study of the behavior of evol-
ving systems. Let X be a set of elements that describes the di�erent
acceptable states of a system. If xn ∈ X is the state of the system at
time n ≥ 0, then its evolution will be given by a linear map T : X → X
such that xn+1 = T (xn).

De�nition 1.1.1 (Discrete dynamical system). Let X be a metric space
and let T be a continuous map T : X → X. A discrete dynamical
system is a pair (X,T ). We de�ne the orbit of a point x ∈ X as the set
Orb(x, T ) = {T nx : n ∈ N0}, where T n denotes the n-th iterate of a map
T . We will often simply say that T or T : X → X is a dynamical system.

De�nition 1.1.2. Let S : Y → Y and T : X → X be dynamical
systems.

1



2 Introduction and basic concepts

1. Then T is called quasi-conjugate to S if there exists a continuous
map φ : Y → X with dense range such that T ◦ φ = φ ◦ S; that is,
the following diagram commutes.

Y
S−−−→ Y

φ

y yφ
X −−−→

T
X

2. If φ can be chosen to be a homeomorphism, then S and T are called
conjugated.

De�nition 1.1.3. We say that a property P for dynamical systems is
preserved under (quasi-)conjugacy if the following holds: if a dynamical
system S : Y → Y has property P then every dynamical system T :
X → X that is (quasi-) conjugate to S also has property P .

De�nition 1.1.4. Let T : X → X be a dynamical system. Then Y ⊂ X
is called T -invariant or invariant under T if T (Y ) ⊂ Y .

De�nition 1.1.5. We say that x ∈ X is a �xed point for the dynamical
system T : X → X if Tx = x, and we say that x ∈ X is a periodic point
for the dynamical system T if T nx = x for some n ∈ N0. The set of all
periodic points is denoted by Per(T ). If x ∈ Per(T ) then the smallest
positive integer n such that T nx = x is called a primary period of x.

De�nition 1.1.6. Let T : X → X be a dynamical system. For any pair
of nonempty open sets U, V the return set is de�ned as N(U, V ) = {n ∈
N0 : T n(U) ∩ V 6= ∅}. Then we have that (X,T ) is:

(i) topologically transitive if for any pair U ,V ⊂ X of nonempty open
sets, the return set N(U, V ) is non-empty;

(ii) weakly mixing if the map T × T is topologically transitive;

(iii) mixing if for any pair U ,V ⊂ X of nonempty open sets, N(U, V ) is
co�nite.
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(iv) topologically ergodic if for any pair of nonempty open sets U ,V ⊂ X
N(U, V ) is syndetic, that is, there exists p ∈ N, such that {n, n +
1, . . . , n+ p} ∩N(U, V ) 6= ∅ for any n ∈ N0.

A result due to Furstenberg [53] is the following:

Theorem 1.1.7. Let T : X → X be a weakly mixing dynamical system.
Then the n-fold product T × . . .× T is weakly mixing for each n ≥ 2.

Remark 1.1.8. For any linear dynamical system,

mixing =⇒ topologically ergodic
=⇒ weakly mixing
=⇒ topologically transitive.

In 1989 Robert L. Devaney proposed the �rst good de�nition of chaos;
see [43]. This concept re�ects the unpredictability of chaotic systems be-
cause the de�nition contains a sensitive dependence on initial conditions,
i.e.:

De�nition 1.1.9. LetX be a metric space without isolated points. Then
the dynamical system T : X → X is said to have sensitive dependence
on initial conditions if there exists some δ > 0 such that, for every x ∈ X
and ε > 0, there exists some y ∈ X with d(x, y) < ε such that, for some
n ≥ 0, d(T nx, T ny) > δ. The number δ is called a sensitivity constant
for T .

De�nition 1.1.10 (Devaney chaos). A dynamical system T : X →
X is called chaotic in the sense of Devaney if it satis�es the following
properties:

(i) T is topologically transitive,

(ii) Per(T ) is dense in X,

(iii) T has sensitive dependence on initial conditions.
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However, Banks, Brooks, Cairns, Davis and Stacey proved in 1992
([4]), that one can drop sensitive dependence from Devaney's de�nition
because it is implied by the other two conditions.

Theorem 1.1.11 ([4]). Let X be a metric space without isolated points.
If a dynamical system T : X → X is topologically transitive and has a
dense set of periodic points then T has sensitive dependence on initial
conditions with respect to any metric de�ning the topology of X.

Proposition 1.1.12. The following properties are preserved by quasi-
conjugacy:

(i) Topological transitivity.

(ii) The property of having a dense orbit.

(iii) The property of having a dense set of periodic points.

(iv) Devaney Chaos.

(v) The mixing property.

(vi) The weak-mixing property.

(vii) Topological ergodicity.

1.2 Hypercyclic and chaotic operators

Dynamical systems are de�ned by continuous maps on metric spaces. For
linear dynamical systems, the underlying space must in addition have a
linear structure, as is the case for Hilbert spaces and Banach spaces.
We will give de�nitions of linear dynamical systems on spaces of a more
general type, topological vector spaces.

De�nition 1.2.1. Let ||.|| : X → R+ be a functional on a vector space
X that satis�es:

(i) ||x+ y|| ≤ ||x||+ ||y||
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(ii) ||λx|| ≤ ||x|| if |λ| ≤ 1

(iii) limλ→0 ||λx|| = 0

(iv) ||x|| = 0 implies that x = 0.

Then ||.|| : X → R+ is called an F -norm. If (X, ||.||) is complete under
the induced metric d(x, y) = ||x− y||, then X is an F -space.

A particular case of F -spaces are Fréchet spaces.

De�nition 1.2.2. A Fréchet space is a vector space X, endowed with
a separating increasing sequence (pn)n of seminorms, which is complete
under the metric given by

d(x, y) :=
∞∑
n=1

1

2n
min(1, pn(x− y)).

De�nition 1.2.3. Let X and Y be topological vector spaces. Then a
continuous linear map T : X → Y is called an operator. The space of all
operators is denoted by L(X, Y ). If Y = X we say that T is an operator
on X, with L(X) = L(X,X).

A link between chaos theory and linear operator theory was estab-
lished by Birkho�'s Transitivity Theorem in 1922. In this theorem, he
showed that topological transitivity was equivalent to the notion of hy-
percyclicity that Beauzamy established in 1987.

De�nition 1.2.4 ([17]). An operator T : X → X is said to be hypercyclic
if there is some x ∈ X whose orbit under T is dense in X. In that case,
x is called a hypercyclic vector for T . The set of hypercyclic vectors is
denoted by HC(T ).

Theorem 1.2.5 (Birkho� Transitivity theorem, [24]). An operator T is
hypercyclic if and only if it is topologically transitive. If one of these
conditions holds then, the set HC(T ) of hypercyclic vectors is a dense
Gδ-set; i.e., HC(T ) is a countable intersection of open dense sets.
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In 1991 Godefroy and Shapiro adopted Devaney's de�nition for linear
chaos.

De�nition 1.2.6 ([55]). An operator T : X → X is called chaotic in the
sense of Devaney if:

(i) T is hypercyclic.

(ii) Per(T ) is dense in X.

Example 1.2.7. The �rst examples of hypercyclic operators were found by
G.D.Birkho� in 1929 ([25]), G.R. Maclane in 1952 ([72]) and S.Rolewickz
in 1969 ([83]).

(i) (Birkho�'s operators) The translation operators given by

Taf(z) = f(z + a), a 6= 0.

on the space H(C) of entire functions are hypercyclic for all a 6= 0.

(ii) (MacLane's operator) The di�erentiation operator:

D : f → f ′

on H(C) is hypercyclic.

(iii) (Rolewicz's operators) On the spaces X = `p, 1 ≤ p < ∞, or
X = c0 we consider the multiple

T = λB : X → X, (x1, x2, x3 . . .)→ λ(x2, x3, x4, . . .)

of the backward shift, where λ ∈ K. T is hypercyclic whenever
|λ| > 1.

Moreover, these operators are chaotic. We �rst need the following
results.

Proposition 1.2.8. Let T be a linear map on a complex vector space
X. Then the set of periodic points of T is given by

Per(T ) = span{x ∈ X; Tx = eαπix for some α ∈ Q}
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Let eλ denotes the exponential function eλ(z) = eλz.

Lemma 1.2.9. Let Λ ⊂ C be a set with an accumulation point. Then
the set

span{eλ; λ ∈ Λ}

is dense in H(C).

The lemma allows us to show that Birkho�'s and MacLane's operators
are chaotic on H(C).

Example 1.2.10. For the di�erentiation operator D, any function eλ is an
eigenvector of D to the eigenvalue λ. Thus, since the subspace

span{eλ; λ = eαπi for some α ∈ Q}

is dense in H(C) by lema 1.2.9, proposition 1.2.8 tells us that Per(T ) is
dense. Since we already know that D is hypercyclic, it is also chaotic.

For the translation operators Ta, a ∈ C\{0}, any function eλ is an
eigenvector of Ta to the eigenvalue eaλ. Thus, since the subspace

span{eλ; eaλ = eαπi for some α ∈ Q} = span{eλ; λ =
α

a
πi, α ∈ Q}

is also dense in H(C), we conclude as before that each Ta is chaotic.

1.3 Hypercyclic criteria

The main purpose of this section is to show several criteria under which
an operator is chaotic, mixing or weakly mixing. In this section we show
these criteria. This �rst criterion is due to Godefroy Shapiro and it is
contained implicitly in their paper [55] and was isolated by Bernal [19].

Theorem 1.3.1 (Godefroy-Shapiro criterion, [55]). Let T be an opera-
tor. Suppose that the subspaces

X0 := span{x ∈ X; Tx = λx for some λ ∈ K with |λ| < 1}
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Y0 := span{x ∈ X; Tx = λx for some λ ∈ K with |λ| > 1}

are dense in X.
Then T is mixing, and in particular hypercyclic.

If, moreover, X is a complex space and the subspace

Z0 := span{x ∈ X; Tx = λx for λ ∈ C, |λ|n = 1 for some n ∈ N}

is dense in X, then T is chaotic.

Example 1.3.2. Rolewicz's operators
Let T = µB, with |µ| > 1, be the multiple of the backward shift on any
space X = `p, 1 ≤ p < ∞ or X = c0. Let us consider the complex case.
One easily determines the eigenvectors of B as the nonzero multiples of
the sequences

eλ := (λ, λ2, λ3, . . .), |λ| < 1

with corresponding eigenvalue λ. Therefore, eλ is an eigenvector of T =
µB corresponding to the eigenvalue µλ. For any subset Λ of the unit disk
that has an accumulation point inside the disk, the set span{eλ; λ ∈ Λ}
is dense in X. By the Hahn-Banach theorem it su�ces to show that any
continuous linear functional x∗ on X that vanishes on each eλ, λ ∈ Λ
vanishes on X. Since x∗ ∈ X∗, via the canonical representation it is given
by a sequence (yn)n ∈ `q for a certain q, with 1 ≤ q ≤ ∞ , we have that

x∗(eλ) =< eλ, x
∗ >=

∞∑
n=1

ynλ
n if |λ| < 1.

The identity theorem for holomorphic functions implies that each yn is
zero and therefore x∗ = 0. In particular, the subspace

X0 = span{x ∈ X; Tx = ηx for η ∈ K, |η| < 1} = span{eλ; |λ| <
1

|µ|
}

is dense in X, as the suspaces Y0 and Z0 of the Godefroy- Shapiro crite-
rion; note that 1

|µ| < 1. This implies that Rolewicz's operators are mixing
and chaotic.
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The earliest forms of the Hypercyclicity Criterion were found inde-
pendently by Kitai [68] and by Gethner and Shapiro [54]. In its general
form it is due to Bés and Peris [22].

Theorem 1.3.3 (Kitai's criterion, [68]). Let T be an operator. If there
are dense subsets X0, Y0 ⊂ X and a map S : Y0 → Y0 such that, for any
x ∈ X0, y ∈ Y0:

(i) T nx→ 0,

(ii) Sny → 0,

(iii) TSy = y,

then T is mixing.

Example 1.3.4. (i) (Rolewicz's operators) Taking X0 = Y0 the set
of �nite sequences, which is dense in `p, and for S : Y0 → Y0 the map
S = 1

λ
F where F is the forward shift operator F : (x1x2, . . .) →

(0, x1, x2, . . .) the conditions of Kitai's criterion are clearly satis�ed.

(ii) (MacLane's operators) In this case we take for X0 = Y0 the set
of polynomials, which is dense in H(C), and for S we consider the
integral operator Sf(z) =

∫ z
0
f(ζ)dζ. While conditions (i) and (iii)

are obvious, we note that condition (ii) is su�cient to be veri�ed
by monomials, and Sn(zk) = k!

(k+n)!
zk+n → 0 as n→∞, uniformly

on compact sets, as required.

(iii) (Birkho�'s operators) It is su�cient to prove that T1f(z) =
f(z + 1) on H(C) is mixing. For X0 = Y0 we choose the set of
functions fp,α,ν = p(z)e−α(z−ν)2 , where p is a polynomial and α > 0,
ν ∈ N0. Since fp,α,ν → p in H(C) as α → 0, this set is dense
in H(C). Moreover, for S we consider the translation operator
Sf(z) = f(z − 1). Now if z = x + iy with |y| ≤ 1

2
|x| then we have

that |e−αz2| = e−α(x2−y2) ≤ e−
3
4
αx2 . This implies, that for any p,

α and ν, fp,α,ν(z ± n) → 0 uniformly on compact sets as n → ∞,
which shows that conditions (i) and (ii) of Kitai's criterion hold,
while condition (iii) is trivial.
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Theorem 1.3.5 (Gethner-Shapiro criterion, [54]). Let T be an operator.
If there are dense subsets X0, Y0 ⊂ X, an increasing sequence (nk)k of
positive integers, and a map S : Y0 → Y0 such that, for any x ∈ X0,
y ∈ Y0:

(i) T nkx→ 0,

(ii) Snky → 0,

(iii) TSy = y,

then T is weakly mixing.

Theorem 1.3.6 (Hypercyclicity criterion, [22]). Let T be an operator.
If there are dense subsets X0, Y0 ⊂ X, an increasing sequence (nk)k of
positive integers, and maps Snk : Y0 → X, k ≥ 1 such that, for any
x ∈ X0, y ∈ Y0:

(i) T nkx→ 0,

(ii) Snky → 0,

(iii) T nkSnky → y,

then T is weakly mixing, and in particular hypercyclic.

1.4 Weighted shifts

In this section we include some basic results about weighted shifts, which
make up an important class of hypercyclic and chaotic operators. Due
to its simple structure, the class of weighted shifts is a favorite testing
ground for operator-theorists. Salas([87]) characterized hypercyclic and
weakly mixing unilateral and bilateral weighted shifts on `2 and `2(Z),
respectively. The characterizations for more general sequence spaces and
chaos characterizations are due to Grosse-Erdmann [60].
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De�nition 1.4.1. The basic model of all shifts is the backward shift

B(x1, x2, x3, . . .) = (x2, x3, x4, . . .).

Another shift is the weighted backward shift which is de�ned as:

Bw(x1, x2, x3, . . .) = (w2x2, w3x3, w4x4, . . .),

where w = (wn)n is called a weight sequence. The weights wn will be
assumed to be non-zero.

These operators can be de�ned on an arbitrary sequence space X,
that is, a linear space of sequences or, in other words, a subspace of
w = KN. Moreover, X should carry a topology that is compatible with
the sequence space structure of X. We interpret this as demanding that
convergence in X should imply coordinatewise convergence. A Banach
(Fréchet, F-) space of this kind is called a Banach (Fréchet, F-) sequence
space.

Theorem 1.4.2. Let X be a Fréchet sequence space in which (en)n
(where en = (0, . . . , 0, 1︸︷︷︸

n

, 0, . . .)) is a basis. Suppose that the backward

shift B is an operator on X. Then the following assertions are equivalent:

(i) B is hypercyclic;

(ii) B is weakly mixing;

(iii) there is an increasing sequence (nk)k of positive integers such that
enk → 0 in X as k →∞.

Example 1.4.3. Let

`vp = {(xn)n;
∞∑
n=1

|xn|pvn <∞},

with 1 ≤ p < ∞, be a weighted `p-space, where v = (vn)n is a positive
weight sequence. Then B is an operator on `vp if and only if there is an
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M > 0 such that, for all x ∈ `vp(
∞∑
n=1

|xn+1|pvn

) 1
p

≤M

(
∞∑
n=1

|xn|pvn

) 1
p

which is equivalent to supn∈N
vn
vn+1

< ∞. Theorem 1.4.2, tells us that
hypercyclicity of B is characterized by infn∈N vn = 0.

The same conditions also characterize the continuity and hypercyclic-
ity of the backward shift B on the weighted c0-space

c0(v) = {(xn)n; lim
n→∞

|xn|vn = 0}.

The following Theorem provides a charcaterization of mixing backward
shifts.

Theorem 1.4.4. Let X be a Fréchet sequence space in which (en)n is
a basis. Suppose that the backward shift B is an operator on X. Then
the following assertions are equivalent:

• B is mixing;

• en → 0 in X as n→∞.

In order to show the following results we �rst need the de�nition of
unconditional convergence.

De�nition 1.4.5. Let X be a Fréchet space. Then the following asser-
tions are equivalent:

(i)
∑∞

n=1 xn is unconditionally convergent;

(ii) for any 0-1-sequence (εn)n,
∑∞

n=1 εnxn converges;

(iii) for any bounded sequence (αn)n of scalars,
∑∞

n=1 αnxn converges;

(iv) for any ε > 0 there is some N ∈ N such that for any �nite set
F ⊂ {N,N + 1, N + 2, . . .} we have that∥∥∥∥∥∑

n∈F

xn

∥∥∥∥∥ < ε;
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(v) for any ε > 0 there is some N ∈ N such that for any 0-1-sequence
(εn)n,

∑∞
n=1 εnxn converges and∥∥∥∥∥∑

n≥N

εnxn

∥∥∥∥∥ < ε;

(vi) for any ε > 0 there is someN ∈ N such that whenever supn≥1 |αn| ≤
1 then

∑∞
n=1 αnxn converges and∥∥∥∥∥∑

n≥N

αnxn

∥∥∥∥∥ < ε;

De�nition 1.4.6. A sequence (en)n in a Fréchet space X is called an
unconditional basis if it is a basis such that, for every x ∈ X, the repre-
sentation

x =
∞∑
n=1

anen

converges unconditionally.

Theorem 1.4.7. Let X be a Fréchet sequence space in which (en)n is an
unconditional basis. Suppose that the backward shift B is an operator
on X. Then the following assertions are equivalent:

(i) B is chaotic;

(ii)
∑∞

n=1 en converges in X;

(iii) the constant sequences belong to X;

(iv) B has a non-trivial periodic point.

It is easy to transfer results to weighted shifts by a conjugacy. Let
Bw be a weighted shift on some sequence space X. We de�ne vn by

vn =

(
n∏
ν=1

wν

)−1

, n ≥ 1
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and consider the sequence space

Xv = {(xn)n; (xnvn)n ∈ X}.

The map Φv : Xv → X, (xn)n → (xnvn)n is a vector space isomorphism
and Bw ◦ Φv = Φv ◦B, that is the following diagram commutes:

Xv
B−−−→ Xv

φv

y yφv
X −−−→

Bw
X

Thus Bw : X → X and B : Xv → Xv are conjugate operators.

Theorem 1.4.8. Let X be a Fréchet sequence space in which (en)n is a
basis. Suppose that the weighted shift Bw is an operator on X.

1. The following assertions are equivalent:

(i) Bw is hypercyclic;

(ii) Bw is weakly mixing;

(iii) there is an increasing sequence (nk)k of positive integers such
that (

nk∏
ν=1

wν

)−1

enk → 0

in X as k →∞.

2. The following assertions are equivalent:

(i) Bw is mixing;

(ii) we have that (
n∏
ν=1

wν

)−1

en → 0

in X as n→∞;
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3. Suppose that the basis (en)n is unconditional. Then the following
assertions are equivalent:

(i) Bw is chaotic;

(ii) the series
∞∑
n=1

(
n∏
ν=1

wν

)−1

en

converges in X;

(iii) the sequence ( n∏
ν=1

wν

)−1

n

belongs to X;

(iv) Bw has a non-trivial periodic point.

Example 1.4.9. A weighted backward shift Bw is an operator on a se-
quence space `p, 1 ≤ p < ∞, or c0 if and only if the weights wn are
bounded. The respective characterizing conditions for Bw to be hyper-
cyclic, mixing or chaotic on `p are

sup
n≥1

n∏
ν=1

|wν | =∞, limn→∞

n∏
ν=1

|wν | =∞,
∞∑
n=1

1∏n
ν=1 |wν |p

<∞.

The �rst condition also characterizes when Bw is hypercyclic on c0 and
the second when it is mixing or equivalently chaotic on c0. In particular
for Rolewicz's operator T = λB, |λ| > 1, we have that

∏n
ν=1 |wν | = λn,

which implies that this operator is chaotic.
We can also study shifts on sequence spaces indexed over Z. The

bilateral backward shift is given by

B(xn)n∈Z = (xn+1)n∈Z

and the bilateral weighted backward shifts are given by

Bw(xn)n∈Z = (wn+1xn+1)n∈Z

where w = (wn)n is called a weight sequence.
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Theorem 1.4.10. Let X be a Fréchet sequence space in which (en)n∈Z
is a basis. Suppose that the bilateral shift B is an operator on X.

1. The following assertions are equivalent:

(i) B is hypercyclic;

(ii) B is weakly mixing;

(iii) there is an increasing sequence (nk)k of positive integers such
that for any j ∈ Z, ej−nk → 0 and ej+nk → 0 in X as k →∞.

2. The following assertions are equivalent:

• B is mixing;

• e−n → 0 and en → 0 in X as n→∞.

3. The following assertions are equivalent:

(i) B is chaotic;

(ii)
∑∞

n=−∞ en converges in X;

(iii) The constant sequences belong to X;

(iv) B has a nontrivial periodic point.

Using a suitable conjugacy this result can be generalized immediately
to weighted shifts. The conjugacy is given by:

Xv
B−−−→ Xv

φv

y yφv
X −−−→

Bw
X

where
Xv = {(xn)n∈Z; (xnvn)n ∈ X}

and Φv : Xv → X, (xn)n∈Z → (xnvn)n∈Z with

vn =

(
n∏
ν=1

wν

)−1

for n ≥ 1, vn =
0∏

ν=n+1

wν for n ≤ −1, v0 = 1.
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Theorem 1.4.11. Let X be a Fréchet sequence space over Z in which
(en)n∈Z is a basis. Suppose that the weighted shift Bw is an operator on
X.

1. The following assertions are equivalent:

(i) Bw is hypercyclic;

(ii) Bw is weakly mixing;

(iii) there is an increasing sequence (nk)k of positive integers such
that, for any j ∈ Z(

j∏
ν=j−nk+1

wν

)
ej−nk → 0 and

(
j+nk∏
ν=j+1

wν

)−1

ej+nk → 0

in X as k →∞.

2. The following assertions are equivalent:

(i) Bw is mixing;

(ii) we have(
0∏

ν=−n+1

wν

)
e−n → 0 and

(
n∏
ν=1

wν

)−1

en → 0

in X as n→∞.

3. Suppose that the basis (en)n is unconditional. Then the following
assertions are equivalent:

(i) Bw is chaotic;

(ii) the series

0∑
n=−∞

(
0∏

ν=n+1

wν

)
en +

∞∑
n=1

(
n∏
ν=1

wν

)−1

en

converges in X;
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(iii) the sequence (xn)n∈Z with

xn =
0∏

ν=n+1

wν(n ≤ 0), xn =

(
n∏
ν=1

wν

)−1

(n ≥ 1)

belongs to X;

(iv) Bw has a nontrivial periodic point.

Remark 1.4.12. A weighted backward shift Bw is an operator on a se-
quence space `p(Z), 1 ≤ p <∞, if and only if the weights wn, n ∈ Z are
bounded. Such an operator is then hypercyclic, mixing or chaotic if and
only if the following conditions, respectively, are satis�ed. There exists
(nk)k such that for all j ∈ Z:

lim
k→∞

j∏
ν=j−nk+1

wν = 0 and lim
k→∞

j+nk∏
ν=j+1

|wν | =∞;

lim
n→∞

0∏
ν=−n+1

wν = 0 and lim
n→∞

n∏
ν=1

|wν | =∞;

∞∑
n=0

0∏
ν=−n+1

|wν |p <∞ and
∞∑
n=1

1∏n
ν=1 |wν |p

<∞.

In particular, a symmetric weight (that is, one with w−n = wn for all
n ≥ 0) never de�nes a hypercyclic weighted shift Bw on these spaces.

1.5 C0-semigroups

In this section we study dynamical properties of strongly continuous semi-
groups of operators on Banach spaces, that is, for C0-semigroups. They
can be viewed as the continuous-time analogue of the discrete-time case
of iterates of a single operator. All these results about C0-semigroups
can be found in the books of Engel and Nagel ([50] and [49]) and in [62].



1.5 C0-semigroups 19

De�nition 1.5.1. A one-parameter family (Tt)t≥0 of operators on a Ba-
nach space X is called a strongly continuous semigroup of operators if
the following three conditions are satis�ed:

(i) T0 = I

(ii) TtTs = Tt+s for all t, s ≥ 0

(iii) lims→t Tsx = Ttx for all x ∈ X and t ≥ 0

One also refers to it as a C0-semigroup.

The analytical theory of semigroups of bounded linear operators in a
Banach space deals with the exponential functions in in�nite dimensional
function spaces. The easiest general construction of C0-semigroups is via
an operator A on X. Since

∑∞
n=0

tn

n!
‖A‖n <∞ for any t ≥ 0,

Tt = etA =
∞∑
n=0

tn

n!
An, t ≥ 0

de�nes operators onX, and it is easily seen that (Tt)t≥0 is a C0-semigroup;
we even have that, for any t ≥ 0, lims→t Ts = Tt in the operator norm
topology. The semigroup is then called uniformly continuous. Moreover,
for any x ∈ X, Ax = limt→0

1
t
(Ttx− x).

Now let (Tt)t≥0 be an arbitrary C0-semigroup on X. It can be shown
that

Ax := lim
t→0

1

t
(Ttx− x)

exists on a dense subspace of X; the set of these x, the domain of A is
denoted byD(A). Then A, or rather (A,D(A)), is called the in�nitesimal
generator of the semigroup. Moreover Tt(D(A)) ⊂ D(A) with ATtx =
TtAx, for every t ≥ 0 and x ∈ D(A), see for instance [91]. Another
important property is provided by the point spectral mapping theorem
for semigroups. If X is a complex Banach space then, for every x ∈ D(A)
and λ ∈ C,

Ax = λx =⇒ Ttx = eλtx

for every t ≥ 0.
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A systematic study of the dynamical properties of semigroups, was
started by Desch, Schappacher and Webb [42]. In particular they intro-
duced the notions of hypercyclicity and chaos for semigroups.

De�nition 1.5.2. Let (Tt)t≥0 be a C0-semigroup on X.

(i) The semigroup is hypercyclic if there is some x ∈ X whose orbit
Orb(x, Tt) = {Ttx; t ≥ 0} is dense in X. In such a case, x is called
a hypercyclic vector for (Tt)t≥0.

(ii) The semigroup is called topologically transitive if for any pair U, V
of nonempty open sets of X, there exists some t0 ≥ 0 such that
Tt0(U) ∩ V 6= ∅.

(iii) The semigroup is mixing if, for any pair U, V of nonempty open
sets of X, there exists some t0 ≥ 0 such that Tt(U) ∩ V 6= ∅ for all
t ≥ t0.

(iv) The semigroup is weakly mixing if (Tt⊕Tt)t≥0 is topologically tran-
sitive on X ⊕X.

(v) A point x ∈ X is called a periodic point of (Tt)t≥0 if there is some
t0 > 0 such that Tt0x = x.

(vi) The semigroup is said to be chaotic if it is hypercyclic and its set
of periodic points is dense in X.

(vii) Let (St)t≥0 be a C0-semigroup on a Banach space Y . Then (Tt)t≥0

is called quasiconjugate to (St)t≥0 if there exists a continuous map
Φ : Y → X with dense range such that Tt ◦Φ = Φ◦St for all t ≥ 0.
If Φ can be chosen to be a homeomorphism then (Tt)t≥0 and (St)t≥0

are called conjugate.

Proposition 1.5.3. Hypercyclicity, mixing, weak mixing and chaos for
a C0-semigroup are preserved under quasiconjugacy.

The �rst criteria for hypercyclicicty of C0-semigroups were found by
Desch, Schappacher and Webb [42]. In the form that we give, the Hyper-
cyclicity criterion is due to Conejero and Peris [37] and El Mourchid [46],
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while the criterion for mixing, is due to Bermúdez, Bonilla, Conejero and
Peris [18].

Theorem 1.5.4 (Hypercyclicity Criterion for Semigroups, [37], [46]).
Let (Tt)t≥0 be a C0-semigroup on X. If there are dense subsets X0, Y0 ⊂
X, a sequence (tn)n ∈ R+ with tn →∞, and maps Stn : Y0 → X,n ∈ N,
such that, for any x ∈ X0, y ∈ Y0,

(i) Ttnx→ 0,

(ii) Stny → 0,

(iii) TtnStny → y,

then (Tt)t≥0 is weakly mixing, and in particular hypercyclic.

If in the hypercyclicity criterion one has convergence along the whole
real line then we obtain a criterion for mixing.

Theorem 1.5.5 ([18]). Let (Tt)t≥0 be a C0-semigroup on X. If there are
dense subsets X0, Y0 ⊂ X, and maps St : Y0 → X, t ≥ 0, such that, for
any x ∈ X0, y ∈ Y0,

(i) Ttx→ 0,

(ii) Sty → 0,

(iii) TtSty → y,

then (Tt)t≥0 is mixing.

Sometimes the Hypercyclicity Criterion is hard to be applied. In
many situations we can obtain the in�nitesimal generator of a semigroup
although we do not have the explicit representation of its operators. De-
sch, Schappacher, and Webb gave a criterion which permits us to state
Devaney chaos (and hypercyclicity) of a C0-semigroup in terms of the
abundance of eigenvectors of the in�nitesimal generator [42].
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By a weakly holomorphic function f : U → X on an open set U ⊂ C
we understand an X-valued function such that, for every x∗ ∈ X∗, the
complex valued function z −→ 〈f(z), x∗〉 is holomorphic on U . In the
sequel, J is a nonempty index set.

Theorem 1.5.6 ([42]). Let X be a complex separable Banach space,
and (Tt)t≥0 a C0-semigroup on X with generator (A,D(A)). Assume
that there exists an open connected subset U and weakly holomorphic
functions fj : U → X, j ∈ J , such that

(i) U
⋂
iR 6= ∅,

(ii) fj(λ) ∈ Ker(λI − A) for every λ ∈ U ; j ∈ J ,

(iii) for any x∗ ∈ X∗, if 〈fj(λ), x∗〉 = 0 for all λ ∈ U and j ∈ J then
x∗ = 0,

then the semigroup (Tt)t≥0 is mixing and chaotic.

A more general version of this criterion can be found in [47].

Theorem 1.5.7. Let X be a complex separable Banach space, and
(Tt)t≥0 a C0-semigroup on X with generator (A,D(A)). Assume that
there are a < b and continuous functions fj : [a, b]→ X, j ∈ J , such that

(i) fj(s) ∈ Ker(isI − A) for every s ∈ [a, b], j ∈ J ,

(ii) span{fj(s); s ∈ [a, b], j ∈ J} is dense in X,

then the semigroup (Tt)t≥0 is mixing and chaotic.

1.6 Frequent Hypercyclicity

The concept of frequent hypercyclicity was introduced by Bayart and
Grivaux [13] inspired by Birkho�'s Ergodic Theorem.
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Theorem 1.6.1 (Birkho�'s Ergodic Theorem, [23]). Let T be an opera-
tor on a Fréchet space X ergodic respect to µ then, for any µ-integrable
function f on X, its time average with respect to T coincides with its
space average; more precisely

1

N + 1

N∑
n=0

f(T nx)→
∫
X

fdµ

for µ-almost all x ∈ X as N →∞.

First of all we recall the following de�nition:

De�nition 1.6.2. The lower density of a subset A ⊂ N0 is de�ned as

dens(A) = lim inf
N→∞

card{0 ≤ n ≤ N ;n ∈ A}
N + 1

.

De�nition 1.6.3. An operator T on a Fréchet space X is called fre-
quently hypercyclic if there is some x ∈ X such that, for any nonempty
open subset U of X,

dens{n ∈ N0;T nx ∈ U} > 0.

In this case, x is called a frequently hypercyclic vector for T . The set of
frequently hypercyclic vectors of T is denoted by FHC(T ).

Proposition 1.6.4. A vector x is frequently hypercyclic for T if and only
if, for any nonempty open subset U of X, there is a strictly increasing
sequence (nk)k of positive integers such that

T nkx ∈ U for all k ∈ N and nk = O(k).

By contrast, T is hypercyclic if and only if the same is true for some
(nk)k, not necessarily of order O(k).

De�nition 1.6.5. We recall that a sequence (Tn)n of continuous map-
pings between topological spaces X and Y is called frequently universal
if there exists x ∈ X such that for every non-empty open set U ⊆ Y ,

dens{n ∈ N0 : Tnx ∈ U} > 0.

In this case, x is called a frequently universal vector for (Tn)n∈N0 .
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The �rst ones that used ergodic theory for the dynamics of linear
operators were Rudnicki [85] and Flytzanis [51]. The notion of frequent
hypercyclicity was extended to C0-semigroups in [3]. We recall the cor-
responding notion of lower density for a subset of R+.

De�nition 1.6.6. The lower density of a measurable set M ⊂ R+ is
de�ned by

Dens(M) := lim inf
N→∞

λ(M
⋂

[0, N ])

N
,

where λ is the Lebesgue measure on R+.

De�nition 1.6.7. A C0-semigroup (Tt)t≥0 is said to be frequently hy-
percyclic if there exists x ∈ X such that Dens({t ∈ R+; Ttx ∈ U}) > 0
for any non-empty open set U ⊂ X.

Proposition 1.6.8. Frequent hypercyclicity is preserved by quasi-con-
jugacy.

1.7 Pettis Integral

Int his section we recall the main de�nitions and results about Pettis
integrability. The proof of all these results can be found in [44] for the
case of a �nite measure space, but they easily extend to σ-�nite measures
spaces. Let X be a Banach space and (Ω, µ) a σ-�nite measure space.

De�nition 1.7.1. (i) A function f : Ω → X is said to be weakly µ-
measurable if the scalar function ϕ ◦ f is µ-measurable for every
ϕ ∈ X∗, where X∗ denotes the topological dual of X.

(ii) f is said to be µ-measurable if there exists a sequence (fn)n of
simple functions such that limn→+∞ ‖fn − f‖ = 0 µ-a.e.

Lema 1.7.1 (Dunford's lemma). Let f be a weakly µ-measurable and
ϕ ◦ f ∈ L1(Ω, µ) for every ϕ ∈ X∗, then for every measurable E ⊆ Ω
there exists xE ∈ X∗∗ such that

xE(ϕ) =

∫
E

ϕ ◦ f dµ
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for every ϕ ∈ X∗.

De�nition 1.7.2. (i) If f : Ω→ X is weakly µ-measurable and ϕ◦f ∈
L1(Ω, µ) for every ϕ ∈ X∗, then f is called Dunford integrable. The
Dunford integral of f over a measurable set E ⊆ Ω is de�ned by
the element xE ∈ X∗∗ such that xE(ϕ) =

∫
E
ϕ ◦ f dµ for every

ϕ ∈ X∗.

(ii) In the case that xE ∈ X for every measurable E, then f is said to
be Pettis integrable and xE is called the Pettis integral of f over E
which is denoted by (P) −

∫
E
f dµ.

(iii) If ‖f‖ is integrable on Ω, then f is said to be Bochner integrable
on Ω.

Clearly the Dunford and the Pettis integrals coincide ifX is a re�exive
space, and if f is Bochner integrable, then it is Pettis integrable. Some
basic and useful results to characterize Pettis integral are the following:

Theorem 1.7.3. If f is Pettis integrable, then for every sequence (En)n
of disjoint measurable sets in Ω∫

⋃
n∈N En

f dµ =
∑
n∈N

∫
En

f dµ,

where the series converges unconditionally.

As a consequence,

Corollary 1.7.4. If f : [0,+∞[→ X is Pettis integrable on [0,+∞[,
then for every ε > 0 there exists N > 0 such that for every compact set
K ⊂ [N,+∞[ ∥∥∥∥∫

K

f(t) dt

∥∥∥∥ < ε.





Chapter 2

The speci�cation property for

backward shifts1

Abstract

We characterize when backward shift operators de�ned on Banach se-
quence spaces exhibit the strong speci�cation property. In particular,
within this framework, the speci�cation property is equivalent to the
notion of chaos introduced by Devaney.

2.1 Introduction

A continuous map on a metric space is said to be chaotic in the sense
of Devaney if it is topologically transitive and the set of periodic points
is dense. Although there is no common agreement about what a chaotic
map is, a notion of chaos stronger than Devaney's de�nition is the so

1This chapter is the revised author version of article Salud Bartoll, Félix Martínez-
Giménez & Alfredo Peris (2012): The speci�cation property for backward shifts,
Journal of Di�erence Equations and Applications, 18:4, 599�605.
In order to use same reference numbers through all the chapters, the list of references
has been eliminated and they have been collected in a single bibliography at the end
of the PhD thesis.
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called speci�cation property. It was �rst introduced by Bowen [31]; since
then, several kinds and degrees of this property have been stated [88],
we will follow the de�nitions and terminology used in [9]. Some recent
works on the speci�cation property are [80, 81, 71].

De�nition 2.1.1. A continuous map f : X → X on a compact metric
space (X, d) has the strong speci�cation property (SSP) if for any δ > 0
there is a positive integer Nδ such that for any integer s ≥ 2, any set
{y1, . . . , ys} ⊂ X and any integers 0 = j1 ≤ k1 < j2 ≤ k2 < · · · < js ≤ ks
satisfying jr+1−kr ≥ Nδ for r = 1, . . . , s−1, there is a point x ∈ X such
that, for each positive integer r ≤ s and all integers i with jr ≤ i ≤ kr,
the following conditions hold:

d(f i(x), f i(yr)) < δ,

fn(x) = x, where n = Nδ + ks.

When the above property is satis�ed for s = 2, then the dynamical
system is said to satisfy the weak speci�cation property (WSP).

Obviously, the SSP implies the WSP, and compact dynamical systems
with the speci�cation property are mixing and Devaney chaotic, among
other basic properties (see, e.g., [41]).

Devaney chaos and mixing properties have been widely studied for
linear operators on Banach and more general spaces [18, 27, 38, 55, 57,
61, 82]. The recent books [15] and [62] contain the basic theory, examples,
and many results on chaotic linear dynamics.

We plan to study this strong speci�cation property for bounded linear
operators de�ned on separable Banach spaces. In this situation, the �rst
crucial problem is that these spaces are never compact. The following
de�nition can be considered the natural extension in this setting.

De�nition 2.1.2. A bounded linear operator T : X → X on a separable
Banach spaceX has the SSP if there exists an increasing sequence (Km)m
of T -invariant compact sets with 0 ∈ K1 and ∪m∈NKm = X such that
for each m ∈ N the map T |Km has the SSP, that is, for any δ > 0 there is
a positive integer Nδ,m such that for every s ≥ 2, any set {y1, . . . , ys} ⊂
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Km and any integers 0 = j1 ≤ k1 < j2 ≤ k2 < · · · < js ≤ ks with
jr+1−kr ≥ Nδ,m for 1 ≤ r ≤ s−1, there is a point x ∈ Km such that, for
each positive integer r ≤ s and integers i with jr ≤ i ≤ kr, the following
conditions hold:

‖T i(x)− T i(yr)‖ < δ,

T n(x) = x, where n = Nδ,m + ks.

2.2 Strong speci�cation property for back-

ward shift operators

For a strictly positive sequence (vi)i (weight sequence from now on),
consider the Banach sequence spaces

`p(v) :=

(xi)i ∈ KN : ‖x‖ :=

(
∞∑
i=1

|xi|p vi

)1/p

<∞

 , 1 ≤ p <∞,

c0(v) :=

{
(xi)i ∈ KN : lim

i→∞
|xi| vi = 0, ‖x‖ := sup

i
|xi| vi

}
.

On sequence spaces, the backward shift B is de�ned as B((xi)i) :=
(xi+1)i, that is, B(x1, x2, x3, . . . ) := (x2, x3, x4, . . . ). In order to have
a bounded operator it is required that the weights satisfy

sup
i∈N

vi
vi+1

<∞,

condition that will always be assumed to hold.

Theorem 2.2.1. For a bounded backward shift operator B de�ned on
`p(v), 1 ≤ p < ∞ (respectively, on c0(v)) the following conditions are
equivalent:

(i)
∑∞

i=1 vi <∞ (respectively, limi→∞ vi = 0).

(ii) B has SSP.
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(iii) B is Devaney chaotic.

Proof. To see (i) implies (ii) take the compact set K = {(xi)i ∈ `p(v) :
|xi| ≤ 1,∀i} and let δ > 0 be �xed. There is N such that∑

i≥N

vi <
δ

2p
.

Set Nδ = N + 1. Take any {y1, . . . , ys} ⊂ K and any sequence 0 = j1 ≤
k1 < j2 ≤ k2 < · · · < js ≤ ks with jr+1 − kr ≥ Nδ for r = 1, . . . , s − 1.
Consider x = (xi)i de�ned as follows: for 1 ≤ i ≤ Nδ + ks

xi :=


y1,i if i ∈ [1, j2[
y2,i if i ∈ [j2, j3[
...

ys,i if i ∈ [js, Nδ + ks]

,

that is,

(x1, . . . , xNδ+ks) = (y1,1, . . . , y1,j2−1, y2,j2 , . . . , y2,j3−1, . . . , ys,js , . . . , ys,Nδ+ks)

and for any other index set xj := xi if j ≡ i (mod Nδ + ks). Clearly x is
a periodic point belonging to K. For r = 1, . . . , s− 1 and jr ≤ i ≤ kr we
have

‖Bix−Biyr‖p =
∑
l≥jr+1

|xl − yr,l|p vl−i ≤ 2p
∑
l≥jr+1

vl−i < δ

since l − i ≥ jr+1 − i ≥ jr+1 − kr ≥ Nδ. For js ≤ i ≤ ks we have

‖Bix−Biys‖p =
∑
l≥m

|xl − ys,l|p vl−i ≤ 2p
∑
l≥m

vl−i < δ

since l − i ≥ m − i ≥ Nδ + ks − i ≥ Nδ. The sequence of compact sets
(Km := mK)m satis�es the required properties so that B has SSP.

That condition (i) implies (iii) come from the characterizations of
chaos for backward shift operators in weighted `p-spaces (see [75, Theo-
rem 3.2] or [60, Theorem 8]).

The proof for the case c0(v) is similar using the supremum norm.
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Our next step is to take sequences indexed over the set of integers.
For a strictly positive sequence (vi)i∈Z, consider the Banach sequence
spaces

`p(v,Z) :=

(xi)i ∈ KZ : ‖x‖ :=

(
∞∑

i=−∞

|xi|p vi

)1/p

<∞

 , 1 ≤ p <∞,

c0(v,Z) :=

{
(xi)i ∈ KZ : lim

|i|→∞
|xi| vi = 0, ‖x‖ := sup

i
|xi| vi

}
.

The bilateral backward shift B is de�ned as B((xi)i) := (xi+1)i, that is,

B(. . . , x−2, x−1,
O
x0, x1, x2, . . . ) := (. . . , x−1, x0,

O
x1, x2, x3, . . . ),

where the small triangle marks the coordinate corresponding to the index
0. In order to have a bounded operator it is required that the weights
satisfy

sup
i∈Z

vi
vi+1

<∞,

condition that will always be assumed to hold.

Theorem 2.2.2. For a bounded bilateral backward shift operator B
de�ned on `p(v,Z), 1 ≤ p < ∞ (respectively, on c0(v,Z)) the following
conditions are equivalent:

(i)
∑∞

i=−∞ vi <∞ (respectively, lim|i|→∞ vi = 0).

(ii) B has SSP.

(iii) B is Devaney chaotic.

Proof. Take the compact set K = {(xi)i ∈ `p(v,Z) : |xi| ≤ 1,∀i} and let
δ > 0 be �xed. There is a positive integer N such that∑

|i|≥N

vi <
δ

2p
.
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Set Nδ = 2N + 1. Take any {y1, . . . , ys} ⊂ K and any sequence 0 = j1 ≤
k1 < j2 ≤ k2 < · · · < js ≤ ks with jr+1 − kr ≥ Nδ for r = 1, . . . , s − 1.
Consider x = (xi)i de�ned as follows: for −N ≤ i ≤ ks +N

xi :=


y1,i if i ∈ [−N, j2 −N [
y2,i if i ∈ [j2 −N, j3 −N [
...

ys,i if i ∈ [js −N, ks +N ]

,

that is,

(x−N , . . . , xks+N) =

(y1,−N , . . . , y1,j2−N−1, y2,j2−N , . . . , y2,j3−N−1, . . . , ys,js−N , . . . , ys,ks+N),

and for any other index set xj := xi if j ≡ i (mod Nδ + ks). The rest of
the proof goes verbatim to the one of Theorem 2.2.1.

Some operators can be represented as a weighted backward shift op-
erator Bw(x1, x2, . . . ) := (w2x2, w3x3, . . . ) de�ned on a weighted `p(v)
space. This case may be reduced to the non-weighted backward shift via
topological conjugacy. Set

a1 := 1, ai := w2 . . . wi, i > 1,

and consider `p(v̄) where

v̄i =
vi∏i

j=2

∣∣wpj ∣∣ , for all i.
Take φa : `p(v) → `p(v̄) de�ned as φa(x1, x2, . . . ) := (a1x1, a2x2, . . .) to
construct a commutative diagram φa ◦ Bw = B ◦ φa. Since φa is an
isometry, by topological conjugacy, we have that B has SSP (is chaotic)
on `p(v̄) if and only if Bw has SSP (is chaotic) on `p(v).

In this situation, the required condition to have Bw : `p(v) → `p(v)
bounded is

sup
i∈N

∣∣wpi+1

∣∣ vi
vi+1

<∞,

and the corresponding characterization is as follows.
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Theorem 2.2.3. For a bounded weighted backward shift operator Bw

de�ned on `p(v), 1 ≤ p < ∞, (respectively, on c0(v)) the following con-
ditions are equivalent:

(i)
∞∑
i=1

vi∏i
j=2

∣∣wpj ∣∣ <∞ (respectively, limi→∞
vi∏i

j=2|wj |
= 0),

(ii) Bw has SSP.

(iii) Bw is Devaney chaotic.

Similarly, for the bilateral case Bw : `p(v,Z) → `p(v,Z) one should
take

a0 := 1, ai := w1 . . . wi, a−i :=
1

w0w−1 . . . w−i+1

, i > 0,

and consider `p(v̄,Z) where

v̄0 := v0, v̄i =
vi∏i

j=1

∣∣wpj ∣∣ , v̄−i =
−i+1∏
j=0

∣∣wpj ∣∣ v−i, i > 0.

The required condition to have Bw : `p(v,Z)→ `p(v,Z) bounded is

sup
i∈Z

∣∣wpi+1

∣∣ vi
vi+1

<∞,

and the characterization for SSP in this bilateral case follows.

Theorem 2.2.4. For a bounded bilateral weighted backward shift oper-
ator Bw de�ned on `p(v,Z), 1 ≤ p < ∞, (respectively, on c0(v,Z)) the
following conditions are equivalent:

(i)
∞∑
i=1

vi∏i
j=1

∣∣wpj ∣∣ <∞ and
∑∞

i=1

∏−i+1
j=0

∣∣wpj ∣∣ v−i <∞
(respectively, lim

i→∞

vi∏i
j=1 |wj|

= lim
i→∞

−i+1∏
j=0

|wj| v−i = 0).

(ii) Bw has SSP.

(iii) Bw is Devaney chaotic.
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2.3 Examples

2.3.1 Weighted backward shift operators on `p

For any bounded sequence (wi)i with wi 6= 0, its associated weighted
backward shift Bw : `p → `p is a bounded operator. Since `p corresponds
to `p(v) with (vi)i = (1)i, we have that Bw de�ned on `p has the SSP
property if and only if

∞∑
i=1

i∏
j=2

∣∣w−pj ∣∣ <∞.
The particular case (wi)i = (λ)i with λ ∈ K reads as λB : `p → `p

has the SSP if and only if |λ| > 1.

2.3.2 The operator of di�erentiation on Hilbert spa-

ces of entire functions

Let γ(z) be an admissible comparison entire function, that is, the Taylor
coe�cients γi > 0 for all i ∈ N0 and the sequence (iγi/γi−1)i is monoton-
ically decreasing. We consider the Hilbert space E2(γ) of power series

g(z) =
∞∑
i=0

ĝ(i)zi

for which

‖g‖2
2,γ :=

∞∑
i=0

γ−2
i |ĝ(i)|2 <∞.

Chan and Shapiro studied some dynamical properties of the operator of
di�erentiation and the translation operator on E2(γ) (see [33]).

It is clear that E2(γ) is isometric to `2(v) with v = (vi)i∈N0 = (γ−2
i )i∈N0

and with the identi�cation f 7→ (f (i)(0)/i!)i∈N0 . Moreover, the opera-
tor of di�erentiation D turns out to be a weighted backward shift with
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weights w = (wi)i = (i)i or, equivalently, as a backward shift de�ned on
`2(v̄), where

v̄i =
1

(γi i!)
2 , i ≥ 0.

Since γ(z) is an admissible comparison entire function, it is easy to check
that supi≥0 v̄i/v̄i+1 < ∞ and B is a bounded operator on `2(v̄) (this is
equivalent to saying that D is a bounded operator on E2(γ)).

Applying Theorem 2.2.3 we have that D : E2(γ)→ E2(γ) has SSP is
and only if

∑∞
i=0(γii!)

−2 < ∞, in particular, if limi iγi/γi−1 > 1 then D
has SSP.
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Chapter 3

Cantor Sets, Bernoulli Shifts

and Linear Dynamics1

Abstract

Our purpose is to review some recent results on the interplay between the
symbolic dynamics on Cantor sets and linear dynamics. More precisely,
we will give some methods that allow the existence of strong mixing mea-
sures invariant for certain operators on Fréchet spaces, which are based
on Bernoulli shifts on Cantor spaces. Also, concerning topological dy-
namics, we will show some consequences for the speci�cation properties.

1This chapter is the revised author version of article Salud Bartoll, Félix Martínez-
Giménez, Marina Murillo Arcila & Alfredo Peris (2014): Cantor Sets, Bernoulli Shifts
and Linear Dynamics, Descriptive topology and functional analysis, Springer Proc.
Math. Stat. 80, 195�207.
In order to use same reference numbers through all the chapters, the list of references
has been eliminated and they have been collected in a single bibliography at the end
of the PhD thesis.
It should be noted that Section 4 does not belong to the main topic of this PhD. We
decided to keep this section since we choose to make this dissertation as compendium

of articles.
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3.1 Introduction

Our framework is the study of the dynamics of a linear operator T :
X → X on a metrizable and complete topological vector space (in short,
F -space) X. Moreover, we will assume that X is separable.

We recall that T is said to be hypercyclic if there is a vector x in
X such that its orbit Orb(x, T ) = {x, Tx, T 2x, . . . } is dense in X. The
recent books [15, 62] contain the theory and most of the recent advances
on hypercyclicity and linear dynamics.

Here we want to focus on some measure-theoretic properties and
notions from topological dynamics. In recent years the study of the
(chaotic) dynamics of linear operators has experienced a great develop-
ment. This review article pretends to focus on the interplay between
the dynamics of the Bernoulli shift on the Cantor set and the dynamics
of certain operators. More precisely, we will focus on the strong spec-
i�cation property, which is a concept from topological dynamics, and
the existence of strong mixing measures, a concern in measure-theoretic
dynamics.

We also recall that a continuous map on a separable metric space is
said to be chaotic in the sense of Devaney if it is topologically transitive
(i.e., within our framework, it admits points with dense orbit) and the set
of periodic points is dense. A notion of chaos (in the topological sense)
stronger than Devaney's de�nition is the so called speci�cation property.
It was introduced by Bowen [31] and several versions of this property
(see [88]) have been studied for the dynamics on compact metric spaces.
We follow here the approach given in [9]. Some recent works on the
speci�cation properties are [80, 81, 71]. A continuous map f : X → X
on a compact metric space (X, d) has the strong speci�cation property
if, for any δ > 0, there is a positive integer Nδ such that for each integer
s ≥ 2, for any set {y1, . . . , ys} ⊂ X, and for every tuple of integers
0 = j1 ≤ k1 < j2 ≤ k2 < · · · < js ≤ ks satisfying jr+1 − kr ≥ Nδ for
r = 1, . . . , s− 1, there is a point x ∈ X such that, for each r ≤ s and for
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all i ∈ N ∪ {0} with jr ≤ i ≤ kr, the following conditions hold:

d(f i(x), f i(yr)) < δ,

fn(x) = x, where n = Nδ + ks.

Compact dynamical systems with the speci�cation property are mixing
and Devaney chaotic, among other basic properties (see, e.g., [41]). We
will consider a notion of the strong speci�cation property for operators
as it was introduced in [8].

With respect to the measure-theoretic properties, we recall that er-
godic theory was introduced in the dynamics of linear operators by Fly-
tzanis [51] and Rudnicki [85]. It was only in recent years that it deserved
special attention thanks to the work of Bayart and Grivaux [12, 13]. The
papers [3, 14, 10, 39, 59, 86] contain recent advances on the subject.

The notion of frequently hypercyclicity was introduced by Bayart and
Grivaux [13] as a way to measure the frequency of hitting times in an
arbitrary non-empty open set for a dense orbit. In [13] a �rst version
of a Frequent Hypercyclicity Criterion was given. We will work with
the corresponding formulation of Bonilla and Grosse-Erdmann [29] for
operators on separable F -spaces. Another (probabilistic) version of it
was given by Grivaux [58].

After a section containing some preliminaries and basic notions, we
will present the results on topological dynamics concerning the strong
speci�cation property. The last section deals with the measure-theoretic
dynamics of operators with the existence of strong mixing probability
measures with full support. In both cases the Frequent Hypercyclicity
Criterion will play a key role. At the end it will allow us to reduce the
problem to the Bernoulli shift on countable unions of Cantor sets. The
particular case of weighted shifts on sequence F -spaces is also presented,
since we can go a bit further in this context and they serve as a typical
test ground for linear dynamics.
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3.2 Notation and preliminaries

From now on, T : X → X will be an operator de�ned on a separable
F -space X. We introduce �rst the necessary notions from topological
dynamics for operators.

De�nition 3.2.1. An operator T : X → X on a separable F -space X
has the strong speci�cation property (SSP) if there exists an increasing
sequence (Km)m of T -invariant compact sets with 0 ∈ K1 and ∪m∈NKm =
X such that for each m ∈ N the map T |Km has the SSP.

Shifts on sequence spaces will be a matter of study in this paper.
By a sequence space we mean a topological vector space X which is
continuously included in ω, the countable product of the scalar �eld
K. A sequence F -space is a sequence space that is also an F -space.
Given a sequence w = (wn)n of positive weights, the associated unilateral
(respectively, bilateral) weighted backward shift Bw : KN → KN is de�ned
by Bw(x1, x2, . . . ) = (w2x2, w3x3, . . . ) (respectively, Bw : KZ → KZ is
de�ned by Bw(. . . , x−1, x0, x1, . . . ) = (. . . , w0x0, w1x1, w2x2, . . . )). If a
sequence F -space X is invariant under certain weighted backward shift
T , then T is also continuous on X by the closed graph theorem. In [62,
Chap. 4] contains more details about dynamical properties of weighted
shifts on Fréchet sequence spaces.

We recall that a series
∑

n xn in X converges unconditionally if it
converges and, for any 0-neighbourhood U in X, there exists some N ∈ N
such that

∑
n∈F xn ∈ U for every �nite set F ⊂ {N,N + 1, N + 2, . . . }.

The results on Devaney chaos for shift operators given in [62] (we refer
the reader to [60] for the original results) remain valid for a unilateral
(respectively, bilateral) weighted backward shift T = Bw : X → X
on a sequence F -space X in which the canonical unit vectors (en)n∈N
(respectively, (en)n∈Z) form an unconditional basis. In particular, Bw is
chaotic if, and only if,
∞∑
n=1

( n∏
ν=1

wν

)−1

en (respectively,
0∑

n=−∞

( 0∏
ν=n+1

wν

)
en+

∞∑
n=1

( n∏
ν=1

wν

)−1

en)

converges unconditionally.
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For a weight sequence (vi)i the following Banach sequence spaces are
considered

`p(v) :=

(xi)i ∈ KN : ‖x‖ :=

(
∞∑
i=1

|xi|p vi

)1/p

<∞

 , 1 ≤ p <∞,

c0(v) :=

{
(xi)i ∈ KN : lim

i→∞
|xi| vi = 0, ‖x‖ := sup

i
|xi| vi

}
.

In this situation, the required condition to have Bw : `p(v) → `p(v)
bounded is

sup
i∈N

∣∣wpi+1

∣∣ vi
vi+1

<∞,

condition that will always be assumed to hold.
For a weight sequence (vi)i∈Z indexed on the set of integers, we con-

sider the Banach sequence spaces

`p(v,Z) :=

(xi)i ∈ KZ : ‖x‖ :=

(
∞∑

i=−∞

|xi|p vi

)1/p

<∞

 , 1 ≤ p <∞,

c0(v,Z) :=

{
(xi)i ∈ KZ : lim

|i|→∞
|xi| vi = 0, ‖x‖ := sup

i
|xi| vi

}
.

The condition that characterizes that Bw : `p(v,Z) → `p(v,Z) is
bounded is

sup
i∈Z

∣∣wpi+1

∣∣ vi
vi+1

<∞.

Finally, for measure-theoretic dynamics, let (X,B, µ) be a probability
space, where X is a topological space and B denotes the σ-algebra of
Borel subsets of X. We say that a Borel probability measure µ has
full support if for all non-empty open set U ⊂ X we have µ(U) > 0. A
measurable map T : (X,B, µ)→ (X,B, µ) is called a measure-preserving
transformation if µ(T−1(A)) = µ(A) for all A ∈ B). T is ergodic if
T−1(A) = A for certain A ∈ B necessarily implies that µ(A)(1−µ(A)) =
0. T is said to be strongly mixing with respect to µ if

lim
n→∞

µ(A ∩ T−n(B)) = µ(A)µ(B) (A,B ∈ B),
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and it is exact if given A ∈
⋂∞
n=0 T

−nB then either µ(A)(1− µ(A)) = 0.
We refer to [45, 90] for a detailed account on these properties.

Given A ⊂ N, its lower density is de�ned by

dens(A) = lim inf
n→∞

card(A ∩ [1, n])

n
,

An operator T is frequently hypercyclic (see [13]) if there exists x ∈
X such that for every non-empty open subset U of X, the set {n ∈
N ; T nx ∈ U} has positive lower density.

The following version of the so called Frequently Hypercyclicity Crite-
rion given by Bonilla and Grosse-Erdmann [29] (see also [62, Theorem 9.9
and Remark 9.10]) gives a su�cient condition for frequent hypercyclicity.

Theorem 3.2.2 ([29]). Let T be an operator on a separable F -space X.
If there is a dense subset X0 of X and a sequence of maps Sn : X0 → X
such that, for each x ∈ X0,

(i)
∑∞

n=0 T
nx converges unconditionally,

(ii)
∑∞

n=0 Snx converges unconditionally, and

(iii) T nSnx = x and TmSnx = Sn−mx if n > m,

then the operator T is frequently hypercyclic.

3.3 Cantor sets and the Strong Speci�cation

Property

This section is devoted to a dynamical property in the topological sense,
namely, the SSP. We �rst study the dynamics on certain Cantor sets of
the backward shift on a sequence F -space X, by following an approach
slightly di�erent from the one in [8]. Later in this section we present
a more general argument that yields the SSP for operators on F -spaces
satisfying the Frequent Hypercyclicity Criterion.
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Theorem 3.3.1. Let Bw : X → X be a unilateral weighted backward
shift on a sequence F -space X in which (en)n∈N is an unconditional basis.
Then the following conditions are equivalent:

(i) Bw is chaotic;

(ii) the series
∞∑
n=1

( n∏
ν=1

wν

)−1

en

converges in X;

(iii) Bw has a nontrivial periodic point;

(iv) Bw has the SSP.

Proof. The equivalence of (i)-(ii)-(iii) was given in [60] (See also [62,
Chap. 4]). Obviously, (iv) implies (iii). For the converse, we �x a
countable set M = {zn ; n ∈ N} of pairwise di�erent scalars which form
a dense set in K with z1 = 0. Let (Un)n be a basis of balanced open
0-neighbourhoods in X such that Un+1 + Un+1 ⊂ Un, n ∈ N.

Since
∑∞

n=1

(∏n
ν=1 wν

)−1

en converges, there exists an increasing se-
quence of positive integers (Nn)n with Nn+2 −Nn+1 > Nn+1 −Nn for all
n ∈ N such that

∑
k>Nn

αk

( k∏
ν=1

wν

)−1

ek ∈ Un+1,

if αk ∈ {z1, . . . , zn}, for each n ∈ N.

(3.1)

We de�ne Am = {z1, . . . zm} for m ∈ N. AN
m is a compact space when

endowed with the product topology inherited from MN, m ∈ N. Now we
de�ne the map Φ :

⋃∞
m=1A

N
m → X given by

Φ((αk)k∈N) =
∞∑
k=1

αk

( k∏
ν=1

wν

)−1

ek.
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Φ is well-de�ned and Φ|AN
m
is continuous for each m ∈ N by (3.1). We

have that Km := Φ(AN
m) is a compact Cantor subset of X, invariant

under Bw, and such that Bw|Km is conjugated to σ|AN
m
via Φ, for each

m ∈ N. It is well-known that σ|AN
m

satis�es the SSP (see, e.g., [88]),
and by conjugacy we obtain that Bw|Km satis�es the SSP too, for every
m ∈ N. Finally, by density of M in the scalar �eld K we conclude that⋃
m∈NKm is dense in X, therefore Bw satis�es the SSP.

A similar argument, by considering the bilateral shift on the sets
AZ
m, m ∈ N, and the results of [60] (See also [62, Chap. 4]), yields

the analogous characterizations for bilateral weighted shifts on sequence
F -spaces.

Theorem 3.3.2. Let Bw : X → X be a bilateral weighted backward
shift on a sequence F -space X in which (en)n∈Z is an unconditional basis.
Then the following conditions are equivalent:

(i) Bw is chaotic;

(ii) the series

0∑
n=−∞

( 0∏
ν=n+1

wν

)
en +

∞∑
n=1

( n∏
ν=1

wν

)−1

en

converges in X;

(iii) Bw has a nontrivial periodic point;

(iv) Bw has the SSP.

Particular cases on which the above results are interesting are the
(unilateral and bilateral) weighted shifts on (weighted or not) `p-spaces
and c0 (see [8]). Moreover, F. Bayart and I. Z. Ruzsa [16] recently proved
that weighted shift operators on `p, 1 ≤ p < ∞, are frequently hyper-
cyclic if, and only if, they are Devaney chaotic. This fact adds a new
equivalence for `p-spaces.
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Corollary 3.3.3. For a bounded weighted backward shift operator Bw

de�ned on X = `p(v), 1 ≤ p < ∞, (respectively, on X = c0(v)) the
following conditions are equivalent:

(i)
∞∑
i=1

vi∏i
j=1

∣∣wpj ∣∣ <∞ (respectively, limi→∞
vi∏i

j=1|wj |
= 0),

(ii) Bw has SSP.

(iii) Bw is Devaney chaotic.

Moreover, for X = `p(v), 1 ≤ p <∞, the above items are equivalent to

(iv) Bw is frequently hypercyclic.

Corollary 3.3.4. For a bounded bilateral weighted backward shift op-
erator Bw de�ned on `p(v,Z), 1 ≤ p <∞, (respectively, on c0(v,Z)) the
following conditions are equivalent:

(i)
∞∑
i=1

vi∏i
j=1

∣∣wpj ∣∣ <∞ and
∑∞

i=1

∏−i+1
j=0

∣∣wpj ∣∣ v−i <∞
(respectively, lim

i→∞

vi∏i
j=1 |wj|

= lim
i→∞

−i+1∏
j=0

|wj| v−i = 0).

(ii) Bw has SSP.

(iii) Bw is Devaney chaotic.

Moreover, for X = `p(v,Z), 1 ≤ p < ∞, the above items are equivalent
to

(iv) Bw is frequently hypercyclic.

In the previous results we deduced the SSP from the dynamics on
certain invariant Cantor sets. Something similar can be done under the
more general assumptions that the operator satis�es the Frequent Hyper-
cyclicity Criterion (see [5]. The idea now is to work with certain invariant
factors of Cantor sets. We will take the general version of the Frequent
Hypercyclicity Criterion given in [62, Remark 9.10].
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Theorem 3.3.5. Let T be an operator on a separable F -space X. If
there is a dense subset X0 of X and a sequence of maps Sn : X0 → X
such that, for each x ∈ X0,

(i)
∑∞

n=0 T
nx converges unconditionally,

(ii)
∑∞

n=0 Snx converges unconditionally, and

(iii) T nSnx = x and TmSnx = Sn−mx if n > m,

then the operator T satis�es the SSP.

Proof. We suppose that X0 = {xn ; n ∈ N} with x1 = 0 and Sn0 = 0
for all n ∈ N. Let (Un)n be a basis of balanced open 0-neighbourhoods
in X such that Un+1 + Un+1 ⊂ Un, n ∈ N. By (i) and (ii), there exists
an increasing sequence of positive integers (Nn)n with Nn+2 − Nn+1 >
Nn+1 −Nn for all n ∈ N such that∑

k>Nn

T kxmk ∈ Un+1 and
∑
k>Nn

Skxmk ∈ Un+1,

if mk ∈ {1, . . . , n}, for each n ∈ N. (3.2)

We let Bm = {1, . . . ,m} and de�ne the map Φ :
⋃∞
m=1B

Z
m → X given by

Φ((nk)k∈Z) =
∑
k<0

S−kxnk + xn0 +
∑
k>0

T kxnk .

Φ is well-de�ned and Φ|BZ
m
is continuous for each m ∈ N by (3.2). As

in Theorem 3.3.1 we have that Km := Φ(BZ
m) is a compact subset of

X, invariant under the operator T , and such that T |Km is conjugated to
σ−1|BZ

m
via Φ, for each m ∈ N. Again, by conjugacy, we obtain that T |Km

satis�es the SSP too, for every m ∈ N and, since
⋃
m∈NKm is dense in X

because it contains X0, we conclude that T satis�es the SSP.

3.4 Mixing measures and Bernoulli shifts

For the existence of strong mixing measures with full support, certain
Cantor subsets of NN , with either N = N or N = Z, will be needed. This
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time we precise some �ner adjustments that involve Cantor sets larger
than AN with A �nite. Actually they will be of the form C =

∏
n∈N An,

where the cardinalities of the �nite sets An tend to in�nity as n → ∞.
The problem now is that these type of sets are not invariant under the
shift, so actually we will use invariant sets that are countable unions of
Cantor sets. The contents of this section are based on [78]. We also
recall that, recently, Bayart and Matheron gave very general conditions
expressed on eigenvector �elds associated to unimodular eigenvalues un-
der which an operator T admits a T -invariant mixing measure [10].

In all the cases that we treat in this section the idea is to construct a
model probability space (Z, µ) and a (Borel) measurable map Φ : Z → X,
where

(a) Z ⊂ NN is such that σ(Z) = Z for the Bernoulli shift (either
unilateral or bilateral),

(b) µ is a σ-invariant strongly mixing measure,

(c) Y := Φ(Z) is a T -invariant dense subset of X, and

(d) the operator T is either (quasi)conjugated to σ or to σ−1 through
Φ.

This way, the measure µ induces by (quasi)conjugacy a Borel probability
measure µ on X that is T -invariant and strongly mixing.

The model probability space (Z, µ).

We will construct Z ⊂ NN , invariant under the shift, where N = N
or N = Z. In all the cases we are given certain increasing sequence of
positive integers (Nn)n with Nn+2 − Nn+1 > Nn+1 − Nn. We de�ne the
compact space L =

∏
k∈N Ak where

Ak = {1, . . .m} if Nm < |k| ≤ Nm+1, m ∈ N, and Ak = {1}, if |k| ≤ N1.

Let L(s) := σs(L), s ∈ N ∪ {0}. L(s) is a subspace of NN , s ∈ N ∪ {0}.
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In NN we de�ne the product probability measure µ =
⊗

k∈N µk, where
µk({n}) = pn for all n ∈ N and µk(N) =

∑∞
n=1 pn = 1, k ∈ N . The

numbers pn ∈]0, 1[, n ∈ N, are so that, if

βj :=

(
j∑
i=1

pi

)Nj+1−Nj

, j ∈ N, then
∞∏
j=1

βj > 0.

We de�ne Z =
⋃
s∈N L(s), which is a countable union of Cantor sets,

invariant under the shift, and satis�es

µ(Z) ≥ µ(L) =
∏
|k|≤N1

µk({1})
∞∏
l=1

 ∏
Nl<|k|≤Nl+1

µk({1, . . . , l})


≥ p2N1+1

1 (
∞∏
l=1

βl)
2 > 0.

By [90] we know that µ is a σ-invariant strongly mixing Borel probability
measure on NN . Since σ(Z) = Z, it has positive measure, and every
strong mixing measure is ergodic, we necessarily have that µ(Z) = 1.
Even more, in the case N = N it is known (see [90, Sect. 4.12]) that µ is
a σ-invariant exact Borel probability measure.

Once we have de�ned the model, as in the previous section we �rst
analyze the situation for unilateral shifts.

Theorem 3.4.1. Let Bw : X → X be a unilateral weighted backward
shift on a sequence F -space X in which (en)n∈N is an unconditional basis.
If Bw is chaotic then there exists a T -invariant exact Borel probability
measure on X with full support.

Proof. As in the proof of Theorem 3.3.1, we �x a countable set M =
{zn ; n ∈ N} of pairwise di�erent scalars which form a dense set in K
with z1 = 0, and a basis (Un)n of balanced open 0-neighbourhoods in X
such that Un+1 + Un+1 ⊂ Un, n ∈ N.
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Again, although not so immediate, the fact that
∑∞

n=1

(∏n
ν=1wν

)−1

en

converges, implies the existence of an increasing sequence of positive in-
tegers (Nn)n with Nn+2 −Nn+1 > Nn+1 −Nn for all n ∈ N such that∑

k>Nn

αk

( k∏
ν=1

wν

)−1

ek ∈ Un+1,

if αk ∈ {z1, . . . , z2m}, for Nm < k ≤ Nm+1, m ≥ n.

(3.3)

We set Z =
⋃
s≥0 L(s) ⊂ NN the σ-invariant set and the exact probability

measure µ considered in the model above, and we de�ne the map

Φ : Z → X

given by

Φ((n(k))k∈N) =
∞∑
k=1

αn(k)

( k∏
ν=1

wν

)−1

ek.

Φ is well-de�ned and Φ|L(s) is continuous for each s ≥ 0 by (3.3). We
also have that Y := Φ(Z) is a countable union of Cantor subsets of
X, invariant under Bw, and such that Bw|Y is conjugated to σ|Z via Φ.
Since we know that µ is exact on Z, the measure µ(A) = µ(Φ−1(A)),
A ∈ B(X), is well-de�ned on X, it is Bw-invariant and exact, so it only
remains to show that it has full support. Indeed, given a non-empty open
set U in X, we pick y = Φ((n(k))k) ∈ Y satisfying y + Un ⊂ U . Thus

µ(U) ≥ µ

({
x = y +

∑
k>Nn

αk∏k
ν=1wν

ek ; αk ∈ {z1, . . . , z2m},

for Nm < k ≤ Nm+1, m ≥ n

})

≥
Nn∏
k=1

µk({n(k)})
∞∏
l=n

 ∏
Nl<k≤Nl+1

µk({1, . . . , 2l})


>

Nn∏
k=1

pn(k)

(
∞∏
l=n

βl

)2

> 0,
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by (3.3) and by the selection of the sequence (pn)n in the model. There-
fore we conclude the result.

As in the previous section, a general result can be obtained for oper-
ators satisfying the Frequent Hypercyclicity Criterion.

Theorem 3.4.2. Let T be an operator on a separable F -space X. If
there is a dense subset X0 of X and a sequence of maps Sn : X0 → X
such that, for each x ∈ X0,

(i)
∑∞

n=0 T
nx converges unconditionally,

(ii)
∑∞

n=0 Snx converges unconditionally, and

(iii) T nSnx = x and TmSnx = Sn−mx if n > m,

then there is a T -invariant strongly mixing Borel probability measure µ
on X with full support.

Proof. As in Theorem 3.3.5 we suppose that X0 = {xn ; n ∈ N} with
x1 = 0 and Sn0 = 0 for all n ∈ N, and (Un)n is a basis of balanced open
0-neighbourhoods in X such that Un+1 + Un+1 ⊂ Un, n ∈ N. Again,
with a more subtle argument, by (i) and (ii) we have the existence of
an increasing sequence of positive integers (Nn)n with Nn+2 − Nn+1 >
Nn+1 −Nn for all n ∈ N such that∑

k>Nn

T kxmk ∈ Un+1 and
∑
k>Nn

Skxmk ∈ Un+1,

if mk ≤ 2l, for Nl < k ≤ Nl+1, l ≥ n. (3.4)

Actually, this is a consequence of the completeness ofX and the fact that,
for each 0-neighbourhood U and for all l ∈ N, there is N ∈ N such that∑

k∈F T
kx ∈ U and

∑
k∈F Skx ∈ U for any �nite subset F ⊂]N,+∞[

and for each x ∈ {x1, . . . , x2l}.
We �x now our model space (Z, µ) with Z =

⋃
s∈Z L(s) ⊂ NZ and the

measure µ associated with the increasing sequence (Nn)n.
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1. The map Φ

We de�ne the map Φ : Z → X by

Φ((n(k))k∈Z) =
∑
k<0

S−kxn(k) + xn(0) +
∑
k>0

T kxn(k). (3.5)

Φ is well-de�ned since, given (n(k))k∈Z ∈ L(s), and for l ≥ |s|, we
have n(k) ≤ 2l if Nl < |k| ≤ Nl+1, which shows the convergence of
the series in (3.5) by (3.4).

Φ|L(s) is also continuous for each s ∈ Z. Indeed, let (γj)j be a
sequence of elements of L(s) that converges to γ ∈ L(s) and �x any
n ∈ N with n > |s|. We will �nd n0 ∈ N such that Φ(γj)− Φ(γ) ∈
Un for n ≥ n0. To do this, by de�nition of the topology of L(s)
there exists n0 ∈ N such that

γ(k)j = γ(k) if |k| ≤ Nn+1 and j ≥ n0.

By (3.4) we have

Φ(γj)− Φ(γ) =∑
k<−Nn+1

S−k(xγ(k)j − xγ(k)) +
∑

k>Nn+1

T k(xγ(k)j − xγ(k)) ∈ Un

for all j ≥ n0. This shows the continuity of Φ : L(s)→ X for every
s ∈ Z.

The map Φ : Z → X is then measurable (i.e., Φ−1(A) ∈ B(Z) for
every A ∈ B(X)).

2. The measure µ on X

Y := Φ(Z) is a T -invariant Borel subset of X because it is a count-
able union of compact sets and Φσ−1 = TΦ. As before, the measure
µ on X is de�ned by µ(A) = µ(Φ−1(A)) for all A ∈ B(X), which is
well-de�ned, T -invariant, and a strongly mixing Borel probability
measure. As in Theorem 3.4.1, it only remains to show that µ has
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full support. Indeed, given a non-empty open set U in X, we �x
n ∈ N such that xn + Un ⊂ U . Therefore,

µ(U) ≥ µ

({
x = xn +

∑
k>Nn

T kxm(k) +
∑
k>Nn

Skxm(−k) ;

m(k) ≤ 2l, for Nl < |k| ≤ Nl+1, l ≥ n

})

≥ µ0({n})
∏

0<|k|≤Nn

µk({1})
∞∏
l=n

 ∏
Nl<|k|≤Nl+1

µk({1, . . . , 2l})


> pnp

2Nn
1

(
∞∏
l=n

βl

)2

> 0,

and we obtain that µ has full support.

As a consequence, since every chaotic bilateral shift on a sequence F -
space in which the natural basis (en)n∈Z is an unconditional basis satis�es
the Frequent Hypercyclicity Criterion (see, e.g., [62, Chap. 9]), we obtain
strong mixing measures for these shifts.

Corollary 3.4.3. Let T : X → X be a chaotic bilateral weighted shift on
a sequence F -space X in which (en)n∈Z is an unconditional basis. Then
there exists a T -invariant strongly mixing Borel probability measure on
X with full support.
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Chapter 4

Operators with the speci�cation

property1

Abstract

We study a version of the speci�cation property for linear dynamics. Op-
erators having the speci�cation property are investigated, and relation-
ships with other well known dynamical notions such as mixing, Devaney
chaos, and frequent hypercyclicity are obtained.

4.1 Introduction

A continuous map on a metric space is said to be chaotic in the sense
of Devaney if it is topologically transitive and the set of periodic points
is dense. Although there is no common agreement about what a chaotic
map is, a notion of chaos stronger than Devaney's de�nition is the so

1This chapter is the revised author version of article Salud Bartoll, Félix Martínez-
Giménez & Alfredo Peris: Operators with the speci�cation property, accepted for
publication in journal of Mathematical Analysis and Applications.
In order to use same reference numbers through all the chapters, the list of references
has been eliminated and they have been collected in a single bibliography at the end
of the PhD thesis.
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called speci�cation property. It was �rst introduced by Bowen [31] and
since then, several kinds and degrees of this property have been stated
[88]. We follow the de�nitions and terminology used in [9]. Some recent
works on the speci�cation property are [80, 81, 71, 52, 63, 70, 8, 7].

De�nition 4.1.1 ([31]). A continuous map f : X → X on a compact
metric space (X, d) has the speci�cation property (SP) if for any δ > 0
there is a positive integer Nδ such that for any integer s ≥ 2, any set
{y1, . . . , ys} ⊂ X and any integers 0 = j1 ≤ k1 < j2 ≤ k2 < · · · < js ≤ ks
satisfying jr+1−kr ≥ Nδ for r = 1, . . . , s−1, there is a point x ∈ X such
that, for each positive integer r ≤ s and any integer i with jr ≤ i ≤ kr,
the following conditions hold:

d(f i(x), f i(yr)) < δ,

fn(x) = x, where n = Nδ + ks.

Although there are weaker versions of this property, we will be using
the above version, which is in fact, the strongest one. Compact dynamical
systems with the SP are mixing and Devaney chaotic, among other basic
dynamical properties (see, e.g., [41]).

Devaney chaos and mixing properties have been widely studied for
linear operators on Banach and more general spaces [18, 27, 38, 55, 57,
61, 82]. The recent books [15] and [62] contain the basic theory, examples,
and many results on chaotic linear dynamics.

Our aim is to study the SP in the context of continuous linear oper-
ators de�ned on separable F -spaces. In this situation, the �rst crucial
problem is that these spaces are never compact, therefore, our �rst task
should be the adjusting of this property to the new context. We recall
that an F -space is a topological vector space whose topology is induced by
a complete translation-invariant metric. In fact, if X is an F -space, there
exists a complete translation-invariant metric d such that ‖x‖ = d(x, 0)
is an F -norm.

De�nition 4.1.2. Let X be a vector space. A map ‖ · ‖ from X to R+

is an F-norm provided for each x, y ∈ X and λ ∈ K we have

1. ‖x+ y‖ ≤ ‖x‖+ ‖y‖;
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2. ‖λx‖ ≤ ‖x‖ if |λ| < 1;

3. limλ→0‖λx‖ = 0;

4. ‖x‖ = 0 implies x = 0.

A consequence from 1 and 2 above is that for any x ∈ X, and λ ∈ K,
we have

‖λx‖ ≤ (|λ|+ 1)‖x‖.

The class of F -spaces includes complete metrizable locally convex spaces
(i.e., Fréchet spaces) and hence it also includes Banach spaces. For intro-
ductory texts on functional analysis that cover Fréchet spaces we refer
to Rudin [84] and Meise and Vogt [76]. The notion of an F -norm can be
found in Kalton, Peck and Roberts [67].

From now on the space X will a separable (in�nite dimensional) F -
space with F -norm ‖.‖, and T : X → X will be a continuous linear
operator (operator for short).

The following de�nition can be considered the natural extension of
the SP in this setting.

De�nition 4.1.3. An operator T : X → X on a separable F -space X
has the operator speci�cation property (OSP) if there exists an increasing
sequence (Km)m of T -invariant sets with 0 ∈ K1 and ∪m∈NKm = X
such that for each m ∈ N the map T |Km has the SP, that is, for any
δ > 0 there is a positive integer Nδ,m such that for every s ≥ 2, any set
{y1, . . . , ys} ⊂ Km and any integers 0 = j1 ≤ k1 < j2 ≤ k2 < · · · < js ≤
ks with jr+1 − kr ≥ Nδ,m for 1 ≤ r ≤ s− 1, there is a point x ∈ Km such
that, for each positive integer r ≤ s and any integer i with jr ≤ i ≤ kr,
the following conditions hold:

‖T i(x)− T i(yr)‖ < δ,

T n(x) = x, where n = Nδ,m + ks.

Observation 4.1.4. We would like to point out that although we removed
compactness of each Km from our de�nition, it is hard to think of a map
having the speci�cation property outside of the compact setting; in other
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words, for all cases we know of operators having the OSP, the required
sets Km are always compact.

Its is natural to study any property in linear dynamics for the most
typical operators in this context, namely the weighted shifts on sequence
spaces. By a sequence space we mean a topological vector space X which
is continuously included in ω, the countable product of the scalar �eld
K. A sequence F -space is a sequence space that is also an F -space.
Given a sequence w = (wn)n of positive weights, the associated unilateral
weighted backward shift Bw : KN → KN is de�ned by Bw(x1, x2, . . . ) =
(w2x2, w3x3, . . . ). If a sequence F -space X is invariant under certain
weighted backward shift T , then T is also continuous on X by the closed
graph theorem. In [8] we characterize when backward shift operators
de�ned on certain Banach sequence spaces exhibit the OSP. We were able
to extend these characterizations to the more general setting of sequence
F -spaces in [7] where the next result is proved.

Theorem 4.1.5 ([7]). Let Bw : X → X be a unilateral weighted back-
ward shift on a sequence F -space X in which (en)n∈N is an unconditional
basis. Then the following conditions are equivalent:

(i) Bw is chaotic;

(ii) the series
∞∑
n=1

( n∏
ν=1

wν

)−1

en

converges in X;

(iii) Bw has a nontrivial periodic point;

(iv) Bw has the OSP.

The paper is organised as follows: in Section 4.2 we study the basic
properties for operators with the OSP. In Section 4.3 we show the con-
nections of the OSP with other dynamical properties for linear operators
like mixing, chaos in the sense of Devaney and frequent hypercyclicity.
Section 4.4 provides several examples of operators with the OSP. In the
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�nal Section 4.5 we present the conclusions and a diagram containing the
implications between the di�erent dynamical properties discussed here.

4.2 Basic properties

We �rst show that the OSP behaves well by quasi-conjugation.

Proposition 4.2.1. Suppose Ti : Xi → Xi is an operator on a separable
F -space Xi, i = 1, 2, and φ : X1 → X2 is a uniformly continuous map
with dense range such that the diagram

X1
T1−−−→ X1

φ

y φ

y
X2

T2−−−→ X2

conmutes. If T1 has the OSP then so does T2.

Proof. Without loss of generality, we may assume that φ(0) = 0, other-
wise take φ̃ := φ − φ(0). Since T1 has the OSP, let (K1

m)m the required
sequence of T1-invariant sets satisfying all the conditions given in Def-
inition 4.1.3. Set (K2

m)m := (φ(K1
m))m. Clearly 0 ∈ K2

1 and, since φ
has dense range we have that ∪m∈NK2

m = X2. The map φ is uniformly
continuous on each K1

m, therefore, �xed δ > 0, there exists δ′ > 0 such
that for each x, y ∈ K1

m with ‖x − y‖ < δ′, we have ‖φ(x) − φ(y)‖ < δ.
Since T1|K1

m
has the SP, there exits Nδ′,m. Taking now Nδ,m := Nδ′,m,

using the commutativity of the diagram, and the uniform continuity of
φ, it is routine to see that T2 has the OSP.

Remark 4.2.2. Since uniform continuity and continuity are equivalent for
linear transformations on F -spaces, we have that Proposition 4.2.1 is
true when φ : X1 → X2 is a linear continuous transformation with dense
range. Even more, if φ is a linear homeomorphism, then T1 has the OSP
if and only if T2 does it.
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Our next result shows that each iterate of an operator having the OSP
inherits that property. This is a natural question in discrete dynamics,
and the most important result in this direction in the linear setting was
due to Ansari [2] who proved that T n is hypercyclic whether T is. We
recall that for continuous maps on separable complete metric spaces,
topological transitivity is equivalent to the existence of a dense orbit,
and this concept is known as hypercyclicity in our context (see [62]).

Proposition 4.2.3. If T : X → X has the OSP, then so does T k for
every k ∈ N.

Proof. To show that T k has the OSP, take the same sequence (Km)m
of T -invariant sets, which are obviously T k-invariant. Since T |Km has
the SP, given δ > 0, there exists Nδ,m satisfying all the requirements of
De�nition 4.1.1 and, taking a greater index if necessary, we may assume
that Nδ,m is a multiple of k. Now, the positive integer Nδ,m/k would do
the job to show that T k|Km has the SP.

Next, we study how the OSP behaves by direct sums of operators.
The motivation for this question in our linear setting comes from an old
problem of Herrero [64]: He asked whether T⊕T is hypercyclic whenever
T is. This problem turned out to be equivalent to the question whether
every hypercyclic operator satis�es the so called Hypercyclicity Criterion.
The negative answer was found by de la Rosa and Read [40]. In contrast,
the OSP is inherited by taking direct sums.

Proposition 4.2.4. Suppose Ti : Xi → Xi is an operator on a separable
F -space Xi, 1 ≤ i ≤ n. If Ti has the OSP for 1 ≤ i ≤ n, then ⊕ni=1Ti :
⊕ni=1Xi → ⊕ni=1Xi has the OSP.

Proof. It is enough to do the proof for the case of two operators. We
recall that there are several equivalent F -norms on X1⊕X2, we use here
the F -norm

‖(x1, x2)‖X1⊕X2 := ‖x1‖X1 + ‖x2‖X2 , (x1, x2) ∈ X1 ⊕X2,

where ‖.‖Xi is the corresponding F -norm on Xi. To make notation sim-
pler we will avoid to specify the underlying space.
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Take (Km)m := (K1
m × K2

m)m, where (Ki
m)m is the corresponding

sequence of Ti- invariant sets required by De�nition 4.1.3, i = 1, 2. To
see that (T1 ⊕ T2)|Km has the SP, given δ > 0, since Ti|Km has the SP,
i = 1, 2, there exists N i

δ/2,m and we take Nδ,m := max{N1
δ/2,m, N

2
δ/2,m}.

Now, for every s ≥ 2, any set {(y1
1, y

2
1), . . . , (y1

s , y
2
s)} ⊂ Km and any

integers 0 = j1 ≤ k1 < j2 ≤ k2 < · · · < js ≤ ks with jr+1 − kr ≥ Nδ,m

for 1 ≤ r ≤ s − 1, there are x1 ∈ K1
m and x2 ∈ K2

m such that, for each
positive integer r ≤ s and any integer i with jr ≤ i ≤ kr, the following
conditions hold:

‖T i1(x1)− T i1(y1
r)‖ < δ/2,

‖T i2(x2)− T i2(y2
r)‖ < δ/2,

T n1 (x1) = x1

T n2 (x2) = x2

}
, n = Nδ,m + ks.

Now, it is easy to check that

‖(T1 ⊕ T2)i(x1, x2)− (T1 ⊕ T2)i(y1
r , y

2
r)‖ < δ, 1 ≤ r ≤ s, jr ≤ i ≤ kr,

(T1 ⊕ T2)n(x1, x2) = (x1, x2), n = Nδ,m + ks,

which completes the proof.

We �nish this section with two additional properties. They may ap-
pear somehow arti�cial and technical but they do play a crucial role in
the proof of one of the main results of the next section.

Proposition 4.2.5. Let T : X → X be an operator on a separable
F -space X.

i) If λi ∈ K and Ki ⊂ X is a T -invariant set such that T |Ki has the
SP, 1 ≤ i ≤ k, then T |∑k

i=1 λiKi
has the SP.

ii) If X is locally convex and K ⊂ X is a T -invariant set such that
T |K has the SP and co(K) is the closed convex envelope of K, then
T |co(K) has the SP.
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Proof. i) It su�ces to prove the case of two sets. Given δ > 0, take
δ′ := δ/(|λ1| + |λ2| + 2). There exists N i

δ′ , i = 1, 2, and we take Nδ :=
max{N1

δ′ , N
2
δ′}. Now, for every s ≥ 2, any set {(λ1y

1
1 +λ2y

2
1), . . . , (λ1y

1
s +

λ2y
2
s)} ⊂ λ1K1 + λ2K2 and any integers 0 = j1 ≤ k1 < j2 ≤ k2 < · · · <

js ≤ ks with jr+1 − kr ≥ Nδ for 1 ≤ r ≤ s − 1, there are x1 ∈ K1 and
x2 ∈ K2 such that for each integer r ∈ [1, s] and for any integer i with
jr ≤ i ≤ kr, the following conditions hold:

‖T i(x1)− T i(y1
r)‖ < δ′,

‖T i(x2)− T i(y2
r)‖ < δ′,

T n(x1) = x1

T n(x2) = x2

}
, n = Nδ + ks.

Now, it is easy to check that

‖T i(λ1x
1 + λ2x

2)− T i(λ1y
1
r + λ2y

2
r)‖ < δ, 1 ≤ r ≤ s, jr ≤ i ≤ kr,

T n(λ1x
1 + λ2x

2) = λ1x
1 + λ2x

2, n = Nδ + ks.

ii) By the continuity of T and all its iterates, it is clear that if T |K has
the SP, then T |K has the SP. Therefore, it remains to show that T |co(K)

has the SP. Since X is a Fréchet space, we can �x an increasing sequence
of seminorms (‖·‖n)n that generate the topology of X. The key point to
prove this is to observe that if you have two (or more points) belonging to
the convex hull of a set, you can always rewrite the convex combinations
in such a way that their length and coe�cients are the same. This fact
may appear strange at �rst because one usually thinks about `minimal'
convex combinations but the fact is clear if we decompose terms of the
convex combination in several terms `as needed'. For example

x = 0.9x1 + 0.1x2 = 0.5x1 + 0.3x1 + 0.1x1 + 0.1x2

y = 0.5y1 + 0.3y2 + 0.2y3 = 0.5y1 + 0.3y2 + 0.1y3 + 0.1y3

Using the above fact to express the points {y1, . . . , ys} ⊂ co(K) as
convex combinations with the same length and coe�cients, the fact that
T |co(K) has the SP can be obtained as in one i), by computing the corre-
sponding inequalities for an arbitrary seminorm ‖·‖n, n ∈ N.
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4.3 Connections with other dynamical prop-

erties

In this section we focus in the connections of the OSP with other well
know dynamical properties. To be precise, we prove that operators with
the OSP are mixing, chaotic in the sense of Devaney, and they have
a strong version of hypercyclicity, introduced by Bayart and Grivaux
[11, 13], called frequent hypercyclicity. For completeness we recall that an
operator T : X → X is topologically transitive if for any non-empty open
sets U and V , there exists n ∈ N such that T n(U) ∩ V 6= ∅. Moreover, if
the set {n ∈ N : T n(U) ∩ V 6= ∅} is co�nite, then T is mixing.

Proposition 4.3.1. If T : X → X has the OSP, then T is mixing.

Proof. Fix a non-empty open set U and a 0-neighbourhoodW . We recall
that the return set from U to W is de�ned as N(U,W ) := {n ∈ N :
T n(U)∩W 6= ∅}. We claim that N(U,W ) and N(W,U) are co�nite and
this implies T is mixing (see [62, Proposition 2.37]).

Take u ∈ U and δ > 0 such that B(u, 2δ) ⊂ U and B(0, 2δ) ⊂ W .
Since T has the OSP, we may �nd a set K such that T |K has the SP and
K ∩B(u, δ) 6= ∅. There exists Nδ (depending on K and δ).

Take y1 ∈ K ∩B(u, δ), y2 = 0, m ∈ N, 0 = j1 = k1 < j2 = Nδ < k2 =
Nδ +m. Since j2 − k1 ≥ Nδ, there exists x ∈ K such that

‖T ix− T iy1‖ < δ, i = j1, . . . , k1

‖T ix− T iy2‖ < δ, i = j2, . . . , k2.

This implies ‖x − y1‖ < δ, so ‖x − u‖ < 2δ and hence x ∈ U . As
T iy2 = 0, we have that T ix ∈ B(0, δ) for i = Nδ, . . . , Nδ + m, therefore
TNδ+mx ∈ B(0, δ) ⊂ W . We have proved that Nδ + m ∈ N(U,W ) for
any m ∈ N.

Take now i = Nδ. Clearly ‖TNδx‖ < δ, hence TNδx ∈ B(0, δ) ⊂ W .
Observing that x is periodic with period Nδ + k2, we have

TNδ+m(TNδx) = TNδ+k2x = x ∈ U,

which means that Nδ + m ∈ N(W,U) for any m ∈ N. This �nishes the
proof
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Proposition 4.3.2. If T : X → X has the OSP, then T is chaotic in
the sense of Devaney, that is, T is topologically transitive and it admits
a dense set of periodic points.

Proof. Clearly, T is transitive by the above proposition. By the mere
de�nition of the speci�cation property, it is also clear that any point in
the space may be approximated by periodic points.

Given A ⊂ N, its lower density is de�ned by

dens(A) = lim inf
n→∞

card(A ∩ [1, n])

n
,

An operator T is frequently hypercyclic if there exists x ∈ X such that
for every non-empty open subset U of X, the set {n ∈ N : T nx ∈ U}
has positive lower density (see [13]). Frequent hypercyclicity is a way to
measure the frequency of hitting times in an arbitrary non-empty open
set for a dense orbit.

Theorem 4.3.3. If T : X → X has the OSP, then T is frequently
hypercyclic.

Proof. Let (Km)m be an increasing sequence of T -invariant sets associ-
ated with the OSP for T . Fix vm ∈ Km, m ∈ N, such that {vm;m ∈ N} =

X. We set inductively K̃1 = K1, K̃m = Km −
∑m−1

i=1 K̃i, m > 1. We
know that T satis�es the OSP with respect to (K̃m)m. Let (rm)m be an
increasing sequence in ]0, 1[ with

lim
m

m∏
i=1

ri > 0,

and �x (pm)m ⊂ N such that (pm − 1)/(pm + 1) > rm, m ∈ N. We apply
the OSP with respect to (K̃m)m. For δm := 2−m we denote Nm = Nδm,m,
m ∈ N. W.l.o.g., (pm + 1)Nm divides Nm+1, m ∈ N. Given m ∈ N we
set j1 = k1 = 0, j2 = Nm, k2 = pmNm. For m = 1 let y1 = v1 and,
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inductively, given m > 1 suppose we have xi ∈ K̃i, i = 1, . . . ,m− 1. Let

y1 = um := vm −
m−1∑
i=1

TNixi ∈ K̃m,

y2 = 0.

By assumption, there is xm ∈ K̃m such that

‖xm − um‖ < 2−m, ‖T ixm‖ < 2−m, i = Nm, . . . , pmNm, and

T nxm = xm for n = (pm + 1)Nm.

We will show that the vector x :=
∑

k T
Nkxk is frequently hypercyclic

for T .
Let qk := (pk + 1)Nk, k ∈ N. Given m > 1, we have

‖T pmNm+jqm

(
m∑
k=1

TNkxk

)
− vm‖ = ‖

(
m−1∑
k=1

TNkxk + um

)
− vm‖ <

1

2m
,

(4.1)
for all j ∈ N0.

Fix n > qm+1. There exists m′ > m such that (pm′ − 1)Nm′ < n ≤
(pm′+1 − 1)Nm′+1. Since

‖T j(TNkxk)‖ <
1

2k
, ∀k ≥ m′ + 1, j = 0, . . . , (pm′+1 − 1)Nm′+1,

we get,

‖T j
( ∑
k≥m′+1

TNkxk

)
‖ < 1

2m′ , j = 0, . . . , n. (4.2)

It remains to show the inequalities ‖T j(TNkxk)‖ < 2−k for m < k ≤ m′,
and for certain j ≤ n of the form j = pmNm+j′qm, j′ ∈ N0. To do this, we
have to count the number of elements of this form contained in suitable
blocks of consecutive integers. Indeed, for each i ∈ N0, the block of
integers {iNm+1 + j ; j = 0, . . . , Nm+1 − 1} contains Nm+1/qm elements
of the form pmNm + jqm, j ∈ N0. Hence the block {iqm+1 + j ; j =
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0, . . . , (pm+1−1)Nm+1} contains (pm+1−1)Nm+1/qm elements of the form
pmNm + jqm, j ∈ N0.

Analogously, for each i ∈ N0, the block {iNk+1 +j ; j = 0, . . . , Nk+1−
1} contains Nk+1/qk blocks of the form {i′qk+j ; j = 0, . . . , (pk−1)Nk} ,
i′ ∈ N0. Hence the block {iqk+1 + j ; j = 0, . . . , (pk+1−1)Nk+1} contains
(pk+1 − 1)Nk+1/qk blocks of the form {i′qk + j ; j = 0, . . . , (pk − 1)Nk},
i′ ∈ N0.

We assumed n > (pm′ − 1)Nm′ , then there is k ≥ 1 such that (pm′ −
1)Nm′ + (k − 1)qm′ ≤ n < (pm′ − 1)Nm′ + kqm′ . This implies that
the set of integers An := {i ∈ N0 ; i ≤ n} contains k blocks of the
form {i′qm′ + j ; j = 0, . . . , (pm′ − 1)Nm′} , i′ ∈ N0. Thus, the above
considerations yield that An contains

k

(
(pm′ − 1)Nm′

qm′−1

)
. . .

(
(pm+1 − 1)Nm+1

qm

)
> k(pm′ − 1)Nm′

αm
qm

elements of the form j = pmNm+ j′qm, j′ ∈ N0, such that ‖T j(TNlxl)‖ <
2−l, for all l ∈ {m+ 1, . . . ,m′}, where

αm :=
∏
l>m

pl − 1

pl + 1
>
∏
l>m

rl > 0.

Therefore,∣∣∣∣∣{j ≤ n ; ‖T j(
∑
k>m

TNkxk)‖ <
1

2m
}

∣∣∣∣∣ >
(

k

k + 1

)(
pm′ − 1

pm′ + 1

)
nβm ≥ n

βm
4
,

(4.3)
where βm := αm/qm.

From (4.1) and (4.3), we conclude

dens{j ∈ N ; ‖T jx− vm‖ <
1

2m−1
} ≥ βm

4
> 0,

which �nishes the proof.

The most usual way to prove that an operator is (frequently) hyper-
cyclic is to use the so called (Frequent) Hypercyclicity Criterion (see [15,
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62]). It should be noted that the proof of Theorem 4.3.3 does not use
the Frequent Hypercyclicity Criterion, instead a frequent hypercyclicity
vector is constructed. Next result shows that the Frequent Hypercyclic-
ity Criterion is far stronger than any of the dynamical properties we
have been working with in this paper. In particular, it implies the OSP.
We will take the general version of the Frequent Hypercyclicity Criterion
given in [29].

Theorem 4.3.4. Let T : X → X be an operator on a separable F -
space X. If there is a dense subset X0 of X and a sequence of maps
Sn : X0 → X such that, for each x ∈ X0,

(i)
∑∞

n=0 T
nx converges unconditionally,

(ii)
∑∞

n=0 Snx converges unconditionally, and

(iii) T nSnx = x and TmSnx = Sn−mx if n > m,

then the operator T has the OSP.

Proof. We suppose that X0 = {xn ; n ∈ N} with x1 = 0 and Sn0 = 0
for all n ∈ N. Let (Un)n be a basis of balanced open 0-neighbourhoods
in X such that Un+1 + Un+1 ⊂ Un, n ∈ N. By (i) and (ii), there exists
an increasing sequence of positive integers (Nn)n with Nn+2 − Nn+1 >
Nn+1 −Nn for all n ∈ N such that∑

k>Nn

T kxmk ∈ Un+1 and
∑
k>Nn

Skxmk ∈ Un+1,

if mk ∈ {1, . . . , n}, for each n ∈ N. (4.4)

We let Bm = {1, . . . ,m} and de�ne the map Φ :
⋃∞
m=1B

Z
m → X given by

Φ((nk)k∈Z) =
∑
k<0

S−kxnk + xn0 +
∑
k>0

T kxnk .

The map Φ is well-de�ned and Φ|BZ
m
is continuous for each m ∈ N by

(4.4). We have that Km := Φ(BZ
m) is a compact subset of X, invari-

ant under the operator T , and such that T |Km is conjugated to σ−1|BZ
m
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via Φ, for each m ∈ N; where σ is the usual Bernoulli shift de�ned as
σ(. . . , n−1, n0, n1, . . . ) = (. . . , n0, n1, n2, . . . ). Since σ−1|BZ

m
has the SP

(see for instance [88]), by conjugacy, we obtain that T |Km satis�es the
SP too, for every m ∈ N and, since

⋃
m∈NKm is dense in X because it

contains X0, we conclude that T has the OSP.

4.4 Families of operators with the OSP

We already noticed in Theorem 4.1.5 that weighted backward shifts on
sequence F -spaces having the OSP can be characterized in terms of the
weight sequence, therefore examples of backward shifts with the OSP
de�ned on the Banach spaces `p and c0 are easy to �nd (see [8]). Also,
any weighted shift so that every weight is non-zero on ω has the OSP.
Theorem 4.3.4 is very useful to �nd more examples of operators having
the OSP.

Example 4.4.1. We consider the Fréchet space H(C) of entire functions
endowed with the topology of uniform convergence on compact sets. Sup-
pose that T : H(C)→ H(C), T 6= λI, is an operator that commutes with
the operator of di�erentiation D, that is, TD = DT . It is known that T
satis�es the Frequent Hypercyclicity Criterion [28], so T has the OSP.

Example 4.4.2. Let ϕ be a nonconstant bounded holomorphic function
on the unit disc D = {λ ∈ C : |λ| < 1}, and let M∗

ϕ be the corresponding
adjoint multiplication operator on the Hardy space H2. Godefroy and
Shapiro proved that M∗

ϕ is hypercyclic if and only if ϕ(D) ∩ T 6= ∅,
where T = {λ ∈ C : |λ| = 1} (see [55]). They even proved that condition
ϕ(D)∩T 6= ∅ is equivalent toM∗

ϕ being chaotic and also equivalent toM∗
ϕ

being mixing. Later, Bayart and Grivaux improved this result showing
that if ϕ(D) ∩ T 6= ∅, then M∗

ϕ satis�es the Frequent Hypercyclicity
Criterion [13]. Taking into account Theorem 4.3.4 we have the following
characterization.

Theorem 4.4.3. Let ϕ be a nonconstant bounded holomorphic function
on D and let M∗

ϕ be the corresponding adjoint multiplier on H2. Then
the following assertions are equivalent: (i) M∗

ϕ is hypercyclic; (ii) M∗
ϕ is
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mixing; (iii) M∗
ϕ is chaotic; (iv) M∗

ϕ is frequently hypercyclic; (v) M∗
ϕ has

the OSP; (vi) ϕ(D) ∩ T 6= ∅.
Example 4.4.4. Let ϕ be an automorphism of the unit disk D and let
Cϕf = f ◦ ϕ be the corresponding composition operator on the Hardy
space H2. Bourdon and Shapiro proved that Cϕ is hypercyclic if and
only if Cϕ is mixing if and only if ϕ has no �xed point in D (see [30]).
Hosokawa [66] proved that Cϕ is chaotic whenever it is hypercyclic and his
proof shows that in fact Cϕ satis�es the Frequent Hypercyclicity Criterion
whenever ϕ has no �xed point (see also [89]). Therefore we have the
following characterization.

Theorem 4.4.5. Let ϕ ∈ Aut(D) and Cϕ be the corresponding composi-
tion operator on H2. Then the following assertions are equivalent: (i) Cϕ
is hypercyclic; (ii) Cϕ is mixing; (iii) Cϕ is chaotic; (iv) Cϕ is frequently
hypercyclic; (v) Cϕ has the OSP; (vi) ϕ has no �xed point in D.

Example 4.4.6. Let Ω ⊂ C be a simply connected domain, and let
ϕ : Ω → Ω be a holomorphic function. Bès (see [21, Theorem 1]) char-
acterized several dynamical properties for the composition operator Cϕ
on H(Ω), which included when Cϕ satis�es the Frequent Hypercyclicity
Criterion. As a consequence we obtain the following result.

Theorem 4.4.7. The following assertions are equivalent: (i) Cϕ is hyper-
cyclic; (ii) P (Cϕ) has the OSP for every non-constant polynomial P ; (iii)
ϕ is univalent and has no �xed point in Ω.

4.5 Concluding remarks

Theorems 4.3.1, 4.3.2, and 4.3.3 show that the OSP is in fact a strong dy-
namical property. Next we prove that neither converse of those theorems
are true. Even more, we will show that there are operators de�ned on
the Hilbert space `2 which are mixing, chaotic and frequently hypercyclic
altogether but not having the OSP. To this aim we need a result from
[34] concerning sets of periods of maps. We recall that n ∈ N is a period
of T if there is x ∈ X such that T nx = x but T ix 6= x for 0 < i < n. The
set of periods of T is de�ned as {n : n is a period of T}.
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Theorem 4.5.1 ([34]). A nonvoid subset A ⊂ N is the set of periods
for certain bounded operator T on a separable complex Hilbert space
H if and only if A contains lcm(a, b) for every a, b ∈ A. Moreover, if
A is in�nite, then it is possible to �nd a mixing, chaotic and frequently
hypercyclic bounded operator T on H whose set of periods is exactly A.

Now, as set of periods take the powers of 2, that is, A = {2i, i ∈ N}.
To �x ideas set the complex Hilbert space `2. Obviously A contains the
least common multiple of any pair of elements of A so, by Theorem 4.5.1,
there exists a mixing, chaotic and frequently hypercyclic operator T :
`2 → `2 whose periods are only the powers of 2. The operator T cannot
have OSP because for any operator having this property there is a positive
integer N such that any integer greater than N is a period.

At this point, relationships between OSP, mixing, chaos, frequent
hypercyclicity and the Frequent Hypercyclicity Criterion are shown in
the next �gure.

FreqHypCrit OSP

Chaos

Mixing

FreqHyp

X

X

X

XX

XX

XX

To complete the �gure, we would like to mention here the sources
for the counter examples: Mixing operators which are not chaotic are
easy to �nd; Bayart and Grivaux [14] constructed a weighted shift on
c0 that is frequently hypercyclic, but neither chaotic nor mixing; Badea
and Grivaux [3] found operators on a Hilbert space that are frequently
hypercyclic and chaotic but not mixing. Also, Bayart and Grivaux [13]
provided easy examples of topologically mixing operators that are not
frequently hypercyclic. Very recently, Menet constructed examples of
chaotic operators which are not frequently hypercyclic in [77], which
solved an important problem in linear dynamics.



4.5 Concluding remarks 69

Acknowledgements

This work is supported by MINECO and FEDER, Project MTM2013-
47093-P, and by GVA, Project PROMETEOII/2013/013 and Project
ACOMP/2015/005.





Chapter 5

The speci�cation property for

semigroups1

Abstract

We study one of the strongest versions of chaos for continuous dynamical
systems, namely the speci�cation property. We extend the de�nition of
speci�cation property for operators on a Banach space to strongly contin-
uous one-parameter semigroups of operators, that is, C0-semigroups. In
addition, we study the relationships of the speci�cation property for C0-
semigroups (SgSP) with other dynamical properties: mixing, Devaney's
chaos, distributional chaos and frequent hypercyclicity. Concerning the
applications, we provide several examples of semigroups which exhibit
the SgSP with particular interest on solution semigroups to certain lin-
ear PDEs, which range from the hyperbolic heat equation to the Black-
Scholes equation.

1This chapter is the revised author version of preprint Salud Bartoll, Félix
Martínez-Giménez, Alfredo Peris & Francisco Rodenas (2015): The speci�cation prop-
erty for semigroups, submitted for publication.
In order to use same reference numbers through all the chapters, the list of references
has been eliminated and they have been collected in a single bibliography at the end
of the PhD thesis.

71
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5.1 Introduction

A (continuous) map on a metric space satis�es the speci�cation property
(SP) if for any choice of points, one can approximate distinct pieces of
orbits by a single periodic orbit with a certain uniformity. It was �rst
introduced by Bowen [31]; since then, this property has attracted the
interest of many researchers (see, for instance, the early work [88]). In a
few words, the speci�cation property requires that, for a given distance
δ > 0, and for any �nite family of points, there is always a periodic
orbit that traces arbitrary long pieces of the orbits of the family, up to a
distance δ, allowing a minimum �jump time� Nδ from one piece of orbit
to another one, which only depends on δ.

De�nition 5.1.1. A continuous map f : X → X on a compact metric
space (X, d) has the speci�cation property if for any δ > 0 there is a
positive integer Nδ such that for any integer s ≥ 2, any set {y1, . . . , ys} ⊂
X and any integers 0 = i1 ≤ j1 < i2 ≤ j2 < · · · < is ≤ js satisfying
ir+1 − jr ≥ Nδ for r = 1, . . . , s− 1, there is a point x ∈ X such that the
following conditions hold:

d(f i(x), f i(yr)) < δ, with ir ≤ i ≤ jr, for every r ≤ s,

fNδ+js(x) = x.

This de�nition must be modi�ed when one treats with bounded linear
operators de�ned on separable Banach spaces which are never compact
[8, 5]. Here, we denote the speci�cation property for operators by OSP
(see [8, 5] for de�nitions and properties). A continuous map on a metric
space is said to be chaotic in the sense of Devaney if it is topologically
transitive and the set of periodic points is dense. Although there is
no common agreement about what a chaotic map is, the speci�cation
property is stronger than Devaney's de�nition of chaos. Recently, several
properties of linear operators with the OSP and the connections of this
OSP with other well-known dynamical properties, like mixing, chaos in
the sense of Devaney and frequent hypercyclicity have been studied in
[5], we will use these results throughout the paper. Other recent works
on the speci�cation property are [80, 81, 71].
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A family (Tt)t≥0 of linear and continuous operators on a Banach space
X is said to be a C0-semigroup if T0 = Id, TtTs = Tt+s for all t, s ≥ 0,
and limt→s Ttx = Tsx for all x ∈ X and s ≥ 0.

Let (Tt)t≥0 be an arbitrary C0-semigroup on X. It can be shown
that an operator de�ned by Ax := limt→0

1
t
(Ttx − x) exists on a dense

subspace of X; denoted by D(A). Then A, or rather (A,D(A)), is called
the (in�nitesimal) generator of the semigroup. It can also be shown that
the in�nitesimal generator determines the semigroup uniquely. If the
generator A is de�ned on X (D(A) = X), the semigroup is expressed as
{Tt}t≥0 = {etA}t≥0.

Given a family of operators (Tt)t≥0, we say that this family of opera-
tors is transitive if for every pair of non-empty open sets U, V ⊂ X there
exists some t > 0 such that Tt(U)∩V 6= ∅. Furthermore, if there is some
t0 such that the condition Tt(U) ∩ V 6= ∅ holds for every t ≥ t0 we say
that it is topologically mixing or mixing.

A family of operators (Tt)t≥0 is said to be universal if there exists
some x ∈ X such that {Ttx : t ≥ 0} is dense in X. When (Tt)t≥0 is a
C0-semigroup we refer to it as hypercyclic instead of universal. In this
setting, transitivity coincides with universality, but it is strictly weaker
than mixing [18].

In addition, two notions of chaos are introduced: Devaney chaos and
distributional chaos. First, we recall that an element x ∈ X is said to be a
periodic point of (Tt)t≥0 if there exists some t0 > 0 such that Tt0x = x. A
family of operators (Tt)t≥0 is said to be chaotic in the sense of Devaney
if it is hypercyclic (universal) and there exists a dense set of periodic
points in X. On the other hand, it is distributionally chaotic if there are
an uncountable set S ⊂ X and δ > 0, so that for each ε > 0 and each
pair x, y ∈ S of distinct points we have

Dens{s ≥ 0 : ||Tsx− Tsy|| ≥ δ} = 1 and

Dens{s ≥ 0 : ||Tsx− Tsy|| < ε} = 1,

where Dens(B) is the upper density of a Lebesgue measurable subset
B ⊂ R+

0 de�ned as

lim sup
t→∞

µ(B ∩ [0, t])

t
,
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with µ standing for the Lebesgue measure on R+
0 . A vector x ∈ X is said

to be distributionally irregular for the C0-semigroup (Tt)t≥0 if for every
ε > 0 we have

Dens{s ≥ 0 : ||Tsx|| ≥ ε−1} = 1 and

Dens{s ≥ 0 : ||Tsx|| < ε} = 1.

Such vectors were considered in [20] so as to get a further insight
into the phenomenon of distributional chaos, showing the equivalence
between a distributionally chaotic operator and an operator having a
distributionally irregular vector. This equivalence has been shown for
C0-semigroups in [1].

Devaney chaos, hypercyclicity and mixing properties have been widely
studied for linear operators on Banach and more general spaces [18, 27,
38, 55, 57, 61, 82]. The recent books [15] and [62] contain the basic
theory, examples, and many results on chaotic linear dynamics.

A stronger concept than hypercyclic operators is the notion of fre-
quent hypercyclic operators introduced by Bayart and Grivaux [13] (see
[62] and the references therein) trying to quantify the frequency with
which an orbit meets an open set. This concept was extended to C0-
semigroups in [3]

A C0-semigroups is (Tt)t≥0 is said to be frequently hypercyclic if there
exists x ∈ X (called frequently hypercyclic vector) such that Dens({t ≥
0 : Ttx ∈ U}) > 0 for every non-empty open subset U ⊂ X, where
Dens(B) is the lower density of a Lebesgue measurable subset B ⊂ R+

0

de�ned as

lim inf
t→∞

µ(B ∩ [0, t])

t
,

with µ standing for the Lebesgue measure on R+
0 . In [36] it was proved

that if x ∈ X is a frequently hypercyclic vector for (Tt)t≥0, then x is a
frequently hypercyclic vector for every the operator Tt, t ≥ 0.

In [29] Bonilla and Grosse-Erdmann, based on a result of Bayart
and Grivaux, provided a Frequent Hypercyclicity Criterion for opera-
tors. Later, Mangino and Peris [74] obtained a continuous version of the
criterion based on Pettis integrals, which is called the Frequent Hyper-
cyclicity Criterion for semigroups.
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The aim of this work is to study the speci�cation property for strongly
continuous semigroups of operators on Banach spaces, that is, for C0-
semigroups and its relationship with other dynamical properties, like
hypercyclicity, mixing, chaos and frequent hypercyclicity. The paper is
structured as follows: in Section 5.2 we introduce the notion of the spec-
i�cation property for C0-semigroups, from now on denoted by SgSP. Sec-
tion 5.3 is devoted to study the SgSP in connection with other dynamical
properties. Finally, in Section 5.4, we provide several applications of the
results in previous sections to solution semigroups of certain linear PDEs,
and a characterization of translation semigroups which exhibit the SgSP.

5.2 Speci�cation property for C0-semigroups

A �rst notion of the speci�cation property for a one-parameter family
of continuous maps acting on a compact metric space was given in [32].
When trying to study the speci�cation property in the context of semi-
groups of linear operators de�ned on separable Banach spaces, the �rst
crucial problem is that these spaces are never compact, therefore, our
�rst task should be to adjust the SP in this context, in the vain of the
discrete case, and the following de�nition can be considered the natural
extension in this setting.

De�nition 5.2.1 (Speci�cation property for semigroups, SgSP). A C0-
semigroup (Tt)t≥0 on a separable Banach space X has the SgSP if there
exists an increasing sequence (Kn)n of T -invariant sets with 0 ∈ K1 and
∪n∈NKn = X and there exists a t0 > 0, such that for each n ∈ N and
for any δ > 0 there is a positive real number Mδ,n ∈ R+ such that for
any integer s ≥ 2, any set {y1, . . . , ys} ⊂ Kn and any real numbers:
0 = a1 ≤ b1 < a2 ≤ b2 < · · · < as ≤ bs satisfying bs + Mδ,n ∈ N · t0 and
ar+1 − br ≥ Mδ,n for r = 1, . . . , s− 1, there is a point x ∈ Kn such that,
for each tr ∈ [ar, br], r = 1, 2, ..., s, the following conditions hold:

‖Ttr(x)− Ttr(yr)‖ < δ,

Tt(x) = x, where t = Mδ,n + bs.
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Analogously to the discrete case, the meaning of this property is that
if the semigroup has the SgSP then it is possible to approximate simul-
taneously several �nite pieces of orbits by one periodic orbit. Obviously,
parameter intervals for the approximations must be disjoint. The follow-
ing result is an immediate consequence of the corresponding de�nitions.

Proposition 5.2.2. Let (Tt)t≥0 be a C0-semigroup on a separable Ba-
nach spaceX. Then the following assertions are equivalent:

1. (Tt)t≥0 has the SgSP.

2. Some operator Tt0 has the OSP.

5.3 SgSP and other dynamical properties of

C0-semigroups

In this section, we study the relation between the speci�cation property
and topological mixing, Devaney chaos, distributional chaos and frequent
hypercyclicity. The following observations are useful to characterize mix-
ing semigroups (see [62]).

Remark 5.3.1. From the de�nition, the semigroup (Tt)t≥0 is mixing if and
only if for every pair of non-empty open sets U, V ⊂ X, such that the
complementary of the return set R(U, V ) := {t ≥ 0 : Tt(U) ∩ V 6= ∅} is
(upper) bounded.

Remark 5.3.2. Let (Tt)t≥0 be a C0-semigroup on a separable Banach space
X. The semigroup (Tt)t≥0 is mixing if and only if for every non-empty
open set U ⊂ X and every open 0-neighbourhoodW , the complementary
of the return sets R(U,W ) and R(W,U) are (upper) bounded.

Proposition 5.3.3. Let (Tt)t≥0 be a C0-semigroup on a separable Ba-
nach space X. If (Tt)t≥0 has the SgSP, then (Tt)t≥0 is mixing.

Proof. Let us consider a non-empty open set U and a 0-neighbourhood
W . We claim that there exists some t1 > 0 such that t ∈ R(U,W ) ∩
R(W,U), ∀t > t1 and this implies (Tt)t≥0 is mixing.
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Fix u ∈ U and δ > 0 such that B(u, 2δ) ⊂ U and B(0, 2δ) ⊂ W . By
hypothesis, (Tt)t≥0 has the SgSP, then there are t0 > 0 and a Tt0-invariant
setK such that the restriction of Tt0 toK has the SP andK∩B(u, δ) 6= ∅.
From De�nition 5.2.1, there exists M (depending on K and δ, which we
suppose M ∈ N · t0) such that if we choose y1 ∈ K ∩ B(u, δ), y2 = 0,
s > 0 with s ∈ N · t0, and 0 = a1 = b1 < a2 = M < b2 = M + s then
there exists a periodic point x ∈ K with period 2M + s such that

‖Tt(x)− Tt(y1)‖ < δ, a1 ≤ t ≤ b1,

‖Tt(x)− Tt(y2)‖ < δ, a2 ≤ t ≤ b2.

This implies ‖x− y1‖ < δ, so ‖x− u‖ < 2δ and hence x ∈ U . From the
second line of the previous equation, we have Tt(x) ∈ B(0, δ) ⊂ W for
M ≤ t ≤M +m. Therefore t ∈ R(U,W ) for any t ≥M .

Taking now t > M , we select t′ ∈ [M,M + s] such that t + t′ ∈
N · (2M + s). We have ‖Tt′(x)‖ < δ, hence Tt′(x) ∈ B(0, δ) ⊂ W . Since
x is periodic with period 2M + s, then T t(T t

′
(x)) = x ∈ U . Therefore

t ∈ R(W,U) for any t > M .
We have proved that the complementary of R(U,W ) ∩ R(W,U) is

(upper) bounded and this �nishes the proof.

Proposition 5.3.4. Let (Tt)t≥0 be a C0-semigroup on a separable Ba-
nach space X. If (Tt)t≥0 has the SgSP then (Tt)t≥0 is Devaney chaotic.

Proof. By Proposition 5.3.3, (Tt)t≥0 is topologically transitive and, by
the de�nition of SgSP, it is clear that any vector in the space may be
approximated by a periodic point.

Proposition 5.3.5. Let (Tt)t≥0 be a C0-semigroup on a separable Ba-
nach space X. If (Tt)t≥0 has the SgSP with respect to an increasing
sequence (Kn)n of invariant compact sets, then (Tt)t≥0 is distributionally
chaotic.

Proof. We �rst recall that for single maps on compact metric spaces,
Oprocha [80] showed that the SP implies distributional chaos in our sense.
Since there is t0 > 0 such that Tt0 has the OSP, and by hypothesis the
associated increasing sequence (Kn)n of invariant sets consists of compact
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sets, then Tt0|Kn is distributionally chaotic for every n ∈ N, thus the
operator Tt0 is distributionally chaotic. Applying Theorem 3.1 in [1] we
obtain that the semigroup is distributionally chaotic.

It is well-known [62, 36, 74] that a C0-semigroup is hypercyclic (re-
spectively mixing, respectively Devaney chaotic, respectively frequently
hypercyclic) if and only if it admits a hypercyclic (resp. mixing, resp.
Devaney chaotic, resp. frequently hypercyclic) discretization (Ttn)n. In
particular, it is useful for our purposes the following characterization of
frequent hypercyclicity for semigroups in terms of the frequent hyper-
cyclicity of some of its operators [36, 74].

Proposition 5.3.6 ([36, 74]). Let (Tt)t≥0 be a C0-semigroup on a sepa-
rable Banach space X. Then the following conditions are equivalent:

(i) (Tt)t≥0 is frequently hypercyclic.
(ii) For every t > 0 the operator Tt is frequently hypercyclic.
(iii) There exists t0 > 0 such that Tt0 is frequently hypercyclic.

The implication (i)→(ii) was proved in [36] and the other was pointed
out in [74].

We point out the connection between the frequent hypercyclicity for
semigroups and the speci�cation property SgSP.

Proposition 5.3.7. Let (Tt)t≥0 be a C0-semigroup on a separable Ba-
nach space X. If (Tt)t≥0 has the SgSP, then (Tt)t≥0 is frequently hyper-
cyclic.

Proof. By proposition 5.2.2, if (Tt)t≥0 has the SgSP, then there exists
t0 > 0 such that the operator Tt0 has the OSP, then the operator Tt0
is frequently hypercyclic and, therefore, the C0-semigroup (Tt)t≥0 is fre-
quently hypercyclic (see Proposition 5.3.6 [36, 74]).

Where we have used a result from [5] about the OSP which says that
if an operator T on a Banach space satis�es the OSP then it is frequently
hypercyclic.

It is obvious that if the semigroup (Tt)t≥0 has the SgSP, then (Tt)t≥0

is frequently hypercyclic.
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Proposition 5.3.8. Let (Tt)t≥0 be a C0-semigroup on a separable Ba-
nach space X. If (Tt)t≥0 satis�es the Frequently Hypercyclic Criterion
for semigroups of [74], then every operator Tt, t ≥ 0, has the OSP and,
therefore, the semigroup (Tt)t≥0 has the SgSP.

Proof. If (Tt)t≥0 satis�es the Frequently Hypercyclic Criterion for semi-
groups of [74] then every operator Tt (t ≥ 0) satis�es the Frequently
Hypercyclic Criterion for operators of [29]. Using a result from [5] about
the OSP on operators which says that if an operator T on a Banach
space satis�es the Frequently Hypercyclic Criterion then it has the OSP,
hence the operator Tt has the OSP for every t ≥ 0, and �nally, by us-
ing Proposition 5.2.2, we conclude that the semigroup (Tt)t≥0 has the
SgSP.

In Corollary 2.3 in [74] it was showed that under some conditions,
expressed in terms of eigenvector �elds for the in�nitesimal generator A
of the C0-semigroup (Tt)t≥0, the semigroup is frequent hypercyclic, in
fact, it was proved in [74] that it satis�es the Frequently Hypercyclic
Criterion. As a result, we also obtain the result of the existence of the
SgSP under the same conditions.

Proposition 5.3.9. Let (Tt)t≥0 be a C0-semigroup on a separable com-
plex Banach space X and let A be its in�nitesimal generator. Assume
that there exists a family (fj)j∈Γ of locally bounded measurable maps
fj : Ij → X such that Ij is an interval in R, fj(Ij) ⊂ D(A), where D(A)
denotes the domain of the generator, Afj(t) = itfj(t) for every t ∈ Ij,
j ∈ Γ and span{fj(t) : j ∈ Γ, t ∈ Ij} is dense in X. If either

a) fj ∈ C2(Ij, X), j ∈ Γ, or

b) X does not contain c0 and 〈ϕ, fj〉 ∈ C1(Ij), ϕ ∈ X ′, j ∈ Γ,

then the semigroup (Tt)t≥0 has the SgSP.

Proof. The result directly follows from the Corollary 2.3 in [74] and
Proposition 5.3.8.
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Remark 5.3.10. It was pointed out in Remarks 2.4 in [74] that the spectral
criterion for chaos in [42] of C0- semigroups implies frequent hypercyclic-
ity. As a consecuence, if a semigroup satis�es the spectral criterion, then
it has the SgSP.

5.4 Applications and examples

In this section we will present several examples of C0-semigroups exhibit-
ing the speci�cation property, with particular interest in solution semi-
groups to certain PDEs. A characterization of translation semigroups
with the SgSP is also provided.

In the following examples, in order to ensure whether the solution
semigroup has the SgSP, we will check the conditions of Proposition 5.3.9
(i.e., the conditions of Corollary 2.3 in [74]) or the spectral criterion in
[42] for chaos.

Example 5.4.1 (The solution semigroup of the hyperbolic heat transfer
equation). Let us consider the hyperbolic heat transfer equation (HHTE):

τ ∂
2u
∂t2

+ ∂u
∂t

= α∂
2u
∂x2
,

u(0, x) = ϕ1(x), x ∈ R,

∂u
∂t

(0, x) = ϕ2(x), x ∈ R

where ϕ1 and ϕ2 represent the initial temperature and the initial variation
of temperature, respectively, α > 0 is the thermal di�usivity, and τ > 0
is the thermal relaxation time.

The dynamical behaviour presented by the solutions of the classical
heat equation was studied by Herzog [65] on certain spaces of analytic
functions with certain growth control. Later, the dynamical properties
of the solution semigroup for the hyperbolic heat transfer equation were
also established in [35, 62].

The HHTE can be expressed as a �rst-order equation on the product
of a certain function space with itself X⊕X. We set u1 = u and u2 = ∂u

∂t
.
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Then the associated �rst-order equation is:
∂
∂t

(
u1

u2

)
=

(
0 I

α
τ
∂2

∂x2
−1
τ
I

)(
u1

u2

)
.

(
u1(0, x)
u2(0, x)

)
=

(
ϕ1(x)
ϕ2(x)

)
, x ∈ R

We �x ρ > 0 and consider the space [65]

Xρ = {f : R→ C; f(x) =
∞∑
n=0

anρ
n

n!
xn, (an)n≥0 ∈ c0}

endowed with the norm ||f || = supn≥0 |an|, where c0 is the Banach space
of complex sequences tending to 0.

Since

A :=

(
0 I

α
τ
∂2

∂x2
−1
τ
I

)
.

is an operator on X := Xρ ⊕Xρ, we have that (Tt)t≥0 = (etA)t≥0 is the
C0-semigroup solution of the HHTE. We know from [35] and [62] that,
given α, τ and ρ such that ατρ > 2, the solution semigroup (etA)t≥0

de�ned on Xρ⊕Xρ is mixing and chaotic since it satis�es the hypothesis
of the spectral criterion [42]. Therefore, it satis�es the hypothesis of
Corollary 2.3 in [74] which implies that the solution semigroup ful�lles
the Frequent Hypercyclicity Criterion and, by the Proposition 5.3.8, it
follows that the solution semigroup of the HHTE has the SgSP.

Remark 5.4.2. With minor changes, we can apply the previous argument
to the wave equation

uttt = αuxx
u(0, x) = ϕ1(x), x ∈ R
ut(0, x) = ϕ2(x), x ∈ R


which can be expressed as a �rst order equation in Xρ⊕Xρ (see [62]), in
order to state that its semigroup solution has the SgSP.
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Remark 5.4.3. This result can be extended to the solution semigroup of
an abstract Cauchy problem of the form:{

ut = Au
u(0, x) = ϕ(x)

}
,

where A is a linear operator on a Banach space X and the generator of
the solution semigroup. If A satisfy the conditions of Corollary 2.3 in
[74], then the semigroup(Tt)t≥0 with generator A has the SgSP
Example 5.4.4 (C0-semigroup solution of the Black-Scholes equation).
Black and Scholes proposed in [26] a mathematical model which gives a
theoretical estimate of the price of stock options. The model is based on
a partial di�erential equation, called the Black-Scholes equation, which
estimates the price of the option over time. They proved that under some
assumptions about the market, the value of a stock option u(x, t), as a
function of the current value of the underlying asset x ∈ R+ = [0,∞)
and time, satis�es the �nal value problem:

∂u
∂t

= −1
2
σ2x2 ∂2u

∂x2
− rx∂u

∂x
+ ru in R+ × [0, T ]

u(0, T ) = 0 for t ∈ [0, T ]
u(x, T ) = (x− p)+ for x ∈ R+

where p > 0 represents a given strike price , σ > 0 is the volatility, r > 0
is the interest rate and

(x− p)+ =

{
x− p if x > p
0 if x ≤ p.

Let v(x, t) = u(x, T − t), then it satis�es the forward Black-Scholes
equation, de�ned for all time t ∈ R+ by

∂v
∂t

= 1
2
σ2x2 ∂2v

∂x2
+ rx ∂v

∂x
− rv in R+ × R+

v(0, T ) = 0 for t ∈ R+

v(x, 0) = (x− p)+ for x ∈ R+

This problem can be expressed in an abstract form:
∂v
∂t

= Bv,
v(0, T ) = 0,
v(x, 0) = (x− p)+ for x ∈ R+.
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where B = (Dν)
2 + γ(Dν) − rI, being Dν = νx ∂

∂x
with ν = σ√

2
and

γ = r
ν
− ν.

It was shown that the Black-Scholes equation admits a C0-semigroup
solution which can be represented by Tt := f(tDν), where

f(z) = eg(z) with g(z) = z2 + γz − r .

In [56], a new explicit formula for the solution of the Black-Scholes
equation was given in certain spaces of functions Y s,τ de�ned by

Y s,τ =

{
u ∈ C((0,∞)) ; lim

x→∞

u(x)

1 + xs
= 0, lim

x→0

u(x)

1 + x−τ
= 0

}
endowed with the norm

||u||Y s,τ = sup
x>0

∣∣∣∣ u(x)

(1 + xs)(1 + x−τ )

∣∣∣∣.
Later, it was proved in [48] that the Black-Scholes semigroup is strongly
continuous and chaotic for s > 1, τ ≥ 0 with sν > 1 and it was showed
in [79] that it satis�es the spectral criterion in [42] under the same re-
strictions on the parameters and, therefore, the hypothesis of Corollary
2.3 of [74] and, consequently, the Black-Scholes semigroup has the SgSP.

There exist other C0-semigroups related with PDEs which present the
SgSP. In fact, the examples given in [79] in the context of strong mixing
measures, satisfy either the conditions of Corollary 2.3 of [74] or the
spectral criterion in [42] and, therefore, they have the SgSP. The examples
provided in [79] include the semigroup generated by a linear perturbation
of the one-dimensional Ornstein-Uhlenbeck operator, the solution C0-
semigroup of a partial di�erential equation of population dynamics, the
solution C0-semigroup associated to Banasiak and Moszy«ski models of
birth-and-death processes.

Let 1 ≤ p < ∞ and let v : R+ → R be a strictly positive locally
integrable function, that is, v is measurable with

∫ b
0
v(x) dx < ∞ for all

b > 0. We consider the space of weighted p-integrable functions de�ned
as

X = Lpv(R+) = {f : R+ → K ; f is measurable and ‖f‖ <∞},
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where
‖f‖ =

(∫ ∞
0

|f(x)|pv(x) dx
)1/p

.

The translation semigroup is then given by

Ttf(x) = f(x+ t), t, x ≥ 0.

This de�nes a C0-semigroup on Lpv(R+) if and only if there exist M ≥ 1
and w ∈ R such that, for all t ≥ 0, the following condition

v(x) ≤Mewtv(x+ t) for almost all x ≥ 0.

is satis�ed. In that case, v is called an admissible weight function and we
will assume in the sequel that v belongs to this class of weight functions.

For the translation semigroup de�ned on Lpv(R+), there was proved
in [74] that (Tt)t≥0 is chaotic if and only if it satis�es the Frequent Hy-
percyclicity Criterion for semigroups and that (Tt)t≥0 is chaotic if and
only if every operator Tt satis�es the Frequent Hypercyclicity Criterion
for operators. A more complete characterization of the frequently hy-
percyclic criterion for the translation semigroup on Lpv(R+) was given in
[73]:

Theorem 5.4.5 (Theorem 3.10, [73]). Let v be an admissible weight
function on R. The following assertions are equivalent:

(1) The translation semigroup (Tt)t≥0 is frequently hypercyclic
on Lpv(R+).

(2)
∑

k∈Z v(k) <∞.

(3)
∫∞
−∞ v(t)dt <∞.

(4) (Tt)t≥0 is chaotic on Lpv(R+).

(5) (Tt)t≥0 satis�es the Frequently Hypercyclicity Criterion.

This result allows us to give a characterization of the SgSP for the
translation semigroup on the space X = Lpv(R+).
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Theorem 5.4.6. Let us consider the translation semigroup on the space
X = Lpv(R+), where 1 ≤ p <∞ and v : R+ → R is an admissible weight
function. We claim that the following assertions are equivalent:

(i)
∫∞

0
v(x) dx <∞.

(ii) (Tt)t≥0 has SgSP.

(iii) (Tt)t≥0 is Devaney chaotic.

(iv) (Tt)t≥0 satis�es the Frequently Hypercyclicity Criterion.

(v) The translation semigroup (Tt)t≥0 is frequently hypercyclic.

Proof. By Theorem 5.4.5 [73] and Propositions 5.3.7 and 5.3.8, it is ob-
vious that for the translation semigroup the SgSP is equivalent to satisfy
the Frequently Hypercyclicity Criterion and the SgSP is equivalent to
frequently hypercyclic.
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