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_____________________________________________________________________________________ 

Abstract 

This paper describes a computer tool for calculating and validating loads on floor slabs and 

shores in the construction of multistorey buildings with in situ casting. Its chief novelty lies in 

its optimization unit, designed to produce appropriate and optimum construction processes, 

which was created by applying exact and heuristic methods: Random Walk (RW), Descent 

Local Search (DLS) and Simulated Annealing (SA). The system has shown that it can improve 

three of the most important aspects involved in construction: time, cost and safety. In some 

cases the optimal solutions were achieved while reducing up to 53% of the cost of the shoring 

system, in shorter construction time, and meeting all the usual requirements for the construction 

of this type of building.               
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1. Introduction 

Reducing building times, saving on costs and improving safety are three important aspects 

of efficient construction processes. At the present time savings in time and costs are achieved 

mainly by recovering all or part of the building construction components in the shortest possible 

time. Although striking time depends on many factors (building process, work requirements, 

weather, etc.), the financial aspect is always subject to structural safety considerations.  

It should be remembered that a high proportion of building collapses take place during 

construction [1-3], so that an understanding of how loads are transmitted between shores and 

slabs under construction is required to ensure the safety of the structure and reduce building 

times and costs. Knowing how these loads are transmitted makes it possible to calculate the 

loads the slab must support.        

Numerous authors have proposed a multitude of theoretical models to estimate shore/slab 

load transmission, including complex models such as those based on the finite element method 

[4-10] and simple calculation methods. Among others, Grundy and Kabaila [11], Duan and 

Chen [12], Fang et al [13] and Calderón et al [14] developed simplified methods to estimate 

load transmission between slabs and shores in multistorey buildings. 

In order to develop a computer tool for the present study, a simplified calculation method to 

avoid having to resort to advanced software is used, but even when simplified methods are used 

it is by no means a simple or rapid task to calculate construction processes. Therefore, the first 

objective of this study was to develop and validate a software tool that would provide users with 

a quick and simple calculation method. The computer tool can be used to check the construction 

process defined and entered by the user. 

Since the design of the optimal construction process is intimately related to the structural 

designer’s experience, he has to follow a strategy of trial and error and continually redefine the 

process until he finds a better solution than the original. This strategy is not automatic, and as it 

usually leads to construction processes in which safety is given the highest weight, times are 

longer and costs are higher than those of the optimal solution. It is therefore advisable to apply 
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optimization techniques to obtain the best construction processes; this is, in fact, the second 

objective of the study and involves two of the most important aspects of building works, 

construction time and costs.         

Automatic methods of obtaining optimal solutions are generally either exact or heuristic. 

Even though the former are efficient for dealing with small numbers of variables, they still need 

long computation times and because of this may be limited when dealing with higher numbers 

of variables. A review of non-heuristic optimization studies can be found in Sarma and Adeli 

[15]. Heuristic search methods can also be used intelligently to obtain optimal solutions in a 

reasonable computation time [16]. Their first application to reinforced concrete in 1997 were by 

Coello et al [17] in a simply supported beam, and by studies on pre-tensed concrete beams by 

Leite and Topping [18], who used genetic algorithms (GA). Other studies also emerged that 

used both GA and simulated annealing (SA) [19], threshold accepting (TA) [20], ant colony 

optimization (ACO) [21] and particle swarm optimization (PSO) [22], applied to frames, beams, 

columns and slabs in RC buildings [16, 23-25]. Furthermore, Paya [16] applied heuristic search 

methods as Random Walk (RW) and Descent Local Search (DLS) in search of optimal 

solutions. Nowadays, many heuristic search methods are used [26-27], being more efficient 

when they are combined as hybrid optimization [28-30]. In this paper, single optimization 

algorithms are used as a first approach to building construction processes. 

The principal novelty of this paper is that it applies three optimization strategies (RW, DLS 

and SA) by means of a specially developed computer tool programmed in FORTRAN language 

to obtain, for the first time, optimal construction processes in multistorey buildings. 

               

2. Development and validation of computer-based tool for estimating and verifying loads 

on slabs and shores 

The chosen calculation method was the new simplified procedure defined by Calderón et al 

[14], which is the latest and most complete and has better goodness of fit than the previous 

simplified methods [14,31-33]. It assumes that the mean deformation of the slabs coincides with 
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the mean deformation of the shores that support them. Also, various boundary conditions are 

considered (internal, end and corner spans). Deformability is estimated by Scanlon and 

Murray’s method [34]. It should be clearly understood that in this method the analysis of the 

loads transmitted between slabs and shores is for mean loads, which was the practice used in 

similar studies. The software was also programmed with the stiffness matrix method to calculate 

the required bending moments. In order to determine the resistant capacity of the floor slabs to 

the loads they had to bear during construction, the Calavera [35] and Fernández [36] condition 

was considered (see Eq. (1)), which is based on the critical evolution of the concrete tensile 

strength in relation to its other mechanical characteristics:               

,

,
          (1) 

where, on one hand,  is the proportion of loads received by the slabs under construction 

compared to the design loads,  is the construction safety factor,  is the service safety factor, 

and therefore  is the proportion of the load measured on the slab weighted by the safety 

coefficients. On the other hand, ,  is the tensile strength of the concrete at the age of the 

concrete under study, and ,  is the concrete’s tensile strength in service. 

Thus, following Calderón et al’s simplified procedure [14], the computer tool calculates the 

loads on both slabs and shores and verifies that the above condition has been satisfied for each 

slab and building operation, i.e. that β is equal to or lower than the proportion of the acquired 

tensile strength. 

The next task was to choose suitable buildings to verify the computer tool. The first 

considered was the building studied by Alvarado [37] and Alvarado et al [38], which was built 

purely for research purposes. This experimental building contains three storeys with 0.25 m 

thick reinforced concrete slabs, 2.75 m height between floors and a 6.00 m clear span between 

columns. The second was the building studied by Gasch [31] in the Fine Arts Faculty of the 

Universitat Politècnica de València; this has six storeys and a basement with waffle slabs 0.40 

m thick, 0.15 m rib and 0.80x0.80 m waffle. The spans were 5.50x8.00 m and 5.50x8.80 m. 
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Height between floors ranged from 2.90 m to 4.00 m. The estimation and verification of loads 

for each building can be seen in Tables 1 and 2. Figs. 1 and 2 give for each building the 

comparison between the results of the computer tool ( ) and the results obtained from the 

simplified methods of Duan and Chen ( & ) and Fang et al ( ), with respect to experimental 

measurements. As can be seen in Figs 1 and 2, the results obtained from the computer tool  

calculated show a better fit than those obtained from the other methods. 

Table 1. Estimation and verification of loads on slabs and shores in the experimental building. 
 

Stage of 
construction 

Level   
[kN/m2] 

 
[kN/m2] 

β 
,

,
  

Casting Level 1 1 0.00 5.64 - - 

Clearing Level 1 1 1.75 3.89 0.14 0.60 

Casting Level 2 
2 0.00 5.64 - - 

1 3.76 7.52 0.29 0.78 

Clearing Level 2 
2 2.43 3.21 0.19 0.75 

1 2.94 5.90 0.23 0.89 

Striking Level 1 
2 4.51 1.13 0.35 0.78 

1 6.77 - 0.52 0.90 

Casting Level 3 

3 0.00 5.64 - - 

2 7.78 3.50 0.60 0.84 

1 9.13 - 0.71 0.93 

Clearing Level 3 

3 2.44 3.20 0.19 0.60 

2 6.38 2.45 0.49 0.89 

1 8.09 - 0.63 0.96 

Striking Level 2 
3 3.29 2.35 0.25 0.78 

2 7.99 - 0.62 0.93 

Striking Level 3 3 5.64 - 0.44 0.93 
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3.2. Variables 

A total of (5+4*n) variables define a complete construction process as a function of the 

number of floors (n) in the building. The first five variables adopt constant values in the whole 

building, defined as follows:  

1. Type of process in habitual operations such as shoring, reshoring, clearing and 

striking. Several of these operations are normally carried out on each floor, 

normally chosen from: shoring/striking (SS), shoring/clearing/striking (SCS) or 

shoring/reshoring/striking (SRS).  

2. When an intermediate operation is involved (SCS or SRS) a decision must be made 

on the percentage of shores to be removed. For SCS, clearing consists of removing 

a certain number of shores, their associated straining pieces, and bottom formwork 

panels. The different alternatives consisted of removing 33, 50 or 66%. In SRS, 

reshoring involves removing 100% of shores and then replacing a certain 

percentage. We considered that 100% were replaced, as this is the usual practice. 

3. The number of consecutively shored floors; possible values being 1, 2, 3 or 4.  

4. Straining piece separation according to slab type: for waffle or girderless hollow 

floor slabs 1, 2 or 3 times the distance between ribs; for flat slabs, 1, 2 or 3 m. 

5. Type of shore throughout its area. Only one type was considered in this study.  

The four remaining variables can adopt different values on different floors:  

1. Shores may be separated by 0.5, 1.0 or 2 m. 

2. Number of days after which a new slab begins casting, counting from the casting of 

the previous slab; with possible values of between 5 and 14 days. 

3. Number of days after which an intermediate clearing operation is carried out, 

counting from the casting of the slab in question, choosing from possible values 

between 2 and 7 days. 
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4. Number of days after which an intermediate reshoring operation is carried out, 

counting from the casting of the slab in question, with possible values of between 2 

and 9 days. 

A reasonable interval of values was in general chosen for each of the variables. Minimum 

and maximum values were established, within which high-cost solutions, and unusual or unsafe 

construction processes could be found. The variables and the values of the different variables 

considered can be seen in Table 3. 

Table 3. Variables and values considered. 

Variables Values Variables Values (each floor) 

Type of process (SS*, SCS**, SRS***) 
Separation of shores 
[m] 0.5, 1, 2 

Percentage clearing or 
reshoring [%] 

Clearing (33, 50, 66) 
Reshoring (100) 

Casting of new slab 
[days] 5-14 

Number of 
consecutively shored 
floors  

1, 2, 3, 4 
 

Clearing of slab 
[days] 2-7 

Separation between 
straining pieces [m] 

(1, 2, 3)*(rib spacing) 
If flat slab then (1, 2, 3) 

Reshoring of slab 
[days] 2-9 

Shore area [cm2] 2.89 (one type only)   
      (*) Shoring / Striking 
   (**) Shoring / Clearing / Striking 
(***) Shoring / Reshoring / Striking 

It should be emphasized that all the variables considered were discrete and not continuous, 

so that by correctly combining different variables all the possible construction processes in the 

solution space could be defined. In this case, if we maintain the variables and each of their 

values for the two buildings, the dimension of the space solution is defined by the Eq. (4):   

4 ∗ 3 ∗ 3 ∗ 10 ∗ 1 3 6 1 ∗ 8           (4) 

In the case of the experimental building, the dimension of the space solution is of the order 

of 4·107 and that of the Fine Arts Faculty building is of the order of 8·1016 different solutions. In 

the hypothetical case of a 30-floor building, this dimension would be of the order of de 3·1071. 

The financial cost of each of these solutions is shown in the Eq. (2), and if the different 
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constraints to the problem in the Eq. (3) are satisfied, it will be identified as a feasible solution. 

Those that do not satisfy any of the constraints are identified as non-feasible solutions.   

 

3.3. Parameters 

The parameters of construction processes consist of all the values taken as problem data that 

do not form a part of the search for the optimal solution and are constant for all possible 

solutions. In the case of obtaining optimal construction processes for buildings, the parameters 

are the values that are normally set in the building design phase. Table 4 lists all the parameters 

considered in this work. 

Table 4. Parameters of the building processes. 

Data on each floor Building data 

Type of slab Type of span 

Thickness Continuity of span 

Concrete strength Number of floors 

Fast, normal or slow hardening concrete* Ambient temperature 

Lengths of analyzed and adjacent spans Concrete density 

Cantilever lengths Elasticity modulus of shore steel 

Height between floors 
Construction and project safety 
coefficients 

Construction loads  

Service loads  
*s = 0.20 (fast); s = 0.25 (normal); s = 0.38 (slow) according to MC-2010 [39] 

3.4. Objective function 

The objective function considered consisted of minimizing the cost of the shoring system of 

the construction processes in multistorey buildings with in situ casting. As either rental or 

depreciation costs could have been adopted, it was decided to consider the rental costs of the 

required material according to the following values: 

 Rental of shores: €0.03/shore/day  

 Rental of formwork panels: €0.10/m2/day  

 Rental of straining pieces: €0.04/m2/day 

 Rental of pivoting mechanism for clearing: €0.03/m2/day 
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The prices cited in the above costs were provided by specialist shoring companies and are 

those currently charged in Spain. Changing the study to consider the equivalent prices in other 

countries would simply involve adopting the corresponding rental values of the different 

elements in the objective function. 

The result of the objective function is expressed in €/m2 in order to make it applicable to the 

entire building, as only one span was actually analyzed. Also, by considering this objective 

function as the cost of renting the shoring equipment, building time and fewer shoring system 

components are also considered indirectly. In fact, the shorter the time and the fewer the 

resources required, the lower the cost assessed by the objective function. 

 

3.5. Structural constraints 

The constraints in Eq. (3.2) express the limiting conditions of the different solutions 

considered, both in verifying loads and building conditions. Firstly, as already mentioned, for 

building and safety reasons, the periods of time which the building operations could last were 

set between minimum and maximum values. Secondly, as can be seen in Table 1, the separation 

between straining pieces was considered the same on all floors. In this way the transmission of 

loads between the shores on the different floors is exclusively vertical, without introducing 

additional shear forces. On the optimization process, both these constraints form part of the 

definition of a new solution, as they enter in the definition of the variables (Section 3.2). 

Finally, the loads were verified throughout the entire optimization process. The third constraint 

is based on the condition of Calavera [35] and Fernández [36], as explained in Section 2, which 

verifies the loads on the slabs during the different building phases and determines whether or 

not the different solutions considered are feasible. 

 

4. Search methods applied 

According to Eq. (4), the dimension of the solution space is exponentially dependent on the 

number of floors (n) in the building. Although it is therefore possible to apply exact methods to 
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obtain the optimal solution for buildings with only a few floors, the calculation time is usually 

high, so that heuristic search strategies are often used, such as Random Walk (RW), Descent 

Local Search (DLS) and Simulated Annealing (SA). 

The first method used in this work was an exact search method for the optimal solution, 

which consisted of generating all possible solutions and assessing the cost of all the feasible 

ones. In this way the solution with the lowest cost was obtained, in accordance with the 

objective function defined in Section 3.4. 

The second method used was the well-know algorithm called Random Walk [16], which 

generates solutions by randomly selecting values for each variable. After generating the 

solution, the constraints are applied to determine whether or not it is feasible, and if so, the 

objective function is evaluated in order to obtain its cost. The process is repeated a certain 

number of iterations and the solution with the best cost is selected. This strategy is known as a 

non-intelligent search method and does not guarantee finding the optimal solution. However, 

low cost solutions may be found and it is also useful for exploring the solution space to 

determine the percentage of feasible solutions. Another advantage of RW is that it can be used 

as a starting point for other heuristic methods, so that the initial solution may in fact be good. 

The results of the percentage of feasible solutions and the iterations carried out are given in 

Section 5.2. 

The third method was Descent Local Search [16], which takes the initial solution as a 

feasible random solution, and gradually alters it by means of small movements in the values of 

the variables. A movement consists of a small up or downward variation in the value of a 

variable. The new solution is then assessed and is adopted as the best if its cost is lower than the 

previous best solution. Two types of random movements are considered, Mov1 and Mov2, in 

which the number indicates the number of randomly modified variables when generating a new 

solution. In this way, the most efficient type of method is determined for application in the next 

strategy. The process is repeated for a given number of iterations until no further improvement 

of the solution is found. This strategy is known to sometimes stay with a local optimal solution, 
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which, although better than the initial, is not the best possible, and the method is unable to 

improve on it without accepting worse solutions, in which case the optimal solution will not be 

found. In addition, as this method depends on a great extent on the initial solution adopted, the 

calculations were repeated five times to observe its influence. The results obtained by this 

strategy are presented in Section 5.3. 

The fourth method was Simulated Annealing, originally proposed in 1983 by Kirkpatrick et 

al [19], based on an analogy with the formation of crystals melted at high temperatures and 

allowed to cool slowly so that they remain in a state of minimum energy. This process is 

governed by the Boltzmann factor, ∆ ⁄ , when ∆  is the increase in energy of the new 

configuration and  is the temperature. The optimizing process begins with a randomly 

generated solution at the initial high temperature. This is altered by small movements, as in 

Descent Local Search. The cost of the new solution is then assessed. Feasible low cost solutions 

are immediately accepted, while those with higher costs are accepted when a random number 

between 0 and 1 is less than the expression ∆ ⁄ , when ∆  is the absolute value of the 

cost increase and T the present temperature. A specific number of iterations, known as the 

Markov chain, are carried out at this temperature, which is then reduced by means of the 

expression  where  is the coefficient of cooling, so that the likelihood of accepting 

higher cost solutions is reduced. The process usually ends when the temperature is reduced to a 

small proportion of the original, or after a certain number of Markov Chains with no 

improvements to the solution [16]. With this strategy, which allows worse solutions to be 

accepted, locally optimal solutions can be avoided in which strategies like Descent Local Search 

would become stuck. In this method the different parameters, such as initial temperature, length 

of the Markov chain and coefficient of cooling, must be calibrated. The results obtained by this 

strategy are given in Section 5.4. 
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5. Results of the search methods 

The different methods of searching for optimal solutions were applied in a normal type of 

PC with a 3.2 GHz Intel Core i7, which puts this building process design tool within the reach 

of practically any user.  

Before looking for optimal solutions, and with the aim of making it possible to compare the 

solutions obtained with those actually applied in the experimental and Fine Arts buildings as 

described in Section 2, the costs of each were assessed according to the objective function 

defined, and were found to be €6.14/m2 and €11.97/m2 respectively. Below, these costs are 

compared to those obtained from applying the different search methods. 

 

5.1. Exact method 

Applying the exact method to the experimental building required a computation time of 

31.44 hours. The optimal solution obtained (see Table 5) was a cost of €2.88/m2. It should be 

emphasized that this was the best solution to the problem considered and involves a cost 

reduction as defined by the objective function of 53.09 %. 

From the computation time and the dimension of the solution space of this building, a mean 

ratio of 332 calculated solutions per second is obtained. After different numerical simulations 

for the Fine Arts building a mean ratio of 27 calculated solutions per second is obtained. As 

accepting this ratio would imply a computation time of 904,608 centuries, the exact method is 

clearly impractical and the use of heuristic methods is necessary. 

 

5.2. Random Walk 

The percentage of feasible solutions to the problem under study obtained by this method 

was 47.01% for the experimental and 23.63% for the Fine Arts building. Fig. 3 gives the 

financial cost of the feasible solutions obtained in relation to the execution time of this strategy 

up to 100,000 iterations. The best solution found has a cost of €3.02/m2 for the experimental 
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building and €11.08/m2 for the Fine Arts building. These costs involve reductions of 50.81 % 

and 7.44 %, respectively. The main characteristics of each solution are summarized in Table 6. 

Table 5. Best solution obtained for experimental building by the exact method 

Variable Experimental Building 

Process SCS 

Clearing or Reshoring Percentage [%] 66 

Consecutive Shored Floors 2 

Separation of Straining Pieces [m] 3 

Shores Area [m2] 2.89E-04 

Separation of Shores Level 1 [m] 2 

Separation of Shores Level 2 [m] 1 

Separation of Shores Level 3 [m] 2 

Casting Level 1 [days] 0 

Casting Level 2 [days] 5 

Casting Level 3 [days] 5 

Clearing Level 1 [days] 2 

Clearing Level 2 [days] 2 

Clearing Level 3 [days] 2 

Reshoring Level 1 [days] - 

Reshoring Level 2 [days] - 

Reshoring Level 3 [days] - 
 

 

 

 

Fig. 3. Search process for optimal solution by Random Walk for 100,000 iterations for a) 

Experimental Building and b) Fine Arts Building 

 

a) b)
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Table 6. Best optimal solutions obtained by random Walk for 100,000 iterations.  

Variable 
Experimental 

Building 
Fine Arts 
Building 

Variable 
Experimental 

Building 
Fine Arts 
Building 

Process SCS SCS 
Casting Level 

6 [days]
- 7 

Clearing or Reshoring 
Percentage [%]

66 66 
Casting Level 

7 [days]
- 6 

Consecutive Shored 
Floors

2 2 
Clearing 

Level 1 [days]
2 6 

Separation of Straining 
Pieces [m]

2 2.49 
Clearing 

Level 2 [days]
2 5 

Shores Area [m2] 2.89E-04 2.89E-04 
Clearing 

Level 3 [days]
2 2 

Separation of Shores 
Level 1 [m]

2 2 
Clearing 

Level 4 [days]
- 6 

Separation of Shores 
Level 2 [m]

0.5 2 
Clearing 

Level 5 [days]
- 4 

Separation of Shores 
Level 3 [m]

2 0.5 
Clearing 

Level 6 [days]
- 3 

Separation of Shores 
Level 4 [m]

- 2 
Clearing 

Level 7 [days]
- 3 

Separation of Shores 
Level 5 [m]

- 2 
Reshoring 

Level 1 [days]
- - 

Separation of Shores 
Level 6 [m]

- 2 
Reshoring 

Level 2 [days]
- - 

Separation of Shores 
Level 7 [m]

- 2 
Reshoring 

Level 3 [days]
- - 

Casting Level 1 [days] 0 0 
Reshoring 

Level 4 [days]
- - 

Casting Level 2 [days] 5 12 
Reshoring 

Level 5 [days]
- - 

Casting Level 3 [days] 5 10 
Reshoring 

Level 6 [days]
- - 

Casting Level 4 [days] - 5 
Reshoring 

Level 7 [days]
- - 

Casting Level 5 [days] - 10      

 

5.3. Descent Local Search 

As this method requires a randomly generated initial solution, each building was calculated 

five times. The results of the five different solutions for each type of random movement (Mov1 

and Mov2) and both buildings can be seen in Figs. 4 and 5. The financial cost is also given in 

relation to the calculation time of the solutions obtained by this method. The calculation process 

is shown on the left followed by the method with only one movement (Mov1) for the five 

calculations. The 2-movement case (Mov2) is shown on the right. The results were obtained 

after establishing a stopping criterion of 1,000 iterations without finding an improvement. 
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Fig. 4. Search process for optimal solution by Descent Local Search in the Experimental Building. 

 

 
Fig. 5. Search process for optimal solution by Descent Local Search in the Fine Arts Building 

 

In the case of the experimental building (see Fig.4), it is more efficient to perform two 

random movements than one. In the Fine Arts building (see Fig.5) there are no significant 

differences in the financial cost obtained by the different solutions, since the mean of the 

optimal solutions is the same with one movement or two. In the following section therefore only 

two movements will be applied when randomly generating new solutions for both buildings.  

The best solution found gave a cost of €3.00/m2 for the experimental and €15.81/m2 for the 

Fine Arts building, with computation times below 40 and 90 seconds, respectively, which 

involve a cost reduction of 51.14% for the experimental and a worse solution for the Fine Arts 

buildings. The main features of the solutions are given in Table 7. 
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Table 7. Best optimal solutions obtained by Descent Local Search. 

Variable 
Experimental 

Building 
Fine Arts 
Building 

Variable 
Experimental 

Building 
Fine Arts 
Building 

Process SCS SS 
Casting Level 

6 [days]
- 8 

Clearing or Reshoring 
Percentage [%]

50 0 
Casting Level 

7 [days]
- 7 

Consecutive Shored 
Floors

2 2 
Clearing 

Level 1 [days]
2 - 

Separation of Straining 
Pieces [m]

3 2.49 
Clearing 

Level 2 [days]
2 - 

Shores Area [m2] 2.89E-04 2.89E-04 
Clearing 

Level 3 [days]
2 - 

Separation of Shores 
Level 1 [m]

1 2 
Clearing 

Level 4 [days]
- - 

Separation of Shores 
Level 2 [m]

2 2 
Clearing 

Level 5 [days]
- - 

Separation of Shores 
Level 3 [m]

0.5 1 
Clearing 

Level 6 [days]
- - 

Separation of Shores 
Level 4 [m]

- 0.5 
Clearing 

Level 7 [days]
- - 

Separation of Shores 
Level 5 [m]

- 1 
Reshoring 

Level 1 [days]
- - 

Separation of Shores 
Level 6 [m]

- 0.5 
Reshoring 

Level 2 [days]
- - 

Separation of Shores 
Level 7 [m]

- 2 
Reshoring 

Level 3 [days]
- - 

Casting Level 1 [days] 0 0 
Reshoring 

Level 4 [days]
- - 

Casting Level 2 [days] 5 6 
Reshoring 

Level 5 [days]
- - 

Casting Level 3 [days] 5 5 
Reshoring 

Level 6 [days]
- - 

Casting Level 4 [days] - 11 
Reshoring 

Level 7 [days]
- - 

Casting Level 5 [days] - 6      

 

5.4. Simulated Annealing 

This method requires a randomly-generated initial solution, initial temperature, Markov 

chain length, cooling coefficient and a stopping criterion. Medina’s method [40] was chosen to 

set the initial temperature; this consists of choosing an initial temperature value and determining 

the number of solutions accepted. Obtaining between 20 and 40 % of accepted solutions is 

considered an appropriate threshold for this value. If the percentage is higher than the upper 

limit, the initial temperature is halved and if below the lower limit it is doubled until it 

converges. A double condition was adopted as the stopping criterion: reaching a Markov chain 
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without improving the solution and a temperature below 0.01% of the initial. To calibrate the 

length of the Markov chain and cooling coefficient, a study was made of the values shown in 

Table 8 for both buildings. 

Table 8. Study for the calibration of the length of the Markov chain and cooling coefficient. 

 Experimental Building Fine Arts Building 

Length of Markov Chains 500 - 1,000 - 2,000 - 5,000 500 - 1,000 - 2,000 - 5,000

Cooling Coefficient ( ) 0.85 - 0.90 - 0.95 0.85 - 0.90 - 0.95 
 

After this study, Markov chain lengths of 5,000 and 1,000 and cooling coefficients 0.85 and 

0.95 were adopted for the experimental and Fine Arts buildings, respectively. 

Even though in this strategy the dependence of the initial solution is minimal, each building 

was calculated five times and each time the same optimal solution was obtained. Fig. 6 shows 

the results obtained in one calculation for each building, considering two movements (Mov2), as 

described in Section 5.3. This figure also gives the financial cost in relation to the computation 

time of the solutions accepted by this method. Also shown are the temperature variations 

adopted by the method; it can be seen that as the calculations advance the temperature drops, 

which reduces the probability of accepting solutions worse than the latest being accepted. In 

fact, it can be seen that the variation of the financial cost gets smaller as the calculations 

advance and in both cases converges on the optimal result obtained. 

 
Fig. 6. Search process for optimal solution by Simulated Annealing for a) Experimental Building and 

b) Fine Arts Building 

a) b)
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The best solution obtained had a cost of €2.88/m2 for the experimental and €6.96/m2 for the 

Fine Arts building. Computation times were 26.57 and 95.90 minutes, showing cost reductions 

of 53.09 % and 41.85 %, respectively. The main features of the solutions are summed up in 

Table 9.  

Table 9. Best optimal solutions obtained by Simulated Annealing. 

Variable 
Experimental 

Building 
Fine Arts 
Building 

Variable 
Experimental 

Building 
Fine Arts 
Building 

Process SCS SCS 
Casting Level 

6 [days]
- 5 

Clearing or Reshoring 
Percentage [%]

66 66 
Casting Level 

7 [days]
- 5 

Consecutive Shored 
Floors

2 2 
Clearing 

Level 1 [days]
2 2 

Separation of Straining 
Pieces [m]

3 1.66 
Clearing 

Level 2 [days]
2 2 

Shores Area [m2] 2.89E-04 2.89E-04 
Clearing 

Level 3 [days]
2 2 

Separation of Shores 
Level 1 [m]

2 2 
Clearing 

Level 4 [days]
- 2 

Separation of Shores 
Level 2 [m]

1 1 
Clearing 

Level 5 [days]
- 2 

Separation of Shores 
Level 3 [m]

2 2 
Clearing 

Level 6 [days]
- 2 

Separation of Shores 
Level 4 [m]

- 1 
Clearing 

Level 7 [days]
- 2 

Separation of Shores 
Level 5 [m]

- 2 
Reshoring 

Level 1 [days]
- - 

Separation of Shores 
Level 6 [m]

- 1 
Reshoring 

Level 2 [days]
- - 

Separation of Shores 
Level 7 [m]

- 2 
Reshoring 

Level 3 [days]
- - 

Casting Level 1 [days] 0 0 
Reshoring 

Level 4 [days]
- - 

Casting Level 2 [days] 5 5 
Reshoring 

Level 5 [days]
- - 

Casting Level 3 [days] 5 5 
Reshoring 

Level 6 [days]
- - 

Casting Level 4 [days] - 5 
Reshoring 

Level 7 [days]
- - 

Casting Level 5 [days] - 5      

 

6. Analysis of results 

A summary of the minimum financial costs (defined by the objective function) can be seen 

in Table 10, together with the construction times and mean computation times of the solutions 

obtained by the different optimization methods applied.  
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Table 10. Summary of minimum costs, construction times, and mean computation time of the four 
optimization methods applied to both buildings. 

 
Experimental Building (€6.14€/m2 and 
27 days) 

Fine Arts Building (€11.97€/m2 and 49 
days) 

 
Mean Time 
[min] 

Minimum 
Cost [€/m2] 

C. Time 
[days] 

Mean Time 
[min] 

Minimum 
Cost [€/m2] 

C. Time 
[days] 

Exact Method 1,886.40 2.88 15 - - - 

Random Walk 0,012.66 3.02 15 28.28 11.08 56 

Descent Local 
Search 

0,000.41 3.00 15 01.30 15.81 50 

Simulated 
Annealing 

0,026.57 2.88 15 95.90 06.96 35 

 

As could be expected, the results show that SA is the most efficient heuristic optimization 

strategy in terms of financial cost. The financial cost of the experimental building, as defined by 

the objective function (see Section 3.4), is 4.00% lower than DLS and 4.64% lower than RW, 

while for the Fine Arts building the reductions are 55.98 % and 37.18 %, respectively. 

Furthermore, although the computation time required is slightly higher than the other heuristic 

methods, the longer time is acceptable in practice. In the case of the experimental building, it 

can also be seen that SA was able to find the optimal solution to the problem in a drastically 

reduced computation time respect to the exact method. Although we cannot know whether the 

best optimal solution to the problem was found in the case of the Fine Arts building, SA’s 

solution is considerably lower than the construction method actually used when it was built. 

After applying the different optimization methods, the construction times were also reduced by 

12 days (44.44 %) and 14 days (28.57 %), respectively, for each of the buildings. 

It can therefore be concluded that any user of this type of tool will be able to find an optimal 

solution to the shoring problem that will reduce both costs and construction times, without the 

need to previously consider a specific construction process or to have any experience in 

designing these processes. As can be seen from the optimal solutions obtained (Table 9), they 

are based on finding a feasible solution with the maximum possible separation between 

straining pieces and shores and shortest possible operating times to further reduce costs. In this 
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way, the minimum amount of equipment is used and all or part of it is soon recovered. The SCS 

process was found to be the optimal process for achieving this objective. 

 

7. Conclusions 

A tool was developed to calculate and verify the loads on slabs and shores with the aim of 

obtaining the optimal construction processes for multistorey buildings with in situ casting. Both 

exact and heuristic methods were used to search for the optimal solutions. From the results 

obtained it can be concluded that, in general, the exact method is only suitable for buildings 

with fewer than four floors. Heuristic methods must be applied to obtain the optimal processes 

in buildings with more than this number of floors. Of the strategies considered, Simulated 

Annealing was found to be the most efficient search method. 

Optimal solutions were obtained for the two buildings studied that involved savings of up to 

53% of the cost of the shoring system and reduced construction time while fulfilling the 

constraints considered. The authors recommend that future lines of research conduct detailed 

analyses of maximum loads on shores and their local effects on slabs, two aspects that in certain 

cases could have a strong influence on optimal construction processes. It would be also 

interesting to use different techniques such as multiobjective analysis, population methods and 

hybrid optimization. 
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