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On the use of stochastic spectral methods in deep excavation inverse

problems

Antonio Cañavate-Grimal∗†, Antonio Falcó∗, Pedro Calderón‡, Ignacio Payá-Zaforteza‡

11th May 2015

Abstract

The back analysis or inverse analysis of the field instrumentation data is a common technique to ascertain the

design parameter validity in deep excavation projects. That analysis is a process full of uncertainties and relies

greatly on the expert judgement. Furthermore, deep excavation geotechnical models tend to be computationally

very expensive making the inverse analysis a very lengthy process. In this paper, a Bayesian-type methodology

to solve inverse problems which relies on the reduction of the numerical cost of the forward simulation through

stochastic spectral surrogate models is presented. The proposed methodology is validated with three calibration

examples.

1 Introduction

Soil is a highly non-linear material whose strength and stiffness depends on stress and strain levels. Numerous

constitutive models have been developed to simulate the most important features of soil behaviour [1, 2, 3] although

there is no agreement on which is the best to model a particular type of soil. The choice of the model rests on the

available soil information and the particular design situation. In addition, determination of soil parameters is a

difficult task due mainly to the ground heterogeneity, the boundary conditions uncertainty (water table position,

layering. . . ), the disturbance suffered by soil specimens during geotechnical sampling and the small quantity of

soil surveyed compared to the mass of ground affected by any foundation. Hence, the bulk information yielded by

the field surveying and laboratory testing program must be interpreted by an experienced engineer, adding more

uncertainty to the choice of the constitutive model and its parameters [4]. In order to ascertain the parameter

validity, it is common in geotechnical engineering to perform back analysis or inverse analysis procedures from

field instrumentation. The field observations might not be as precise as desired due to the hard site conditions.
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Hence, to solve a geotechnical inverse problem means to estimate partially known parameters from indirect noisy

observations. This is not an academic issue since it has practical applications, for instance, the information recorded

during the early stages of the construction might be used to update and validate the initial design predictions. The

back analysis is a tool which enables to gain insight and to understand better the soil-structure system behaviour

[5].

Inverse problem resolution is not new since numerous authors have studied it previously [6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16]. Many of those studies [6, 8, 9, 10, 11, 14] address the back analysis as an optimization problem

(i.e. obtaining the set of parameters which minimize an objective function). That approach leads to estimated

parameters which reliability is generally unknown [15]. As the model might not be able to reproduce perfectly

the actual response and the observations might suffer measurement errors, the solution should take into account

the model and observations uncertainties. For that reason, the Bayesian approach is the appropriate methodology

to solve inverse problems [17, 18]. In geotechnical engineering, the solution of statistical inverse problems can be

a computationally intensive task. The numerical burden arises mainly in two ways [19]: (i) the large number of

parameters that the model might require and (ii) the computational cost that might require to run of a single

realization.

The main objective of this paper is to present a Bayesian methodology to determine at low numerical expense

the model parameters from the observed response at one construction stage of a deep excavation. To that end,

the Bayesian methodology is briefly outlined in the first part of this paper. The Bayesian methods regard the

model parameters as random variables which are updated once a set of observations are known. As the solution

of the problem is posed in terms of random variables, the stochastic spectral representation can be used to reduce

the numerical burden [20, 21]. The random variable spectral representation is the backbone of the non-intrusive

stochastic finite element methods (SFEM) [22, 23] and hence those methods are briefly described. Once the

theoretical framework has been established, the proposed methodology to solve inverse problems is adequately

presented. The spectral approach raises two benefits (i) the substantial reduction of computational cost when

performing the optimization calculations on the surrogate model constructed by means of SFEM and (ii) the

possibility of an analytical computation of the statistical relationship between the different observations (i.e. the

covariance matrix). However, the surrogation brings a modelling error affecting the solution. One of the main

findings of this paper is the algorithm developed to estimate the surrogation error at low numerical expense.

Finally, the proposed methodology is validated by the study of three calibration problems of increasing complexity.
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2 Inverse problem solution

The connection between the parameters m and the observations d defines the following deterministic forward or

response model g(m), namely:

m → d = g(m). (1)

The predicted values cannot be identical in general to the observed values due to observational and modelling

errors. The goal of the inverse problem is to infer the N model parameters m from a set of n imperfect observations

d. In the Bayesian approach, m and d are vectors of random variables. ρd(d) is the probability density function

(pdf) of the observations and ρm(m) encodes any available prior knowledge about the inputs. The key point of

Bayesian inference is the way that the a priori distribution ρm(m) is updated to the a posteriori distribution

σm(m) once a set of observations dobs is known.

The difference between the observed values dobs and the actual response d is the observational error. The

vector of n residuals εD is regarded in this paper Gaussian of zero mean:

εD = d− dobs ∼ N(0,CD), (2)

where the covariance matrix CD measures the size of those residuals and gives the dependence between them. The

a priori observation distribution can be written as [24]:

ρd(d) ∝ exp

[

−1

2
(d− dobs)

TC−1
D (d− dobs)

]

, (3)

As m and d are regarded independent random variables, the joint pdf is given by (see Figure 1a):

ρ(d,m) = ρd(d)ρm(m) (4)

If the forward model g(m) were perfect (i.e. modelling errors free), each parameter vector would yield only one

observation vector. Nevertheless, most often, the underlying physical theory lacks of some fundamental knowledge

or fails to achieve a perfect parametrization [17]. Therefore, the joint probability density Θ(d,m) is required to

describe the correlations that correspond to the physical theory, together with the inherent uncertainties of the

theory (see Figure 1b).

The modelling residual vector is the difference between the model greal (perfect but unknown) and the available

forward model g(m) (known but imperfect). Again, that residual is assumed in this paper as an additive Gaussian

of zero mean:

εG(m) = greal − g(m)

εG ∼ N(0,CG)
(5)

3



Figure 1: Inverse problem resolution (a) a priori parameter and observation marginals, ρm(m) and ρd(d) re-
spectively, and joint probability functions, ρ(d,m), (b) model joint pdf, Θ(d,m), (c) a posteriori parameter and
observation joint pdf, σ(d,m), and the a posteriori marginal parameter probability distribution function (pdf),
σm(m) (adapted from [17])

where CG is the model covariance matrix giving information about the size of the residuals and the correlation

between them. The matrix CG could be regarded as the model epistemic error and expert judgement is required

to estimate it. When the dependence of d on m is mildly non-linear, Θ(d,m) can be expressed as [17]:

Θ(d,m) ∝ exp

[

−1

2
(g(m)− d)TC−1

G (g(m)− d)

]

. (6)

The conjunction of the information contained in ρ(d,m) and Θ(d,m) results in the updated or posterior

probability density function. The solution of the inverse problem is a new or a posteriori pdf σm(m) which

incorporates the information given by the observed values dobs and it is consistent with the amount of modelling

and observational uncertainty [17] (see Figure 1c):

σm(m) ∝ ρm(m) exp

[

−1

2
(dobs − g(m))T [CG +CD]

−1 (dobs − g(m))

]

. (7)

3 Stochastic Finite Element Methods (SFEM)

The deterministic finite element method (FEM) yields one solution from a set of known parameters. The de-

terministic approach to a problem cannot cope rigorously with the intrinsic uncertainty of loads and material

properties [25]. Hence, uncertainty is taken roughly into account by means of safety factors which might factorize

either response or parameters. If the loading and material properties could be expressed as probability distribution

functions, the solution of the model should be given in the same terms. The stochastic finite element methods

(SFEM) [22, 25, 20, 23] allow the propagation of these uncertainties throughout the model. The SFEM can be used
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seamlessly with the Bayesian approach because both techniques regard the model parameters as random variables.

The SFEM are divided into two groups: intrusive and non-intrusive methods.

The intrusive methods are based on the solution of the system of governing equations for the spectral coefficients

in the polynomial chaos representation [22, 23]. Hence, an adaptation of the existing software is required in this

approach.

The non-intrusive strategy is based in creating a response surface, which depends on the model random pa-

rameters, so that a surrogate of the original forward model can be built up. In this paper, a non-intrusive

spectral projection method is embraced because it can tackle with non-linear models and any FEM software

can be used. As the parameters m = (m1, . . . ,mN ) are regarded random variables, a term gi(m) of the vector

g(m) = (g1(m), . . . , gn(m)) is also a random variable. Recall that gi(m) is a random variable where the variance

of gi(m) is finite, that is, var gi(m) <∞. The variance of gi(m) is defined as var gi(m) = E[(gi(m)− E[gi(m)])2],

where E[•] denotes the expectation operator. After normalizing mj to ξj , the forward model can be expressed as

an infinite Fourier-type expansion:

gi (m) = si (ξ) =
∞
∑

j=0
uijΨj (ξ1, ..., ξN ), (8)

where the functionals Ψj(ξ) are the so-called chaotic polynomials [22, 20], here ξ = (ξ1, . . . , ξN ), and uk are

the expansion coefficients. The set {Ψk}k∈N is known as a multidimensional polynomial chaos (PC) basis [23]

and expression (8) is called the spectral representation of gi(m). This spectral stochastic framework is based on

Wiener’s [26] ideas of homogeneous chaos which were developed later by Ghanem and Spanos [22]. The variable

gi(m) is an element of an infinite dimensional space (polynomial chaos) which randomness is accounted by ξ. Each

member of the multidimensional PC basis Ψk can be written as a product of the appropriate one-dimensional

polynomials ψi of the corresponding random variable [23, 20]:

Ψk (ξ1, ξ2, ..., ξN ) =

N
∏

i=1

ψαk
i
(ξi) , (9)

where αk
i ∈ Z+ denotes the order of the one-dimensional polynomial in ξk and it can be seen as an element of

a multi-index αk = (αk
1 , . . . , α

k
N ) ∈ Z

N
+ . Henceforth, we will identify k with αk such that k ≤ k′ if and only if

αk ≤ αk′ where we consider in Z
N
+ the lexicographical order. In particular, for k = 0 we have α0 = 0 and hence

Ψ0(ξ) is a constant function. Moreover, by using tensorial notation we can write expression (9) as:

Ψk =
N
⊗

i=1

ψαk
i

(10)

Let δm,n denote the Kronecker delta, that is, δm,n = 0 if and only if n 6= m, otherwise δn,n = 1. The unidimensional
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functions, ψm, satisfy:

E[ψm·ψn] ∝ δmn, (11)

for allm,n and hence they are orthogonal polynomial functions. Assuming that ξ is a random vector of independent

and identically distributed random variables then, by using tensorial notation, we have:

E[Ψk·Ψl] = E

[

N
⊗

i=1

ψαk
i

N
⊗

l=1

ψαl
i

]

= E

[

N
⊗

i=1

ψαk
i
ψαl

i

]

=
N
∏

i=1

E
[

ψαk
i
ψαl

i

]

∝
N
∏

i=1

δαk
i ,α

l
i
= δαk,αl (12)

There is a correspondence between the type of generalized polynomial chaos ψm, and their underlying random

variable ξ as shown in Table 1 [27, 20]. The partial tensorization of the multidimensional polynomial chaos basis

and its orthogonality simplifies greatly the procedure of statistical calculations. For practical purposes, expression

(8) must be truncated up to a certain polynomial degree p :

si (ξ) =
P
∑

j=0
uijΨj (ξ1, ..., ξN ) +

∞
∑

k=P+1

uikΨk (ξ1, ..., ξN )

= s̃i (ξ) + εTi
(ξ) ≈ s̃i (ξ) .

(13)

The number of components of the truncated series s̃i (ξ) is given by:

P + 1 =







N + p

p






=

(N + p)!

N !p!
(14)

We remark that from (13) it is known that s̃i (ξ) ∈ span{Ψj : j = 0, . . . , P} and the truncation error εTi
(ξ) belongs

to orthogonal complement of the linear subspace span{Ψj : j = 0, . . . , P}. Then, from expressions (9) and (11) the

covariance must meet:

cov
[

s̃i, εTj

]

= 0, (15)

for all i and j. The covariance is defined as cov
[

s̃i, εTj

]

= E[(s̃i − E[s̃i])(εTj
− E[εTj

])].

The non-intrusive SFEM replaces the original model gi(m) by a N -dimensional surface built with orthogonal

polynomials s̃i (ξ). That surface might be regarded as a surrogate of the forward model, a sort of vademecum

that includes all solutions for every possible value of the parameters. The spectral representation enables (i) the

reduction of the computational burden (the evaluation of a polynomial might take far less than the original forward

model) and (ii) the disclosure of the statistical structure of the observations as shown below.

The expansion coefficients uij in equation (13) are computed from realizations of the original forward model.

Thus, the original model is a sort of black box which generates information to construct the response surface.

Among the different non-intrusive techniques [23], the least squares fit is adopted in this paper because the number

of realizations required to determine the expansion coefficients is lower than the other available techniques [28].
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Distribution of ξ PC basis polynomials Support

Gaussian Hermite (−∞,∞)

Gamma Laguerre [0,∞)

Beta Jacobi [a, b]

Uniform Legendre [a, b]

Poisson Charlier {0, 1, 2, . . .}
Binomial Krawtchouk {0, 1, . . . , N}

Negative binomial Meixner {0, 1, 2, . . .}
Hypergeometric Hahn {0, 1, . . . , N}

Table 1: Correspondence between the type of generalized polynomial chaos and their underlying random variables
[20]

Sudret’s [29] technique to calculate the expansion coefficients is used in this paper.

4 Methodology

Once an (i) a priori statistical estimation of the parameters ρm(m) is established, (ii) the model uncertainty (after

some judgement) is encoded in the covariance matrix CG and (iii) the vector of observations dobs and its covariance

matrix CD are known, the a posteriori parameter joint pdf σm(m) which is the solution of the inverse problem is

given by expression (7). If the original forward model model g(m) is computationally heavy, the computation of the

parameter marginal distributions, the maximum likelihood point or any other statistical measure of interest might

be numerically unfeasible. For those reasons, the truncated expression of g(m) (equation (13)) might alleviate the

numerical needs. The computational burden is minimized using a linear model for each observation expressed in

terms of ξi:

g1(m) = s1(ξ) ≈ s̃1(ξ) = u10 + u11ξ1 + . . .+ u1NξN ,

...

gn(m) = sn(ξ) ≈ s̃n(ξ) = un0 + un1ξ1 + . . .+ unNξN .

(16)

Replacing a term of the original forward model si(ξ) for a linear surrogate s̃i(ξ) makes appear a truncation error

or residual εTi
(ξ) which is defined as:

εTi
(ξ) = si (ξ)− s̃i(ξ). (17)

The truncation residual εTi
(ξ) is regarded as a modelling error. The matrix CT (ξ) gives information about the

relation between the different residuals and their size (i.e it quantifies the truncation error). Hence, the solution

of the problem after the surrogation is:

σξ (ξ) ∝ ρξ (ξ) exp

[

−1

2
(dobs − s̃ (ξ))T [CD +CG +CT ]

−1 (dobs − s̃ (ξ))

]

. (18)

Note that equation (18) yields to a less accurate solution than the solution in (7), because it incorporates the
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uncertainty rendered by truncation. A higher degree polynomial could be used in order to reduce the truncation

error. Nevertheless, the numerical cost of building a higher degree surrogate model might exceed by far the benefits

of using a surrogate model. To avoid Markov chain simulations in the characterization of the posterior, El Moselhy

and Marzouk [30] propose to construct a map using polynomial expansions that pushes forward the a priori to

the a posteriori distributions. To overcome the difficulties of producing a map using a high degree expansion,

those authors propose the use of a sequence of low degree maps to approximate a high degree approximation. In

this paper, a similar approach is proposed. The forward direct model g(m) is approximated by using iteratively

low-degree expansions. The iterative strategy has proved to be more effective than using a single high degree

polynomial.

As pointed out above, the dependence of d on m must be mildly non-linear and, hence low degree expansions

should suffice to grasp the main features of the forward model. For that reason, although surrogating the original

forward model g(m) renders a poorer inverse problem solution, the a posteriori marginal pdf of each parameter ξi

can be determined from equation (18) and those marginal distributions can be used to bound the actual solution.

If a linear surrogate is used as shown in expression (16), the exponent in equation (18) is a quadratic expression

which is easy to integrate numerically to obtain the marginal distributions. The a posteriori marginal ξi pdf

can be used as a priori parameter estimation in the next iteration. The process is repeated until the truncation

error contained in the covariance matrix CT is negligible compared to modelling and observation errors. From a

geometrical point of view, the proposed methodology assumes that the hypersurface defined by the forward model

g(m) can be approximated adequately the hyperplane defined by equation (16) in the vicinity of the solution.

In geotechnical engineering, it is difficult to establish a probability distribution for each parameter due to the

difficulty of characterizing the soil. For that reason, it is common practice to set a range within the parameter is

expected which means statistically to define an uniform pdf. If the parameters are initially defined as ranges, it

is proposed to determine the 95% confidence interval from the a posteriori marginal ξi pdf and construct in the

following iteration the new surrogate model using as the new ranges those confidence intervals. Figure 2 depicts

the iterative proposed methodology.

4.1 Maximum likelihood point

The maximum likelihood point ξ∗ of expression (18) is calculated by solving:

min
ξ

(dobs − s̃ (ξ))T [CD +CG +CT ]
−1 (dobs − s̃ (ξ)) (19)

The observations of nearby points usually are highly correlated (e.g. the movements of a concrete diaphragm
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Figure 2: Inverse problem resolution flow chart

wall) and thus the errors. For that reason, the covariance matrix C might be ill conditioned:

C = CD +CG +CT (20)

Since C is a n× n positive definite matrix, it can be expressed in term of its eigenvalues:

C = VC ·DC ·VT
C, (21)

where VC is the square matrix whose columns are the C-eigenvectors and DC is the diagonal matrix containing

the C-eigenvalues. If the number of observations n is greater than the number of parameters N , the only source

of uncertainty are the N model parameter. Hence, only the N higher eigenvalues have got physical meaning and

the lower are regarded numerical noise. Performing a principal component analysis, the covariance matrix C can

be approximated using the N higher eigenvalues contained in the diagonal matrix D̃ and their corresponding

eigenvectors ṼC:

C ≈ ṼCD̃CṼ
T
C. (22)

Then the maximum likelihood equation (19) becomes:

min
ξ

[

(dobs − s̃ (ξ))T Ṽ
]

D̃−1
[

(dobs − s̃ (ξ))T Ṽ
]T

(23)
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Now, if the linear model presented in expression (16) is adopted, dobs − s̃ (ξ) could be written as:

dobs − s̃ (ξ) =













dobs1 − u10 −u11 · · · −u1N
...

...
. . .

...

dobsn − un0 −un1 · · · −unN































1

ξ1
...

ξN



















=













b10 b11 · · · b1N
...

...
. . .

...

bn0 bn1 · · · bnN



















1

ξ






= Mε

[

1 ξ

]T

(24)

Substituting dobs − s̃ (ξ) for expression (24) in (23):

[

(dobs − s̃ (ξ))T Ṽ
]

D̃−1
[

(dobs − s̃ (ξ))T Ṽ
]T

=

[[

1 ξ

]

MεVC

]

D−1
C

[[

1 ξ

]

MεVC

]T

=

[

1 ξ

]

MεVCD
−1
C

VT
C
MT

ε

[

1 ξ

]T

=

[

1 ξ

]



















h00 h01 · · · h0N

h10 h11 · · · h1N
...

...
. . .

...

hN0 hN1 · · · hNN



















[

1 ξ

]T

(25)

Hence (19) is equivalent to:

min
ξ

[

1 ξ

]

H

[

1 ξ

]T

, (26)

where H is a symmetric matrix and thus expression (26) is a quadratic problem which might be efficiently solved

[31].

4.2 Surrogate response variance/ covariance closed form

The polynomials Ψk(ξ) are mutually orthogonal, the truncation error εTi
(ξ) is an independent random variable of

the rest of s̃i(ξ) as shown in equation (15). Hence, the following relationships must be met:

cov (si(ξ), sj(ξ)) = cov (s̃i(ξ), s̃j(ξ)) + cov (εT i(ξ), εTj(ξ)) (27)

Note that cov (si(ξ), si(ξ)) = var si(ξ). Generalising expression (27) to all components of vector s(ξ), the
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following relation of covariance matrices can be established:

CS(ξ) =













var (s1(ξ)) · · · cov (s1(ξ), sn(ξ))

...
. . .

...

cov (s1(ξ), sn(ξ)) · · · var (sn(ξ))













=

=













var (s̃1(ξ)) · · · cov (s̃1(ξ), s̃n(ξ))

...
. . .

...

cov (s̃1(ξ), s̃n(ξ)) · · · var (s̃n(ξ))













+













var (ε1(ξ)) · · · cov (ε1(ξ), εn(ξ))

...
. . .

...

cov (ε1(ξ), εn(ξ)) · · · var (εn(ξ))













= C
S̃
(ξ) +CT (ξ),

(28)

where CS(ξ) is the n × n covariance matrix of the different random responses given by the normalized forward

model s (ξ), C
S̃
(ξ) is the covariance matrix of the surrogate model s̃ (ξ) and CT (ξ) is the truncation residual

covariance matrix. Those matrices are depending on the ξ pdf distribution.

A surrogate s̃i (ξ) of the forward model si (ξ) can be written in terms of multidimensional chaotic polynomials

which are constructed of unidimensional chaotic polynomials (9):

s̃i (ξ) =
P
∑

j=0

uijΨj (ξ) =
P
∑

j=0

uij

N
∏

m=1

ψ
α
j
m
(ξm) (29)

An advantage of the spectral representation is that the variance of s̃i (ξ) and the covariance between s̃j (ξ) and

s̃k (ξ) can be calculated analytically saving a lot of computational resources as no Monte Carlo methods [32] are

required. Furthermore, obtaining the surrogate covariance matrix C
S̃
(ξ) discloses the statistical structure of the

surrogated model.

Since the chaotic polynomials are mutually orthogonal (11), the expectation of any response E [s̃i (ξ)] is the

independent term:

E [s̃i (ξ)] = ui0 (30)

By using the definition of variance:

var [s̃i (ξ)] = E
(

(s̃i (ξ)− E [s̃i (ξ)])
2
)

= E
(

[s̃i (ξ)− ui0]
2
)

= E
(

[s̃i (ξ)]
2
)

− 2ui0E (s̃i (ξ)) + u2i0

= E
(

[s̃i (ξ)]
2
)

− u2i0

= E

([

P
∑

k=0

uik
N
∏

m=1
ψαk

m
(ξm)

] [

P
∑

l=0

uil
N
∏

n=1
ψαl

n
(ξn)

])

− u2i0

(31)
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The chaotic polynomial orthogonality imposes that value of the latter product is not nil in the products where

αk = αl (12) and hence:

var [s̃i (ξ)] =
P
∑

k=0

u2ikE

(

N
∏

m=1
ψ2
αk
m
(ξm)

)

− u2i0 (32)

The covariance between s̃i (ξ) and s̃j (ξ) can be similarly obtained:

cov [s̃i (ξ) , s̃j (ξ)] =

P
∑

k=0

uikujkE

(

N
∏

m=1

ψ2
αk
m
(ξm)

)

− ui0 · uj0 (33)

4.3 Variance sensitivity analysis

The variance of a multidimensional chaotic polynomial can be obtained from the variances of the unidimensional

chaotic polynomials:

var (Ψk (ξ)) = E

([

N
∏

m=1
ψ2
αk
m
(ξm)

])

=
´

ψ2
αk
1

(ξ1) fξ1 (ξ1) dξ1 · · ·
´

ψ2
αk
N

(ξN ) fξN (ξN ) dξN

= var
(

ψαk
1

(ξ1)
)

· · · var
(

ψαk
N
(ξN )

)

(34)

Taking logarithms in expression (34), the product turns up into a sum:

log [var (Ψk (ξ))] = log

[

E

([

N
∏

m=1
ψ2
αk
m
(ξm)

])]

= log
[

var
(

ψαk
1

(ξ1)
)

· · · var
(

ψαk
N
(ξN )

)]

= log
[

var
(

ψαk
1

(ξ1)
)]

+ · · ·+ log
[

var
(

ψαk
N
(ξN )

)]

,

(35)

and hence the following equation holds:

1 =
log
[

var
(

ψαk
1

(ξ1)
)]

log [var (Ψk (ξ))]
+ · · ·+

log
[

var
(

ψαk
N
(ξN )

)]

log [var (Ψk (ξ))]
(36)

Multiplying the latter expression by var (Ψk (ξ)):

var (Ψk (ξ)) = log
[

var
(

ψαk
1

(ξ1)
)] var (Ψk (ξ))

log [var (Ψk (ξ))]
+ · · ·+ log

[

var
(

ψαk
N
(ξN )

)] var (Ψk (ξ))

log [var (Ψk (ξ))]
(37)

Then the coefficient ϕk(ξi) := log
[

var
(

ψαk
i
(ξi)
)]

/log [var (Ψk (ξ))] might be considered as the influence of the

random variable ξi in the variance of var (Ψk (ξ)). From equations (33) and (37), the covariance matrix C̃S can be

decomposed into the sum of the "covariance" matrices of each parameter:

C̃S = C̃
ξ1
S
+ · · ·+ C̃

ξN
S

(38)
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Figure 3: Surrogate model variance evolution in relation to the expansion polynomial degree p

The latter decomposition of C̃S is a sensitivity analysis because the influence of ξ on the total variance is

analytically determined.

4.4 The Truncation error

The trace of the covariance matrices is an invariant. Hence, from expression (28), the following relation can be

derived:

tr(CS(ξ)) = tr(C
S̃
(ξ)) + tr(CT (ξ)), (39)

where tr denotes the usual trace matrix operator. C
S̃
(ξ) can be obtained analytically as shown previously and

the estimation of tr(CT (ξ)), which is a measure of the truncation error, would require simply the determination

of tr(CS(ξ)). The problem is that the computation of CS(ξ) might require the evaluation of thousands times

the forward model at great numerical expense. The challenge is to obtain an estimation of CT (ξ) running the

least number of times the forward model. If Q realizations of the forward model have been required to build the

the surrogate model, n × Q residuals can be used to calculate the sample covariance matrix ĈT (ξ) . It has been

observed that ĈT (ξ) grasps properly the structure of CT (ξ) (i.e. correlation between the different truncation

residuals) but it fails to estimate the size of the error (norm of matrix CT (ξ)). That is due to the least square fit

chosen to determine the expansion coefficients.

Equation (14) is a combinatorial expression and, when the expansion degree p increases, the number of terms

increases in a pseudo-exponential way. Furthermore, expression (8) converges in quadratical mean [22]. For those

reasons, it is assumed that tr(C
S̃
(ξ)) could be fitted exponentially (see Figure 3) as the expansion degree p

13



Figure 4: Graphical description of the truncation error estimation (just two variables and observations have been
considered for clarity)

increases:

tr(C
S̃
(ξ))(p) ≈ αv(ξ)(1− e−αε(ξ)·p), (40)

where αv(ξ) and αε(ξ) are the fitting coefficients. When p → ∞, tr(C
S̃
(ξ))(p) → tr(CS(ξ)). Hence, the coefficient

αv(ξ) can be seen as an approximation of tr(CS(ξ)).

From equation (40), parameters αv(ξ) and αε(ξ) could be determined computing tr(C
S̃
(ξ))(p = 1) and

tr(C
S̃
(ξ))(p = 2). Nevertheless, that method suffers from two weaknesses (i) if the number of parameters is

high, even the evaluation of the surrogate model for p = 2 could be numerically unfeasible and (ii) as a least square

fit which requires a low number of realizations of the forward model is used, it has been observed that the variance

estimation for low degree expansions is not very accurate. For those reasons, a method to estimate the residual

error which takes advantage of (i) the possibility of evaluating the contribution of each variable in the overall

variance as shown above and (ii) the fact that the numerical cost of generating very high degree unidimensional

surrogate models is affordable. The method, which is graphically described in Figure 4, takes the following steps:

1. The covariance matrix C
S̃
(ξ), as shown previously, can be decomposed into a sum of "covariance" matrices

depending of each parameter:

C
S̃
(ξ) = C

ξ1

S̃
(ξ) + · · ·+C

ξN

S̃
(ξ). (41)

2. As the the covariance matrix C
S̃
(ξ) is a positive definite matrix, the eigenvalues λi(ξ) and the corresponding

14



eigenvectors υi(ξ) can be easily computed. Then:

tr(C
S̃
(ξ)) =

∑

j

λj(ξ) =
∑

j

υj(ξ)
T ·C

S̃
(ξ) · υj(ξ) =

∑

j

∑

i

υj(ξ)
T ·Cξi

S̃
(ξ) · υj(ξ). (42)

Thus tr(C
S̃
(ξ)) can be constructed by equation (42) and, since tr(C

S̃
(ξ)) =

∑

i tr(C
ξi

S̃
(ξ)), we can deduce

that tr(Cξi

S̃
(ξ)) =

∑

j υj(ξ)
T ·Cξi

S̃
(ξ) ·υj(ξ). Moreover, υj(ξ)

T ·Cξi

S̃
(ξ) ·υj(ξ) can be seen as the contribution

of the parameter ξi over the principal axis defined by the υj(ξ) eigenvector.

3. The computational cost of constructing a one dimensional surrogate model is small even for high degree

expansions. Thus, adopting a set of parameters ξ∗and fixing to those values all variables except ξi,

sj(ξ
∗
1 , . . . , ξ

∗
i−1, ξi, ξ

∗
i+1, . . . , ξ

∗
N ) = sj(ξ

∗(ξi)) (43)

a very good estimation of sj(ξ
∗(ξi)) can be achieved using s̃q,j(ξi) which is a q degree unidimensional expansion

(q ≫ p). The following covariance matrix is defined:

CS̃q(ξi) =













var (s̃q,1(ξi)) · · · cov (s̃q,1(ξi), s̃q,n(ξi))

...
. . .

...

cov (s̃q,1(ξi), s̃q,n(ξi)) · · · var (s̃q,n(ξi))













(44)

4. Let define the matrix Aij = υj(ξ)
T ·Cξi

S̃
ξ) ·υj(ξ). In order to use tr(C

S̃q
(ξi)) in the role of tr(Cξi

S̃
(ξ)), take:

ai(ξ) = maxj{Aij} (45)

Next, the value ai(ξ) is compared to tr(C
S̃q
(ξi)) for all index i and we proceed as follows. If tr(C

S̃q
(ξi) ≥

ai(ξ), we take µi(ξ) = tr(C
S̃q
(ξi)/ai(ξ) otherwise µi = 1. Finally, let µ be the average of the set µi for all

indices i. The trace of the forward model can be approximated:

tr(CS(ξ)) ≈ µ · tr(C
S̃
(ξ)) = µ ·

∑

j

λj(ξ) (46)

tr(C
S̃
(ξ)) is a measure of the whole surrogate. Likewise, tr(C

S̃q
(ξi)) is a measure of the surrogate variability

depending on ξi once ξj j 6=i are fixed to ξ∗j j 6=i. Though tr(C
S̃q
(ξi)) being computed from a surrogate model,

it is regarded to be very close to the original because a high degree expansion can be attained. The spectral

structure of the surrogate response enables to determine the maximum influence ai of a given variable ξi

along the different eigenvectors vi. Hence, it is sensible to expect that tr(C
S̃q
(ξi)) must be similar to ai.
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5. Therefore, from (39), the trace of the residual remains as:

tr(CT (ξ)) ≈ (µ− 1) · tr(C
S̃
(ξ)). (47)

5 Stochastic calibration

The methodology is validated by the resolution of three problems. The first problem is a very simple case because

one parameter is determined from one observation linked by an explicit formula and the observation is numerically

or synthetically generated. As the “true” solution of the first problem is known, questions such as the effect of

running the analysis on a surrogate model can be easily addressed. Furthermore, as only one parameter and

one observation are involved in the analysis, graphical resolution can be displayed and ease the understanding of

the proposed methodology. The second example is a synthetic excavation where the complexity is increased by

determining five parameters from twelve numerically generated observations. The third problem is a well known

sheet pile wall field test at Hochstetten (Germany) [33, 34, 35]. The goal of the last case is to identify nine soil

parameters from fourteen horizontal wall displacements at the last stage of the excavation. This case is real and we

must deal with uncertainty in the model and the observations. It is noted that the performance of the surrogate

models (like Bayesian models) is influenced by the input parameters and the sample size.

5.1 Wall Bending stiffness determination (Problem A)

5.1.1 Problem A definition

The aim of this example is to determine the bending stiffness EI of a 4.0 m high wall from its top horizontal

displacement. It is assumed that the wall footing and the soil are stiff enough to prevent any rotation of the

wall stem base. Hence, the wall stem can be regarded as a cantilever beam carrying a triangular earth pressure,

σh = Ka · σv = 0.333 · 4.0 · 20 = 26.64 kPa as shown in Figure 5. As stated above, the Bayesian methodology

requires three ingredients expressed in terms of probability function: (i) the forward or response model, (ii) the

observation and (iii) the parameter estimation. The forward model which in this case is the wall deflection is given

by the following expression:

g(m) =
σh·l4
30·m =

227.55

m
(48)

The bending stiffness EI is denoted as m to keep a consistent notation. As the model perfectly describes the

observed movement, its probability density function is:

Θ(d,m) = δ(d− g(m)), (49)

Let δ denote the Dirac function, that is δ(0) = 1 and δ(x) = 0 for x 6= 0. The observation dobs = 1.75 mm is
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Figure 5: Cantilever model (Problem A)

free of observational error and all the probability of occurrence is concentrated at that value:

ρd (d) = δ(d− dobs) (50)

It is estimated that the bending stiffness could be a random value between 105 and 3.5 ·105 kN ·m2. Therefore,

the a priori parameter distribution is:

ρm (m) =











1

3.5 · 105 − 105
m ∈

[

105, 3.5 · 105
]

0 m /∈
[

105, 3.5 · 105
]

(51)

From a practical point of view, this problem poses no difficulty because, once known dobs, obtaining m from

equation (48) is straightforward. Nevertheless, the resolution of this simple problem might be very useful to

illustrate the proposed methodology graphically. This problem is solved in two ways: (i) assuming that there

are enough computational resources to tackle the original forward model, equation (48), and (ii) considering the

forward model is numerically too demanding and a surrogate model is needed to alleviate that burden.

5.1.2 Problem A resolution with original forward model

Combining equations (50) and (51), the a priori joint probability density ρ(d,m) is given by:

ρ (d,m) =











1

3.5 · 105 − 105
m ∈

[

105, 3.5 · 105
]

and dobs = 1.75 mm

0 m /∈
[

105, 3.5 · 105
]

or dobs 6= 1.75 mm
(52)

In Figure 6a, we show that all the probability of occurrence in the parameter and observation space is concen-

trated in the segment defined by expression (52). Likewise, as shown in figure 6b, equation (49) defines a curve
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Figure 6: Bayesian resolution of problem A using the original forward model. No modelling or observational
uncertainties (a) parameters and observations a priori pdf, (b) model pdf and (c) parameters and observations a

posteriori pdf.

of the only feasible values that the original forward model can yield. Therefore, the only possible solution of the

problem lays in the intersection between the curves given by expression (49) and (52) as shown in Figure 6c. Com-

bining all the information, the a posteriori parameter probability function is a Dirac function which concentrate

all the probability on the solution m = 1.3 · 105 kN ·m2:

σm(m) = δ(m− 1.3 · 105) (53)

Note that this example is a conventional minimization problem:

min
m

(dobs − g (m))2 = min
m

(

1.75 · 10−3 − 227.55

m

)2

(54)

subjected to the restrictions:

105 ≤ m ≤ 3.5 · 105 (55)

5.1.3 Problem A resolution with surrogate forward model

In the case that the original forward model were computationally very demanding, the numerical burden could be

minimized substituting the original forward model g(m) (48) by a surrogated linear model g̃(m):

g(m) ≈ g̃(m) = a0 + a1m (56)

When the model model g(m) is replaced by g̃(m) a truncation error εt arises. Assuming that the truncation

error is normally distributed, the predicted response of the surrogated model g̃(m) is given by equation (57) as

shown in Figure 7(b).
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Figure 7: Bayesian resolution of problem A using a surrogate forward model. 1st Iteration. No observational
uncertainties but modelling error due to surrogation (a) parameters and observations a priori pdf, (b) model pdf
and (c) parameters and observations a posteriori pdf.

Table 2: Evolution of the parameter range and point of maximum likelihood when using a surrogate model to solve
problem A.

Iteration Initial Range Final Range PML

1st 105 − 3.50 · 105 105 − 1.82 · 105 105

2nd 105 − 1.82 · 105 1.20 · 105 − 1.45 · 105 1.32 · 105
3rd 1.20 · 105 − 1.45 · 105 1.29 · 105 − 1.31 · 105 1.30 · 105
4th 1.29 · 105 − 1.31 · 105 1.30 · 105 − 1.30 · 105 1.30 · 105

Θ(d,m) =











1√
2π·var(εt)

exp
(

−1
2
(d−g̃(m))2

var(εt)

)

m ∈
[

105, 3.5 · 105
]

0 m /∈
[

105, 3.5 · 105
]

(57)

Combining the a priori knowledge of the observation and the sought parameter (Figure 7a) with the information

offered by the surrogate model (Figure 7b), the solution of the problem is a truncated Gauss distribution (Figure

7c). That solution is an improvement from the initial guess but it is still far away from the true solution because it

incorporates the uncertainty introduced by the surrogate model. If the 95% confidence interval of that distribution

is taken, after that first iteration m ∈
[

105, 1.82 · 105
]

and the process is repeated again, the solution improves as

depicted in Figure 8. The process is repeated iteratively four times to make converge the a posteriori parameter

pdf to a Dirac pdf which concentrates all the probability of occurrence on the true solution as shown in Figures 7,

8, 9 and 10 and summarized in Table 2.

Figure 11 offers a graphical explanation of the process. The initial parameter range is too wide and a first
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Figure 8: Bayesian resolution of problem A using a surrogate forward model. 2nd Iteration. No observational
uncertainties but modelling error due to surrogation (a) parameters and observations a priori pdf, (b) model pdf
and (c) parameters and observations a posteriori pdf.

Figure 9: Bayesian resolution of problem A using a surrogate forward model. 3rd Iteration. No observational
uncertainties but modelling error due to surrogation (a) parameters and observations a priori pdf, (b) model pdf
and (c) parameters and observations a posteriori pdf.
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Figure 10: Bayesian resolution of problem A using a surrogate forward model. 4th Iteration. No observational
uncertainties but modelling error due to surrogation (a) parameters and observations a priori pdf, (b) model pdf
and (c) parameters and observations a posteriori pdf.

Table 3: Model parameters adopted to generate problem B observations dobs (E Young modulus, ν Poisson’s ratio,
γ density, φ′ friction angle, c′ cohesion, K0 at rest pressure coefficient, µ soil-wall friction coefficient)

Material E (kPa) ν γ (kN/m3) φ’ c′ (kPa) K0 µ

Sand 2·104 0.30 20 32 0 0.47 0.35

Concrete 1.8·107 0.20 25 - - - -

degree polynomial surrogate model does not fit well to the original forward model curve. As the parameter range

is narrowed to the higher probability intervals, the surrogate model approximates better and better to the original

model.

5.2 Synthetic excavation (Problem B)

5.2.1 Problem B definition

The model presented in Figure 12 represents a 0.60 m thick cantilever concrete diaphragm wall cast 12.0 m into

the ground to retain a 4.0 m excavation cut. The aim of this problem is to determine N = 5 model parameters

from n = 12 wall horizontal displacement which might represent inclinometer readings from a diaphragm concrete

wall after an excavation. The vector of observations dobs is generated synthetically adopting the parameters in

Table 3 to avoid modelling and observational errors. The observed displacements dobs are presented in Table 4

and depicted in Figure 13.

The forward model used to simulate the excavation is the finite element model shown at Figure 12. The analysis

is carried out in two stages: (i) the initial stress state is generated imposing a given at rest coefficient K0 and
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Figure 11: Graphical explanation of the iterative scheme in the resolution of problem A case using a surrogate
model (a) general view (b) zoomed view.

Figure 12: Synthetic excavation (Problem B). Plane strain ABAQUS CAE 6.11-1 FEM mesh and n = 12 observa-
tion points in the analysis. Dark grey elements represent the concrete wall and light grey elements are the excavated
elements.Implicit integration. Soil (Mohr Coulomb material): 508 4 nodes quadrilateral elements (CPE4), wall
(elastic material): 12 8 nodes quadrilateral elements (CPE8). Interaction between wall and soil simulated using
penalty method ([36] for further details).
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Table 4: Synthetic excavation (Problem B). Diaphragm wall horizontal displacements dobs computed from param-
eters in Table 3

Point Displacement (mm) Point Displacement (mm)

1 -10.9 7 -5.9

2 -10.0 8 -5.5

3 -9.0 9 -5.2

4 -8.1 10 -5.1

5 -7.2 11 -5.0

6 -6.4 12 -4.9

Table 5: Initial parameter range considered in problem B (Source (*) [37] (**) [38])

Parameter Range

Concrete wall Young Modulus (Ec) 1.5·107 − 3.5·107 kPa
Sand Young Modulus (Es) 8·103 − 3·104 kPa(*)

Sand friction angle (φ′) 30− 40 ◦(*)

At rest pressure coefficient (K0) 0.35− 1.00(*)

Wall-soil friction coefficient (µ) 0.20− 0.40(**)

(ii) after that, the whole excavation is simulated deactivating the correspondent elements. The ground is a thick

alluvial deposit of medium cohesionless sand which is modelled as a Mohr-Coulomb material. The concrete wall

behaves as an isotropic elastic material. No water level is considered.

5.2.2 Problem B resolution

The parameters to be identified from dobs are the Young modulus of the soil and the concrete wall ( Es and Ec

respectively), the soil angle of friction (φ′), the initial at rest coefficient (K0) and the wall-soil friction coefficient

(µ). The number observations is greater than the number of parameters. The uniform parameter joint pdf encoding

the initial information in Table 5 is the straightforward choice:

ρm (m) =































































1

2 · 107 · 22000 · 10 · 0.65 · 0.2

Ec ∈
[

1.5 · 107, 3.5 · 107
]

,

Es ∈ [8000, 30000] ,

ϕ ∈ [30, 40] ,

K0 ∈ [0.35, 1] ,

µ ∈ [0.2, 0.4]

0 for any other value

(58)

In this case, the parameter support of each parameter mi is normalized to ξi ∈ [ −1 1 ] using the following

transformation:
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Figure 13: Horizontal displacement obtained from the model (Problem B)

ξi = −1 + 2
mi −mi min

mi max −mi min
(59)

The prior pdf (58) becomes:

ρξ (ξ) =











1
/

25

0

ξi ∈ [−1, 1]

ξi /∈ [−1, 1]
(60)

In this problem, there is no observational error. For that reason the a priori joint parameter and observation

pdf is:

ρ (ξ,d) =











1
/

25

0

ξi ∈ [−1, 1] and d = dobs

ξi /∈ [−1, 1] or d 6= dobs

(61)

The numerical burden is minimized using a linear model for each observation as shown in expression (16).

As the a priori probability distribution functions are expressed in terms of uniform distributions, the expansion

coefficients uij in equation (16) are computed from combinations of the Legendre polynomial roots (see Table 1)

using the strategy presented by Sudret [29].

The solution must incorporate the truncation error resulting from replacing g(m) by s̃ (ξ) and quantified using

the covariance matrix CT whose determination is described in previous sections:

σξ (ξ) ∝











exp
(

−1
2 [dobs − s̃ (ξ)]TC−1

T [dobs − s̃ (ξ)]
)

0

ξi ∈ [−1, 1]

ξi /∈ [−1, 1]
(62)
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As the diaphragm wall is a very stiff structure, the displacements of nearby points are highly correlated, thus the

truncation errors. For that reason, matrix CT is a 12×12 ill conditioned matrix. As the only source of uncertainty

are the N = 5 model parameters, covariance matrix CT is approximated using its five higher eigenvalues as

equation (22) indicates. Hence expression (62) becomes:

σξ (ξ) ∝











exp

(

−1
2

[

(dobs − s̃ (ξ))T Ṽ
]

D̃−1
[

(dobs − s̃ (ξ))T Ṽ
]T
)

0

ξi ∈ [−1, 1]

ξi /∈ [−1, 1]
(63)

The probability distribution function of the parameters is obtained marginalizing the a posteriori pdf (63).

As the exponent of that equation is a quadratic expression, the numerical integration is relatively light. The first

row of Figure 14 presents the solution obtained from the surrogated model s̃ (ξ) built with Table 5 ranges. Since

the surrogate model is a poor approximation of the original forward model, the variance of the solution is ample.

Limiting the ranges to the 95% confidence interval and repeating the process with those ranges, the solution of the

problem improves (second row of Figure 14). After six iterations the a posteriori marginal probability distribution

functions converge to a Dirac pdf which concentrate all the occurrence probability in the true parameter set. Figure

14 depicts the whole iterative process.

The most likely model parameters are obtained minimizing the exponent of expression (63) as described pre-

viously. Figure 15 shows the evolution of the parameter maximum likelihood values as the iterations progresses

together with the 95% confidence interval which narrows quickly. The truncation error, measured by the trace of

CT , decreases in a exponential way as shown in Figure 16. Figure 17 depicts the predictions of the diaphragm wall

movements together with the 95% confidence prediction interval in the iterative process. The prediction is very

good even at the first iteration. One of the advantage of the proposed methodology is that a statistical measure

of goodness-of-fit at every iteration is available.

The computational cost of solving this problem comes from running the original forward model. It has been

necessary 24 runs to built the surrogate model (see [29] for details) and 80 runs to compute the truncation error.

As six iterations have been required to reach to the solution, a total amount of 624 executions of the forward model

have been needed (6 × 24 + 6 × 80). Every original forward model run took in average 20 seconds to complete.

Hence the overall optimization process took around 4 hours.

5.3 Hochstetten Excavation (Problem C)

5.3.1 Hochstetten Excavation problem definition

The aim of this problem is to calibrate N = 9 soil parameters from the n = 14 horizontal wall inclinometer

measures (see Table 6) in a 4 m wide strutted excavation. The excavation depth was 5 m and it was achieved

in six stages. In the seventh stage, a 1 m high basin was filled with water to impose a surcharge on the ground
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Figure 14: Problem B parameter marginal probability distribution function evolution. The point on the graphs
indicates the parameter true value.
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Figure 15: Problem B most likely parameter values (points) together with the 95% confidence interval (dotted
line) per iteration

Figure 16: Problem B evolution of residual error tr(CT) during the iterative process and least square fit
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Figure 17: Problem B Prediction (continuous lines) at each iteration of the observed movements (point) together
with the 95% confidence interval (dotted line)
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Table 6: Hochstetten excavation (Problem C). Diaphragm wall horizontal displacements dobs [33]. The initial stage
is set when the excavation is up to 1.75 m depth and the struts are placed [35].

Point Displacement (mm) Point Displacement (mm)

1 2.14 8 -3.26

2 1.97 9 -3.15

3 1.23 10 -2.43

4 0.31 11 -1.57

5 -0.72 12 -0.69

6 -2.04 13 0.00

7 -3.07 14 0.00

Table 7: Elastic parameters adopted for the sheet wall and strut in Hochstetten excavation (Problem C) (EA axial
stiffness, EI bending stiffness, ν Poisson’s ratio, w weight) [34]

Member EA (kN/m) EI (kNm2/m) ν w

Sheet wall 2.2·106 2.0·103 0.3 0

Strut 4.2·106 - - 0

surface (see [33] for further details). Table 6 observations were taken when the water surcharge was applied.

The sheet walls were driven into a sandy deposit. The structural members (strut and sheet wall) have been

regarded elastic materials (see Table 7). The soil has been divided into two layers: (i) the unsaturated upper layer

which is above water table (5.5 m deep) and (ii) the saturated layer below the water table [34, 35]. Both soil

levels have been simulated by means of an elasto-plastic Mohr-Coulomb model. The finite element model used as

a forward model is described in Figure 18.

5.3.2 Hochstetten Excavation problem resolution

Table 8 presents the N = 9 parameters m to determine. The sandy levels only differ in the Young Modulus

and cohesion. Table 8 also contains the adopted ranges defined from different sources [34, 35, 39]. After the

normalization of m to ξ using the transformation in expression (59), the following a priori parameter pdf is

considered:

ρξ (ξ) =











1
/
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0

ξi ∈ [−1, 1]

ξi /∈ [−1, 1]
(64)

Unlike the previous cases, this is a real problem and the precision of the observations and the accuracy of

the model must be quantified. The sheet wall movements were measured with an inclinometer which precision

might be affected by many factors [40]. Gens [41] after reviewing published analyses highlights that the lateral

wall movements are not very sensitive to the type of constitutive model adopted, specially in stiff excavations. For
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Figure 18: Hochstetten Excavation (Problem C). Plane strain ABAQUS CAE 6.11-1 FEM mesh. Implicit integra-
tion. Soil (Mohr Coulomb material): 525 4 nodes quadrilateral elements (CPE4), sheetwall (elastic material): 12
beam elements (B22), strut (elastic material) 8 truss elements (T2D2). Interaction between wall and soil simulated
using penalty method ([36] for further details).

Table 8: Hochstetten excavation (Problem C). Initial parameter range

Parameter Range

Unsaturated upper sand layer Young Modulus (E1) 104 − 4·104 kPa
Saturated sand layer Young Modulus (E2) 2 · 104 − 5·104 kPa
Poisson’s ratio (both layers) (ν) 0.15− 0.40

At rest pressure coefficient (both layers) (K0) 0.20− 0.60

Sand friction angle (both layers) (ϕ) 30− 45 ◦

Sand dilatancy angle (both layers) (ψ) 5− 20 ◦

Unsaturated upper sand layer cohesion (c1) 0.3− 10 kPa

Saturated sand layer cohesion (c2) 0.3− 10 kPa

Wall-soil friction coefficient (µ) 0.20− 1.50
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those reasons, it is assumed that the differences between the predictions and the inclinometer readings are due to

observational errors. In other words, the covariance matrix that encodes the epistemic error is CG = 0. As all the

readings were taken with the same device, the observation errors are assumed independent and Gaussian with zero

mean and σ2D variance. It is considered that the 95% confidence interval of each displacement is ±1 mm. That

value approximately represents a standard deviation of 0.5 mm which represents a variance of σ2D = 2.5 · 10−7 m2.

Hence, the covariance matrix CD is a diagonal matrix CD = σ2DI and the observations pdf using equation (3) is:

ρd (d) =
1

(√
2π
/

σD
)n · exp

[

−1

2
(d− dobs)

T

[

1

σ2D
I

]

(d− dobs)

]

(65)

Combining equations (64) and (65), the a priori parameter and observation joint distribution is:

ρ (ξ,d) ∝











exp
[

−1
2(d− dobs)

T
[

1
σ2

D

I
]

(d− dobs)
]

ξi ∈ [−1, 1]

0 ξi /∈ [−1, 1]
(66)

As in the previous cases, the FEM forward model is surrogated using a linear model s̃ (ξ) as seen in expression

(16). Hence, a modelling error quantified in the covariance matrix CT turns up. Once computed CT as shown

previously, the solution of the problem is obtained using equation (18):

σξ (ξ) ∝











exp
[

−1
2(dobs − s̃ (ξ))T

(

σ2DI+CT

)−1
(dobs − s̃ (ξ))

]

ξi ∈ [−1, 1]

0 ξi /∈ [−1, 1]
(67)

The solution σξ (ξ) using s̃ (ξ) is initially a poor approximation. To improve the solution, a new iteration

is performed using as a priori ranges the parameter 95% confidence intervals from the a posteriori parameter

marginal pdf. Those distributions are obtained integrating equation (67). Due to that reduction of the search

space, the agreement between the surrogate and the original model improves. That process is repeated until the

truncation error is an order the magnitude less than the observation error. Fifteen iterations have been required to

achieve a good fit between the original and the surrogate model. Figure 19 shows that the most likely parameters

are able to reproduce properly the sheet wall movements even at the initial iterations. The statistical information

gathered during the calibration process enables to display in Figure 19 the 95% confidence prediction intervals

which is an indication of the fit goodness.

As in the previous case, the computational cost of solving this problem comes from computing the original

forward model. It has been necessary 80 runs to build the surrogate model and 144 runs to compute the truncation

error. The reduction of the truncation error is exponential as shown in Figure 20. Furthermore, the plot iteration

number versus log-error depicted in Figure 20 suggested a linear pattern. A line was fitted to the log-data from

the nine first iteration to estimate the truncation error. For that reason, the computational burden have been

alleviated in the six last iterations. Hence, a total amount of 2496 executions (9 × (80 + 144) + 6 × 80) of the
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Figure 19: Problem C wall displacement prediction (from 1st to 9th iteration) with most likely values and 95%
confidence parameters
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Figure 19: (continued) Problem C wall displacement prediction (from 10th to 15th iteration) with most likely
values and 95% confidence parameters

Figure 20: Problem C residual error estimation. Dots indicate residual error computed with the proposed method-
ology and crosses are linear fit extrapolations
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Figure 21: Problem C Parameter influence in the overall response variance

forward model have been needed. Every original forward model run took in average 35 seconds to complete. Hence

the overall optimization process took around 25 hours.

The proposed methodology enables to disaggregate the overall variance by individual parameter as depicted

in Figure 21. This result shows which parameters have more influence in the response variance. In this case, the

upper unsaturated layer Young modulus E1 and cohesion c1 together with the friction angle ϕ represent more than

the 80% of the total variance. The saturated layer Young modulus E2, the Poison’s ratio ν and the at rest pressure

coefficient K0 mean the 19% of the overall variance. The saturated layer cohesion c2, the dilatancy angle ψ and the

soil-wall friction µ hardly amount a 1% of the response. In the light of those results, the latter parameters could

have been fixed to a certain value and the analysis could have been performed with six parameter instead of nine.

As a result of that model reduction, the numerical burden to construct the surrogate model and to evaluate the

surrogation error would have dropped to 35 and 96 realizations respectively. Therefore, a total of 1668 realizations

(3× (80+ 144) + 6× (35+ 96) + 6× 35) of the original forward model would have been required, a third less than

considering all the parameters throughout the whole calibration process.

The evolution of the parameter marginal probability distribution functions is depicted in Figure 22. As the

residuals are assumed Gaussian, those pdf are truncated Gaussian. The bell shape is very well defined in the

variance greater weight parameters whereas an almost flat line is observed in the less important parameters.

Figure 23 depicts the evolution of the most likely parameter values which tends to stabilize as the iteration

process progresses. That figure also shows the 95% confidence intervals which narrows quickly in line with the

variance exponential reduction represented in Figure 20.

Table 9 summarizes the analysis results indicating the most likely parameters, the 95% confidence interval and

the influence in the response of each parameter. A remarkable reduction in the parameter range has been achieved.
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Figure 22: Problem C. Evolution of marginal probability density functions (lines, vertical axis not scaled) and
most likely parameter (solid dot)
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Figure 23: Problem C. Evolution of most likely parameter values and 95% confidence interval

Table 9: Hochstetten excavation (Problem C). Inverse problem solution: most likely parameter, 95% confidence
interval and parameter variance influence.

Parameter M.L. Final range Influence

Unsaturated upper sand layer Young Modulus (E1) 19640 kPa 17095− 20850 kPa 24.9%

Saturated sand layer Young Modulus (E2) 39705 kPa 35315− 40970 kPa 3.1%

Poisson’s ratio (both layers) (ν) 0.24 0, 21− 0.24 7.0%

At rest pressure coefficient (both layers) (K0) 0.36 0.36− 0.40 8.2%

Sand friction angle (both layers) (ϕ) 44.0◦ 42.8− 44.3 ◦ 23.6%

Sand dilatancy angle (both layers) (ψ) 8.88.8◦ 8.8− 12.9 ◦ 0.3%

Unsaturated upper sand layer cohesion (c1) 2.0 kPa 2.0− 2.8 kPa 31.9%

Saturated sand layer cohesion (c2) 10.0 kPa 7.7− 10.0 kPa 0.1%

Wall-soil friction coefficient (µ) 1.4 1.10− 1.40 1.0%
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6 Conclusions

An innovative method to solve deep excavation inverse problems which takes advantage of Bayesian inference and

the non-intrusive stochastic finite elements has been presented. The Bayesian inference is the most consistent way

to tackle the inverse problem resolution because the yielded solution includes the uncertainty in the model and

observations. The non intrusive SFEM based on the stochastic spectral methods can be seamlessly integrated in

the Bayesian methodology and it is advantageous in two levels: (i) lightening heavy numerical burden of the deep

excavation geotechnical models and (ii) disclosing statistical structure which improves the problem understanding.

The proposed methodology makes use of the non-intrusive SFEM to replace the numerical heavy original

forward model by a lighter surrogate model built out of a polynomial chaos expansion (PCE). The main drawback

of surrogating the forward model is that a modelling error arises because the surrogate fails to perfectly represent

the original model. In this paper, a new technique which does not increases substantially the numerical burden to

bound the surrogation error has been developed. That technique enables to tackle an iterative strategy to rapidly

converge to the inverse problem solution. Furthermore, the spectral representation of the forward model makes

possible to obtain a closed form of the covariance matrix between observations and it also enables to obtain the

influence per parameter in the overall response.

The proposed methodology has been successfully tested in three problems of increasing difficulty. The results

yielded by those analysis have proved very useful because provides greater insight to the technician carrying out

the model calibration and set sound foundations for a model reduction.
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