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Resumen 
La fibrilación auricular (FA) es la arritmia sostenida más frecuente en la población, 

aumentando su prevalencia con la edad de los pacientes. La sintomatología de la FA reduce 

considerablemente la calidad de vida. No obstante, la mayor causa de morbimortalidad asociada 

a la FA es consecuencia del riesgo aumentado de sufrir un accidente cerebrovascular por un 

trombo de génesis cardiaca. Es por ello que existe un gran interés clínico en el diagnóstico 

precoz, tratamiento y control de los pacientes con FA. 

Este Trabajo Fin de Máster tiene como objetivo el diseño y desarrollo de un detector de FA 

que sólo utilice la información contenida en los intervalos RR de un segmento de 30 segundos 

de electrocardiograma. Para ello se emplean redes neuronales y se exploran diferentes técnicas 

para mejorar sus capacidades de aprendizaje. El detector desarrollado se integra en una 

aplicación comercial de procesado de señal electrocardiográfica de larga duración. Tras la 

integración, el detector es posteriormente testado según los estándares de aplicación en este 

ámbito, demostrándose su eficacia. 

Palabras clave: ECG, electrocardiografía ambulatoria; fibrilación auricular, detección 

basada en RR, redes neuronales.  

 

Abstract 
Atrial fibrillation (AF) is the most common sustained arrhythmia, increasing its prevalence 

with the age of the patients. The symptoms of AF considerably reduce the quality of life. 

However, the most important cause of morbid-mortality associated to AF is consequence of an 

augmented risk of suffering a stroke as a result of a cardiogenic thrombus. Because of this, 

clinical community is very interested in an early diagnosis, treatment and control of the patients 

with AF. 

The objective of this Master Thesis is to design and develop an AF detector which only uses 

the information contained in the inter-beat interval sequence of an electrocardiogram segment of 

30 seconds. To achieve this goal, artificial neural networks are employed and several 

approaches to improve their learning capabilities are explored. The developed detector is 

integrated in a commercial software solution to analyze long-term electrocardiograms. After the 

integration, the detector is tested according to the standards applying to this sector, 

demonstrating its effectiveness. 

Keywords: ECG, ambulatory electrocardiography, atrial fibrillation, RR-based detection, 

neural networks.   
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Abbreviations 
AF: atrial fibrillation. 

AFDB: MIT-BIH Atrial Fibrillation Database. 

ANN: artificial neural networks. 

AUC: area under the curve ROC. 

AV: atrio-ventricular. 

BIH: Beth Israel Hospital. 

ECG: electrocardiogram. 

ELR: event loop recorder. 

FDA: Food and Drug Administration. 

FM: frequency modulation. 

HMM: hidden Markov model. 

IEC: International Electrotechnical Commission. 

ILR: implantable loop recorder. 

KS: Kolmogorov-Smirnov. 

LTAFDB: MIT-BIH Long Term Atrial Fibrillation Database.  

MCT: mobile cardiac telemetry. 

MIT: Massachusetts Institute of Technology. 

MITDB: MIT-BIH Arrhythmia Database. 

MLP: multilayer perceptron. 

NSRDB: MIT-BIH Normal Sinus Rhythm Database. 

NSRDB_RR: Normal Sinus Rhythm RR Interval Database.  

ReLU: rectified linear unit. 

SA: sinoatrial. 

SME: small and medium-sized enterprise. 

VF: ventricular fibrillation. 
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1. Introduction 
 

Atrial fibrillation (AF) is the most common sustained arrhythmia, affecting 1–

2% of the population. It is a fast arrhythmia characterized by the set up of recurrent, 

multiple and uncoordinated electrical waves in the atria that excite the atrial 

myocardium in a totally disorganized way. As a result, atrial contraction is inexistent 

and ventricular beats are fast and arrhythmic. Patients with AF suffer from different 

symptoms, such as palpitations, fatigue, faintness or shortness of breath, among others, 

which considerably reduce their quality of life.  

Moreover, as atrial beat is inexistent during AF, blood flows passively to the 

ventricles, which can generate regions inside the atrium where blood hardly moves. 

This may cause the blood to coagulate, which can produce stroke and other thrombo-

embolic events. In fact, AF is associated with a 5-fold risk of stroke and an augmented 

morbi-mortality of stroke patients with AF, compared with those without AF. 

AF episodes can self-terminate and the triggering situations of a new episode 

are not easily predictable. Thus, only an opportunistic ECG could find the arrhythmia. 

Moreover, assessment of the AF burden is important to decide the treatment or to 

evaluate the effectiveness of a therapy. It has been estimated that 7 day continuous ECG 

monitoring may document the arrhythmia in approximately 70% of AF patients. To 

process these long-term ECG signals, either real-time or offline, AF detection 

algorithms are needed. 

The main goal of this Master Thesis is to develop a classifier able to distinguish 

between AF and non-AF rhythms using the information contained in the inter-beat 

interval sequence of an ECG segment of 30 seconds. Thus, every detected beat should 

be considered and no morphology assessment should be needed in order to eliminate 

ectopic beats that can be confused with AF rhythm. This way, the classifier could be 

integrated in any ECG analysis system that performs beat detection, such as 

implantable or external cardiac monitors or offline analysis platforms as holter analysis 

software.  

This development pursues to achieve better performance than SEEQ, an ECG 

monitoring patch developed and distributed by Medtronic. This product is, to our 

concern, the only product that publishes its AF performance results on public standard 
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databases as disclosed in IEC 60601-2-47, which is the standard that applies for 

ambulatory electrocardiographs. Thus, the objective is to overcome a sensitivity of 90% 

and a positive predictivity of 85% on MIT-BIH Arrhythmia Database, the public 

database specified by the standard.  

As a secondary objective, the classification system should be integrated in a 

software solution to analyze long-term ECG recordings developed by Nuubo, a Spanish 

company focused on ambulatory electrocardiography based on e-textiles which has 

developed the first textile holter in the market. 

To achieve these goals, artificial neural networks (ANN) will be used. Different 

approaches to improve the learning capabilities of ANN will be explored, such as 

employing rectified linear units (ReLU) in the hidden layers or using dropout 

mechanism, which temporally disables random neurons during training time to 

improve generalization. 
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2. Clinical Background 

The Heart 

Anatomy and Physiology 

The heart is one of the body muscular viscera that, together with the blood and 

the vessels, form the circulatory system. It is responsible for pumping blood allowing it 

to circulate and carry oxygen and all necessary nutrients to each cell in the body (see 

Figure 1). 

  

Figure 1. Circulatory system. In the upper part, pulmonary circulation is 
shown, formed by pulmonary artery, lungs and pulmonary vein. This circuit 
is in charge of oxygenate the blood. In the lower part, systemic circulation is 
shown, formed by aortic artery, all organs and muscles in the body and cava 
vein. Its function is to carry nutrients and oxygen to all cells in the body, 
while removing any metabolic residue. 

The human heart is divided into four chambers: the two upper chambers are 

called atria and the two lower ventricles (see Figure 2). The heart is divided by a 

partition wall, called atrial septum in the upper part and interventricular septum in the 

lower part, so chambers are only communicated in pairs, right atrium with right 

ventricle and left atrium with left ventricle. Thus, it is common to speak of the right 

heart, responsible for receiving blood with CO2 (blue in Figure 1) and pumping it to the 

lungs, and of  the left heart, responsible for receiving oxygenated blood from the lungs 
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(red) and pumping it to other body organs. Atria receive blood from veins and pump it 

to  ventricles, while ventricles pump  blood to  arterial vessels. 

Several valves avoid the blood flowing backwards, both between atria and 

ventricles (tricuspid valve on the right heart and mitral valve on the left heart) and in 

the beginning of the arterial vessels (pulmonary valve on the right, aortic valve on the 

left) (see Figure 2). [1] 

 

Figure 2. Anatomy of the heart. All four chambers can be distinguished. To 
avoid the blood flowing backwards, atria and ventricles are separated by 
tricuspid valve (right heart) and mitral valve (left heart), and also 
pulmonary valve (right heart) and aortic valve (left heart) can be found 
between ventricles and arteries. 

As it was said before, the heart is a pump which propels the blood through the 

vascular circuit to every cell in the body, in order to deliver them nutrients and oxygen 

and also to remove all residues produced in the regular activity of the cells. The 

mechanical activity of the heart is divided into two phases: diastole and systole.  

The cardiac cycle begins with the diastolic stage. In this phase, the 

atrioventricular valves open, allowing the blood to flow into the ventricles due to the 

pressure difference between these and the atria. Once the ventricles are nearly full, the 

flow of blood to them slows in a stage called diastasis. Diastole ends with the atrial 

cardiac systole, when the atria contraction pumps the blood, which still remains in 

them, through to the ventricles, allowing a 30% increase of blood volume in the 

ventricles. 
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The second phase of the cardiac cycle is the systole. In a first stage an isometric 

contraction of the ventricles takes place, in which no volume variation occurs, but 

pressure rises, causing the atrioventricular valve to close. When the intraventricular 

pressure exceeds the pressure in the artery (aorta or pulmonary, as appropriate) the 

arterial valves open. At this moment the emptying stage starts, which lasts for about 

three quarters of the systolic duration. The blood flows from ventricles into arteries 

until an isometric relaxation of the ventricular fibers occurs. Consequently, the 

interventricular pressure drops, causing the closure of the arterial valve and the 

subsequent opening of the atrioventricular valves and thus ending the cycle (see Figure 

3) [1]. 

 

Figure 3. Cardiac cycle. A) Tricuspid and mitral valves are closed because 
pressure in the ventricle is higher than in the atrium. B) When atrial 
pressure is higher than ventricular one tricuspid and mitral valves open. C) 
Atrial contraction helps to fill the ventricles, allowing a 30% increase of its 
volume. D) Ventricular contraction raises the pressure, opening of arterial 
and pulmonary valves and pumping the blood to the rest of the body. 

Electrophysiology 

Synchronized contraction of the muscular heart fibers is needed to guarantee an 

efficient cardiac pumping. Here below, the underlying electrical activity, which is 

responsible for the cardiac synchronism and the effective pumping, is described, 

starting with the micro level, the cell, and going on with the macro level, the specialized 

electric structures and the cardiac activation sequence. 

Cellular electrical activity: the action potential 

Cellular membrane is a layer of lipid molecules that almost perfectly isolates the 

extracellular and intracellular media. Both media are aqueous dissolutions of a variety 

of solutes such as proteins, glucose and ions. However, ionic concentrations of 

intracellular and extracellular media are different. This causes a potential difference 

between the interior of the cell and its exterior. This potential difference is called 
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resting potential and, in cardiac cells, has a value of approximately -90 mV (being the 

extracellular medium the reference). 

Furthermore, some cells, including cardiomyocytes and neurons, are excitable, 

that is, they are capable of autonomously increase their potential during a short period 

of time  as a consequence of an external stimulus, generating what is known as action 

potential. In muscular cells, and thus in cardiomyocytes, contraction is closely linked to 

the action potential, which has three stages (see Figure 4): 

 Depolarization: when a cell receives a stimulus that exceeds a certain threshold, 

a rapid rise of the membrane potential is triggered. This phase is due to a rapid 

influx of positive charges in the cell (mostly Na+), and can reach values of 

around 25 mV. 

 Plateau: the entrance of Na+ stops, but then another cation, Ca2+, starts entering 

into the cell, while K+ leaves it. At this stage, the electrical charge flow is almost 

zero, so the membrane potential remains nearly constant. The mechanical 

contraction of cardiomyocyte occurs during this stage.  

 Repolarization: at the end of the plateau stages, the Ca2+ inflow becomes slower 

and disappears, but the exit of K+ is maintained, so that cell potential decreases 

up to the resting value. When the resting value is restored, different ionic 

pumping mechanisms are activated to restore the ionic balance in the cell. 

 

Figure 4. Cardiomyocyte action potential. Three stages can be distinguished: 
(1) depolarization, (2) Plateau and (3) Repolarization.  

As said above, an external stimulus is needed to trigger a potential action (with 

the exception of some autotriggered cells, as it will be discussed in a next section). A 

stimulus can be activated in a laboratory by injecting current into the cell with a special 
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electrode, but in the natural state the stimulus that triggers the action potential of a 

cardiac cell comes from an adjacent cell. Cardiomyocytes are connected to their 

neighbors by the so-called intercalated disks, which contain special channels (known as 

gap junctions) that allow the exchange of ions between cells. Thus, when a cardiac cell 

is depolarized, it stimulates the depolarization of its neighbors, spreading the electrical 

stimulus across the myocardium in a short time, allowing this way a synchronous 

contraction of the cardiac muscle [2]. 

Propagation of the electric stimulus: the cardiac conduction system 

However, in physiological situations the electrical stimulus that triggers cardiac 

contraction is not originated in the myocardium, but in a particular structure consisting 

of autoexcitable cells which constitute the heart natural pacemaker. This structure is 

located at the top wall of the right atrium and is called sinus or sinoatrial node (SA 

node). A stimulus spreads throughout the atria along Bachmann’s bundle (to the left 

atrium) and along internodal atrial pathways to reach the atrioventricular node (AV 

node), which is located at the bottom of the right atrium. Atria and ventricles are 

electrically isolated in their entire contact surface and AV node constitutes the only 

physiological communication path between them. In AV node the electric signal is 

delayed, due to its slower conduction velocity. This delay allows the ventricles to fill 

with blood before the stimulus continues and ventricles contract. After passing the AV 

node, the stimulus goes through the Hiss bundle, which divides into two branches 

located within the interventricular septum. The Hiss bundle branches divide into 

multiple fibers (called Purkinje fibers) with high conduction velocity helping this way,  

the rapid spreading of the the stimulus throughout the entire ventricle, allowing, then,  

a synchronized ventricular contraction. The contraction starts in the septum and the 

lower part of the heart (called apex) and spreads to the upper part of the ventricles [1]. 

Cardiac conduction system and all its different structures can be seen in Figure 5.  

Moreover, it is important to note the absence of back-propagations of the 

electrical stimulus in a healthy heart. This is because cells are not able to generate or 

propagate an action potential during a while after finishing a precedent action 

potential, which is known as refractory period. This property allows stimuli to expire 

after spreading throughout the whole myocardium, avoiding the creation of re-entry 

circuits that generate arrhythmias. The existence of arrhythmias is a pathological 

condition that may develop serious and even fatal consequences. 
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Figure 5. Cardiac conduction system. Electrical stimulus is originated in SA 
node, and propagated throughout the atrium along Bachmann’s bundle and 
intermodal tracts. When reaching AV node, the stimulus is delayed and then 
propagated through the Hiss bundle to activate the ventricles in a down-top 
sequence. 

Electrocardiography 

Corporal fluids and organs surrounding the heart inside the chest are good 

electric conductors, so depolarization waves spreading throughout the myocardium 

generate electrical current flows across the chest. These current flows generate 

electrical potential differences that can be measured on the body surface. The recording 

of the heart electrical activity by using electrodes placed on a patient’s body is called 

electrocardiography, and the voltage versus time signal resulting from this process is 

referred to as an electrocardiogram (ECG). Electrical cardiac activity is a 3D process, so 

different electrode locations will generate different points of view of the cardiac activity. 

Each different point of view is known as a cardiac lead.  

As it has been explained before, in a healthy heart, depolarization wave has an 

ordered progression: starting in the SA node, spreading throughout the atrium, 

suffering a delay in the AV node, to pass right afterwards to the ventricles through the 

Hiss bundle, contracting the ventricular myocardium in an ordered sequence: septum 

first, and then ventricles are depolarized from down to top. This activation sequence 

has its reflection on the ECG, producing, for each heartbeat, the characteristic waves 

known as P-QRS-T. As it can be seen in Figure 6, each wave stands for the electrical 

activity of each stage of the cardiac electrical cycle:  
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 P wave: represents the atrial depolarization. 

 PQ segment: is the period between the end of the P wave and the beginning of 

the QRS complex. It represents the delay of the electrical stimulus in the AV 

node and, as no myocardium is activating at that moment, the PQ segment is 

flat. A shortening or enlarging of this segment may indicate conduction 

problems in the AV node. 

 QRS complex: represents the sequential activation of the ventricles. Q wave 

stands for the septum contraction, R wave for the lower part of the ventricles 

and S wave for the upper part. An enlarging of the QRS duration may indicate 

problems in the conduction of the Hiss bundle or its branches. 

 ST segment: is the period between the end of the S wave and the beginning of 

the T wave. During the ST segment, all ventricular myocytes are contracted and 

no electrical currents occur, so this segment is flat. An elevation or depression of 

the ST may indicate myocardial infarction or ionic imbalance. 

 T wave: represents the repolarization and the consequent relaxation of the 

ventricular myocardium. 

 

 

Figure 6. ECG waves [3]. Each wave of the P-QRS-T complex is related to the 
electrical activity of different cardiac structures. P wave: atrial 
depolarization. PQ segment: delay in the AV node. QRS wave: ventricular 
depolarization. ST segment: time during ventricular myocardium is 
contracted. T wave: ventricular repolarization. 
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Atrial Fibrillation 

Atrial fibrillation (AF) is a fast arrhythmia (tachyarrhythmia) characterized by 

the set up of recurrent, multiple and uncoordinated electrical waves in the atrium that 

excite the atrial myocardium in a totally disorganized way. As a result, atrial 

contraction is inexistent, indeed, and instead of contracting, atrial tissue just vibrates. 

This has two consequences: on the one hand, the absence of atrial contraction 

decreases the heart beating efficiency by a 20 to 30%; on the other, the existence of 

erratic and recurrent activation waves in the atrium triggers arrhythmic, uncoordinated 

and usually fast, ventricular beats [1]. 

AF usually progresses from short, rare episodes, to longer and more frequent 

attacks. Clinically, different types of AF are distinguished, based on the presentation 

and duration of the arrhythmia [4]: 

 Paroxysmal AF consists of self-terminating episodes, usually shorter than 

48h.  

 Persistent AF is present when an AF episode either lasts longer than 7 days or 

requires termination by cardioversion (either pharmacological or electrical). 

 Long-standing persistent AF is considered so when it has lasted for more 

than 1 year. 

 Permanent AF is said to exist when the presence of the arrhythmia is accepted 

both by the patient and the physician. 

In general terms, a patient is usually diagnosed from paroxysmal AF and as time 

goes on it will evolve to sustained forms of AF. The distribution of paroxysmal AF 

recurrences is not random, but clustered, and AF burden (the time ratio with and 

without AF) can vary markedly over months or even years in individual patients. 

Asymptomatic AF (silent AF) is common even in symptomatic patients, irrespective of 

whether the initial presentation was persistent or paroxysmal. 

Epidemiology and Related Pathologies 

AF is the most common sustained arrhythmia, affecting 1–2% of the population. 

Over 6 million Europeans suffer from this arrhythmia, and its prevalence is estimated 

to, at least, double in the next 50 years as the population ages. AF prevalence increases 

with age, from 0.5% at 40–50 years, to 5–15% at 80 years. Men are more often affected 
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than women. The lifetime risk of developing AF is ~25% in those who have reached the 

age of 40 [4].  

As atrial beat is inexistent during AF, blood flows passively to the ventricles, 

which can generate regions inside the atrium where blood hardly moves, causing the 

blood to coagulate, which can produce stroke and other thrombo-embolic events. In 

fact, AF confers 5-fold risk of stroke, and one in five of all strokes is attributed to this 

arrhythmia. Paroxysmal AF carries the same stroke risk as permanent or persistent AF, 

since AF episodes of few hours of duration are enough for thrombus formation. 

Ischemic strokes in association with AF are often fatal, and those patients who survive 

are left more disabled by their stroke and more likely to suffer a recurrence than 

patients with other causes of stroke.  In addition to that, as a result of the irregular, fast 

ventricular rate, patients with AF have significantly poorer quality of life, and their 

exercise capacity is considerably reduced [4][5]. 

Symptoms and Diagnosis 

Many patients with AF have no symptoms (silent AF), which makes that many 

of them remain undiagnosed, even an important amount of them will never present to 

hospital. In fact, many patients are firstly diagnosed of silent AF after suffering a 

cryptogenic stroke. When symptomatic, patients with AF suffer from palpitations, 

irregular and rapid heartbeat, fatigue (general or when exercised), faintness or 

confusion, dizziness or shortness of breath, among others. 

An irregular pulse should always raise the suspicion of AF, but an ECG 

recording with at least 30 seconds duration must be done to differentiate AF from other 

supraventricular or ventricular arrhythmias. In an ECG recording, AF shows irregular 

narrow beats (supraventricular origin) and indistinguishable P wave, although some 

low amplitude noisy activity can be observed in the  base line (especially in those leads 

that have good representation of atrial activity, as V1). As an example, in panel A) of 

Figure 7 a normal ECG trace is shown. Panel B), shows an AF ECG recording, where 

irregular narrow QRS complex can be seen, while erratic low amplitude can be 

observed in the base line, corresponding to auricular fibrillatory activity. 
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Figure 7. Normal and AF ECG. A) normal ECG trace. B) AF ECG trace, where 
irregular narrow QRS complexes can be seen, while erratic low amplitude 
can be observed in the base line, corresponding to auricular fibrillatory 
activity. 

As mentioned above, AF episodes can self-terminate and the triggering 

situations of a new episode are not easily predictable. Thus, only an opportunistic ECG 

could find the arrhythmia. Moreover, assessment of the AF burden is important to 

decide the treatment or to evaluate the effectiveness of a therapy [6]. It has been 

estimated that 7 day Holter ECG recording or daily and symptom-activated event 

recordings may document the arrhythmia in approximately 70% of AF patients, and 

that their negative predictive value for the absence of AF is between 30 and 50% [7]. 

For that reason, long term (24h to 7 days) ambulatory ECG monitoring is 

recommended for diagnosing and controlling the evolution of patients with AF; even, in 

highly symptomatic patients longer monitoring times should be evaluated, including 

the implantation of a cardiac monitor which allows over 2 year monitoring [4][5]. 

Different technical alternatives for long term cardiac monitoring will be carefully 

discussed in the next chapter.  
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3. Technical Background and State of 

the Art 

Ambulatory ECG Monitoring 

Ambulatory ECG monitoring is a widely used noninvasive technique in which 

ECG is continuously recorded over an extended period of time, typically 24 to 48 hours, 

to evaluate symptoms suggestive of cardiac arrhythmias, i.e., palpitations, dizziness, or 

syncope. Norman J. Holter was the first one to introduce the ambulatory ECG 

monitoring in the 1940s, for that reason, the ECG recording of ambulatory patients is 

nowadays known as Holter test. The original Holter monitor was a 35 kg backpack with 

a reel-to-reel FM tape recorder, analog patient interface electronics and large and heavy 

batteries which enabled it to record a single ECG lead during several hours.[8] 

Traditional Holter Test 

From Norman Holter’s time up to now, ambulatory ECG recorders have been 

gradually modified to incorporate several technological enhancements. If first Holter 

recorder was a 35 kg backpack with a reel-to-reel FM tape recorder, in the 1990s they 

had the size of a walkman and recorded the ECG on a cassette tape, and nowadays they 

use flashcard memory, digital electronics and their size is so reduced that they are 

slightly bigger than the AAA battery that they need to work. Figure 8 shows the 

technological evolution of Holter systems over the last decades. Holter recorders often 

include an event button for the patient to indicate the presence of symptoms or any 

other remarkable event. Once the monitor is returned, data are analyzed and correlated 

with marked events and symptoms.  

Although technological advances have reduced size and weight of monitors, and 

have eased the whole process of recording and processing the signals, the medical test 

known as Holter has not experienced any change for a long time. It is defined as an, 

ideally, three lead ambulatory ECG recording, during at least 24h and no more than 

48h, using adhesive and disposable electrodes wired to the recorder. [9] 

One limitation of traditional Holter systems comes from the use of adhesive 

electrodes, which can produce allergic reactions, and wires, that may introduce noise in 

ECG signal when moved (and patient is expected to move in his/her daily life), so ECG 
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signal can be very noisy in active patients. But the main limitation is that Holter 

monitoring has been demonstrated to have reduced diagnostic yield [10][11], so it will 

be ineffective when patients experience infrequent symptoms or pathologic events. For 

that reason, clinical guidelines are encouraging doctors to perform longer monitoring 

than 24h [9], at least 7 days to achieve a good diagnostic yield for AF [7], and even 

more if symptoms are infrequent. 

 

Figure 8. Evolution of Holter devices over last decades. A) Model 445 Mini-
Holter Recorder, released in 1976. B) RZ151 Series Cassette Holter, released 
in late 1990s. C) Mortara H3+, currently on market. 

Long-Term Cardiac Monitoring 

Since traditional 24h Holter has limited diagnostic yield and it is proved that 

longer monitoring times improve the diagnostic yield [10][11], many strategies have 

been developed to extend monitoring times. This section will analyze each strategy and 

present some representative products.    

Ambulatory Event Monitor 

Ambulatory event monitors (AEMs) were developed to provide longer periods of 

monitoring than a regular Holter. They are attached to the patient by chest electrodes 

and they record ECG whenever activated by the patient (by pressing an event button 
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when any symptom is felt). Some of these devices are continuously monitoring (but not 

recording) the cardiac rhythm and, if a slow, fast or irregular heart rate is detected, an 

activation is triggered. Once activated, data are stored for a programmable fixed 

amount of time before the activation and a period of time after the activation.  

Another less sophisticated form of event monitor is the post-event recorder. 

This one is not worn continuously but instead it is applied directly to the chest area 

once a symptom develops, so it cannot record the rhythm before the device is activated.  

Both event monitors and post-event recorders usually have a looping memory. 

This means that the newest event will erase the oldest when memory is fully written. 

For this reason, these devices are also referred as event loop recorders (ELRs). 

The limitations of these devices include the following. On the one hand, the 

patient has to be awake and coherent enough to activate the device, unless automatic 

event detection is build into the monitor and the automatic algorithm detects the 

cardiac event. On the other hand, a significant percentage of patients are noncompliant 

with continuous application of the devices, mostly because the skin is irritated or 

damaged by the electrodes and also because of poor quality signal during exercise. 

Finally, what maybe the most important limitation is that, in automatically triggered 

devices, the memory can be filled up with noisy signals as a result of false positive 

detections, erasing any true event recorded in the past.[8][9]  

Holter Patch 

Holter patch is a long-term ECG monitoring solution formed by an adhesive 

patch that ideally includes inside all the necessary electronics to perform a Holter-like 

monitoring during 7 days at least. The most mature solution in this field is ZIO® Patch, 

developed by iRhythm Technologies, Inc (Figure 9). The ZIO® Patch is a Food and 

Drug Administration-cleared compact, low-profile, noninvasive, water-resistant device 

that is worn for up to two weeks throughout normal activity. After using it, or after the 

symptoms that motivated the monitoring have appeared, the device is mailed by the 

patient to iRhythm for data analysis in their own data center and using a proprietary 

algorithm called ZIO® ECG Utilization Service (ZEUS).[12] 
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Figure 9. ZIO® XT Patch, by iRhythm Technologies, Inc. 

iRhythm and other patch manufacturers have made a great effort in electronics 

miniaturization and autonomy optimization, and, of course, in developing 

hypoallergenic adhesives with embedded wet gel electrodes able to last up to 14 days on 

the skin enduring movements, sweat and water. However, it is a challenge partially 

achieved attending to the work of Turakhia et al. [11], where a population of 26,751 

wearing ZIO® Patch was studied and the result was that 50% of the patches were only 

worn until day 7, and 75% until day 10 of monitoring. 

Smart Fabric Holter – NUUBO 

Nuubo is a Spanish SME-medical device company founded in 2005, and it 

focuses on cardiac monitoring solutions based on wearable medical technologies (smart 

fabrics), targeting the medical and sport medicine global markets. 

Nuubo ECG Wearable Cardiac Monitoring System is a complete and non-

invasive solution for monitoring and analysing cardiac and physical activity of an 

individual or group by using a biomedical garment, an electronic device and a software 

analysis. Nuubo’s technology is based on a garment comprising a sensor with flexibility 

and elasticity, which allows recording good quality ECG signals, even in movement, 

with improved adhesion properties but avoiding adhesive elements which produce skin 

irritations.  

BlendFix® Sensor Electrode Technology is the core sensor technology that is 

based on the use of flexible and elastic electrically conductive silicone materials 

integrated into elastomeric polymer wearable sensors “printed” into a garment for 

everyday use. Nuubo’s core sensor technology main benefits are: 

 Optimal ECG signal quality both during regular activities and sport practice. 

 Easy-to-use: it does not need supervised placement, because electrodes are 

placed on an easy to vest wearable. 
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 Comfortable: elasticity drives both comfort and adaptability to the normal 

thoracic chamber movements, enabling the patients to comfortably perform real 

day-to-day activities and sports specially. 

 Sensing versatility: electrodes can be printed onto almost any textile, and in any 

form or size. 

 Very low manufacturing cost. 

Nuubo has received CE-Mark approval for the commercial sale of both single-

lead and multi-lead solution. These product solutions are compliant with Medical 

Device Directive 93/42/EEC, and the company is also certified as a medical device 

company by ISO 9001 and ISO 13485. 

Nuubo’s portfolio offers different solutions to cover the ECG monitoring from 7  

to 60 days, both for regular and sportive activity, using 1 or 3 leads. Nuubo’s products 

have been proved to achieve high patient’s compliance with ECG signal of excellent 

quality [13][14] and to be of great utility in sport medicine [15][16]. In Figure 10 a 

sample of Nuubo’s portfolio is shown. 

 

Figure 10. Sample of Nuubo’s portfolio. A) 1 lead wearable, designed for 
longer than 4 weeks monitoring. B and C) Two concepts of 3 lead wearable, 
for 1 or 4 weeks respectively. D) 3 lead wearable specially designed for 
sportive activity. E) 3 lead wearable conceived for pediatrics monitoring. 

Mobile Cardiac Telemetry 

Mobile Cardiac Telemetry (MCT) refers to a concept that comprises all the 

systems involved in a real-time continuous attended cardiac monitoring service. MCT is 

designed to combine the benefits and avoid the limitations of Holter monitors and 

standard ELRs.  

They are worn continuously and are similar in size to the standard ELR. They 

continuously record the ECG signal of ambulatory patients and automatically generate 

and transmit an arrhythmic event. Those events can be patient or event-activated. 

Events are transmitted usually to a secondary device which communicates by cellular 
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phone network with a monitoring station, where trained staff members analyze live 

incoming patient’s data and inform the referring physician according to previously 

defined criteria.[8] 

For example, CardioNet Inc. is a company that offers mobile cardiac outpatient 

telemetry.  In this system, called Mobile Cardiac Outpatient TelemetryTM (MCOTTM), 

the patient wears a 3-lead sensor, which constantly communicates with the MCOT 

monitor, a lightweight unit that can be carried in a pocket or a purse. When an 

arrhythmia is detected according to preset parameters, the ECG is automatically 

transmitted to a central CardioNet service center, where the ECG is immediately 

interpreted and results sent to the referring physician.  The referring physician can 

request the level and timing of response, ranging from daily reports to immediate 

results.  

A similar approach has been developed by Medtronic with the product called 

SEEQ, which instead of using wired adhesive electrodes, incorporates the recording 

electronics in an adhesive patch that communicates with a secondary device 

responsible of sending events to the monitoring station. In Figure 11, MCOT of 

CardioNet and SEEQ of Medtronic are shown. Both products can monitor up to 30 

days, but MCOT must be recharged during the process and SEEQ patches must be 

replaced, since one single patch has only 7.5 days of autonomy, while its secondary 

device has 8 hours of autonomy and should be recharged. 

  

Figure 11. Mobile cardiac telemetry devices. Secondary communication 
devices can be noticed. Left: MCOT (CardioNet Inc.). Right: SEEQ 
(Medtronic), on the top right corner a detail of the electrodes embedded in 
the patch is shown. 
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Very Long-Term Cardiac Monitoring: Implantable Loop Recorder 

Implantable Loop Recorders (ILRs) are implanted beneath the skin through a 

small incision of about 2 cm in the left precordial region. They are equipped with a 

looping memory and they are either automatically-triggered or patient-triggered by 

using an external activator at the moment the symptoms arise. Once activated, they 

record one-lead electrocardiographic trace for several minutes before and after the 

event.  

In general, monitoring lasts either until a diagnosis is reached or until the 

battery runs down, which can last up to 36 months. When completion of monitoring is 

achieved, the device is removed from the patient.  The newest generation of these 

devices allows remote transmission of data to a communication base which transmits 

data to a monitoring center by using wired or cellular phone networks. Besides, many 

pacemakers and implantable cardio-defibrillators incorporate this monitoring 

functionality. [9] 

One of the most important devices of this category is Reveal LINQ, 

manufactured by Medtronic, which is the smallest ILR in the market. Its dimensions 

are 45 mm x 7 mm x 4 mm (see Figure 12), its weight is lower than 3 grams and its 

autonomy can reach up to 3 years. It is able to record up to 30 minutes of patient-

activated events and 27 minutes of automatically-triggered events.  

Complications related to the surgical procedure were one of the main 

limitations of these devices, but these have been highly mitigated by simplifying the 

procedure, that is now reduced to a simple insertion (Figure 12). This fact decreases 

implanting times and clinical resources involved in the procedure, which means saving 

economical resources to health systems. However, the most important limitation of 

these devices is still price, considering that the reimbursement of Medicare Services 

comes to near $7,000 for the whole procedure [17]. 
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Figure 12. Reveal LINQ of Medtronic. Upper left, Reveal Linq is shown to 
appreciate its reduced size. Upper right, insertion tool is shown. Bottom, 
insertion procedure is shown. 

In this section, several cardiac monitoring solutions focused on different 

monitoring times have been presented. In Figure 13 the monitoring time of each 

discussed product is shown. All these products have in common the need of ECG 

algorithms to assess the presence of an assortment of pathologies, either ECG is 

processed in real-time, as ELRs, or offline, as Holters. One of these pathologies is AF. 

In the next section several detection strategies will be discussed and different 

approaches to the problem, both from academy and industry points of view, will be 

analyzed. 
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Figure 13. ECG Monitoring Time of different products, from 24h-48h of 
traditional Holter, to 3 years of implantable loop recorders (ILRs). 

 

Atrial Fibrillation Detection 

As it was discussed previously AF shows irregular narrow beats 

(supraventricular origin) and indistinguishable P wave on an ECG recording. However, 

some low amplitude activity can be observed on the base line, depending on the 

electrocardiographic lead. So, in order to detect AF on an ECG it seems obvious that 

been able to detect beats on the ECG is a necessity. Several QRS detectors have been 

developed achieving very good detection rates [18][19]. 

Once QRS is detected, position of R wave, which is usually the highest positive 

wave of the QRS, must be determined. Then, the interbeat interval, known as RR 

interval, is calculated. Automatic AF detection algorithms employ RR intervals to 

assess their irregularity in order to determine whether AF is present or not. 

Occasionally, some detectors also perform atrial activity analysis to make a more robust 

detection, but this feature is highly lead-dependent and very susceptible to noise. 

In next sections, the evaluation methods and databases used to asses AF 

detectors will be discussed. Then, some published detectors will be reviewed and the 

results of some commercial products which incorporate AF detection will be shown.  
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Evaluation of AF detectors 

The evaluation of AF detectors is a controversial topic. Several results have been 

published using private databases, which make results impossible to reproduce. In 

addition to that, different evaluation methods are used to assess the performance of the 

detectors, as per patient detection or elimination from the statistics of those episodes 

shorter than the evaluation interval used by the detector. Consider [20], [21] and [22] 

as a brief sample. 

When public databases are used, MIT-BIH Arrhythmia Database and MIT-BIH 

Atrial Fibrillation Database are commonly employed. Both are described below. 

MIT-BIH Arrhythmia Database 

MIT-BIH Arrhythmia Database (MITDB from this point on) is a widely used 

public database which is freely available from PhysioNet [23], and comprises 48 fully 

annotated records. Annotations were done by two independent cardiologists, and when 

any discrepancy was found, it was solved by consensus. Annotations comprise beat 

annotations with its position and type label, and also rhythm labels, signal quality 

labels, and comments. 

The source of the ECGs included in the MITDB is a set of over 4000 long-term 

Holter recordings that were obtained by the Beth Israel Hospital Arrhythmia 

Laboratory between 1975 and 1979. The database contains 23 records (numbered from 

100 to 124 inclusive with some numbers missing) chosen at random from this set, and 

25 records (numbered from 200 to 234 inclusive, again with some numbers missing) 

selected from the same set to include a variety of rare but clinically important 

phenomena that would not be well-represented by a small random sample of Holter 

recordings. Each of the 48 records is slightly over 30 minutes long. 

The first group is intended to serve as a representative sample of the variety of 

waveforms and artifact that an arrhythmia detector might encounter in routine clinical 

use. The records in the second group were chosen to include complex ventricular, 

junctional, and supraventricular arrhythmias and conduction abnormalities. Several of 

these records were selected because features of the rhythm, QRS morphology variation, 

or signal quality may be expected to present significant difficulty to arrhythmia 

detectors.  [24]  

Attending to AF, only 7 records of MITDB contain paroxysmal AF, and all 

episodes totalized count 1 hour and 43 minutes. Besides, different kinds of complex 
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pathologic rhythms are included in MITDB, which joined to the low prevalence, make it 

a difficult database to test AF.  

MIT-BIH Atrial Fibrillation Database 

Firstly developed for [25], MIT-BIH Atrial Fibrillation Database (AFDB from 

this point on) is formed by 23 records of 10 hours of duration, selected from a library of 

over 8000 24 hours Holter recordings collected by the Arrhythmia Laboratory of Beth 

Israel Hospital. A total of 93 hours of AF is contained in AFDB, mostly paroxysmal 

episodes.  

Only AF, atrial flutter, junctional flutter and normal rhythm (used to indicate all 

other rhythms) are labeled. Besides, two beat annotation files were prepared. First file 

was prepared using an automated QRS detector without correcting the results, which 

may be useful for studies of methods of automated AF detection where such methods 

must be robust with respect to typical QRS detection errors. Second file includes 

manually corrected beat annotations, which may be preferred for basic studies of AF 

itself, where QRS detection errors would be confounding. Both beat annotation files 

only contain the position of the R peak of the QRS, but beats are not classified by types. 

Academic Solutions 

In this section a review through several published AF detectors is shown. Only 

those algorithms showing results on MITDB or AFDB have been selected. Table 1 shows 

a comparative study of the results. Brief description of each algorithm is provided 

below. 

Moody et al [25] employ a hidden Markov model (HMM) to represent an RR 

interval sequence using three states: short, normal or long with respect to a sliding 

average. The HMM was trained using a subset of MITDB selected to contain AF, 

normal sinus rhythm and other rhythms considered likely to confuse an AF detector. It 

was tested on AFDB, originally created for this publication.  

Artis et al [26] use the three-state modeling employed by Moody in [25] to feed 

an artificial neural network (ANN) to classify a segment of RR intervals into AF or no 

AF categories. After that, a sliding averaging postprocessing is performed to detect 

transitions. It was trained and tested using the same databases as Moody in [25]. 

Young et al. [27] use a HMM with 2 states (AF or no AF) with a sequence of 3 

RR intervals classified in 7 categories, in a similar way as Moody did in [25]. HMM 
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output is a low pass filtered to make delineation of AF episodes easier. The algorithm 

was trained and tested using the same databases as Moody did in [25]. 

Tatento and Glass, in 2000 [28], proposed an algorithm that used the 

Kolmogorov-Smirnov (KS) test to assess the irregularity of ΔRR (difference between 

consecutive RR intervals) calculated on a sequence of 100 consecutive beats. AFDB was 

used to train the algorithm and a subset of MITDB (containing only the signals with 

AF) was used for test. One year after, they published a more detailed and depurated 

version of the algorithm [29], that was tested on full MITDB and obtained better results 

than in the first one. 

Ghodrati and Marinello [30] proposed in 2008 a method based on modeling the 

RR interval as both Gaussian and Laplace probability density function, and then 

applying Neyman-Pearson detection criteria. MITDB was used for training and AFDB 

for testing. 

Couceiro et al. [31] used an artificial neural network classifier which received 

three inputs: RR irregularity assessment based in HMM in a similar way to  Moody’s in 

[25], ratio of detected P waves and spectral analysis of the atrial activity after 

performing QRS-T cancellation. A subset of AFDB was used to train the algorithm and 

complete AFDB was used for testing. 

Sarkar et al. [32] proposed a computationally simple AF detector based on 

statistical analysis of the histogram of the Lorentz plot of ΔRR. They used an AFDB 

subset and a private database to search the thresholds that optimized the area under 

curve (AUC) ROC (Receiver Operating Curve). It was tested on full AFDB, MIT-BIH 

Normal Sinus Rhythm Database (NSRDB), Normal Sinus Rhythm RR Interval 

Database (NSRDB_RR) from Physionet and other private databases. 

In 2009, Dash et al. [33] developed a detector based on a statistical approach. 

Their detector calculates turning points ratio, root mean square of successive 

differences and Shannon entropy of 128 consecutive RR intervals. Thresholds were 

found by maximizing AUC. They used AFDB and MITDB both for testing and training 

the algorithm. 

In the same year, Babaeizadeh et al. [34] published a detector that uses HMM to 

produce an AF score that is enhanced by adding atrial activity analysis. They used 

private database to develop the algorithm and they tested it on AFDB. 
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Huang et al. [35] proposed an algorithm to detect transitions between AF and 

sinus rhythm by using a statistical analysis based on KS test of the preprocessed ΔRR 

sequence. AFDB and other private database were used to train, and NSRDB and private 

database to test. 

Lian et al. [36] developed method is based on counting non null bins of the 

histogram of RR vs. ΔRR. They used AFDB, NSRDB, NSRDB_RR and MIT-BIH Long 

Term Atrial Fibrillation Database (LTAFDB) to find the threshold that maximizes AUC, 

and tested on the same databases. 

Zhou et al. [37] published last year an interesting approach that assesses the 

irregularity of RR by using the entropy of symbolic dynamics of the sequence. For this, 

after preprocessing, ΔRR is transformed to ten different symbols and 3-symbol words 

are then analyzed to detect transitions between AF and other rhythms. LTAFDB was 

used to train and AFDB, MITDB and NSRDB were used to test. 

And finally, this year, Petrėnas et al. [38] presented a low-complexity detector 

based on statistical analysis of RR sequence. An ectopic correction method is 

incorporated and short windows of 8 beats are used to detect transitions. LTAFDB was 

used to train and AFDB, and NSRDB were used to test. 

Results and other details of each algorithm can be found in Table 1. Observe 

that results in italics have been obtained using training database and bold results have 

been obtained using test database. 
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Table 1. Comparative of several published AF detectors. Italics indicates results on training database, bold indicates results on test 
database. 

      
MITDB AFDB 

Author Year Features Technique Comments 
Analyzed 

Segment 
Sens Spec +P Sens Spec +P 

Moody [25] 1983 

Characterizes each RR as 

short, normal or long 

regarding a sliding 

average. 

HMM 
Train: MITDB subset. 

Test: AFDB. 
20 beats 96.09 -- 86.79 90.65 -- 82.38 

Artis [26] 1992 Same as Moody ANN 
Train: MITDB subset. 

Test: AFDB. 

An sliding window 

postprocessing is 

applied to detect 

transitions. 

-- -- -- 92.86 -- 92.34 

Young [27] 1999 
Same as Moody, but using 

7 categories. Ventricular 

ectopics are excluded. 

HMM 
Train: MITDB subset. 

Test: AFDB. 

4 beats (detects 

 transitions) 
97.7 88.73 86.77 94.75 93.51 91.38 

Tatento [28] 2000 ΔRR histogram Statistical analysis 
Train: AFDB. 

Test: MITDB subset 
100 consecutive beats 88.80 64.10 -- 93.20 96.70 95.20 

Tatento [29] 2001 ΔRR histogram Statistical analysis 
Train: AFDB. 

Test: MITDB. 
100 consecutive beats 88.17 93.56 62.33 94.40 97.20 96.10 

Ghodrati 

[30] 
2008 

ΔRR normalized.  

Only normal beats were 

considered. 

Statistical analysis. 

Threshold to 

optimize AUC. 

Train: MITDB.  

Test: AFDB. 
30 beats 92.00 -- 73.00 89.00 -- 87.00 

Couceiro 

[31] 
2008 

HMM as Moody 

+Spectral Analysis of atrial 

activity (QRST cancel)  

+P wave detection 

ANN 

Train: AFDB subset. 

Test: full AFDB, NSRDB 

and NSRDB_RR 

12 beats -- -- -- 93.80 96.09 -- 

Sarkar [32] 2008 
Histogram of ΔRR 

Lorentz plot. 
Statistical analysis 

Train: AFDB subset + 

prívate database. 

Test: complete AFDB + 

prívate database. 

2 minutes -- -- -- 97.50 99.00 95.80 
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MITDB AFDB 

Author Year Features Technique Comments 
Analyzed 

Segment 
Sens Spec +P Sens Spec +P 

Dash [33] 2009 
RR. 

Ectopics correction 

Statistical analysis. 

Threshold to 

optimize AUC. 

Test: AFDB and MITDB 

Train: AFDB and MITDB 
128 consecutive beats 90.20 91.20 -- 94.40 95.10 -- 

Babaeizadeh 

[34] 
2009 RR and P-wave. 

HMM process RR, 

and its output is 

combined with P-

wave analysis. 

Train: private database. 

Shorter episodes than 1min 

are ignored for evaluation 

proposes. 

Detects transitions -- -- -- 94.00 99.00 98.00 

Huang [35] 2011 Preprocessed ΔRR 

Statistical analysis. 

Threshold to 

optimize AUC. 

Train: AFDB and private 

database. 

Test: NSRDB and private 

databases. 

Detects transitions -- -- -- 96.10 98.10 -- 

Lian [36] 2011 Histogram RR vs ΔRR 

Statistical analysis. 

Threshold to 

optimize AUC. 

Train: MITDB, AFDB, 

NSRDB and NSRDB_RR.  

Test on same train 

databases. 

128 consecutive beats 98.90 78.80 -- 95.80 96.40 -- 

Zhou [37] 2014 Preprocessed RR and ΔRR 
Entropy of 

symbolic analysis. 

Train: LTAFDB 

Test: AFDB, MITDB and 

NSRDB 

Detects transitions 97.33 90.78 55.29 96.89 98.25 97.62 

Petrėnas 

[38] 
2015 

Preprocessed RR. 

Ectopic correction 

Statistical analysis. 

Threshold to 

optimize AUC. 

Train: LTAFDB. 

Test: AFDB and NSRDB 
Detects transitions 

with 8 beat windows 
-- -- -- 97.00 98.30 -- 

Abbreviations HMM: Hidden Markov Model; ANN: Artificial Neural Networks; AUC: Area Under the Curve ROC; LTAFDB: MIT-BIH Long Term Atrial Fibrillation 

Database; NSRDB: MIT-BIH Normal Sinus Rhythm Database; NSRDB_RR: Normal Sinus Rhythm RR Interval Database; 
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To sum up, several AF detection algorithms have been discussed. They use 

different approaches to analyze RR irregularity, as HMM, ANN, statistical analysis or 

symbolic dynamics analysis. Some of them perform ectopic correction to remove 

irregularity sources that can be confused with AF irregularity. Also, some other 

methods use atrial activity assessment to add more information to the RR irregularity 

evaluation in order to make more informed decisions. However, results are not better 

than those obtained without using it.  

First detectors, especially those detectors inspired in Moody’s [25] 

methodology, commonly employ MITDB to train the algorithms and AFDB to test. 

Detectors using MITDB as test database have quite low positive predictivity, while 

those using AFDB as test database have higher statistics, clearly showing that MITDB is 

a more difficult database for an AF detector than AFDB one, as discussed in previous 

sections. In addition to that, using the same databases for training and testing is a 

recurrent methodological mistake. 

Industrial Solutions 

Regulations and Standards 

In general, commercial products must comply with several standards to ensure 

that their essential workings fulfill some specific features that make the product safe for 

the expected use. This fact becomes especially important when it comes to medical 

products. In particular, in the case of ambulatory electrocardiographs the standard that 

applies is IEC 60601-2-47:2012 – Medical electrical equipment — Part 2-47: 

Particular requirements for the basic safety and essential performance of ambulatory 

electrocardiographic systems. Among many other features, the evaluation method for 

AF detection is well defined in this standard. 
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Figure 14. Graphical representation of the evaluation method attending both 
to episode and duration evaluation as defined in IEC 60601-2-47:2012.  

The standard specifies that sensitivity and positive predictivity must be 

calculated both for AF episode and its duration:  

Measurement of AF episode sensitivity and positive predictivity: each 

reference episode for which overlap exists is counted as a true positive 

for purposes of determining AF episode sensitivity; any other reference 

episodes are counted as false negatives. Similarly, each algorithm-

marked episode for which overlap exists is counted as a true positive for 

purposes of determining AF episode positive predictivity; any other 

algorithm-marked episodes are counted as false positives.  

Measurement of AF duration sensitivity and positive predictivity 

requires determination of the total duration of reference and algorithm-

marked VF and of the total duration of periods of overlap as defined 

above.[39] 

Figure 14 shows a graphical representation of the evaluation method attending 

both to the episode and the duration statistics defined above. 

The standard also specifies that MIT-BIH Arrhythmia Database must be used 

for evaluating AF detection, although it is not specified if this database must be used 

during to train the system or not. 
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Commercial Products 

Despite AF evaluation is clearly disclosed in the standard, AF detection statistics 

of a commercial product are susceptible data and so they are not clearly disclosed. For 

example, AliveCor is a company that have developed an FDA-cleared mobile phone 

case with built-in electrodes to record short ECGs from the fingers of the patient. Their 

product is aimed to be a tool for detection and control of AF patients, in order to reduce 

the associated morbidity and mortality. However, no AF detection statistics are 

disclosed in their corporative web page.  

In this section, AF detection results of some commercial products are disclosed. 

Table 2 shows a comparative of AF detection results of several commercial products 

which results have been published. GE Marquett 12SL is a diagnosis algorithm for 12-

lead ECG developed by General Electric. Kinetic™ AF ECG Algorithm is part of a family 

of algorithms to process ECG developed by Monebo Technologies, who licenses its 

algorithms to third parties, as CardioComm Solutions Inc. or Freescale 

Semiconductors. DLX ECG Algorithm is used by Philips in different cardiac monitoring 

solutions. Reveal LINQ and SEEQ are both products from Medtronic and have been 

reviewed previously. 

Table 2. Comparative of AF detection results of several commercial 
products. 

 Sens (%) +P (%) Database 

GE Marquett 12SL 87.5 95.4 Private: 10761 records. 

Kinetic™ AF ECG Algorithm  95.7 83.3 Private: 250 records. 

DLX ECG Algorithm 89.0 90.0 Private: 1785 records. 

Reveal LINQ 97.4 84.4 Private: 150 records. 

SEEQ (Medtronic) 90.0 85.0 

MITDB, as specified in 

IEC 60601-2-47  

(duration assesment) 

 

As it can be seen, all products except SEEQ use private database, so compare 

results is not possible. To our concern, only SEEQ shows AF detection results on 

MITDB but it is not disclosed if this database was only used for testing or was also used 

for training the algorithm. However, it seems obvious that Medtronic, after doing their 

best for the development of their AF detector, would had performed a last train of the 

system including MITDB in the training data to obtain the best possible performance. 
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Moreover, they also declare that the statistics stands for the duration assessment and 

the evaluation has been performed as specified in standard IEC 60601-2-47. 

Performance Goals 

As it was declared, the main objective of this Master Thesis is to develop a 

classification system able to distinguish between AF and non-AF rhythms.  

AF is clinically defined as an irregular cardiac rhythm of narrow beats 

(supraventricular origin) where no P wave can be distinguished maintained during 30 

seconds at least [4]. Therefore, the developed system should only use the inter-beat 

intervals information contained in 30 seconds segments of ECG signal to perform the 

classification. Thus, no morphology assessed rejection should be made to eliminate 

ectopic beats that can be confused with AF rhythm and every beat should be considered 

to generate the RR interval. This way, the classifier could be integrated in any ECG 

analysis system that performs beat detection, such as implantable or external cardiac 

monitors or offline analysis platforms as holter analysis software. 

The performance goal of this development is to overcome the results of SEEQ, 

which is, to our concern, the only commercial product shown AF detection statistics 

based on IEC 60601-2-47 standard and public database. In other words, the objective is 

to reach sensitivity higher than 90% and positive predictivity higher than 85% on 

MITDB. 

To achieve this goal, artificial neural networks will be used and several 

strategies to improve the learning and generalization will be explored. 
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4. Methods  

Artificial Neural Networks 

Artificial Neural Networks (ANNs) are a family of statistical learning models 

inspired by biological neural networks, which are formed by millions of interconnected 

neurons. Natural neurons receive signals through synapses located on the dendrites or 

the soma of the neuron, and, whenever the signal received is strong enough, the neuron 

is activated and a signal is emitted through the axon. This signal might be sent to 

another synapse and might activate other neurons of the network. 

An ANN is composed of basic nodes, units or artificial neurons connected 

together forming a network. An artificial neuron is a computational model, that mimics 

the functioning of biological neurons: several inputs are received, the artificial neuron 

performs a weighted sum of them and the result is usually passed through a non-linear 

function (known as activation function) to produce the output. A scheme of an artificial 

neuron can be seen in Figure 15. 

 

Figure 15. Scheme of an artificial neuron. 

Firstly presented by Rosenblat in the 1950s [40], a perceptron is a neuron that 

uses the step function as activation function. Thus, for an input            and a set 

of weights           , perceptron output   is defined as follows: 

              

 

   

 

              
         
          

  

(1) 
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It has been proved that a perceptron can correctly classify samples of two 

classes if they are lineally separable; in other words, a perceptron is able to determine 

hyperplane-shaped borders to distinguish between two classes [41]. To learn the 

weights of a perceptron from classified samples, a gradient descent optimization can be 

used, but the step function discontinuity and the null derivative generate numerical 

problems. So continuously differentiable sigmoid-shaped functions, such as logistic 

function or hyperbolic tangent, are generally used instead of the step function. 

Since McCulloch and Pitts proposed the first neural network model [42], many 

other different models have been developed under the same philosophy. The most 

typical configuration is the feed-forward, layered network called multilayer perceptron 

(MLP), where neurons are arranged in layers, and a layer input is only connected with 

the immediately previous layer output. A MLP consists of three or more layers, the 

input and output layers and the hidden layers, which are not accessible from the 

outside of the network. An example of a three layer MLP is shown in Figure 16. 

 

Figure 16. Multilayer perceptron with one hidden layer diagram, where each 
circle represent one unit or neuron. 

It has been proved that any arbitrary decision region can be arbitrarily well 

approximated by feed-forward neural networks with only a single hidden layer with 

enough number of neurons using any continuous sigmoidal nonlinear activation 

function [43].  
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Backpropagation 

A key step in using an MLP model is to choose the optimal weights that 

represent the problem. Backpropagation method, proposed by Rumelhart et al in 1986 

[44], is commonly used for that task. The basic idea of this method is to backpropagate 

the errors in order to modify each weight by applying gradient descent to them. In 

order to calculate the error, backpropagation requires a known desired output for each 

input sample, so labeled samples are needed for training.  

Let say that the neural network computes a function        , where    refers 

to the p-th input sample, and W represents the collection of adjustable parameters in 

the system. An error function                 , measures de discrepancy between 

the desired output    for the sample    and the output produced by the system. The 

sum of the squared differences is usually employed as an error measure, but any other 

function can be used. Thus, each weight    
  (weight i of the neuron j of the layer n) 

should be modified as follows: 

   
          

         
          

      
       

    
  (2) 

Where    is the learning rate, and E can be the error of one sample (  ), the 

average error of a subset of the training dataset or the average error of the whole 

training dataset. Weights can be updated using these different errors, leading to 

stochastic, mini-batch or batch learning, respectively.  

Once error is computed,     
  can be calculated by using the chain rule for 

partial derivation. For example, if a simplified case of one output neuron is considered, 

error   only depends on scalars   , the desired output, and        , the output of the 

system.          can be written as a function of the last neuron inputs using 

equation (1). 

                                      (3) 

Where      refers to the output of the previous layer, which is the input of layer 

N as well. Thus, the partial derivative of the error with respect to    
  is: 

  

   
  

                  

   
  

           

  
 
     

  
 
           

   
   (4) 
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This procedure can be continued to determine the update term of any other 

weight of any other layer just by backpropagating the partial derivative of the error. 

The election of the activation function is of great importance to optimize the 

learning process. For example, using logistic or hyperbolic tangent is very efficient 

because their derivatives are defined in terms of the non differentiated function, and 

this value was calculated while evaluating the sample, so no computation is needed to 

calculate the derivative of the activation function: 

 Logistic function:       
 

         
    

 
                   (5) 

 Hyperbolic Tangent:         
              

              
                      

 
 (6) 

Output Units for Classification 

When an ANN is used as a classifier, output neurons generally implement 

softmax activation function instead of sigmoid. The main advantage of using softmax is 

that it produces an output that can be interpreted as posteriori probability of belonging 

to a particular class. 

Softmax function is a transformation that normalizes a K-dimensional vector   

of arbitrary real values to a K-dimensional vector       of real values in the range [0, 1]. 

It is defined as follows: 

       
   

     
   

 (7) 

If squared difference is taken as an error function, it is easy to see that gradient 

of the error is complicated and propagated errors will depend on the activations of all 

neighbor neurons, which is quite inconvenient for the computational performance of 

the learning process. However, if cross-entropy is used as an error function, it can be 

demonstrated that the gradient of the error turns into a linear function of the desired 
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values and the output of the network. This is the reason why, whenever softmax 

function is used as activation function of the output neurons, cross-entropy is employed 

as error function. Besides, optimizing cross-entropy usually produces better 

classification errors because it tends to allow errors to change weights even when nodes 

are saturated [45]. 

Approaches to Improve Learning 

In this section, several strategies to improve learning capabilities of an ANN are 

disclosed. Those strategies enhance learning by using momentum or tuning the 

learning rate of each layer, exploring the use of activation functions different from 

usual sigmoids, and also regularizing the value of weights, as well as more complicated 

strategies as dropout. 

Momentum 

When the error surface is highly nonspherical, learning can be very slow 

because the learning rate must be kept small to prevent divergence. The use of 

momentum can increase convergence speed because it damps the size of the steps 

along directions of high curvature. This yields a larger effective learning rate along the 

directions of low curvature [46]. Momentum adds a fraction of previous weight update 

to the current one, modifying the learning equation defined in equation (2): 

   
          

      
       

    
       

     (8) 

  denotes the strength of the momentum term.  

Learning Rate Scaling 

In most neural net architectures, the second derivative [46] of the error function 

with respect to weights in the lower layers is generally smaller than that of the higher 

layers  (considering higher layers the ones nearer to the output –see Figure 17–). As it 

is shown in equation (4), the update term of a weight of the highest layer contains the 

derivative of the activation function, which is between zero and one for usual sigmoids 

as seen in equations (5) and (6). The update term of weights of lower layers will be 

multiplied by more sigmoid derivatives, making the backpropagated error smaller 

when lower weights are updated. For this reason, weights in the lower layers will 

converge to their optimal value in a slower way than weights in the upper layers.  



 

Design and Implementation of an Atrial Fibrillation Detector Based on Neural Networks  

 

 

46 

Because of this, LeCun et al. [46] recommend that learning rates in the lower 

layers should generally be larger than in the higher ones. In this Master Thesis, a 

coefficient of 2 has been used, so the learning rate of one layer is twice as large as the 

immediate higher one. 

 

Figure 17. In a multilayered architecture, generally the second derivative of 
the error function is often smaller in lower layers [46]. 

Rectified Linear Unit 

Non-linear, bounded activation functions as hyperbolic tangent or logistic 

function have been traditionally used in neural networks. However, in last years it has 

been demonstrated that using different activation functions can lead to better results. 

In particular, the use of Rectified Linear Units (ReLU) has been proved of great interest 

[47][48]. ReLUs are neurons that activate using rectified linear function, which is 

defined as follows: 

                  

  
    

      
         
          

  
(9) 

Differences between logistic function and ReLU can be appreciated in Figure 18. 

The use of ReLUs has several advantages. First, the convergence is faster than 

using regular logistic neural net with the same topology because the derivative is one 

when the function is not null. Second, ReLUs are faster to compute because no 

exponentiation and division is required. Zeiler et al [47] experienced an overall speed 

up of 25% in their tests. Third, networks using ReLUs generalize better than its logistic 

counterpart. This is because the internal representation produced by the network is 

much more regularized. Unlike logistic units that produce small positive values when 

the input is not aligned with the internal weights, rectified linear units often output 
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exact zeros. Improved generalization can be seen as the effect of the increased sparsity 

of the internal representation. 

 

Figure 18. Logistic (blue) and ReLU (red) graph. 

Max-norm regularization 

However, using ReLU can lead to weights of huge value, creating difficulties for 

convergence; this is why it is interesting to regularize the value of weights vectors of 

each neuron. Max-norm regularization has been found to be especially useful in 

combination with ReLU and also with dropout [48], which will be described in the next 

section. Max-norm regularization is based on using an upper bound for the norm of the 

weight vector of each hidden unit. In particular, if   
  is the vector of weights incident 

to j neuron of n layer, network training is performed under the constraint    
  

 
  , 

where   is the maximum norm permitted for any vector of weights. During training, 

whenever any weight norm is higher than  , the vector is renormalized to norm   by 

using this transformation:  

  
  

 
 
 

 
   

   

   
  

  

         
  

 
  

  
       

  
 
  

  (10) 

The use of max-norm regularization usually improves performance of neural 

nets, even when ReLUs are not used. A possible justification is that constraining the 

norm of weight vectors allows using big learning rates without the possibility of weights 

rising in an uncontrolled way [48]. 
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Dropout 

A general problem of neural networks is its tendency to overfitting, meaning to 

learn the particular relationships of training dataset, especially when big architectures 

are used and training data are limited. Several techniques have been developed for 

reducing it, including stopping the training as soon as performance on a validation set 

starts to get worse or introducing weight penalties such as L1 and L2 regularization 

[49]. 

Besides, it is known that model combination nearly always improves the 

performance of machine learning methods. However, training different models and 

combining their outputs can be computationally expensive both during training and 

testing time. 

Dropout is a technique described in [48] and [50] which is designed to prevent 

overfitting and to provide a way of combining many different neural network 

architectures efficiently. The general idea is to “switch off” some randomly selected 

neurons temporarily, which means that all its incoming and outgoing connections are 

disconnected (see Figure 19). So on each presentation of each training case, each 

hidden unit is randomly omitted from the network with a p probability, so that a 

hidden unit cannot rely on other hidden units being present, preventing the occurrence 

of complex co-adaptations between neurons. p = 0.5 has been demonstrated to produce 

close to optimal for a wide range of networks and tasks.  

 

Figure 19. Dropout Neural Net Model. a) Standard neural net with 2 hidden 
layers. b) Result of applying dropout to the network on the left in a 
particular iteration of training. Crossed units have been dropped. [48] 
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That way, training a neural net with n units with dropout can be seen as training 

a collection of 2n possible networks with a tiny fraction of the training data where all 

networks share weights. During test time, an “averaged network” that contains all 

hidden units activated is employed, but then their outgoing weights must be halved to 

compensate the fact that all of them are active and not only half of them as during 

training. This is approximately equivalent to calculate the geometric mean of the 

probability distributions over labels predicted by all 2n possible networks. 

Dropout introduces a significant amount of noise in the gradients compared to 

standard stochastic gradient descent. A recommended way to reduce the effect of noise 

is to use a high momentum, between 0.95 and 0.99 [48]. Momentum of 0.95 has been 

used in this essay when using dropout. 

Toolbox 

Deep Learn Toolbox for Matlab, developed by Rasmus Berg Palm for his Master 

Thesis [51], was used for training and testing the different architectures and techniques 

explored in this Master Thesis. The toolbox includes logistic and softmax activation, 

and also options to control dropout fraction and momentum. Learning rate scaling, 

ReLU activation function and max-norm regularization were implemented to expand 

the functionality of the toolbox. 
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5. Experiments 

Database 

In this essay, MITDB and AFDB have been for training and testing the 

classification system. As it has been seen in previous section, MITDB is the database 

considered in the standard IEC 60601-2-47, and it was designed to contain a 

representation of typical cardiac pathologic rhythms and also some infrequent but 

relevant ones. MITDB has been considered as the client’s database, i.e., the database 

delivered to us by a hypothetical client with the purpose of developing an AF detector.  

MITDB was divided into three datasets: test, validation and training sets. As it 

has been discussed previously, MITDB is formed by 100 and 200 series, and only some 

records in 200 series contains AF. Sets were generated by randomly selecting a 

proportional number of records from each series and an amount of records with an 

approximately duration of AF proportional for each set. The proportion of testing set 

was a 30% of the MITDB; from the remaining 70% of MITDB, a 30% was selected for 

validation and a 70% for training sets. Table 3 illustrates the partition. 

Table 3. Composition of test, validation and train datasets. 

Dataset MITDB record names 
Total 

Records 
Time of 

AF 

Test 
103, 108, 109, 114, 119, 121, 202, 205, 

 219, 220,  228, 232, 233 
13 29 min 

Validation 
106, 112, 122, 123, 201,  203, 215,  230, 

 231 
9 25 min 

Train 
100, 101, 105, 111, 113, 115, 116, 117,  

 118, 124, 200, 207,  208, 209,  210,  212,  
 213,  214, 221,  222, 223, 234,  

22 51 min 

 

Testing dataset was used to know the expected error of the classifier when 

unknown samples are shown to the system. Validation dataset was used to evaluate the 

training, select optimal parameters and avoid overfitting. 

As discussed before, MITDB has scarce samples of AF and a wide sample of 

confusing rhythms. With the objective of increasing the number of AF samples, the 
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training dataset was enriched by adding the whole AFDB. The benefits of including 

AFDB in the training dataset are evaluated in next sections. 

As it was disclosed in the development goals, the system should classify 

segments of 30 seconds of ECG. Thus, each signal was divided into 30-second segments 

of AF or non-AF rhythm. Segments containing a part of AF and a part of non-AF 

rhythm were discarded with the aim of letting the classifier to resolve the mixed cases. 

Feature Extraction 

As it was discussed in chapter 2, several ways of assess RR irregularity have 

been used in the specific literature. Among all of them, the study of the differences 

between consecutive RR intervals is a computationally simple and descriptive measure 

of the irregularity, defined as               . In addition to that, the use of RR 

differences has the advantage of being invariant to heart rate.  

Here, Lorentz plot, which is a scatter plot of      vs.       , have been used to 

describe the irregularity of RR interval. Each point of a Lorentz plot encodes the 

uncorrelated nature of three consecutive RR intervals. For example, if three consecutive 

RR intervals are very similar, the corresponding Lorentz point will be near (0, 0) point. 

For a short-medium-long sequence, the Lorentz point will be in the first quadrant; 

long-short-long, in the second quadrant; long-medium-short, in the third quadrant; 

short-long-short, in the fourth quadrant.  

It has been proven that several arrhythmias imprint specific signatures on two 

dimensional Lorentz plots [52], although the mixture of arrhythmias or some complex 

ventricular rhythms can generate confusing patterns. In Figure 20 the Lorentz 

signature of some rhythms is shown.  
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Figure 20. Lorentz plot of different rhythms [32]. A) Normal sinusal rhythm. 
B) Series of premature atrial contractions. C) Atrial tachycardia with 
grouping beats. D) Atrial tachycardia with irregular ventricular response. E) 
Atrial fibrillation. 

When using neural networks, each instance to be classified must be represented 

by a feature array of fixed size. 2-dimensional histogram of the Lorentz plot has been 

used to do so, sampling the Lorentz space from -500 ms to 500 ms in both dimensions. 

Optimal bin width was a parameter to find. 

Developing the Classifier 

Common Parameter Tuning 

Weights of every configuration were randomly initialized using a constant seed 

to allow repeatability between experiments. 

Architectures of one and two hidden layers have been explored. 2-based 

logarithmic scale has been used to explore the number of neurons in each layer, with 

two restrictions: the maximum number of neurons in a layer was the first power of 2 

higher than the number of inputs; and the number of neurons of one layer had to be 

lower or equal to the preceding one. Softmax output units were always employed. 

Learning rate was selected from a 10-based logarithmic decreasing scale (100, 

10-1, 10-2…). When regular sigmoid-based architectures were used, the selected learning 
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rate was the highest which allowed quadratic error at training to be monotonically 

decreasing during first 20 iterations. This is a heuristic that tries to guarantee 

convergence and fast learning. When ReLU, dropout or max-norm were used, learning 

rate was ten times lower than the one used in the equivalent sigmoid-based 

architecture, since was empirically found to converge to good results. 

To avoid overfitting on training data, an early stop strategy was followed. For 

this, classification error at validation dataset was assessed on every epoch during 

enough epochs to ensure that no more improving on validation set was going to be 

achieved. Epoch with lowest validation error was selected for each topology.  

Defining Histogram Bin Size 

Database was characterized by calculating the Lorentz plot histogram of the 

consecutive RR intervals differences. Several bin sizes were explored with the objective 

of choosing the one that minimized the number of features (to reduce computational 

effort) and also minimized the classification error on the validation set. Only datasets 

generated from MITDB were used at this step. 

Bins of 100, 125, 150 and 175 ms were used. They generated feature arrays of 

121, 81, 49 and 25 elements, respectively. All possible topologies (with the described 

restrictions) were used. Topology is indicated using the nomenclature 

                   , where       and        are scalars indicating the number of 

inputs and outputs and        is an array that refers to the number of neurons in the 

hidden layers. As ANN with one or two hidden layers are employed,        can have 

one or two elements. Validation error was calculated and smaller error for each bin size 

was selected. When two topologies had the same error, the most compact was selected. 

In Annex A, Table 10 to Table 13 show the validation error obtained with 

different topologies of 1 and 2 layers for features obtained using a bin size of 100, 125, 

150 and 175 ms. Table 4 shows a summary of those tables. Minimum validation error of 

each bin size and the corresponding topology are presented. As it is shown, the bin size 

of 150 ms is the one that better reflects the complexity of the Lorentz plot for this 

problem, since it is able to obtain the minimum error. Thus, bin size of 150 ms is 

selected to generate the features for the classification system. 
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Table 4. Summary of minimum validation error of each bin size. 

Bin Size Best Topology Minimum Validation Error 

100 ms [121 128 128 2] 7.54 

125 ms [81 4 4 2] 7.68 

150 ms [49 4 2 2] 6.35 

175 ms [25 16 2 2] 6.81 

 

Adding AFDB to the training dataset 

As already discussed in previous sections, MITDB contains reduced samples of 

AF and also an important variety of complex ventricular and supraventricular rhythms 

that can be confused with AF. This is why the minimum valid error in the previous 

section was 6.35%, which is too high for the application.  

In this section, AFDB is added to the training dataset to increase the AF samples 

in order to enable the system to improve the classification between AF and other non 

AF rhythms. As determined before, bin size of 150 ms is used to generate the features.  

All possible topologies were explored: validation errors of all of them are shown 

in Annex B, Table 14. As it can be seen, adding AFDB to the training dataset allows a 

general reduction of the validation error. Best result was obtained by using a [49 64 2 

2] topology, which obtained a validation error of 5.17%, which means a reduction of the 

error in a percentage of 19% compared to previous result. 

ANN with Dropout 

In this section, results of using networks with dropout to improve the 

performance are shown. All possible architectures were explored. The validation errors 

are shown in Annex C, Table 15. The best result is obtained by a [49 64 2 2] 

architecture, that achieves 4.11% of error. This means a 21% reduction of the error 

obtained in the previous step, verifying that introducing dropout improves the 

performance, as was demonstrated in [48]. 
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ANN with Dropout and ReLU 

Using the best architecture of the previous section, the network was modified to 

use ReLU in hidden layers and training was performed again. No regularization was 

introduced in this step. This configuration obtained a validation error of 4.75%, which 

was worse than the one without ReLU. This is because ReLU propagates big gradients 

and weights can reach huge values in an uncontrolled way, converging to a sub-optimal 

solution. In this case, max-norm regularization should be used. 

Apply max-norm regularization  

In order to control the norm of weight vectors of the ReLU configurations, max-

norm regularization was used. 2, 3 and 4 were used as max-norm coefficients, and 

validation error was calculated this way. Results are shown in Table 5. 

Table 5. Validation error of networks using dropout and ReLU and different 
max-norm coefficients. 

Max-norm 
coefficient 

Topology Validation Error (%) 

2 [49 64 2 2] 4.65 

3 [49 64 2 2] 3.47 

4 [49 64 2 2] 3.45 

 

As it can be seen, the best validation error is obtained using a max-norm 

regularization coefficient of 4. This configuration achieves a validation error of 3.45%, 

which means a 16% reduction of the error obtained using only dropout, and also a 27% 

reduction of the error obtained using dropout and ReLU without regularization.  

Conclusion 

Several strategies have been implemented to improve the performance of a 

classifier based on ANN. First strategy was to enrich the training dataset with more 

samples to represent the classes in a better way, obtaining a reduction of 19% in the. 

validation error Secondly, dropout was used, and error was reduced a 21% more. Third, 

ReLU was used and, if no regularization was used, the error became worse. However, if 

max-norm regularization with a coefficient of 4 was used, the error was reduced again 

by 16%.  Results are shown in Table 6. Summing up, from the first to the last step, the 

error was reduced by a 45%. 
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Table 6. Evolution of validation error using different strategies to improve 
learning. 

Strategy Topology Validation Error (%) 

 Plain ANN  [49 4 2 2] 6.35 

 + AFDB to training set [49 64 2 2] 5.17 

 + Dropout [49 64 2 2] 4.11 

 + ReLU [49 64 2 2] 4.75 

 + Max-norm (4) [49 64 2 2] 3.45 

 

Hold Out: Results on Test Dataset 

In the previous section, it has been demonstrated that the best way to model our 

problem employing ANN is: to use a histogram bin of 150 ms (thus using 49-element 

features); to include AFDB in the training set; and to use an architecture of two hidden 

layers with 64 and 2 neurons respectively, employing dropout, ReLU and max-norm 

regularization, with 4 as regularization coefficient.  

In this section, the results of the developed system on test dataset are presented. 

For this, the hyper-parameters obtained in the previous section (learning rate, epochs, 

architecture, etc.) were used to train an ANN using training and validation datasets. 

Results on test database are shown in Table 7. As it can be seen, test error is lower than 

validation error. A possible explanation for this is that validation dataset contains 

important information not included in the training dataset that helps to improve the 

classification on test dataset. In addition to classification error, sensitivity, specificity 

and positive predictivity were calculated. 

Table 7. Hold out: results on test dataset of the developed system. 

Error (%) Sensitivity (%) Specificity (%) 
Positive 

 Predictivity (%) 

2.13 91.02 98.52 85.31 

 

The results on test dataset reflect the behavior of the system when completely 

new signals are analyzed in the future. As seen in Table 7, sensitivity and positive 

predictivity overcome the objectives proposed for this Master Thesis. 
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6. Commercial Product Development 

Prototype 

This AF classifier has been developed to be integrated in an ECG analysis 

system that requires the capability of detecting AF events. Before the integration, the 

system is trained with all available data, including AFDB and MITDB. The obtained 

ANN is a prototype of AF classifier that could be integrated in different ECG analysis 

algorithms, such as embedded systems in implantable or external cardiac monitors, or 

offline analysis platforms as holter analysis software. The performance on MITDB of 

this prototype is disclosed in Table 8.  

Table 8. Results on MITDB of the prototype of AF classifier. 

Error (%) Sensitivity (%) Specificity (%) 
Positive 

 Predictivity (%) 

1.48 94.50 97.92 89.80 

 

Integration  

The prototype developed in the previous section has been integrated in nECG 

Suite, the software to analyze long-term holter recordings developed by Nuubo.  Nuubo 

has designed and implemented its own ECG processing algorithms including QRS 

detection, QRS morphologic clustering, beat classification and arrhythmia detection.  

All ANN utilities needed for the integration were implemented and included in 

nECG Suite. Beat detections generated by nECG Suite were used as input to the 

integrated AF classifier. Also, the test environment described in IEC 60601-2-47 to 

assess the performance of the classifier was developed. For that purpose, some utilities 

suggested by the standard and available in www.physionet.org were used: 

 xform: generates a new signal file and annotation file with different sampling 

frequency, amplitude and also a portion of the record can be copied. This was 

used to resample the signal, since MITDB is sampled at 360 Hz and nECG Suite 

is tuned to work with a sampling frequency of 250 Hz. Complete signals and 

their original amplitudes were used. 

http://www.physionet.org/
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 epicmp: implements the VF, AF, and ST episode-by-episode comparison 

algorithms specified by the current American National Standard for ambulatory 

ECG analyzers (ANSI/AAMI EC38:2007, which is the implementation in the US 

of IEC 60601-2-47).  

Also, WFDB C# Wrapper, developed by Boutemine Oualid [53], was used to 

read signals and write annotations in the format specified in WFDB Programmer’s 

Guide [54]. 

The result of the AF performance assessment based on duration of the episodes 

as indicated in IEC 60601-2-47 is disclosed in Table 9. As it can be appreciated, nECG 

Suite reaches a sensitivity of 93% and a positive predictivity of 87%, which is slightly 

lower than the statistics of the prototype shown in Table 8. This small reduction could 

be explained because of the differences in the position of the analysis window used by 

the classifier. 

In order to allow comparisons, SEEQ statistics are also disclosed in Table 9. 

SEEQ shows a sensitivity of 90% and positive predictivity of 85%. Therefore, the 

developed AF classifier integrated in nECG Suite overcomes the performance of SEEQ, 

which was one of the proposed objectives of this Master Thesis, together with the use of 

the information contained in the inter-beat interval sequence of a 30 second segment to 

perform the classification. 

Table 9. AF performance on MITDB (duration measurement as disclosed on 
IEC 60601-2-47) of the developed prototype integrated in nECG Suite by 
Nuubo, compared with SEEQ (Medtronic). 

 Sensitivity (%) 
Positive 

Predictivity (%) 

nECG Suite 93 87 

SEEQ 90 85 
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7. Conclusions 
 

The main goal of this Master Thesis was to develop a classifier able to 

distinguish between atrial fibrillation (AF) and non-AF rhythms using the information 

contained in the inter-beat interval sequence of a segment of 30 seconds. Thus, every 

detected beat is considered and no morphology assessment is needed in order to 

eliminate ectopic beats that can be confused with AF rhythm. This way, the classifier 

could be integrated in any ECG analysis system that performs beat detection, such as 

implantable or external cardiac monitors or offline analysis platforms as holter analysis 

software. 

In the first section, heart physiology and AF mechanisms and symptoms have 

been discussed. AF is the most common sustained arrhythmia, affecting 1–2% of the 

population. It is a fast arrhythmia characterized by the set up of recurrent, multiple and 

uncoordinated electrical waves in the atrium that excite the atrial myocardium in a 

totally disorganized way. As a result, atrial contraction is inexistent and ventricular 

beats are fast and arrhythmic. AF is associated with a 5-fold risk of stroke and an 

augmented morbi-mortality of patients with AF. Also, those patients suffer from 

palpitations, fatigue, faintness or shortness of breath, among other symptoms, which 

considerably reduce their quality of life and their exercise capacity. 

In the second section, several strategies to monitor the ECG ambulatorily were 

analyzed, going from the traditional holter test to more innovative techniques focused 

on long-term monitoring, as adhesive patches, textile holter or implantable cardiac 

monitors. Together with this, a review of the state of the art in AF detection was 

performed, considering both academic solutions and industrial solutions. Among the 

industrial solutions, SEEQ (by Medtronic) is, to our concern, the only one which 

publishes its AF detection statistics on public standard databases (MIT-BIH 

Arrhythmia Database), achieving a sensitivity of 90% and a positive predictivity of 85%. 

To overcome these statistics was an objective of this Master Thesis.  

Artificial neural networks (ANN) were the chosen tool to achieve the proposed 

objective. In the fourth section a brief description of ANN has been performed. And 

also, several techniques to improve their learning capabilities have been discussed, 

such as employing rectified linear units (ReLU) in the hidden layers or dropout 
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mechanism, which temporally disables random neurons during training time to 

improve generalization. 

Using public annotated database from Physionet (MIT-BIH Arrhythmia 

Database and MIT-BIH Atrial Fibrillation Database), and following a hold out strategy, 

three dataset were made, one to train, another to validate the results of the training and 

a third one to test the final performance. Besides, best features to describe the problem 

were determined by using plain ANN. Then, the mentioned techniques to improve 

learning capabilities were explored in an incremental approach, verifying that each new 

technique reduced the classification error on the validation dataset.  

The result of this optimization process was a reduction of classification error in 

a 45%. The best network had two hidden layers of 64 and 2 neurons respectively and 

implemented dropout, softmax output units, ReLU in hidden layers and max-norm 

regularization. On test dataset, classification error was 2.13%, sensitivity 91.02%, 

specificity 98.52% and positive predictivity 85.31%. So the behavior of this classifier 

when completely new signals are analyzed overcomes the proposed objective. 

This classification system was prototyped to be introduced in an ECG analysis 

system that requires the capability of detecting AF events. To do this, a system with the 

hyper-parameters obtained in the develop stage was trained using all available data, 

i.e., training, validation and test datasets. This prototype had a classification error on 

MIT-BIH Arrhythmia Database of 1.48%, a sensitivity of 94.50%, a specificity of 

97.92% and a positive predictivity of 89.80%. 

Finally, the prototype was integrated in a software solution to analyze long-term 

holter recordings developed by Nuubo, called nECG Suite. This software uses 

proprietary algorithms to perform QRS detection, QRS morphology clustering, beat 

classification and arrhythmia detection. Also, the test environment described in IEC 

60601-2-47 to assess the performance of the classifier was developed. The evaluation 

shows that nECG Suite has a sensitivity of 93% and a positive predictivity of 87%, 

overcoming the proposed objective of 90% and 85% respectively fulfilling the 

requirement of only using the inter-beat interval sequence contained in 30-second 

segments. 
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A. Annex: Bin size exploration 
Table 10. Validation error of different topologies of 1 and 2 layers using a bin 
size of 100 ms. Best result is underlined and bold. 

Bin Size: 100ms 

 Topology Validation Error (%) 

1 Layer 

[121 2 2] 9.99 

[121 4 2] 9.32 

[121 8 2] 7.95 

[121 16 2] 9.20 

[121 32 2] 8.76 

[121 64 2] 8.76 

[121 128 2] 7.95 

2 Layers 

[121 2 2 2] 10.30 

[121 4 2 2] 9.63 

[121 4 4 2] 9.28 

[121 8 2 2] 8.30 

[121 8 4 2] 9.16 

[121 8 8 2] 8.91 

[121 16 2 2] 8.20 

[121 16 4 2] 8.49 

[121 16 8 2] 8.84 

[121 16 16 2] 8.03 

[121 32 2 2] 8.93 

[121 32 4 2] 8.99 

[121 32 8 2] 8.53 

[121 32 16 2] 8.35 

[121 32 32 2] 8.72 

[121 64 2 2] 8.14 

[121 64 4 2] 8.12 

[121 64 8 2] 8.45 

[121 64 16 2] 8.32 

[121 64 32 2] 8.24 

[121 64 64 2] 8.37 

[121 128 2 2] 8.16 

[121 128 4 2] 7.93 

[121 128 8 2] 7.66 

[121 128 16 2] 8.03 

[121 128 32 2] 7.99 

[121 128 64 2] 8.64 

[121 128 128 2] 7.54 

  



 

Design and Implementation of an Atrial Fibrillation Detector Based on Neural Networks  

 

 

68 

Table 11. Validation error of different topologies of 1 and 2 layers using a bin 
size of 125 ms. Best results are underlined and bold. 

Bin Size: 125ms 

 Topology Validation Error (%) 

1 Layer 

[81 2 2] 10.50 

[81 4 2] 8.68 

[81 8 2] 9.99 

[81 16 2] 9.92 

[81 32 2] 9.05 

[81 64 2] 8.37 

[81 128 2] 8.49 

2 Layers 

[81 2 2 2] 9.40 

[81 4 2 2] 8.32 

[81 4 4 2] 7.68 

[81 8 2 2] 8.03 

[81 8 4 2] 9.22 

[81 8 8 2] 10.36 

[81 16 2 2] 9.18 

[81 16 4 2] 8.30 

[81 16 8 2] 9.32 

[81 16 16 2] 9.11 

[81 32 2 2] 10.26 

[81 32 4 2] 9.59 

[81 32 8 2] 9.51 

[81 32 16 2] 8.78 

[81 32 32 2] 9.03 

[81 64 2 2] 9.03 

[81 64 4 2] 8.93 

[81 64 8 2] 8.43 

[81 64 16 2] 8.80 

[81 64 32 2] 8.66 

[81 64 64 2] 8.76 

[81 128 2 2] 8.74 

[81 128 4 2] 7.91 

[81 128 8 2] 8.59 

[81 128 16 2] 8.91 

[81 128 32 2] 8.49 

[81 128 64 2] 7.68 

[81 128 128 2] 8.30 
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Table 12. Validation error of different topologies of 1 and 2 layers using a bin 
size of 150 ms. Best result is underlined and bold. 

Bin Size: 150ms 

 Topology Validation Error (%) 

1 Layer 

[49 2 2] 8.57 

[49 4 2] 9.32 

[49 8 2] 7.66 

[49 16 2] 8.62 

[49 32 2] 8.78 

[49 64 2] 7.54 

2 Layers 

[49 2 2 2] 8.26 

[49 4 2 2] 6.35 

[49 4 4 2] 8.57 

[49 8 2 2] 8.37 

[49 8 4 2] 8.24 

[49 8 8 2] 7.52 

[49 16 2 2] 7.99 

[49 16 4 2] 8.78 

[49 16 8 2] 7.85 

[49 16 16 2] 8.76 

[49 32 2 2] 8.84 

[49 32 4 2] 7.54 

[49 32 8 2] 8.12 

[49 32 16 2] 7.54 

[49 32 32 2] 8.05 

[49 64 2 2] 7.35 

[49 64 4 2] 6.79 

[49 64 8 2] 7.56 

[49 64 16 2] 7.74 

[49 64 32 2] 8.24 

[49 64 64 2] 7.93 
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Table 13. Validation error of different topologies of 1 and 2 layers using a bin 
size of 175 ms. Best result is underlined and bold. 

Bin Size: 175ms 

 Topology Validation Error (%) 

1 Layer 

[25 2 2] 8.64 

[25 4 2] 8.59 

[25 8 2] 9.26 

[25 16 2] 8.01 

[25 32 2] 9.38 

2 Layers 

[25 2 2 2] 7.91 

[25 4 2 2] 9.45 

[25 4 4 2] 9.65 

[25 8 2 2] 8.59 

[25 8 4 2] 7.93 

[25 8 8 2] 7.83 

[25 16 2 2] 6.81 

[25 16 4 2] 9.24 

[25 16 8 2] 7.47 

[25 16 16 2] 7.37 

[25 32 2 2] 8.10 

[25 32 4 2] 7.64 

[25 32 8 2] 8.64 

[25 32 16 2] 8.59 

[25 32 32 2] 7.54 
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B. Annex: Training with AFDB 
 

Table 14. Validation error of different topologies of 1 and 2 layers using a bin 
size of 150 ms and including AFDB in the training dataset. Best result is 
underlined and bold. 

 Topology Validation Error (%) 

1 Layer 

[49 2 2] 7.08 

[49 4 2] 6.83 

[49 8 2] 5.56 

[49 16 2] 6.04 

[49 32 2] 6.31 

[49 64 2] 6.44 

2 Layers 

[49 2 2 2] 7.99 

[49 4 2 2] 6.06 

[49 4 4 2] 6.68 

[49 8 2 2] 5.88 

[49 8 4 2] 6.58 

[49 8 8 2] 6.35 

[49 16 2 2] 5.81 

[49 16 4 2] 6.79 

[49 16 8 2] 6.27 

[49 16 16 2] 6.27 

[49 32 2 2] 6.27 

[49 32 4 2] 6.19 

[49 32 8 2] 6.56 

[49 32 16 2] 6.54 

[49 32 32 2] 5.65 

[49 64 2 2] 5.17 

[49 64 4 2] 6.08 

[49 64 8 2] 5.19 

[49 64 16 2] 5.92 

[49 64 32 2] 5.27 

[49 64 64 2] 5.79 
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C. Annex: ANN with Dropout 
 

Table 15. Validation error of different topologies of 1 and 2 layers using 
dropout networks. Best result is underlined and bold. 

 Topology Validation Error (%) 

1 Layer 

[49 2 2] 5.71 

[49 4 2] 8.10 

[49 8 2] 8.32 

[49 16 2] 6.95 

[49 32 2] 6.64 

[49 64 2] 5.23 

2 Layers 

[49 2 2 2] 11.87 

[49 4 2 2] 5.31 

[49 4 4 2] 9.05 

[49 8 2 2] 6.23 

[49 8 4 2] 6.60 

[49 8 8 2] 8.43 

[49 16 2 2] 5.63 

[49 16 4 2] 9.13 

[49 16 8 2] 6.02 

[49 16 16 2] 9.09 

[49 32 2 2] 5.07 

[49 32 4 2] 6.56 

[49 32 8 2] 7.97 

[49 32 16 2] 6.73 

[49 32 32 2] 6.95 

[49 64 2 2] 4.11 

[49 64 4 2] 4.36 

[49 64 8 2] 4.50 

[49 64 16 2] 4.59 

[49 64 32 2] 5.29 

[49 64 64 2] 5.23 

 

 


