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This paper examines the economic optimization of reinforced concrete road frame bridges by threshold acceptance. The 

formulation of the problem includes 50 discrete variables: three geometrical ones, three types of concrete and 44 

reinforcement bars and bar lengths. Design loads are in accordance with the national codes for road bridges. An internal 

matrix method program computes the stress resultants and envelopes of the frame bridges. The evaluation module includes 

the ultimate limit state of fatigue plus other commonly specified limit states of service and ultimate flexure, shear and 

deflections. Solutions are evaluated following the Spanish code for structural concrete. This study reviews the main factors 

affecting the design of frame bridges. The study then presents a parametric study of commonly used road frame bridges 

from 8 to 16 m in horizontal span for different fills and earth covers conditions. The evolution of the total, concrete and steel 

cost is examined with regard to the key parameters, resulting in practical rules of thumb for optimum frames. Finally, it is 

shown that the steel-to-concrete cost has a fair influence on the characteristics of the optimum road frame bridges. 
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The present design of economical concrete structures 

is much conditioned by the experience of structural 

engineers. Most traditional procedures adopt cross-

section dimensions and material grades arising from 

sanctioned common practice. Once the structure is 

defined, it follows the analysis of stress resultants and 

the computation of passive and active reinforcement 

that satisfy the limit states prescribed by concrete 

codes. If the dimensions or material grades are 

insufficient, the structure is redefined on a trial-and-

error basis. Such process leads to safe designs, but the 

economy of the concrete structures is, therefore, very 

much linked to the experience of the structural 

designer. 

 An alternative approach to design can be found in 

structural optimization procedures. In this sense, 

artificial intelligence has dealt since its appearance in 

the mid 1950s with a variety of fields that include the 

solution of constrained problems
1,2

, such as the design 

of structures which is a problem of selection of design 

variables subject to structural constraints. The 

optimization approach defines the structure on the 

basis of the design variables, automatically calculates 

and validates the structure and then redefines it by 

means of an optimization algorithm that controls the 

flow of a large number of iterations in the search for 

the optimum structure. This approach includes full 

verification of a code of practice and, hence, it goes 

beyond an optimization procedure and becomes an 

explicit way of designing the structure. However, it is 

worth mentioning that experience is crucial for the 

development of computer design models since design 

involves more than a simple application of codes of 

practice. 
 

 Structural optimization methods are clear 

alternatives to experience-based designs. They may be 

categorized as either exact methods or heuristic 

methods. The exact methods are the traditional 

approach. They are based on the calculation of 

optimal solutions following iterative techniques of 

linear programming
3,4

. These methods are very 

efficient for a few design variables, but computing 

time becomes prohibitive for large numbers of 

variables. The heuristic methods are linked to the 

evolution of artificial intelligence procedures. This 

group includes numerous search algorithms
5-9

, such as 

genetic algorithms, simulated annealing, tabu search, 

neural networks and ant colonies among others. These 

methods have been applied successfully in areas other 

than structural engineering, for example, transport 

engineering
10

. A thorough review of structural 

optimization methods can be found in the study by 

Cohn and Dinovitzer
11

, who reported on the gap 

between theoretical studies and the practical 

application of optimization methods in civil and 

aeronautical engineering. Additionally, they affirmed 
____________ 
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that most studies focused on steel structures while 

only a small fraction dealt with reinforced concrete 

(RC) structures. A review of non-heuristic structural 

concrete optimization studies is reported by Sarma 

and Adeli
12

. 

 Among the first studies of heuristic optimization 

applied to steel structures, the contributions of 

Jenkins
13

 and of Rajeev and Krishnamoorthy
14

 in the 

early 1990s are to be mentioned. As regards concrete 

structures, pioneering applications include the 1997 

work by Coello et al.
15

, who applied GA to sections of 

simply supported RC beams, together with the study 

of prestressed concrete beams by Leite and Topping
16

. 

Various studies
17-25

 describe examples of beams, 

columns, building frames, flat slab buildings, T-beam 

bridge decks and water tanks. Recently, the authors’ 

research group has presented studies of earth retaining 

walls, building frames, road vaults and rectangular 

section hollow bridge piers
26-31

. 

 The present study concentrates on optimum frame 

bridges, an example of which is given in Fig. 1. Box 

frame bridges are used to solve the intersection of 

transverse traffic or hydraulic courses with the main 

upper road. Spans range from 3 to 20 m. Box frames 

are preferred when there is a low bearing strength 

terrain. The depth of the top and bottom slabs is 

typically designed between 1/10 and 1/15 of the 

horizontal free span. The depth of the walls is 

typically designed between 1/12 of the vertical free 

span and the depth of the slabs. Bridge box frames 

must satisfy all the limit states required for an RC 

structure to sustain the traffic and earth loads 

prescribed by the codes. 

 

Proposed Optimization Model for Frame Bridges 
 The problem of optimization established in the 

present study consists of an economic optimization of 

the structural design of frame bridges. It deals with 

the minimization of the objective function F of 

Eq. (1), satisfying also the constraints of Eq. (2). 
 

1 2 1 2

1,

( , ,... ) ( , ,..., )n i i n

i r

F x x x p m x x x
=

= ∗∑   … (1) 

 

1 2( , ,..... ) 0j ng x x x ≤   … (2) 
 

Note that the objective function in Eq. (1) is an 

economic function expressed as the sum of unit prices 

multiplied by the measurements of construction units 

(concrete, steel, formwork, etc). And that the 

constraints in Eq. (2) are all the service and ultimate 

limit states that the structure has to satisfy, as well as 

the geometrical and constructability constraints of the 

 
 

Fig. 1―Design example of RC frame bridge 
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problem. Unit prices considered for the RC frame 

bridges are given in Table 1 and are obtained from 

Spanish contractors of road construction. 

 The proposed optimization model was described in 

detail in a previous publication
28

. Figure 2 specifies 

the 50 variables considered in this study, including 

three geometrical values (the depth of the walls and 

slabs), three different grades of concrete for the three 

types of elements and 44 types of reinforcement bars 

and bar lengths following a standard set-up. All 

variables are discrete in this analysis. Steel grade 

corresponds to EHE Spanish B500S in all cases (yield 

stress of 500 MPa). Flexural bars include variable 

length corner reinforcement bars and positive bending 

reinforcement in the top and bottom slabs. Shear 

reinforcement includes two zones of variable 

definition in slabs (corner and mid-span) and three 

variable zones in walls (bottom, middle and top). The 

depth of the top slab can vary between a minimum of 

400 mm and a maximum of 1650 mm in steps of 50 

mm. As regards concrete grades, they can vary 

between 25 and 50 MPa cylinder compressive 

strength in steps of 5 MPa. Finally, steel bars can vary 

between 6 and 40 mm following a standard sequence. 

The key parameters are the horizontal free span, the 

vertical free span, the earth cover, the traffic loads, 

the earth fill properties, the ballast coefficient of the 

bearing and the partial safety coefficients. Structural 

constraints considered followed standard Spanish 

provisions for the design of this type of structure
32,33

, 

which requires checks into the service and ultimate 

limit states of flexure and shear for the stress 

envelopes given the traffic loads and the earth fill. 

Traffic loads considered are a uniformly distributed 

load of 4 kN/m
2
 and a heavy vehicle of 600 kN. Stress 

resultants and reactions were calculated by an internal 

matrix method program using a 2-D mesh with 

 
 

Fig. 2―Reinforcement related variables of the RC frame bridge 

Table 1―Basic prices of the cost function of the box road 

frames 

Unit Cost (€) 

kg of steel (B-500S) 0.583  

m2 of lower slab formwork 18.030  

m2 of wall formwork 18.631  

m2 of upper slab formwork 30.652  

m3 of scaffolding 6.010 

m3 of lower slab concrete (labour) 5.409 

m3 of wall concrete (labour) 9.015 

m3 of upper slab concrete (labour) 7.212 

m3 of concrete pump rent 6.010 

m3 of concrete HA-25 45.244 

m3 of concrete HA-30 49.379 

m3 of concrete HA-35 53.899 

m3 of concrete HA-40 58.995 

m3 of concrete HA-45 63.803 

m3 of concrete HA-50 68.612 
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40 elements and 40 sections (out-of-plane bending 

moments had to be assumed as a practical one-fifth 

proportion of in-plane bending moments). Deflections 

were limited to 1/250 of the free span for the quasi-

permanent combination. The calculation includes the 

tension stiffening effect following Eurocode 2 

provisions
34

. Although concrete and steel fatigue is 

rarely checked in road structures, it was considered in 

this study since this ultimate limit state cannot be 

neglected, as it has been reported elsewhere
28

. The 

loading considered was a 468 kN heavy vehicle 

prescribed for fatigue by the Spanish loading code for 

bridges
32

, and the stresses were checked against 

Eurocode 2 limitations for fatigue
34

. 
 

Proposed Threshold Accepting Strategy 
 The search method used in this research is the 

threshold accepting (TA henceforth), a method which 

was proposed by Dueck and Scheuer
35

 as an 

alternative to the simulated annealing algorithm
36

. 

The algorithm starts with a randomly generated 

feasible solution and a high initial threshold accepting 

value. The initial working solution is changed by a 

small random move in the values of certain variables. 

The new current solution is evaluated in terms of cost. 

Greater cost solutions are accepted when the cost 

increment is less than the current threshold accepting 

value. The current solution is then checked against 

structural constraints and if it is feasible, it is adopted 

as the new working solution. The initial threshold 

level value is decreased geometrically by means of a 

coefficient k. A number of iterations called cycles are 

allowed at each step of the threshold accepting value. 

The algorithm stops when the threshold accepting 

value is a small percentage of the initial value 

(typically 1% or 1-2 cycles). The TA method is able 

to surpass local optima at high-medium threshold 

values and gradually converges as the threshold value 

drops to zero. The TA method requires calibrating the 

initial threshold accepting value, the length of the 

cycles and the reducing coefficient. The initial 

threshold value was that indicated by Medina
37

. 

Computer runs were repeated 25 times to obtain 

minimum, mean and deviation of the results with 

regard to the best result. 

 The TA algorithm was programmed in Compaq 

Visual Fortran Professional 6.6.0. The algorithm was 

calibrated using a bridge box road frame with 13 m 

horizontal free span, 6.17 m vertical free span and 1.5 

m earth cover (additional parameters are 10 MN/m
3
 

stiffness modulus of the foundation, specific weight 

of the fill of 20 kN/m
3
, a 30° internal friction angle of 

the fill and partial safety coefficients of 1.5 for 

loading and 1.5-1.15 for concrete-steel as materials). 

The TA algorithm required 1000 iteration cycles and 

a reducing coefficient of 0.95. The most efficient 

move found for the TA algorithm was a random 

variation of up to 5 variables of the 50 of the problem. 

A typical computer run lasted about 110 s. 
 

Key Factors Affecting Optimum Frame Bridges 
 There are seven key factors affecting the design: 

(i) the horizontal free span, (ii) vertical free span, 

(iii) earth cover, (iv) traffic loads, (v) earth fill 

properties, (vi) ballast coefficient of the bearing, and 

(vii) partial safety coefficients. The horizontal free 

span of the parametric study below concentrates on 

the most common traffic intersections, which usually 

vary from a minimum of 8 m to a maximum of 16 m 

clearance. The 8 m clearance is typical of narrow 

secondary roads measuring 6 m in width plus two 

additional 1 m shoulders. The 16 m span is typical of 

roads with a 12 m platform plus two additional 

shoulders of 2 m. The vertical free span for these 

traffic intersections generally varies between 5 and 

6 m, since the vertical clearance is between 4.5 to 

5 m. The present study fixes this vertical free span at 

5.5 m. Results for 5-6 m in height are quite similar, 

and the adopted value is considered a representative 

typical value for this type of intersections. 

 The earth cover usually varies between a minimum 

of 0.5 m and a maximum of 5 m. This is so because 

most embankments usually measure up to about 10-12 

m in height, which, together with the vertical free 

span and the thicknesses of the slabs, makes earth 

covers of up to 5 m the most typical measurements in 

road construction. The characteristics of the earth fill 

have a moderate influence in the frame design. 

Typical types of fill considered in practice can be 

found elsewhere
30

, where three types of fill are 

reported: F1, F2 and F3 with 35°, 30° and 24° of 

internal friction angle and 22, 20 and 18 kN/m
3 

of 

specific weight. The F1 fill corresponds to a high 

quality, coarse granular fill while the F3 fill 

corresponds to low quality fills of fine soils with low 

plasticity and the F2 fill corresponds to typical 

intermediate fills of granular soils with more than 

12% being fines. We assume that the fill is an 

intermediate type F2 with an internal friction angle of 

30° and a specific weight of 20 kN/m
3
. Accordingly, 

the active and resting coefficients of earth pressure 

adopted are 0.33 and 0.50, respectively. 
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 The traffic loads depend on the code of bridge 

loads adopted and vary from country to country. As 

mentioned earlier, the present study adopts the 

Spanish code of loads in road bridges
32

, which 

prescribes a uniformly distributed load of 4 kN/m
2
 

and a heavy vehicle of 600 kN. The load on the top 

slab is made of the self weight of the slab, the earth 

cover load and the traffic loads; thus, as the earth 

cover increases, the relevance of the traffic loads 

diminishes. Hence, results for a high earth cover of 5 

m are expected to be quite similar regardless of the 

loading code used. The Spanish loading code is rather 

similar to Eurocode 1 loading
38

, which prescribes a 

uniformly distributed load of 9 kN/m
2
 and a tandem 

vehicle of 600 kN in the most heavily loaded lane. 

The difference in the uniform load of 5 kN/m
2
 is 

equivalent to 0.25 m of extra earth cover and the sizes 

of the heavy vehicles are quite similar. The Spanish 

heavy vehicle is made of 6 point loads spaced 1.50 m 

in the traffic direction and 2 m in the transverse 

direction, whereas the Eurocode heavy vehicle is a 

four point loads spaced 2×2 m. Therefore, the 

Eurocode heavy vehicle is slightly smaller in plan 

and, thus, it gives rise to somewhat larger vertical 

pressures. As a rough and tentative generalization, the 

Eurocode traffic loads may be assimilated to the 

Spanish traffic loads with an additional 1 m of extra 

earth cover, e.g., results for 2 m of earth fill for the 

Eurocode loading may be considered as equal to the 

3 m of earth cover for Spanish traffic loading. 

 The ballast coefficient of the bearing mainly affects 

the design of the bottom slab. Better coefficients 

imply fewer stress resultants in the bottom slab and, 

hence, less thickness and fewer materials. This study 

takes a conservative approach by adopting a 

sufficiently low value of 10 MN/m
3
 which appears to 

be low enough to represent a lower-bound of the 

foundation stiffness in most cases. Finally, the partial 

safety factors adopted are 1.35-1.50 for permanent-

live loading and 1.50-1.15 for concrete-steel as 

materials. These coefficients might be reduced with 

an intense level of quality control, but again the 

present study takes a conservative approach in this 

respect. 
 

Parametric Study of RC Road Frame Bridges 
 A parametric study for varying horizontal spans 

and earth covers with the TA optimization model is 

presented. Five horizontal spans of 8, 10, 12, 14 and 

16 m were considered. Six earth covers were 

considered ranging from 0.50 to 5m; namely 0.5, 1, 2, 

3, 4 and 5 m. The vertical free span is kept constant at 

5.5 m. Hence, a total of 30 bridge frames were 

analysed. For this parametric study, certain practical 

limitations were imposed on the optimization process: 

neither extra reinforcement in the interior face nor 

shear reinforcement in the walls was allowed; and the 

concrete grade was fixed at 25 MPa, the typical value 

for the entire box frame. The primary economic, 

geometric and reinforcement characteristics are 

examined. The results of the parametric study lead to 

practical rules for the preliminary design of optimum 

structures. The results are discussed together with the 

results of a regression analysis. The corresponding 

functions are valid approximations within the range of 

the studied parameters and therefore careful 

consideration is required when extrapolation is carried 

out. 
 

Analysis of the total cost 

 Figures 3 and 4 show the variation in the total cost 

of the frame bridges for the selected geometrical 

dimensions. Figure 3 illustrates the cost variation with 

regard to the horizontal span for different earth covers 

while Fig. 4 shows the cost variation as a function of 

the earth cover for distinct horizontal span values. The 

total cost evolution as a function of the horizontal 

span leads to a very good quadratic correlation. The 

cost increments of the frame bridges are due to higher 

material costs, necessary to resist increased member 

forces and to satisfy deflection requirements. 

Additionally, formwork, falsework and material costs 

rise since the geometric variation results in linear 

variation of the shear force, quadratic variations of the 

bending moment and biquadratic change of the 

deflections. The total costs increase on the average by 

a factor of 2.5 when the horizontal span increases 

from 8 m to 16 m. Note that the R
2
 regression 

coefficients in Fig. 3 are almost 1, which indicates a 

nearly functional relation. 

 With varying earth covers for constant horizontal 

spans, a linear correlation is found for the total cost 

(see Fig. 4). Again, the high correlation factor of 

nearly one indicates an almost functional relation. The 

reason for this can be found in the somewhat linear 

influence of the earth cover on the member forces and 

deflections and, correspondingly, on the design cost. 

Given an artificial tunnel with a longitudinal earth 

cover development, the above chart can be used to 

determine the optimum number of different sections 

and the earth covers for which these sections must be 

designed.    Designing   each   segment   of   a   tunnel 
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individually is not optimal not only because of the 

increased design and organization costs but also 

because of the unattained benefits of repetition in the 

construction process.  
 

Analysis of the total concrete cost 

 The development of the total concrete cost is 

shown in Figs 5 and 6, in an analogous way to the 

total cost charts, i.e., Fig. 5 depicts the total concrete 

cost for a range of horizontal spans and Fig. 6 depicts 

the total concrete cost for a series of earth covers. 

Very good adjustment is achieved using a quadratic 

function for Fig. 5. The mean concrete cost increases 

by a factor of 2.95 if the horizontal span increases 

from 8 m to 16 m, which is a higher increment than 

 
 

Fig. 3―Total cost versus horizontal span 

 

 
 

Fig. 4―Total cost versus earth cover 
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that for the total cost, which increased by a factor of 

2.5. However, one should take into account that the 

total costs include the costs of formwork and 

falsework which varied by less than a factor of 2. It is 

worth noting that total costs in Figs 5 and 6 are for a 

concrete class of C25, whose unit cost is about 57.56 

€/m
3 
(see Table 1). Hence, Figs 5 and 6 can be used to 

obtain the approximate measurement of concrete per 

unit length, i.e., m
2
/m of concrete. 

 For the different earth covers, a linear relationship 

fits the data adequately. The total concrete costs 

increase with a change in the earth cover from 1 m to 

5 m by a factor of 1.4 on average. For a frame with a 

span of 8 m and 16 m increasing the earth cover by 

 
 

Fig. 5―Total concrete cost versus horizontal span 

 

 
 

Fig. 6―Total concrete cost versus earth cover 

 



INDIAN J. ENG. MATER. SCI., DECEMBER 2010 

 

 

434 

1 m increases the total concrete cost by 110 € and 220 

€, respectively, as noted in the inclination variation of 

the graphs and in the regression functions. 
 

Analysis of the total steel cost 

 In this section, the variation of the total steel cost is 

analysed. Figure 7 shows the variation as compared to 

the horizontal span for different earth covers, and Fig. 

8 illustrates the variation as a function of the earth 

cover for varying horizontal span values. Again, it is 

worth noting that total costs in Figs 7 and 8 are 

calculated for a steel class of B500S (yield stress of 

500 MPa); whose unit cost is 0.583 €/kg (see 

Table 1). Therefore, Figs 7 and 8 can be used to 

determine the measurement of steel kilograms per unit 

length, i.e., kg/m of steel. Thus, expressions in 

Figs 5-8 may be used to obtain the basic 

 
 

Fig. 7―Total steel cost versus horizontal span 

 
 

Fig. 8―Total steel cost versus earth cover 
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measurements of structural materials and, hence, to 

estimate the total cost of the frame materials. 

 Concrete costs are found to be similar to those of 

steel, which increased by a factor of 3.2 for distinct 

horizontal spans from 8 m to 16 m. This is a higher 

increase than for the total concrete cost, which 

changed by a factor of 2.95. For the specified 

horizontal spans, the increase in the steel cost differs 

greatly. In this case for the 8 m and 16 m span, an 

increment of 120 € and 576 € per additional meter of 

earth cover is detected, compared to the 110 € and 

220 € costs in the concrete. 

Analysis of the upper slab depth and mid-span reinforcement 

area 
 

 The correlation quality is in general inferior when 

analysing single variables like the wall depth or the 

slab depth. One reason for this is the discrete nature of 

the variables, which results in a dependency of the 

values of one variable on those of other variables. 

Figures 9 and 10 illustrate the variation in the upper 

slab depth and in the mid-span reinforcement with the 

horizontal span. The span to thickness ratio for frames 

with 8 m of horizontal span ranges from a maximum 

of 20 for 0.50 m of earth cover to a minimum of 11.27 

 
 

Fig. 9―Upper slab depth versus horizontal span 

 

 
 

Fig. 10―Mid-span interior reinforcement area versus horizontal span 
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for 5 m of earth cover. In the case of frames with 

16 m of horizontal span, these values vary from a 

maximum of 14.81 to a minimum of 9.94. As derived 

from the expressions, the upper slab depth augments 

by a factor of 2.4 with an increase in the horizontal 

span from 8 to 16 m. The interior area of 

reinforcement augments by a factor of 2.9 for the 8-16 

m increase in the horizontal span. A comparison 

between the upper and lower slab depths shows that 

the lower slab depth is on average 80% of the upper 

slab depth. The mid-span reinforcement of the lower 

slab is approximately 60% of the upper slab mid-span 

reinforcement area. It is worth noting that the amount 

of steel variables is very large and that due to paper 

size limitations we only provide as an example of 

steel sizing. Note that this omission is of secondary 

importance since structural practitioners have 

alternative methods to design the steel reinforcement 

once the geometry is known. It is important to note 

that these practitioners methods are not objective 

since the design can be achieved by many subjective 

choices of steel reinforcement. In contrast, the present 

model does not design the reinforcing steel in a 

subjective way, but checks the reinforcing steel, 

which is an objective procedure. 
 

Analysis of the wall depth 

 The second geometric variable is the wall depth. 

Compared to the earth cover, the average wall depth 

increases by 40% (see Fig. 11). In general, the wall 

depth is slender with span-to-depth ratios ranging 

from as high as 14 to 8.5. The wall depth has a 

nonlinear response, which is caused by its 

dependency on other variables like the upper and the 

lower slab depth. To arrive at an optimal design the 

practising engineer can select the wall depth to be 400 

mm plus 4% of the earth cover as an average value 

and check if shear reinforcement is required in the 

wall. If this is the case the wall depth has to be 

increased, as the optimum structures do not have 

shear reinforcement in the walls as mentioned earlier. 
 

Influence of steel cost on steel quantity 

 To determine the influence of the steel cost on the 

optimum structure characteristics, the 30 optimum 

structures of the parametric study were optimized for 

two different steel costs (0.896 €/kg and 0.294 €/kg). 

One expects that a change in the unit prices would 

result in a modification of the optimum structure. 

Steel quantity is examined and findings indicate that 

an increase in the steel cost fairly reduces the steel 

quantity in the optimum structures. As noted in 

Table 2, the change in the steel quantity is moderate 

falling only from 79.60 to 74.51 kg/m
3 

for a 50% 

increase in the steel cost. Reducing the steel cost to 

50% of the actual price results in an increase in 

the   steel   quantity   to   85.41  kg/m
3
.  It thus may be 

tentatively  concluded  that  variations in the steel cost 

 
 

Fig. 11―Wall depth versus earth cover 
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result in moderate changes in the frame 

characteristics. 
 

Conclusions 

 From this study, the following conclusions may be 

derived: 

(i) RC bridge frames can potentially use heuristic 

algorithms for the advanced automatic design of 

real concrete structures. It is essential to note that 

the present model eliminates the need for 

experience-based rules of design. 

(ii) The total cost, the steel cost and the concrete cost 

may be estimated with a high degree of accuracy. 

Quadratic and linear relationships are observed 

for the horizontal span and for the earth cover, 

respectively. 

(iii) Single variables like the depth of the walls and 

slabs lead to more variation. However, the data 

figures may be used for the preliminary optimum 

geometry design. 

(iv) The characteristics of the optimum structures are 

fairly influenced by the steel to concrete cost. 
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Table 2―Steel quantity depending on steel cost 
 

Steel cost 

(€/kg) 

Steel quantity 

(kg/m3) 

0.294 85.412 

0.583 79.604 

0.896 74.511 


