

Departamento de Física Aplicada / Applied Physics Department

DETAILED CLINICAL MODELS AND THEIR RELATION

WITH ELECTRONIC HEALTH RECORDS

Tesis Doctoral / Doctoral Thesis

Author: Diego Boscá Tomás

Supervisor: Montserrat Robles Viejo

Co-supervisor: José Alberto Maldonado Segura

Valencia, November 2015

Contents
I. List of Figures .. 7

II. List of tables .. 9

III. Abstract ... 11

IV. Resumen .. 13

V. Resum .. 15

VI. Acknowledgements ... 17

VII. Introduction .. 23

VIII. Hypothesis ... 24

IX. Objectives .. 24

X. Document organization ... 25

XI. Abbreviations and acronyms ... 27

Chapter 1. Background and State of the Art ... 29

1.1. Electronic Health Records ... 29

1.2. Electronic Health Record architectures... 31

1.1.1. Dual model architecture.. 32

1.1.2. Archetype Definition Language ... 33

1.2.1. Dual Model Standards and specifications ... 38

1.2.2. Non-Dual Model Standards ... 45

1.3. Terminologies .. 52

1.3.1. Relevant Terminologies and ontologies .. 53

1.3.2. Archetype terminology binding... 56

1.4. Data, Model, and Format transformation ... 57

1.4.1. Data transformation .. 57

1.4.2. Model-based transformations .. 60

1.4.3. Format transformation .. 60

1.5. Constraint definition languages .. 61

1.6. Interoperability projects ... 62

1.7. LinkEHR Normalization Platform ... 65

1.7.1. LinkEHR Integration Engine ... 65

1.7.2. LinkEHR Archetype Editor ... 65

1.7.3. LinkEHR Extract Server .. 67

1.7.4. LinkEHR Viewer ... 67

1.7.5. LinkEHR Concept Manager .. 67

Chapter 2. Migration of Health Information Systems – Model perspective 69

2.1. Introduction .. 69

2.2. Reference model archetypes .. 70

2.3. Creation of RMA .. 71

2.3.1. Creating RMA from meta-models ... 72

2.3.2. AOM-based RMA creation .. 75

2.4. Advanced archetype editing ... 78

2.4.1. Plugin archetype editors ... 79

2.4.2. Mapping to non-dual models archetypes ... 81

2.4.3. Semantic patterns ... 82

2.4.4. Archetype creation from instances ... 83

2.4.5. Syntactic clinical model transformation between standards 85

2.5. Improvements in LinkEHR Editor .. 88

2.5.1. Connection to external repositories ... 89

2.5.2. Template import.. 89

2.5.3. Export JSON schema .. 90

2.5.4. Export FHIR profiles ... 90

2.6. Conclusions ... 90

Chapter 3. Migration of Health Information Systems – Data perspective 93

3.1. Introduction .. 93

3.2. Data Model .. 94

3.3. Source and target schemas ... 98

3.3.1. XML Schemas .. 98

3.3.2. Archetypes ... 99

3.4. Mapping Language .. 100

3.5. Customization of grouping semantics ... 106

3.5.1. Modification of skolem functions ... 106

3.5.2. Object Builders .. 107

3.6. XQuery generation .. 109

3.6.1. Mapping covers ... 109

3.6.2. Representation of domain constraints .. 110

3.6.3. Translation of mappings into XQuery ... 111

3.7. LinkEHR mapping module ... 113

3.7.1. Mapping management .. 114

3.7.2. Mapping reuse .. 116

3.7.3. Value correspondence editing .. 116

3.7.4. Object builder editing .. 118

3.7.5. Generation of XQuery and Testing .. 118

3.8. Validation .. 120

3.8.1. Technical Evaluation .. 121

3.8.2. Evaluation in real settings ... 121

3.9. Conclusions ... 124

Chapter 4. Archetypes for generation, validation, and use in EHR Systems 128

4.1. Introduction .. 129

4.2. Background and related work ... 132

4.3. Material and Methods... 134

4.3.1. LinkEHR platform ... 134

4.3.2. Generation of implementation guides from archetypes 134

4.3.3. Generation of NRL rules .. 135

4.3.4. XML instances Generation .. 138

4.3.5. Schematron Generation .. 139

4.3.6. Generation of Additional Reference Materials ... 140

4.4. Results ... 140

4.5. Discussion .. 143

4.6. Conclusion ... 145

Chapter 5. Final Conclusions and Future Work ... 148

5.1. Final conclusions ... 149

5.2. Future work ... 150

5.3. Journal and congress contributions .. 151

5.3.1. Journal contributions and book chapters .. 152

5.3.2. Congress contributions .. 152

I. List of Figures

Figure 1 Dual model meta-architecture .. 33

Figure 2 dADL syntax example .. 34

Figure 3 cADL syntax example ... 35

Figure 4 cADL example showing occurrence, existence, cardinality, and primitive value

constraints ... 37

Figure 5 cADL example showing internal references and archetype slots 38

Figure 6 Excerpt from ISO 13606 Medication administration archetype 41

Figure 7 openEHR Information Model Overview. © openEHR ... 43

Figure 8 Excerpt from openEHR triage archetype ... 44

Figure 9 FHIR DSTU2 Medication resource in XML ... 49

Figure 10 Example intravenous medication instance based on medication resource 50

Figure 11 SNOMED CT example concept .. 54

Figure 12 SNOMED CT relationships example .. 55

Figure 13 Example of TGD ... 58

Figure 14 Example of full TGD ... 58

Figure 15 example of relationships and resources for problem clinical model 68

Figure 16 LinkEHR archetype edition .. 71

Figure 17 Steps for the creation of FHIR archetypes .. 72

Figure 18 Excerpt of a Systolic FHIR archetype ... 74

Figure 19 Archetype editing without reference model – creating attributes 76

Figure 20 Archetype editing without reference model – creating objects 76

Figure 21 Example of a MML BasicClinicModule Reference Model Archetype 78

Figure 22 Editing a FHIR Adverse Reaction archetype .. 79

Figure 23 editing an HL7 CDA archetype with specific editor ... 80

Figure 24 Reference Model Manager inside LinkEHR Editor .. 81

Figure 25 Including a semantic pattern in current archetype ... 83

Figure 26 ADL excerpt ... 97

Figure 27 Example of tree view of an XML Schema .. 99

Figure 28 Blood pressure archetype and an excerpt of the comprehensive archetype side by

side .. 100

Figure 29 Example of value correspondence transforming the gender codes from a XML source.

 ... 101

Figure 30 An example of value correspondence ... 103

Figure 31 Grouping mismatch between source and target schemas 104

Figure 32 Nested relations examples, (a) and (c) are in PNF and (b) is not 105

Figure 33 Annotated archetype with skolem parameters .. 106

Figure 34 Parameter of the skolem function to control the creation of values in set types 107

Figure 35 Simple mapping scenario .. 108

Figure 36 Simple mapping scenario with object builders ... 109

Figure 37 XQuery template for building archetype instances from source data 112

Figure 38 Example of generated XQuery .. 113

Figure 39 Mapping and XQuery generation .. 114

Figure 40 Editing a mapping function table .. 117

Figure 41 Expression mapping editor .. 117

Figure 42 Object builder editing form ... 118

Figure 43 Export integration archetype dialog showing a set of covers for an archetype 119

Figure 44 HL7 CDA transformation program test output ... 120

Figure 45 Platform for the medication reconciliation project .. 122

Figure 46 Graphical representation of archetype mapping dependencies 123

Figure 47 – Proposed architecture for the generation of implementation guides from

archetypes ... 132

Figure 48 Blood Pressure EN ISO 13606 sample archetype .. 136

Figure 49 Declaration of variables in NRL to allow the generation of readable rules 136

Figure 50 Sample rule for occurrences constraint using the readable variables 137

Figure 51 Sample rules for checking cardinality and existence of an attribute 137

Figure 52 Sample rules for checking different kinds of data value constraints 138

Figure 53 Options for XML instance generation in LinkEHR ... 139

Figure 54 Schematron rule for blood pressure measurement occurrences 140

Figure 55 Excerpt of an automatically generated implementation guide from an Apgar score

openEHR archetype ... 142

Figure 56 Cells Karyotyped Count from the original Genetic Testing Report Implementation

Guide ... 142

Figure 57 Executable rules from Cells Karyotyped Count automatically generated from the HL7

CDA Genetic Testing Report archetype ... 143

II. List of tables

Table 1 Archetypes from MML common format .. 77

Table 2 Archetypes from MML module concepts ... 77

Table 3 SNOMED CT grammar expression for categorization of openEHR classes 88

Table 4 Representation of archetype constraints in the proposed data model 97

Table 5 Functions supported by LinkEHR mapping ... 102

Table 6 Examples of how constraints are processed .. 110

Table 7 attribute mapping for the presence/absence of a metastatic tumor in a level 1

archetype .. 124

Table 8 attribute mapping for the presence/absence of a metastatic solid tumor from two

different archetypes .. 124

III. Abstract

Healthcare domain produces and consumes big quantities of people’s health data. Although

data exchange is the norm rather than the exception, being able to access to all patient data is

still far from achieved. Current developments such as personal health records will introduce

even more data and complexity to the Electronic Health Records (EHR). Achieving semantic

interoperability is one of the biggest challenges to overcome in order to benefit from all the

information contained in the distributed EHR. This requires that the semantics of the

information can be understood by all involved parties. It has been stablished that three layers

are needed to achieve semantic interoperability: Reference models, clinical models

(archetypes), and clinical terminologies.

As seen in the literature, information models (reference models and clinical models) are

lacking methodologies and tools to improve EHR systems and to develop new systems that can

be semantically interoperable. The purpose of this thesis is to provide methodologies and

tools for advancing the use of archetypes in three different scenarios:

 Archetype definition over specifications with no dual model architecture native

support. Any EHR architecture that directly or indirectly has the notion of detailed

clinical models (such as HL7 CDA templates) can be potentially used as a reference

model for archetype definition. This allows transforming single-model architectures

(which contain only a reference model) into dual-model architectures (reference

model with archetypes). A set of methodologies and tools has been developed to

support the definition of archetypes from multiple reference models.

 Data transformation. A complete methodology and tools are proposed to deal with the

transformation of legacy data into XML documents compliant with the archetype and

the underlying reference model. If the reference model is a standard then the

transformation is a standardization process. The methodologies and tools allow both

the transformation of legacy data and the transformation of data between different

EHR standards.

 Automatic generation of implementation guides and reference materials from

archetypes. A methodology for the automatic generation of a set of reference

materials is provided. These materials are useful for the development and use of EHR

systems. These reference materials include data validators, example instances,

implementation guides, human-readable formal rules, sample forms, mindmaps, etc.

These reference materials can be combined and organized in different ways to adapt

to different types of users (clinical or information technology staff). This way, users can

include the detailed clinical model in their organization workflow and cooperate in the

model definition.

These methodologies and tools put clinical models as a key part of the system. The set of

presented methodologies and tools ease the achievement of semantic interoperability by

providing means for the semantic description, normalization, and validation of existing and

new systems.

IV. Resumen

El sector sanitario produce y consume una gran cantidad de datos sobre la salud de las

personas. La necesidad de intercambiar esta información es una norma más que una

excepción, aunque este objetivo está lejos de ser alcanzado. Actualmente estamos viviendo

avances como la medicina personalizada que incrementarán aún más el tamaño y complejidad

de la Historia Clínica Electrónica (HCE). La consecución de altos grados de interoperabilidad

semántica es uno de los principales retos para aprovechar al máximo toda la información

contenida en las HCEs. Esto a su vez requiere una representación fiel de la información de tal

forma que asegure la consistencia de su significado entre todos los agentes involucrados.

Actualmente está reconocido que para la representación del significado clínico necesitamos

tres tipos de artefactos: modelos de referencia, modelos clínicos (arquetipos) y terminologías.

En el caso concreto de los modelos de información (modelos de referencia y modelos clínicos)

se observa en la literatura una falta de metodologías y herramientas que faciliten su uso tanto

para la mejora de sistemas de HCE ya existentes como en el desarrollo de nuevos sistemas con

altos niveles de interoperabilidad semántica. Esta tesis tiene como propósito proporcionar

metodologías y herramientas para el uso avanzado de arquetipos en tres escenarios

diferentes:

 Definición de arquetipos sobre especificaciones sin soporte nativo al modelo dual.

Cualquier arquitectura de HCE que posea directa o indirectamente la noción de

modelos clínicos detallados (por ejemplo, las plantillas en HL7 CDA) puede ser

potencialmente usada como modelo de referencia para la definición de arquetipos.

Con esto se consigue transformar arquitecturas de HCE de modelo único (solo con

modelo de referencia) en arquitecturas de doble modelo (modelo de referencia +

arquetipos). Se han desarrollado metodologías y herramientas que faciliten a los

editores de arquetipos el soporte a múltiples modelos de referencia.

 Transformación de datos. Se propone una metodología y herramientas para la

transformación de datos ya existentes a documentos XML conformes con los

arquetipos y el modelo de referencia subyacente. Si el modelo de referencia es un

estándar entonces la transformación será un proceso de estandarización de datos. La

metodología y herramientas permiten tanto la transformación de datos no

estandarizados como la transformación de datos entre diferentes estándares.

 Generación automática de guías de implementación y artefactos procesables a partir

de arquetipos. Se aporta una metodología para la generación automática de un

conjunto de materiales de referencia de utilidad en el desarrollo y uso de sistemas de

HCE, concretamente validadores de datos, instancias de ejemplo, guías de

implementación , reglas formales legibles por humanos, formularios de ejemplo,

mindmaps, etc. Estos materiales pueden ser combinados y organizados de diferentes

modos para facilitar que los diferentes tipos de usuarios (clínicos, técnicos) puedan

incluir los modelos clínicos detallados en el flujo de trabajo de su sistema y colaborar

en su definición.

Estas metodologías y herramientas ponen los modelos clínicos como una parte clave en el

sistema. El conjunto de las metodologías y herramientas presentadas facilitan la consecución

de la interoperabilidad semántica al proveer medios para la descripción semántica,

normalización y validación tanto de sistemas nuevos como ya existentes.

V. Resum

El sector sanitari produeix i consumeix una gran quantitat de dades sobre la salut de les

persones. La necessitat d'intercanviar aquesta informació és una norma més que una excepció,

encara que aquest objectiu està lluny de ser aconseguit. Actualment estem vivint avanços com

la medicina personalitzada que incrementaran encara més la grandària i complexitat de la

Història Clínica Electrònica (HCE). La consecució d'alts graus d'interoperabilitat semàntica és un

dels principals reptes per a aprofitar al màxim tota la informació continguda en les HCEs. Açò,

per la seua banda, requereix una representació fidel de la informació de tal forma que

assegure la consistència del seu significat entre tots els agents involucrats. Actualment està

reconegut que per a la representació del significat clínic necessitem tres tipus d'artefactes:

models de referència, models clínics (arquetips) i terminologies.

En el cas concret dels models d'informació (models de referència i models clínics) s'observa en

la literatura una mancança de metodologies i eines que en faciliten l’ús tant per a la millora de

sistemes de HCE ja existents com per al desenvolupament de nous sistemes amb alts nivells

d'interoperabilitat semàntica. Aquesta tesi té com a propòsit proporcionar metodologies i

eines per a l'ús avançat d'arquetips en tres escenaris diferents:

 Definició d'arquetips sobre especificacions sense suport natiu al model dual. Qualsevol

arquitectura de HCE que posseïsca directa o indirectament la noció de models clínics

detallats (per exemple, les plantilles en HL7 CDA) pot ser potencialment usada com a

model de referència per a la definició d'arquetips. Amb açò s'aconsegueix transformar

arquitectures de HCE de model únic (solament amb model de referència) en

arquitectures de doble model (model de referència + arquetips). S'han desenvolupat

metodologies i eines que faciliten als editors d'arquetips el suport a múltiples models

de referència.

 Transformació de dades. Es proposa una metodologia i eines per a la transformació de

dades ja existents a documents XML conformes amb els arquetips i el model de

referència subjacent. Si el model de referència és un estàndard llavors la transformació

serà un procés d'estandardització de dades. La metodologia i eines permeten tant la

transformació de dades no estandarditzades com la transformació de dades entre

diferents estàndards.

 Generació automàtica de guies d'implementació i artefactes processables a partir

d'arquetips. S’hi inclou una metodologia per a la generació automàtica d'un conjunt de

materials de referència d'utilitat en el desenvolupament i ús de sistemes de HCE,

concretament validadors de dades, instàncies d'exemple, guies d'implementació,

regles formals llegibles per humans, formularis d'exemple, mapes mentals, etc.

Aquests materials poden ser combinats i organitzats de diferents maneres per a

facilitar que els diferents tipus d'usuaris (clínics, tècnics) puguen incloure els models

clínics detallats en el flux de treball del seu sistema i col·laborar en la seua definició.

Aquestes metodologies i eines posen els models clínics com una part clau del sistemes. El

conjunt de les metodologies i eines presentades faciliten la consecució de la interoperabilitat

semàntica en proveir mitjans per a la seua descripció semàntica, normalització i validació tant

de sistemes nous com ja existents.

VI. Acknowledgements

Some people find this part of the thesis the hardest to write (and probably it is). Maybe the

hardest part is not leaving anyone out. So in case I do, do not worry, you know how grateful I

am of having you in my life.

Thanks to my director, Montserrat Robles, for her support, frankness, sound advice, and caring

during all these years. Thank you for your support for all these years even in the bad times.

Thanks to my co-director, Jose Alberto Maldonado, for his suggestions, corrections, dedication,

and help in the formalization of this thesis work. With his enthusiasm and inspiration, he

helped in making the thesis subject interesting. You have provided me with lots of good ideas

and helped me a lot during the writing of this thesis.

Thanks to David Moner, for our discussions in the lab until late evenings. These discussions

have been key for the elaboration of this thesis. Thank you for always listening even when I do

not make a lot of sense.

To all the people, current or former, from the IBIME group I have met over these 10 years.

Thanks to Vicente, Juanmi, José Vicente, Carlos, Elíes, Salva, Adrian, José Enrique, Miguel,

Javier, Alejandro, Estibaliz, and Alfonso, and all the people that stayed temporary with us.

Thanks for creating a healthy work environment where ideas and discussions can flourish. You

are my second family. Thanks to everyone in the ITACA institute for their support.

I would like to specifically thank those that even from the distance have not forgotten about us

after all these years, such as Luis Marco. He brings interesting topics and insights every time

we speak and has helped me to moderate some of my strong opinions.

Thanks to all the hard working people in our spin-off, VeraTech. Thanks for keeping alive the

spirit of innovation and letting the world know about the great ideas coming from this part of

the world. Thanks to my fellow sufferer Santi as is always willing to lend a helping hand.

Thanks to my buddy Crispin for being a friend and always being there.

Thanks to all the marvelous people from the Kyoto University. Thanks to Hiroyuki Yoshihara,

Tomohiro Kuroda, Shinji Kobayashi, Naoto Kume, Tatsuya Tokunaga, and all the staff in the

laboratory for their warm welcome and all the help they provided me. They gave me the

opportunity of experiencing one of the best experiences in my live and I will always be

grateful. As I said the day I left Japan:

みなさんといっしょに仕事をさせていただき、ありがとうございました。

また、このような素晴らしいみなさんとすごした日々はわすれません

(Thank you all for giving me the opportunity to work with you. I will never forget the great

people I met and the marvelous days I spent there)

Thanks to the ‘openEHRers’, the people from the EN13606 association, the ‘HL7ers’, and all the

great people I have met during all these years in the different research projects, scientific

meetings and conferences. The conversations and discussions with you have led to some of

the ideas written in this thesis.

I would like to thank specifically to the other research groups in the field located in Spain.

Thanks to the people from Murcia, Castellon, Madrid, Seville, the Spanish Ministry of Health,

and everyone in this research field. You all are part of the vanguard of this field and encourage

us to improve and move forward.

To all my friends: the ones I grew with, the ones I studied with, the ones I played basketball

and rugby with, the ones I went to the university with, the ones that I went to Japan with, the

ones I share discussions with in the mailing lists, and the ones that have emigrated to other

countries. To all of you, thank you. You made me grow as a person and probably I would not

be writing this today without you.

I wish to thank my entire family. My brother, my sisters in-law, and my parents-in-law were

specially supportive.

I cannot forget about my parents, MªCarmen and Rafael. They raised me, supported me,

taught me, and loved me. I am the kind of person I am thanks to them.

Finally, Thanks to my partner, MªJesus, who I recently convinced somehow to be my wife.

Thank you for your understanding, patience, and unconditional love, even during the time I

was studying abroad or writing this thesis.

Last but not least, thanks to you, reader. I am pleased that you find this thesis worth your time.

It is hard to overstate my satisfaction.

To all of you, I dedicate this thesis.

This thesis work was possible thanks to the predoctoral researcher formation grant from the

Universitat Politècnica de València (FPI UPV 2007-24),the Ministry of Education and Science

project TSI2007-66575-C02-01 and Ministry of Economy and Competitiveness project TIN2010-

21388-C02-01.

A great idea is something that does not solve just one single problem,

 but rather can solve multiple problems at once.

Shigeru Miyamoto

Introduction | 23

VII. Introduction

In a world each time more interconnected, healthcare domain still lags behind, mostly due to

the complexity, variability, and the always evolving knowledge of the clinical domain.

Accessing the full Electronic Health Records (EHR) of the patients is still difficult, as the

information tends to be distributed among different systems. This leads to a situation where

the existence of information islands prevents the efficient use of the data stored in these

systems. Sharing EHR in a meaningful and secure way will improve significantly patient care,

patient safety, and clinical research (1).

Semantic interoperability (2) has always been the holy grail of medical informatics. From their

first usages in the early 1960s until today, traditional systems development has not been able

to achieve semantic interoperability. After 2010, interoperability projects started to emphasize

the need of three different layers: generic reference models, clinical models, and clinical

vocabularies. Despite of this, governments and providers still try to achieve high levels of

semantic interoperability by removing diversity (e.g. by explicitly defining the messages that

must be used). They tend to avoid variability, which at the end only allows interoperability on a

limited level, as assumes that everyone will have exactly the same information needs and

everything outside it is just ignored. Variability is almost intrinsic of clinic domain. New tests

and data needs are continuously being introduced and changed due to improvements in the

clinical practice. Systems should support this evolution and not discourage it.

One of the prerequisites to achieve semantic interoperability is the standardization of both the

data and concepts present in information systems. This is even more important in healthcare

domain where data needs to be exchanged in a way that its precise meaning is preserved. To

achieve this goal, the syntax, structure, and semantics of health data need to be standardized.

The new generation of EHR architectures (EHRA) use Detailed Clinical Models (DCM) as the

discrete set of precise documentable clinical knowledge to specify the structure and

constraints to follow. A set of these EHRA are based on what is called dual model methodology

(3). It tries to overcome the problems caused by the complexity and continuous evolution of

health domain. Dual model methodology distinguishes two models, the Reference Model that

contains the basic and stable entities for representing any entry in an EHR, and the DCM

(expressed as archetypes), which formally define the domain and application-specific domain

models such as blood pressure, discharge report, or lab result. Despite using dual model

systems provides advantages, the migration or integration of current systems is not always

24 | Hypothesis

easy. Existing clinical data must be transformed to meet the data structures defined by

reference model and archetypes. We face a problem known in literature as the data exchange

(translation or transformation) problem (4). Data exchange at schema level requires an explicit

representation of how the source schema (legacy data schema) and target schema

(archetypes) are related to each other. These explicit representations are called mappings

(5,6). The application of data exchange methods to map existing legacy EHR systems and

archetypes allow the enrichment of legacy data and their meaningful communication. Apart

from mappings, the application of dual modeling to legacy EHR systems allows their

improvement by means of all the available archetype-based methodologies and tools. Finally,

the use of archetypes as basis for the automatic generation of reference materials such as

implementation guides or Schematron rules provides further benefits, for instance, in the

development of new EHR systems or the validation of legacy EHR systems.

VIII. Hypothesis

Detailed clinical models can be applied to describe the structure, content, and meaning of

existing EHR systems as well as to facilitate the development and deployment of new EHR

systems that require semantic interoperability.

IX. Objectives

The overall objective of this thesis is to provide a set of methodologies and tools based on

archetypes for the achievement of higher levels of EHR semantic interoperability.

The concrete objectives of the research are:

1. To provide means of applying dual model methodology to non-dual model standards.

This includes providing support for the definition of archetypes based on any EHR

information model, either a standard or local model.

2. To provide tools for the transformation of existing data into data instances compliant

with archetypes and underlying reference models. Due to the potential complexity of

reference models and the evolving nature of archetypes, the transformation shall be

guided by high-level non-procedural mappings that describe the relationship between

archetypes and legacy clinical data. These high-level mapping must be then

automatically compiled into executable scripts.

3. To enable the automatic generation of sets of reference materials from clinical

archetypes, regardless of the reference model on which archetypes are based. This

Document organization | 25

includes the combination of the reference materials into views suitable for each type

of final user.

X. Document organization

This thesis is divided into five chapters.

First chapter contains the background and state of the art, which offers a vision on EHR and

EHR architectures, terminologies, data transformation, model-based transformations, format

transformations, constraint definition languages, interoperability projects, and LinkEHR

normalization platform.

Second chapter describes the methodologies and tools for the representation of non-dual

model based reference models with archetypes.

Third chapter presents the created methodologies and tools for the transformation of both

legacy EHR data and standard-based data into archetype-based data.

Fourth chapter describes and discusses the use of archetypes for the generation of reference

materials, in the upgrade of existing clinical information systems as well as the development of

new ones.

Fifth chapter presents the final conclusions, future work, related publications, and congress

papers.

26 | Document organization

Abbreviations and acronyms | 27

XI. Abbreviations and acronyms

ACE Attempto Controlled English
ADL Archetype Definition Language
AML Archetype Modelling Language
ANSI American National Standards Institute
AOM Archetype Object Model
AQL Archetype Query Language
AM Archetype Model
API Application Programming Interface
C-CDA Consolidated Clinical Document Architecture
CCR Continuity of Care Record
CDA Clinical Document Architecture
CDISC Clinical Data Interchange Standards Consortium
CEN European Committee for Standardization
CEM Clinical Element Model
CEML Clinical Element Modelling Language
CM Clinical Model. Detailed, reusable and domain-specific definition of a

clinical concept.
CIM Computation Independent Model
CKM Clinical Knowledge Manager
CSS Cascading Style Sheets
D-MIM Domain Message Information Model
DCM Detailed Clinical Models
DICOM Digital Imaging and Communication in Medicine
DTD Document Type Definition. A description of the structure of an XML

document.
DSTU Draft Standard for Trial Use
EHR Electronic Health Record
EHRA Electronic Health Record Architectures
EMF Eclipse Modeling Framework
EMR Electronic Medical Record
epSOS european patient Smart Open Services
FHIR Fast Healthcare Interoperability Resources
FLWOR XQuery expression acronym of FOR-LET-WHERE-ORDER BY-RETURN,

analogous to the SQL SELECT-FROM-WHERE
GEHR Good European Health Record
GTR Genetic Testing Report
GUI Graphic User Interface
HCDSNS Historia Clínica Digital del Sistema Nacional de Salud
HIT Health Information Technology
HL7 Health Level Seven
HTML HyperText Markup Language
ICD International Classification of Diseases
IHTSDO International Health Terminology Standards Development Organization
IM Information Model, a conceptual model of the information needed to

support a business function or process
ISO International Organization for Standardization
LOINC Logical Observation Identifiers Names and Codes
MDA Model-Driven Architecture

28 | Abbreviations and acronyms

MDD Model Driven Development
MDE Model Driven Engineering
MDHT Model-Driven Health Tools
MML Medical Markup Language
NEHTA National E-Health Transition Authority
NHS National Health Service
NPO Non-Profit Organization
NRL Natural Rule Language
OCL Object Constraint Language
ODM Operational Data Model
OET Operational Template. An internal format from Ocean Informatics

Template Designer
OHT Open Health Tools
OMG Object Management Group
ONC US Office of the National Coordinator
OPT Operational Template. An artefact used in ADL to represent local

archetype specializations.
OWL Web Ontology Language
PIM Platform Independent Model
PDF Portable Document Format
POJO Plain Old Java Objects. Simple Java classes that need no framework to be

used
REST Representational State Transfer.
R-MIM Refined Message Information Model
RM Reference Model
SNOMED-CT Systematized Nomenclature of Medicine – Clinical Terminology
SWRL Semantic Web Rule Language
UCUM Unified Code for Units of Measure
UI User Interface
UML Unified Modeling Language
UMLS Unified Medical Language System
URI Uniform Resource Identifier
VHA Veterans Health Administration
VMR Virtual Medical Record
WSDL Web Services Description Language
W3C World Wide Consortium
XMI XML Metadata Interchange
XML Extensible Markup Language
WSDL Web Services Description Language
XSD XML Schema Definition

Electronic Health Records | 29

Chapter 1.

Background and State of the Art

1.1. Electronic Health Records

Health care is increasingly producing and consuming large amounts of information. Most of

this information is the health record of individuals, in digital form, which is referred to as the

Electronic Health Record (EHR). Although being a cornerstone concept in medical informatics

there is not a common definition of EHR. An ISO report (7) states that “Previous attempts to

develop a definition for the Electronic Health Record have foundered due to the difficulty of

encapsulating all of the many and varied facet of the EHR in a single comprehensive

definition”. Nevertheless, this report provides a definition that attempts to consolidate the

various definitions:

“A repository of information regarding the health of a subject of care in computer processable

form, stored and transmitted securely, and accessible by multiple authorized users. It has a

standardized information model, which is independent of EHR systems. Its primary purpose is

the support of continuing efficient and quality-integrated healthcare and it contains

information, which is retrospective, concurrent, and prospective”

From the previous definition it is clear that EHR is not owned by any single information system

and contains complete records of encounters of a patient throughout the visited healthcare

organizations. The distribution of EHR content makes that sharing information is the norm

rather than the exception, although this desideratum is far from being sufficiently addressed.

Furthermore, the predictable shift towards personalized medicine will cause drastic increase in

size and complexity of EHR systems, which will again affect clinical data integration. Achieving

30 | Electronic Health Records

a high level of semantic interoperability is one of the most important challenges for

meaningful use of EHR. Semantic interoperability is the ability, facilitated by ICT applications

and systems, to exchange, understand and act on Health-related information and knowledge

among linguistically and culturally disparate health professionals, patients and organizations

(2). It is vital to assure global consistency in meaning, a basic requirement to enable better

health care as well as secondary use of EHR data for research (8–10). From the health care

delivery perspective, interoperable EHR systems ideally enable the automation of processes

across different healthcare organizations, save time and resources while increasing patient

safety. From a research perspective, interoperable EHRs provide a computable collection of

fine-grained longitudinal phenotypic profiles, facilitating cohort-wide investigations and

knowledge discovery on an unprecedented scale (11).

The intrinsic complexity and variability of health data makes standardization crucial to achieve

a high level of semantic interoperability. Currently there is a mature body of EHR standards

covering the three layers of artefacts to represent the meaning of health data (2):

 Generic Reference Models for EHR communication. They contain a basic and stable

representational framework for describing all EHR entries, the way how they are

aggregated, and the context information required to meet ethical, legal and

provenance requirements. The last generation of such models is the result of

international research over the past decades, e.g. ISO/EN13606 (12), HL7 CDA Release

2 (13), the openEHR Reference Model (14) or HL7 FHIR (15).

 Clinical models are detailed, reusable and domain-specific definition of a clinical

concept (such as Apgar score, discharge report, and primary care EHR). Examples of

such models are openEHR/ISO13606 archetypes (16), CDA templates, detailed clinical

models (17) and Clinical Element Model (CEM) (18). Currently, the International

Clinical Information Modelling Initiative (CIMI) (19) is working on providing a common

format for the definition of health information content based on the

openEHR/ISO13606 archetype model. Concretely, archetypes are standardized and

reusable models for capturing and representing clinical content. They are formed by

the constrained combination of the reference model entities. Archetypes may logically

include other archetypes, and can be specialized. They provide a powerful way of

managing the description, creation and validation of the EHRs.

 Clinical vocabularies such as terminologies, ontologies and classification systems.

Increasingly clinical vocabularies, particularly the clinical terminology SNOMED CT (20)

Electronic Health Record architectures | 31

and the upcoming ICD-11 (21) classification, are based on ontologies. This means that

they do not only aggregate the common meaning of domain terms as concepts, but

also provide precise description about the things these terms denote in the clinical

domain. One important challenge to be met is to find an effective way to use them

within the EHR (22). The semantic description of information models (expressed as

archetypes) is achieved by linking data structures and content to terminologies and

ontologies. The crucial difference is that information models describe information in

the EHR whereas ontologies describe (classes of) objects and processes in the world

(23).

The deployment of interoperable information systems in the healthcare sector is presently

much less than in other public service sectors or industries. This is mainly due to the

complexity and variability of health data. There already exist a plethora of proprietary and

standardized data and metadata definitions, organized vocabularies in the form of

classifications and terminologies, communication standards and profiles. But their rapid

change and increasing complexity makes them barely affordable to be implemented even for

big companies. It must be noted that eHealth interoperability standards are usually defined as

documented specifications that must be brought to life by system designers and

implementers. This initial implementation effort requires deep expertise in the profiles and

standards, often not accessible for many organizations (companies, hospitals, health

authorities, etc.). But this challenge is even more acute given the significant efforts needed to

test and meet conformance criteria. When organizations fail to perform these conformance

and interoperability tests, they are faced with a large variability among the implementations,

and have to resolve incompatibilities project by project in an ad-hoc and reactive manner.

Those induced costs not only discourage, but they also slowdown the adoption of profiles and

standards, thus generating uncertainty about standards.

1.2. Electronic Health Record architectures

It is widely acknowledged that standardization of data and concepts is a prerequisite to

achieve semantic interoperability in any domain. This is even more important in the healthcare

sector where the need to exchange data is not an exception but the rule. The faithful

communication of EHRs crucially depends on the standardization of its syntax, structure and

semantics, i.e. on the standardization of the EHR architecture (EHRA) and vocabulary used to

communicate data. Currently there are several international organizations working on the

32 | Electronic Health Record architectures

standardization of EHRA. Health Level 7 (24) is an international standardization organization

that has defined standards for communicating data between different systems through

messaging (HL7v2.x and HL7 v3 messages) and also a model that defines the structure and

semantics of medical documents (the Clinical Document Architecture, CDA). The Technical

Committee (TC) 251 of the European Committee for Standardization (CEN) has also developed

a European Standard, now also accepted as an ISO standard, for the communication of the

electronic health record called ISO/EN13606 (12). TC 251 has also developed the Health

Informatics Service Architecture (HISA) (25), a 3 part standard for specifying unified and open

service architectures based upon a middleware of information services. The openEHR

foundation (14) has also developed the specifications of a complete architecture designed to

support the constructions of distributed, patient-centered, life-long, shared care health

records. ISO13606 and openEHR share the same dual model philosophy. Finally, Clinical Data

Interchange Standards Consortium (CDISC) is an open organization that develops data

standards that enable information system interoperability to improve medical research and

related areas of healthcare (26).

1.1.1. Dual model architecture

Due to the complexity and the continuous evolution of the health domain the development of

EHRA is not an easy task. A new approach for their development has been proposed known as

the dual model methodology. The most remarkable feature of the dual model approach is

separation of information models representing the generic and stables properties of EHR

(called the reference model) from domain models such as blood pressure measurement,

discharge report, prescription or microbiology result which are represented by archetypes.

Only the stable reference model is hard-coded in database schemas or software, while the

possible numerous and volatile domain concepts (archetypes) are modeled separately by

domain specialists. Since the software is only bound to the reference model it has no direct

dependency on domain concepts. Therefore, systems do not need to be changed when

domain concepts are created or altered. Examples of Dual Model architectures are CEN/ISO

13606 and openEHR. Although HL7 v3 cannot be considered a true Dual Model standard; it

uses a quite similar approach. These architectures will be discussed in the following sections.

In EHR environments, a reference model represents the generic and stable properties of health

record information. It specifies the set of classes that form the generic building blocks of the

EHR, how these building blocks should be aggregated to create more complex data structures

and the context information that must accompany every piece of data in order to meet ethical,

Electronic Health Record architectures | 33

legal and provenance requirements (27). The generality of reference models is complemented

by the particularity of archetypes. Archetypes are formal definitions of a distinct domain-level

concept in the form of constrained hierarchies of the building blocks defined in the reference

model. Archetypes define or constrain the names and other relevant attribute values,

optionality and multiplicity at any point in the hierarchy, the data types and value range that

atomic attributes may take. Their formal description is achieved by linking the data structures

and content to knowledge resources such as terminologies and ontologies.

Figure 1 (28) shows the implications of a dual model approach. The information created by the

user is compliant both with the defined archetypes/templates and the underlying Reference

Model. Archetypes constraint the Reference Model and are created by domain experts by

using the Archetype Object Model (AOM). AOM can be serialized into Archetype Definition

Language (ADL). Terminologies are used in archetypes to express the archetype semantics and

to constrain the codes that will be used when the user creates the information.

AOM

Domain expertDomain expertUserUser

Terminology

Archetype
Model

Reference
Model

 ADL ADL

Archetypes & TemplatesInformation

Semantics of
 constraint

Instance of

Conforms creates

Instance of

Used in Referenced by

creates

FIGURE 1 DUAL MODEL META-ARCHITECTURE

1.1.2. Archetype Definition Language

Archetype Definition Language (ADL) (29) is a model independent structured syntax for the

specification of clinical information models. Both ISO13606 and openEHR use ADL for

archetype specification. Current stable version of ADL is 1.4, which is the one used in this

thesis. ADL defines three syntaxes: cADL for constraint definition, dADL for data definition and

34 | Electronic Health Record architectures

a version of first-order predicate logic (FOPL) similar to OCL (30) to describe additional

invariants. The cADL syntax is used to express the archetype ‘definition’ section while dADL

syntax is used to express the ‘language’, ‘description’, and ‘terminology’ (formerly ‘ontology’),

and ‘revision_history’ sections. The FOPL is used in the ‘rules’ (formerly ‘assertions’) section.

Archetype structure includes the following sections:

 An archetype header containing the archetype identifier

 An optional parent archetype identifier that the current archetype specializes

 A concept code that represents the real world concept this archetype represents, such

as “body mass”, “patient”, or “blood pressure”

 The original language of the archetype

 An optional description section containing the archetype metadata

 A definition section containing the formal constraint definitions of the archetype

 An optional assertions section containing the invariants

 A mandatory section containing the definition of the terms in different languages and

the terminology definitions and bindings

 An optional revision history section containing the history of changes and audit

dADL

dADL syntax (also called Object Data Instance Notation, ODIN) provides formal means of

expressing instance data based on an underlying information model. dADL is intended to be

readable by humans and machines. An example of dADL code can be seen in Figure 2.

FIGURE 2 DADL SYNTAX EXAMPLE

dADL is intended to represent data making as few assumptions as possible about the

underlying information model. Only a simple set of types are included in the syntax, namely

Integer, Real, Boolean, String, and ranges of Dates and Times. Every other complex type is

Electronic Health Record architectures | 35

derived from these. dADL is similar to XML, but one of dADL principles is being human-

readable and is designed to better represent object-oriented semantics.

There are two types of identifiers in dADL: type names and attribute names. Type names are

identifiers with the initial letter in uppercase followed by a combination of letters, digits, and

underscores. An attribute name is an identifier with an initial lowercase letter followed by a

combination of letters, digits, and underscores. As a convention, all type names are written all

in uppercase, e.g. COMPOSITION. This excludes the built-in types, that are written in mixed

case (String, Real, Integer, etc.). Also as a convention, attribute names are written all in

lowercase. However, some reference models (e.g. HL7 CDA) do not follow this pattern, and

require additional steps and transformations before being able to represent their data in dADL

syntax.

dADL primitive types allow the definition of values in leaf nodes. These values include

instances of primitive types (e.g. "a string", 123.4, True, 2015-10-26), lists, or intervals of

primitive types. In addition to that, everything following '--' is considered a comment and is

ignored during parsing.

cADL

cADL is a syntax that enables the definition of constraints over data defined by object-oriented

information models expressed as archetypes or other knowledge representation formalisms.

cADL constraints can be used at runtime to allow the systems to validate data following a given

information model. An example of cADL code can be seen in Figure 3.

FIGURE 3 CADL SYNTAX EXAMPLE

Unlike dADL, cADL includes a set of reserved words, such as matches, occurrences, existence,

cardinality, includes, use_node, etc. Of these reserved words, 'matches' is probably the most

important one, as is the one used for the definition of constraints in both objects or parts of an

object (attributes). When it occurs between a name and a braces-delimited block refers to the

36 | Electronic Health Record architectures

set of valid values for that name. In data, constraints are recursively matched for either objects

and attributes until leaf level constraints are matched.

Identifiers in cADL follow the same rules that in dADL: A type name is an identifier with an

initial uppercase letter followed by a combination of letters, digits, or underscores. An

attribute name is an identifier with an initial lowercase letter followed by a combination of

letters, digits, or underscores. In the same way, everything following '--' is considered a

comment and is ignored during parsing. As in dADL, some reference models do not adhere to

these rules and thus must be processed for their representation in cADL.

In cADL, an entity in brackets e.g. [xxxx] is used to identify "object nodes", i.e. nodes

expressing constraints over types. These identifiers allow the definition of different sets of

constraints over the same type (e.g. PERSON[at0001] could define male actors and

PERSON[at0002] define actresses, each one with their own set of constraints). These object

nodes correspond to entities in an object-oriented information model.

cADL constraints always constraint parts from the underlying information model. This implies,

on the one hand, that constraints cannot be stronger than the ones in the information model.

On the other hand, cADL includes only the constraints for the parts of the information model

which are useful or meaningful to constraint. E.g. it is useful to constrain the valid values for a

measure, but probably is not useful to constrain the name of the patient.

Different kinds of constraints can be defined depending on the kind of node being constrained

(element, attribute, or primitive type). For attribute constraints, every attribute can redefine

their existence. These constraints say if an attribute must exist. There are three states on the

existence (0..1 optional, 1..1 mandatory, and 0..0 not allowed; default is 1..1). Figure 4 shows

an example of an existence constraint for the mandatory attribute 'identifier' or for the

optional 'actors'. In addition to existence constraints, container attributes (also known as

multiple attributes as opposed to the single attributes) allow to define constraints over lists

and sets. These attributes use cardinality keyword to indicate both the allowed membership of

the container (e.g. 0..* for 0 to many, 2..4 for from 2 to 4, etc.) and the semantics of the set

(ordered, unique). Figure 4 shows an example of 'actors' cardinality and semantics. In this case,

at least one actor or actress must be included and is a logical set (as it is unordered and

unique).

It is also possible to define how many times in runtime an instance of an object can occur. This

is stated by defining the object occurrences. Objects inside a single attribute are only allowed

Electronic Health Record architectures | 37

to have occurrences of 0..1 or 1..1. In Figure 4 both the actor (PERSON[at0001]) and actress

(PERSON[at0002]) have occurrences 0..*, i.e. any number of actors or actresses can be

included under 'actors' attribute.

More than one object constraint can be defined inside an attribute, and the meaning depends

on whether the attribute is a single attribute or multiple attribute. If more than one object

constraint is included inside a single attribute then they are considered as alternatives, and

only one of the constraints needs to be matched on the data. As shown in Figure 4, a valid

instance needs to include either a TEXT object or an INTEGER object inside an 'identifier'

attribute.

FIGURE 4 CADL EXAMPLE SHOWING OCCURRENCE, EXISTENCE, CARDINALITY, AND PRIMITIVE VALUE

CONSTRAINTS

cADL also allows to leave a constraint open. This is called "any", and is shown by an asterisk in

braces. This shows explicitly that the property can have any value (always having the

underlying information model as a basis). In Figure 4, 'name' attribute can contain any value

that is allowed by the underlying model.

cADL also allows the reuse of complex structures from inside and outside of the archetype. The

former is called archetype internal reference, which allows including a constraint already

defined in a different block. Archetype internal references are denoted by the keyword

'use_node'. The latter is called archetype slot and allows the use of other external archetypes

rather than define the constraints inline. Archetype slots are defined by a set of assertions

(includes, excludes) which define the set of allowed or excluded archetypes in the slot.

Archetype slots are denoted by the keyword 'allow_archetype'. Figure 5 shows both an

38 | Electronic Health Record architectures

example of an archetype internal reference (in 'director') and an archetype slot (for the

definition of PERSON[at0003], 'extra').

FIGURE 5 CADL EXAMPLE SHOWING INTERNAL REFERENCES AND ARCHETYPE SLOTS

Finally, cADL also allows the definition of constraints over primitive types. For the definition of

these constraints, type name is omitted and the constraint is put directly on the braces. Each

different kind of primitive types allows a different set of valid constraints. For String

constraints, they can be constrained in two ways: a list of fixed strings, or by using a regular

expression. For Integer and Real constraints, either a list of values or a range can be defined.

For Date, Time, DateTime, and Duration constraints specific lists of values, intervals, or patters

can be defined. Figure 4 shows several examples of primitive constraints, namely the pattern

“/.+/” for defining non-empty strings inside a TEXT object, the range from 0 to 1000 for the

INTEGER object, or the list of valid honorific for actor and actress.

1.2.1. Dual Model Standards and specifications

1.2.1.1 ISO/EN13606, International standard

ISO/CEN EN13606 (12) is a five-part standard for the communication of Electronic Health

Records (EHR). It was first approved as a European norm by the TC/251 in 1999. The norm was

proposed and accepted as an ISO norm in 2008 (parts 1 and 2), 2009 (parts 3 and 4) and 2010

(part 5). The five parts are:

Electronic Health Record architectures | 39

 ISO13606 part 1: Reference model (12).defines a generic information model that

defines generic data structures and their relationships to express any kind of

information that can be included in the EHR.

ISO13606 part 1 most relevant classes are:

EHR_EXTRACT

The EHR_EXTRACT is the top-level container of the complete or partial EHR of a single

patient.

FOLDER

Folders are higher level hierarchical organizers of the EHR. Folders logically join several

compositions by different criteria. Examples of folders include pediatrics, all patient

EHR, episodes from last year, GP folder, etc.

COMPOSITION

A composition is all the information committed by a single agent as a result of a single

clinical encounter. Examples of this include discharge summary, referral letter,

radiology report, health summary, etc.

SECTION

A section groups data within a composition in order to reflect the flow of information

gathering during a clinical encounter, or to structure it in order to ease human

readership. Examples of this include family history, subjective symptoms, treatment,

reason for encounter, past history, etc.

ENTRY

An entry includes all the information recorded in the EHR as a result of a clinical

observation, evaluation (clinical interpretation), instruction (intention), or action.

Examples of entries include blood pressure measurement, diagnosis, a symptom, an

observation, etc.

CLUSTER

40 | Electronic Health Record architectures

A cluster is the way of representing columns or tables, and other nested data

structures such as time series. Examples of clusters include Electro-encephalogram

interpretation, heart rate response to exercise diagrams, etc.

ELEMENT

The element is the leaf node of the EHR. It contains a single value. Examples of

elements include body weight, body height, allergy code, allergy name, medication

dose, etc.

 ISO13606 part 2: Archetype interchange specification (31)

Part 2 includes a generic information model to define archetypes, which are re-usable

models of a domain concept. It also includes the formal language for the specification

of these archetypes called Archetype Definition Language (ADL). This part is based on

the openEHR ADL.

 ISO13606 part 3: Reference archetypes and term lists (32)

Contains both the local terminology used by part 1 and a set of reference archetypes

that represent how other standards can be expressed with this norm.

 ISO13606 part 4: Security (33)

This part includes a basic security framework for the specification and communication

of security and access policies for the EHR.

 ISO13606 part 5: Exchange models (34)

Part 5 includes a minimal interface and messaging specification for the EHR

communication.

ISO13606 archetypes are expressed in ADL. Figure 6 shows an excerpt from an ISO13606

medication administration archetype. The first section includes a header with the archetype

identifier (CEN-EN13606-CLUSTER.medication_admin.v1). The next section to appear is the

concept code (pointing to “Medication Administration”). Then the original language of the

archetype (English) is stated. Next, it comes a description section containing information about

the original author, the archetype lifecycle or language dependent metadata such as purpose,

Electronic Health Record architectures | 41

use, misuse, etc. The archetype definition section contains the medication administration

(CLUSTER[at0000]) with the different parts of its structure, namely the route

(ELEMENT[at0001]), site (ELEMENT[at0002]), delivery method (ELEMENT[at0003]), dose

duration (ELEMENT[at0004]), and infusion details (CLUSTER[at0005]) which is defined in its

own archetype CEN-EN13606-CLUSTER.infusion_details. Finally the ontology section contains

the definition for the terms used in the archetype.

FIGURE 6 EXCERPT FROM ISO 13606 MEDICATION ADMINISTRATION ARCHETYPE

ISO13606 has been adopted by several national and regional projects, such as Spain (35),

Sweden (36), or Minas Gerais (Brazil) (37,38).

1.2.1.2 openEHR specifications

openEHR (14) is an international non-profit foundation created by University College London,

UK and Ocean Informatics in 2000. They have developed a technology-independent

42 | Electronic Health Record architectures

architecture that includes a reference model, archetypes, and templates. OpenEHR is based

around the openEHR reference model, which is closely related to ISO 13606-1, and openEHR

archetype model, which has been adopted by ISO 13606-2. The most relevant classes of

OpenEHR reference model are:

COMPOSITION Class

In openEHR, COMPOSITION is the top level data container. It is the committal unit where all

information within the EHR will be contained. Compositions can contain SECTION or ENTRY

classes to contain the clinical content.

Compositions correspond to commonly used clinical documents, such as Discharge summary,

Referral document, Health Summary, Pharmacy dispense, etc.

openEHR Composition class is equivalent to ISO13606 Composition Class

SECTION Class

Sections provide both a logical structure and a navigational structure for readers of the record.

openEHR Section class is equivalent to ISO13606 Section Class.

ENTRY Class

The abstract entry class can be subclassed in order to record clinical statements. openEHR

entries can be one of the following: Observation, Evaluation, Instruction, Action, or

Admin_entry. openEHR Entry class is equivalent to ISO13606 Entry Class.

OBSERVATION

Observation is the kind of Entry whose purpose is to document all the information about

observed phenomena, including any kind of measure or responses in an interview.

EVALUATION

Evaluation is the kind of Entry whose purpose is to document all the information about

assessments, diagnoses, or plans.

INSTRUCTION

Instruction is the kind of Entry whose purpose is to document all the information about

actionable statements such as care plans, medication orders, etc. They are statements about

what should happen in the future.

Electronic Health Record architectures | 43

ACTION

Action is the kind of Entry whose purpose is to document all the information recorded as a

result of performing instructions. These are statements about things that were actually

performed.

ADMIN_ENTRY

Admin entry is the kind of Entry whose purpose is to document all the administrative

information.

openEHR also includes CLUSTER and ELEMENT classes similar to the ones described for

ISO13606.

Figure 7 shows an overview of the openEHR information model.

FIGURE 7 OPENEHR INFORMATION MODEL OVERVIEW. © OPENEHR

OpenEHR also contains a top level structure, the EHR, which provides access control settings

(EHR_ACCESS), the current status of the EHR (EHR_STATUS), the versioned data containers

(VERSIONED_COMPOSITION), a set of the changes to the EHR (CONTRIBUTION) and optionally

a higher level hierarchical organizer (FOLDER).

OpenEHR archetypes are also expressed in ADL format. Figure 8 shows an excerpt from an

openEHR triage archetype. The header contains the archetype identifier (openEHR-EHR-

EVALUATION.triage.v1). The concept code (pointing to “Triage evaluation”) appears next,

followed by the original language of the archetype (English). The description section contains

44 | Electronic Health Record architectures

information about the original author, the archetype lifecycle or other metadata such as

keywords, purpose, etc. The archetype definition section contains the Triage evaluation

(EVALUATION[at0000]) containing both the data in the triage evaluation (ELEMENT[at0002]),

and rationale (ELEMENT[at0008]). Triage evaluation contains an ordinal to code each one of

the values to a code. Finally the ontology section contains the definition for the terms and

labels used in the archetype.

OpenEHR also provides specifications for Archetype Query Language (AQL) (39), a query

language based on archetypes and pattern matching, and a Guideline Definition Language

(GDL) (40), a formal language for the expressing decision support logic.

FIGURE 8 EXCERPT FROM OPENEHR TRIAGE ARCHETYPE

OpenEHR has been used for several national and regional projects, such as Australia, Brazil,

Norway, and Slovenia.

1.2.1.3 Dual model EHR experiences

The number of archetype-based developments is continuously growing. Every year more

governments provide definitions of their clinical models as archetypes. Countries such as

Electronic Health Record architectures | 45

Norway (41), Brazil(38,42), UK(43), Spain(35), Australia(44), or Slovenia (45) already publish

their national archetypes and more countries and regions are planning to do it in the

foreseeable future. The involvement of official bodies and governments has been translated

into an exponential growth of available archetypes. As an example, currently there are almost

600 archetypes available in the openEHR archetype repository (16), almost a fourth of them

were created in the last year and more than 250 are currently on active development.

However, as there is no commonly used methodology for the definition of archetypes (46), the

resulting archetypes can have great variability (47) and inconsistent terminology bindings. This

is directly related with the quality of archetypes and clinical information models (48–50).

Creating good terminology bindings and improving current bindings is in fact one of key

archetype research areas. The generation of semi-automatic bindings to clinical terminologies

is important to reduce medical errors and to achieve interoperability between health

information systems (51–54). These well-defined terminology bindings allow the correct

validation (55) and management (56,57) of archetypes.

Archetypes themselves can be considered as semantic constructs and several projects have

been devoted to their representation by semantic web technologies. For instance, they have

been transformed into OWL (58,59), for advanced use cases such as clinical model

transformation (60) or the calculation of health care quality indicators (61).

Semantic web technologies also allow the reasoning over clinical data. Clinical research and

Clinical Decision Support Systems (CDSS) can benefit the most from reasoning over quality

agreed definitions of the clinical models included in the systems. Advanced alert systems (62),

identification of patient cohorts (63), or creation of research data warehouses from legacy

data (64) are only a few examples of the joint use of archetypes and semantic web

technologies.

1.2.2. Non-Dual Model Standards

1.2.2.1 HL7 Standards

HL7 v2.x Messaging

HL7 v2 (65) is a messaging standard used for the electronic exchange of clinical, care,

economic, and logistic information to support workflow between applications, between

organizations, or inside of an organization. HL7 v2 messages use a non-XML syntax based on

segments and delimiters.

46 | Electronic Health Record architectures

There have been several releases of HL7 v2.x (e.g. v2.1, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.7, etc.). Every

new version of v2 is designed to be backwards compatible (i.e. messages developed for a given

version will be understood on applications that support newer versions).

HL7 v2.x is one of the most used healthcare standards. More than 35 countries have HL7 v2.x

implementations. In fact, 95% of United States healthcare organizations use HL7 v2.x (65).

HL7 CDA

HL7 Clinical Document Architecture (CDA) (13,66) is a XML-based document markup standard

for the exchange of clinical documents. It specifies the encoding, structure, and semantics of

the data elements to describe the actors, actions, and events in healthcare. HL7 is based on

the HL7 Reference Information Model (RIM) and uses HL7 v3 data types. CDA defines clinical

documents which have the following characteristics: persistence, stewardship, potential for

authentication, context, wholeness, and human readability. HL7 CDA release 2.0 was published

by HL7 in 2005 and has been adopted as an ISO standard 27932 in 2009.

HL7 CDA can contain any type of clinical content, from discharge summaries to genetic testing

information. CDA contains a mandatory textual part to ensure the human interpretation of the

contents and an optional structured part used for automatic processing. LOINC is

recommended to specify the document types, but any terminology (such as SNOMED, ICD or

LOINC itself) can be used inside of the structured part to represent the contents.

The entry point for HL7 CDA is the ClinicalDocument class. A CDA document is logically divided

into the CDA Header and CDA body. The purpose of the CDA header is to enable clinical

document exchange between institutions, facilitate clinical document management, and ease

the process of obtaining a patient lifelong electronic health record. Header contains

information about the participants (e.g. patient, clinician), the custodian of the information,

information about the clinical encounter and related documents. On the other hand, the CDA

body can be either an unstructured blob or a structured body. A structured body contains one

or more sections that can contain zero or more clinical statements (CDA entries). HL7 CDA

provides the following set of entry classes:

Act class

Act class is a type of entry that should be used when no other entry class is found suitable.

Encounter class

Electronic Health Record architectures | 47

Encounter class is used to represent related clinical encounters between healthcare provider

and a patient, such as referenced past visits or follow-up visits

Observation class

Observation class is the entry used to document information about observed phenomena.

Observation can be seen as similar to a non-altering procedure.

ObservationMedia class

ObservationMedia class is a derived observation that represents multimedia that is logically

part of the document, such as an imaging result.

Organizer class

Organizer is a class designed to support grouping of information that shares a common context

Organizer can contain other organizers and/or other CDA entries.

Procedure class

Procedure class is the class to document information about a procedure that results in a

physical alteration of the subject.

RegionOfInterest class

RegionOfInterest is the class that represents a region of interest on an image, using an overlay

shape.

SubstanceAdministration class

Substance administration is the class intended to represent the administration, past or

planned, of a particular substance such as medication. This also includes information about the

exposure of the patient to a substance they have to be treated for.

Supply class

Supply class is used to document the information about the provision of materials between to

entities, such as the medications given to a patient for a later use.

Both CDA section and entry classes can redefine the information provided in the

ClinicalDocument header (e.g. author, informant, and subject). In addition to that, entries can

be semantically linked to other entries contained in the same document by traversing the

entryRelationship class.

48 | Electronic Health Record architectures

HL7 CDA is the basis of several national and international projects, such as the United States

Meaningful Use (67) and Europe epSOS (68) projects.

HL7 FHIR

Fast Health Interoperability Resources (FHIR) (15) is a HL7 Draft Standard for Trial Use (DSTU)

open specification for the electronic exchange of healthcare information. FHIR takes advantage

of the lessons learnt with HL7 v2 and HL7 v3 to provide a specification for the interoperability

of healthcare information with focus on implementation ease. FHIR is based on a set of basic

modular components called Resources, which describe the contents of the health records

(clinical or administrative) that can be exchanged. Resources are reusable profiles defined in a

common way based on other Resources and a set of data types. They also include a human

readable part to ease their understanding by clinicians. Resources can be used directly,

extended, or combined to satisfy most common use cases.

FHIR Resources are based on the 80-20 principle where an element will be included only if 80%

of the systems implement it.

FHIR resources can be expressed in either XML or JSON. Figure 9 shows an example of a FHIR

DSTU2 Medication resource definition. Every FHIR resource includes implicitly all the attributes

from their parent resources, in this example ‘Resource’ and ‘DomainResource’. Resources

attributes can point either to primitive types (e.g. ‘name’ has data type ‘string’ and ‘isBrand’

has data type ‘boolean’), complex data types (e.g. code contains a ‘CodeableConcept’), or to

other resources (usually in the form of references to a given resource such as manufacturer

that references an ‘Organization’. Figure 10 shows an XML example of an intravenous

medication based on FHIR Medication resource.

Electronic Health Record architectures | 49

FIGURE 9 FHIR DSTU2 MEDICATION RESOURCE IN XML

50 | Electronic Health Record architectures

FIGURE 10 EXAMPLE INTRAVENOUS MEDICATION INSTANCE BASED ON MEDICATION RESOURCE

Despite being still a draft, new HL7 FHIR servers and applications using FHIR API are constantly

emerging (69)

1.2.2.2 MedXML MML

Medical Markup Language (MML) is a standard for the exchange of medical data developed in

Japan in 1995. MML is a standard for the exchange of medical data from different health

institutions. Since version 2.2.1, XML is used as a meta-language. From version 3.0 and onward

MML conforms to HL7 CDA.

MML specification is divided into two big parts, MML common formats and MML content

modules. The common formats module contains these definitions:

 Address expression: A common format for indicating addresses. A choice between a

full address and an address divided in four elements

 Telephone number format: A common format for indicating telephone numbers. A

choice between a separated phone number and a full telephone number

 ID format: Common format for expressing identifiers

Electronic Health Record architectures | 51

 External reference format: A common format for expressing references to external

contents

 Name expression format: Common format for expressing names. A choice between a

separated name expressed as three elements and a full name expression

 Facility information format: Common format for expressing locations and facilities

 Medical department information format: A common format for expressing medical

departments

 Personal information format: Common format for expressing all the available

information from a person, such as names, department, addresses, phones, identifiers,

etc.

 Creator information format: Common format for expressing the author. Includes the

personal information and the classification of the creator (doctor, nurse, lab, etc.)

On the other hand, MML content modules are defined as follows:

 Patient information: A module to store all the demographic information known from a

single patient

 Health insurance: A module to store both public and private patient insurance

information. This module has some Japan specific elements

 Diagnosis record: A module to store one or more diagnosis from a patient. Supports

full disease name including modifiers or name divided into a main disease part and

modifiers

 Lifestyle: A module to describe and store a set of daily behaviors of a given patient

 Basic clinical: A module to describe information about allergies, blood information and

infection

 Initial-consultation-specific information: A module used to describe the information of

a child regarding his birth, vaccination, family history, and past history

 Progress course: A module to describe a progress course in free text form or as a SOAP

(Subjective, Objective, Analysis, Plan) structure

52 | Terminologies

 Surgery record: A module to describe a set of surgeries performed to a patient, with all

the available context information

 Clinical summary: A module to group various items of information (such as patient

information, diagnosis, surgery, etc.)

 Test history: A module to provide laboratory test result information

 Report: A module to provide reports on radiological, physiological, and pathological

tests

 Referral: A module used to specify the data needed when a patient is referred from a

hospital and a local clinic

MedXML MML is currently being used in several Japanese (70) and Chinese (71) regions.

1.3. Terminologies

Terminologies, and more precisely clinical terminologies are structured vocabularies (or lists of

terms) used in clinical practice to describe accurately and unambiguously the care and

treatment of patients. These vocabularies or terms cover concepts such as diseases,

operations, drugs, or treatments.

As the way of describing different kinds of terminologies usually is confusing as different

authors have used the same words differently (e.g. 'ontology' or 'knowledge'), we will use the

glossary of terms proposed by SemanticHealth European Project (2) for the clear definition of

terms in this context.

 Controlled Vocabulary: A list of specified items to be used for some purpose, usually in

an information system to reduce ambiguity, misspellings, etc.

 System of identifiers ("codes"): Controlled vocabularies and many lexicons, ontologies

and thesauri are usually accompanied by systems of identifiers for their units, e.g.

typically, identifiers act as the primary unambiguous means of referring to the entities

in the system for computational purposes with the text form being used for

communication with users. Examples include the Concept Unique Identifiers(CUIs)

from UMLS, the SNOMED identifiers, etc. In many contexts, identifiers are known as

"codes."

 Lexicon: A list of linguistic units that may be attached to a controlled vocabulary or

ontology, in a specific language or sublanguage, often including linguistic information

Terminologies | 53

such as synonyms, preferred terms, parts of speech, inflections and other grammatical

material. Example: Term terms and lexical material in UMLS identified by Lexical

Unique Identifiers LUIs).

 Ontology: A symbolic logical model of some part of the meanings of the notions used

in a field, i.e. those things that are universally true or true by definition. The key

relationship in an ontology is "subsumption" or "kind-of". Every instance of a subkind

must be an instance of the kind, without exception. Typically, ontologies are

implemented in logic languages such as Ontylog or OWL or frame systems such as

Protégé-Frames. Examples: The GALEN Core Model, the stated form of SNOMED.

 Classification: An organisation of entities into classes for a specific purpose such as

international reporting or remuneration. Examples ICD and Diagnosis Related Groups.

 Thesaurus: A system of terms organised for navigation with the primary relationship

being “broader than”/”narrower than”. The “broader than”/”Narrower than” relation

is explicitly not limited to subsumption/kind of relation. It is a general form of

linguistic hyper/hyponymy aimed at assisting human navigation. However, it is

explicitly not intended that it be used as the basis for logical interferences, e.g. in

decision support. Examples MeSH, WordNet.

 Knowledge Representation System / Background knowledge base: The common

knowledge to be assumed by the system, including both the ontology – what is

universally true – and generalisations about what is typically true.

 Terminology: Any or all of the above in various combinations. Most health

terminologies consist, at a minimum, of a controlled vocabulary and a system of

identifiers. They may include extended lexicons, ontologies, thesauri or background

knowledge base. This definition is deliberately broader and less specific than that in

most of the standard references and intended to approximate common usage.

 Coding system: A terminology with attached identifiers or “codes”.

1.3.1. Relevant Terminologies and ontologies

SNOMED CT

SNOMED CT (20)(Systematic Nomenclature of Medicine – Clinical Terms) is clinical terminology

result of the fusion of SNOMED RT (Reference Terminology) developed from the College of

American Pathologist (CAP) and Clinical Terms Version 3 (CTV3) from the UK National Health

Service (NHS). Currently IHTSDO (International Health Terminology Standards Development

Organization) has SNOMED CT development and distribution rights. IHTSDO is a Non-for-profit

54 | Terminologies

(NPO) international organization established in Denmark. This organization was founded in

2007 by 9 countries (Australia, Canada, Denmark, Lithuania, the Netherlands, New Zealand,

Sweden, United Kingdom, and United States of America) with the objective of maintaining and

developing international clinical terminologies. This is the reason because IHTSDO purchased

the intellectual property of SNOMED CT. Currently IHTSDO has over 25 members, and Spain is

a member of IHTSDO since 2009. New versions of SNOMED CT are released twice a year, with a

Spanish version released at the same time.

SNOMED is the most comprehensive, multilingual clinical vocabulary available in English or any

other language. SNOMED CT contains more than 300.000 active concepts, their descriptions

and relationships. Each SNOMED CT concept represents a clinical thought. Concepts have a

numeric identifier and are included in a hierarchy, organized from the general to the more

detailed.

Each concept can be further described by various clinical terms or phrases called Descriptions,

which are divided into Fully Specified Name (unique across all SNOMED CT), Preferred Terms

(selected by a group of clinicians as the most common way of expressing the meaning of a

concept) and synonyms (which are additional ways to refer to this concept). Each concept has

exactly one unambiguous Fully Specified Name, exactly one preferred term, and zero to many

synonyms. An example of an SNOMED CT structure can be seen in Figure 11.

FIGURE 11 SNOMED CT EXAMPLE CONCEPT

SNOMED CT concepts can also be linked to other concepts whose meaning is related in some

way by relationships. These relationships provide formal definitions and properties for the

concept. One of the most common relationships in SNOMED CT is the ‘is a’ relationship, which

define hierarchies in the terminology (e.g. Myocardial infarction ‘is a’ Myocardial disease).

Terminologies | 55

Figure 12 shows an example of the relationships in SNOMED CT for Myocardial infarction

concept.

FIGURE 12 SNOMED CT RELATIONSHIPS EXAMPLE

One of SNOMED CT characteristics is that concepts are usually the result of linking already

existing concepts. This is called pre-coordination. In the same way, new concepts that do not

appear in the terminology can be expressed as a result of existing concepts. This is called post-

coordination.

IHTSDO has also provided a compositional grammar (72) for the representation of SNOMED CT

expressions.

ICD

The International Classification of Diseases (ICD) (73) is the standard diagnostic tool for

epidemiology, health management, and clinical purposes. It is especially useful for the analysis

of general health situation in countries and populations. Most countries part of World Health

Organization (WHO) use ICD to report mortality data, which is a primary indicator of health

status.

Currently, most systems use ICD 9, which is being replaced by ICD 10. There is also an ICD 11 in

draft form that is expected to be approved by 2018.

LOINC

Logical Observation Identifiers Names and Codes (LOINC) (74) is a terminology standard for

identifying laboratory and clinical observations. LOINC provides a catalog of laboratory tests,

clinical, and anthropomorphic measures. LOINC initiated at 1994 in the Regenstrief Institute. It

is endorsed by the American Clinical Laboratory Association and the College of American

56 | Terminologies

Pathologists. LOINC uses six fields (or axis) for the unique specification of each test,

observation, or measurement:

 Component: What is measured, evaluated, or observed.

 Kind of property: Which are the characteristics of what is measured (e.g. mass,

substance, catalytic activity).

 Time aspect: When was measured, evaluated, or observed (typically a time or interval

of time).

 System type: What context or specimen type within the measurement was made (e.g.

blood, urine)

 Scale: Which kind of scale was used in the measure. It can be quantitative, ordinal,

nominal, or narrative.

 Method: What procedure was used to perform the measurement. This axis is optional

and is used to distinguish between different measurements when every other axis

does not provide enough information.

1.3.2. Archetype terminology binding

One of the basic parts of an archetype definition are the terminology bindings. These bindings

give the archetype an exact meaning. Archetypes allow the definition of terminology bindings

in the form of label bindings and value bindings.

Label bindings describe the equivalences between archetype local terms and external

terminology terms. They provide clear meaning to the archetype labels and can be used for

their semantic description.

Value bindings provide the means to bind value constraints in the archetype as sets of terms

from an external terminology. These sets of terms, called usually subsets, can be defined in an

extensional manner (by enumerating all the terms in the subset) or in an intensional manner

(by defining the necessary and sufficient conditions for belonging to the set). This mechanism

is used for defining which terminology subset is valid in a given coded text constraint. The

definition of subsets is a key issue, as each implementation usually requires a particular set of

concepts, descriptions, and relationships. IHTSDO provides an expression syntax for the

definition of these SNOMED CT subsets (72).

These different types of bindings are stored into the archetypes section called 'ontology'

(which will be renamed to 'terminology' in ADL2) where node identifiers, constraints on texts

Data, Model, and Format transformation | 57

or terms, and bindings to terminologies are defined using dADL. This section is divided into

four subsections: term definitions, constraint definitions, term bindings, and constraint

bindings. Term definitions refer to label bindings and Constraint definitions refer to value

bindings.

1.4. Data, Model, and Format transformation

1.4.1. Data transformation

Existing clinical data must be transformed to meet the data structures and constraints defined

by reference models and archetypes. We face a problem known in the literature as the data

exchange (translation or transformation) problem (4). Data exchange is the problem of

generating an instance of a target schema from a source schema and a given set of

relationships between both. More precisely, data exchange is a quadruple expressed as (S, T,

∑st, ∑t), where S is the source schema, T is the target schema, ∑st is the mapping expressing the

relationships between S and T, and ∑t is a set of constraints on T. The data exchange problem

can be defined as: given an instance I over source schema S, find and instance J over target

schema T such that both I and J satisfy the relationship ∑st and J satisfies ∑t. That J instance is

called a solution for I in the data exchange setting. Different solutions can exist for a given I

instance, and the challenge is to find the best one (75).

Typically, the explicit relationships ∑st are called schema mappings (5,6). Research in this area

has focused on the formal specification of schema mappings and their semantics (4,6), most of

the formalisms use a subset of first-order logic to specify them. There are three basic

approaches for specifying the mapping in the literature: global-as-view (GAV), local-as-view

(LAV) and global-local-as-View (GLAV) (5). In GAV systems the intermediate schema is defined

in terms of the source schemas. Alternatively, in LAV systems each element of the source

schemas is defined in terms of the intermediate schema. LAV mapping are suitable, in

particular, when the intermediate schema is based on an enterprise model, standard or an

ontology (76). Conversely, GAV approach is suitable when the data sources are stable since the

addition or modification of a source schema would require the redefinition of various elements

of the intermediate schema. GLAV approach (77) generalizes LAV and GAV and allows flexible

schema definitions independent of the particular details of the sources. Intuitively, GLAV

mappings relate a query over the source schema S to a query over the target schema T.

Schema mappings are used in two different, but highly related problems: data integration (also

known as data federation) (5) and data transformation (4). In data translation users pose

58 | Data, Model, and Format transformation

queries on the target schema that are answered using the local data sources. The key point

here is that the translated source data are not materialized in the target, i.e. no target instance

is generated. In contrast, in data transformation the data structured under the source schema

is transformed into data structured under the target schema. Any target query is then

answered using the materialized target instance without reference to the original source

instance.

In data transformation, source-to-target dependencies are the prevailing option to specify how

and what source data should appear in the target. Source-to-target dependencies are

assertion between a source query and a target query and therefore are a kind of GLAV

mappings. Formally, a source-to-target dependency has the form:

∀𝑥(𝜙𝑠(𝑥) → 𝜒𝑇(𝑥))

Where ϕs(x) is a formula in some logical formalism over the source schema S and χT(x) is a

formula in some (perhaps different) logical formalism over T [6].

Among the different types of source-to-target dependencies source-to-target tuple-

generating-dependencies (TGDs) is the most commonly used specification for schema

mappings. TGSs have the form:

∀𝑥(𝜙𝑠(𝑥) → ∃y𝜓𝑇(𝑥, 𝑦))

where ϕs(x) is a conjunction of atomic formulas in some logical formalism over the source

schema S and ψT(x, y) is a conjunction of atomic formulas in some (perhaps different) logical

formalism over T (75). A full TGD is a TGD with no existential quantifiers in the right-hand side.

Figure 13 shows an example of TGD and Figure 14 an example of full TGD:

∀ 𝑑𝑖𝑎𝑔 ∀ 𝑑𝑎𝑡𝑒(𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐(𝑑𝑖𝑎𝑔) ∧ 𝑒𝑛𝑑𝑠(𝑑𝑖𝑎𝑔, 𝑑𝑎𝑡𝑒)

→ ∃ initDate 𝑐𝑙𝑜𝑠𝑒𝑑𝑃𝑟𝑜𝑏𝑙𝑒𝑚(𝑑𝑖𝑎𝑔, 𝑖𝑛𝑖𝑡𝐷𝑎𝑡𝑒, 𝑒𝑛𝑑𝐷𝑎𝑡𝑒))

FIGURE 13 EXAMPLE OF TGD

∀ 𝑑𝑖𝑎𝑔 ∀ 𝑑𝑎𝑡𝑒(𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐(𝑑𝑖𝑎𝑔) ∧ 𝑒𝑛𝑑𝑠(𝑑𝑖𝑎𝑔, 𝑑𝑎𝑡𝑒) → 𝑐𝑙𝑜𝑠𝑒𝑑𝑃𝑟𝑜𝑏𝑙𝑒𝑚(𝑑𝑖𝑎𝑔, 𝑒𝑛𝑑𝐷𝑎𝑡𝑒))

FIGURE 14 EXAMPLE OF FULL TGD

Data, Model, and Format transformation | 59

TGDs offer a balance between high expressive power and good algorithmic properties (6). The

unrestricted use of first-order logic as a schema-mapping specification gives rise to

undecidability of basic algorithmic problems about schema mappings.

The use of high-level schema mappings, such as TGDs, makes it possible to separate the

specification (design) from the implementation. This is a crucial issue since the effort required

to create and manage data transformations is considerable, as it may involve writing and

managing complex data transformations programs. This is even more complex when one deals

with EHR standards due to their complexity. High-level mapping are easier to specify and

manage than executable scripts or programs such as XSLT, XQuery or SQL. Therefore, schema

mapping generation has received lots of attention. It studies how to compile into a processable

language a mapping specification between two schemas (4,78–80). Systems supporting data

exchange and schema mapping generation are more necessary than ever, as new formats,

technologies, and approaches are continuously emerging, for instance archetypes. Schema

generation tools usually provide GUIs that places the source schema on one side and the

target schema on the other side. Users can specify the high-level assertions by drawing lines

connecting source and target elements. Examples of modern data exchange systems include

Clio (81), HePToX (82), EIRENE (83), CLIP (78), and MapMerge (84). Clio and CLIP are

particularly interesting in our scenario since they are capable of dealing with hierarchical data

structures.

In health care domain very few generic EHR data transformation efforts exist. Although several

research prototypes and commercial mapping tools are capable of processing XML schemas

they cannot handle archetypes. The reason is the lack of expressivity of XML Schemas due to

the unique particle attribution constraint rule. This rule is violated by most archetypes.

Therefore, such tools cannot be used for archetype-based data transformation. Furthermore,

archetypes are used to model arbitrary complex domain concepts without any consideration

regarding the potential internal architecture or database design of EHR systems. As a

consequence, complex and expressive mapping specifications are necessary due to the low

similarity between archetypes and EHR systems. Nevertheless, some previous experiences

exist, probably the most interesting is the work by Duftschmid et al. (85,86). They proposed an

approach for transforming data from an Entity-Attribute-Value based EHR into XML documents

compliant with ISO 13606. It was based on mapping the structure of the local EHR systems

(described by a generic XML schema) to archetypes, which are, in turn, also expressed as XML

Schemas. In order to overcome the unique particle attribution constraint they rename some

60 | Data, Model, and Format transformation

schema elements. The main disadvantage of this approach is that a specific XML schema has to

be created for each archetype making it complex and not completely archetype-based.

1.4.2. Model-based transformations

Model-Driven Development (MDD) tries to improve correctness and productivity in software

creation by producing software from modeling diagrams created by humans. Model-Driven

Architecture (MDA) (87)(88) is the OMG (89)proposal to support Model-driven engineering. In

MDA the applications and business processes are specified using Platform-Independent

Models (PIM), which define the functionality of the systems. PIMs are then transformed into

Platform-Specific Models (PSM) and final implementation languages with standard mapping

techniques. MDA also defines a layer to bridge the gap between domain experts and IT people

called Computation Independent Model (CIM). Requirements expressed in CIM should be

traceable to both PIM and PSM implementations.

MDD is similar to dual model approach, as both put models as key parts of the methodologies.

In fact, archetypes can be considered as MDA CIMs (90), and have been used as such in several

projects. E.g. for the automatic generation of Graphical User Interfaces in an endoscoping

reporting application (91), the creation of an agile EHR web framework from archetypes (92),

or combined with semantic web technologies for the translation between reference models

(namely, ISO13606 and openEHR)(93).

1.4.3. Format transformation

Promoting interoperability in healthcare infrastructure through shared artifacts generated

from formal model definitions is the main goal of initiatives such as Model-Driven Health Tools

(MDHT) Project (94) from Open Health Tools (OHT). MDHT is an open source effort for the

promotion of shared artifacts between related standards and the creation of modeling tools

for their seamless integration. The project is supported by the US Veteran’s Health

Administration (VHA), IBM, and the US Office of the National Coordinator (ONC). Their original

focus was to develop HL7v3 specifications via UML, but they later moved to work in the

specification of HL7 CDA Implementation Guides. They have provided models and reference

implementations for several HL7 C-CDA Implementation Guides. They are planning to support

other standards besides HL7 CDA, for instance by using UML for the specification of

archetypes. A UML profile (Archetype Modeling Language, AML) has been proposed to OMG to

deal with the specific requirements of the archetype modeling. MDHT is also working in the

generation of Schematron for XML instance validation.

Constraint definition languages | 61

1.5. Constraint definition languages

There exists a wide range of formal rule languages for the definition of constraints on data.

One of the most known is the Object Constraint Language (OCL) (30), an OMG (89) standard

for the definition of rules over UML models (95). There are also languages for defining Horn-

like rules for the Ontology Web Language (OWL) (96), such as Semantic Web Rule Language

(SWRL) (97) or RuleML (98). The widespread use of rules, formal or not, has caused the

creation of proposals, like the W3C Rule Interchange Format (RIF) (99), for the exchange of

rules between different rules languages. The main disadvantage with most rule languages is

that rules are not easily understood by non-technical staff. To solve this problem, some rule

languages with natural language-like syntax have been proposed. Two main examples are

Natural Rule Language (100) and Attempto Controlled English (101). Each one of them

addresses the problem of natural language rules representation from a different perspective.

Human-readable validation languages

Natural Rule Language (NRL) is a formal language for specifying constraints and rules in a

human readable way. The main feature of this language is the capacity of defining constraints

in a way that facilitates their understanding by non-technical people. Moreover, NRL also

defines an extension to deal with actions, such as the creation or deletion of objects, or setting

values when certain conditions are met. Although we will not use this extension, it could be

used to complete the rules with actions, for instance to calculate derived values. There is only

one prior use of NRL in the clinical domain, concretely for the representation of clinical

practice guidelines and its evaluation in a real world case (102). Rules drawn from a

hypertension guideline were translated into NRL in order to be validated by clinicians and

subsequently they were transformed into OCL and finally used in the system. The NRL rules

were generated by hand which can be a time-consuming task.

Attempto Controlled English (ACE) (101) is a controlled natural language, which means that it

is a subset of Standard English with a restricted syntax. ACE can be translated into other

languages, such as RuleML, OWL, or SWRL. The meaning of words in ACE is not predefined and

must be defined in an existing ontology or in additional ACE sentences. Although ACE has been

in use for more than ten years, it only has been used once applied to the clinical domain (103),

specifically for clinical guidelines readability. In this work, rules from a pediatric clinical

guideline were expressed in ACE, although they were not applied to real data.

62 | Interoperability projects

XML validation languages

XML documents contain specific characteristics that also need to be validated. These specific

constraints can be validated with technologies such as Schematron, DTD, or XML Schema.

Schematron (104) is a rule-based validation language for making assertions about patterns in

XML trees that is an ISO norm since 2006. Since it is a path based validation language,

Schematron can express constraints that neither XML Schema nor DTD can express. Each rule

can be associated with a descriptive text of the type of error or warning encountered.

Schematron plays a key role on current CDA implementations as Schematron rules are typically

attached to implementation guides alongside sample XML instances. It has been proved that

Schematron rules can be directly generated from NRL rules (105) as well as from archetypes

(106). Advanced features of archetype methodology, such as reuse of internal or external

types can be also reproduced with Schematron.

Drools

Drools (107) is an open source Business Rule Management System (BRMS) written in java for

the centralization and management of business logic. In addition to provide syntax based on

First Order Logic to describe the rules, Drools also provides a business rule engine for their

execution. Drools uses an optimized version of Rete algorithm for object oriented systems.

Drools also supports the definition of Domain-specific languages (DSL) to write rules in natural

language. Drools uses a knowledge base for the collection of compiled definitions (such as

rules and processes). Knowledge base can be updated from inside the rules in order to insert,

update, or delete objects to it.

Both openEHR Guideline Definition Language (GDL) (40) and open source project openCDS

(108) use Drools for the implementation of their execution engine.

1.6. Interoperability projects

SemanticHEALTH

SemanticHealth (2) was a European Project from the 6th Framework Programme. The project

objective was to identify the steps needed to achieve semantic interoperability. For this,

SemanticHEALTH developed a roadmap for semantic interoperability of EHR, focusing on

patient care, clinical research and public health.

SemantiHEALTH identifies four levels of interoperability:

Interoperability projects | 63

 Level 0: No interoperability at all. E.g. the patient must repeat tests in order to know

what is happening.

 Level 1: Technical and syntactical interoperability (no semantic interoperability). E.g.

Doctors are able to retrieve electronic documents on the original language.

 Level 2: Partial semantic interoperability

o Level 2a: unidirectional semantic interoperability. E.g. the electronic

documents can be accessed remotely and few parts (demographics, diagnosis,

etc.) can be understood by the receiving system.

o Level 2b: bidirectional semantic interoperability. E.g. same as above, but both

ends of the system can do it.

 Level 3: Full semantic interoperability, sharable context, seamless co-operation. E.g.

the foreign Hospital Information System (HIS) can access, interpret, and present all

necessary information about the patient.

SemanticHEALTH recommends the use of generic reference models (ISO13606, openEHR, and

HL7 CDA R2), archetypes or templates, and clinical terminologies such as SNOMED CT and

LOINC (74) as needed to achieve level 3 interoperability.

SemanticHealthNet

SemanticHealthNet (SHN) (109) was a European Union Project from 7th Framework

Programme. SHN developed a scalable and sustainable pan-European organizational and

governance process for the semantic interoperability of clinical knowledge. SHN follows the

recommendations from SemanticHEALTH project for the integration of clinical information

models, ontologies, and terminologies to achieve semantic interoperability. The project used

heart failure use case to capture the needs from patient and public health perspectives.

Different standards were used for the modeling of the use case, which were included in an

ontology framework to achieve semantic interoperability.

epSOS

European Patients – Smart Open Services (epSOS) project (68) was a 7th Framework

Programme. Project team consisted of 22 European Union (EU) and 3 non-EU member states.

epSOS project was aimed to design, build, and evaluate a service infrastructure that can

provide cross-border interoperability between EHR systems in Europe. A cross-border patient

summary and electronic prescription pilots were demonstrated.

64 | Interoperability projects

Meaningful use

Meaningful Use (MU) (67,110) is a Medicare (111) and Medicaid (112) United States (US)

government program that awards incentives for using certified EHR to improve the exchange

of clinical data between healthcare providers, between providers and insurers, and between

providers and patients. The program defines three stages for a gradual EHR adoption.

 Stage 1 is focused in basic EHR adoption.

 Stage 2 is focused in advanced clinical processes such as clinical decision support.

 Stage 3 is focused in health information exchange and improvements of healthcare

incomes

MU policy outcome priorities is to improve quality, safety, efficiency, care coordination,

population and public health, reduce health disparities, to engage patients in their health, and

to ensure privacy and security of personal health information.

Trillium Bridge

The Trillium Bridge support action (113) extends epSOS and Meaningful use to establish an

interoperability bridge for the exchange of patient summaries and EHR among EU and US.

Trillium Bridge objective is to make epSOS and Meaningful use outcomes compatible by

identifying the misalignments and provide solutions to them.

Expand

Expanding Health Data Interoperability Services (EXPAND) (114) is thematic network created

for the integration and deployment of the results of the relevant eHealth European projects

pilots and deploy them as large-scale cross border services. Expand started in January 2014

and is expected to finish by the end of 2015. 17 countries are currently represented in the

thematic network

Clinical Information Modeling Initiative (CIMI)

Clinical Information Modeling Initiative (CIMI) (19) is an international collaboration whose

objective is to provide a common format for representing shared implementable clinical

information models. CIMI is formed by both individuals and organizations including standards

bodies (CEN, HL7, IHTSDO, CDISC), national agencies (NEHTA, NHS), and software developers

(SMART, Tolven). CIMI uses ADL 1.5 as the modeling formalism, and SNOMED CT as the

primary reference terminology. CIMI will also make use of AML profile (Archetype Modeling

LinkEHR Normalization Platform | 65

Language UML profile) for the definition of the clinical models. CIMI provides a Reference

Model and a set of models and patterns in an open repository.

1.7. LinkEHR Normalization Platform

The work of this thesis is based on LinkEHR normalization platform. LinkEHR is a modular

platform whose objective is to facilitate the achievement of semantic interoperability of

biomedical information. LinkEHR Normalization Platform allows the creation of a normalized

virtual federated view of the EHR of a patient with data distributed among heterogeneous

systems, as long as the original data is accessible. LinkEHR modules can be used standalone or

combined together as a complete EHR integration and normalization system. All the

developments of this thesis have been incorporated into different modules of the platform,

mainly in the archetype editor.

1.7.1. LinkEHR Integration Engine

LinkEHR integration engine (115) is a lightweight, fully scalable integration engine to access

multiple heterogeneous and distributed data sources, launch queries over them, and integrate

all the results into a single XML document.

To know what part of the EHR can be shared, LinkEHR-IE provides the Integration Message

Definitions (IMD). IMD definitions include the specification on the data sources and the tables

and fields that will be used for each source. It also includes query parameters to filter the

results, and the nested labeled structure constituting the output XML document structure.

IMD is the minimum communication unit, i.e. petitions to LinkEHR-IE are based on IMD with

parameters. When a request is received by the system, the corresponding IMD is executed,

which queries the original legacy sources into an integrated XML view. The output of this

process is an XML with a known format, which allows us to apply further transformations for

data visualization or the normalization of the unified view

1.7.2. LinkEHR Archetype Editor

LinkEHR Editor is a framework for editing archetypes based on different reference models.

LinkEHR Editor is not the only framework that supports the review of archetypes from

different reference models (3). However, usually the reference models are hardcoded in these

tools, which makes adding new model or evolving current ones a difficult task. LinkEHR Editor

allows the inclusion of new reference models based on the analysis of the reference model

schemas.

66 | LinkEHR Normalization Platform

For all classes available in the source schema, only a subset of them is suitable to be used to

define archetypes. These are called the reference model business concepts. These business

classes are different for each reference model. E.g. ISO13606 has six business classes: Folder,

Composition, Section, Entry, Cluster and Element, openEHR on the other hand has more:

Composition, Section, Observation, Evaluation, Instruction, Action, Admin_entry, Item_tree,

Item_list, Item_table, Item_single, Cluster, and Element.

As long as the XML Schema is available, any reference model can be imported into LinkEHR

Editor. In the import process, users need to specify the business classes from all the classes

available in the model. The available classes are sorted by complexity in order to easily find the

business classes over all class set. With the business classes selected, a module analyses the

schemas and generates a set of archetypes that represent the reference model. These

archetypes are called business archetypes or reference model archetypes. This method has

been tested with several reference models, such as ISO13606, openEHR, HL7 CDA (and CCD),

CDISC ODM, and ASTM CCR.

Having the reference model represented as archetypes allows reusing the same process for

archetype creation that we use for archetype specialization, i.e. new archetypes are

archetypes that specialize the reference model archetype. By using the business archetype, the

editor guides the edition process to guarantee that the archetype will follow the reference

model, as only allows to constraint the types or attributes allowed at any point in the

archetype.

LinkEHR Editor also supports the edition of ADL syntax by hand with an included ADL editor. It

is possible to go from the tree-based editor to the ADL editor at any time. However, this

functionality provides a major challenge for the archetype creation: Syntactically valid ADL are

not necessary semantically valid (e.g. classes have been correctly used in the correct place in

the hierarchy). There is a need of having formal methods for the validating the design and

contents of the archetypes (116). An archetype is valid if the constraints are compatible with

the ones in the reference model and the parent archetype (if there is one).

To validate this, we assume that archetypes are labeled trees. Every constraint on an

archetype is expressed by either a regular expression, which describe a set of valid labels, or a

label predicate. We can formalize the inheritance relationship of archetypes by a subsumption

relation (117) based on the containment of regular expressions and label predicates. We say

that an archetype specializes another if the other archetype subsumes it. An exhaustive

LinkEHR Normalization Platform | 67

explanation of the subsumption applied to archetypes we refer the reader to (27,118). We use

this approach in LinkEHR Editor for the validation of the archetypes being edited.

1.7.3. LinkEHR Extract Server

LinkEHR extract server provides a simple web service interface for accessing the integration

and normalization modules. LinkEHR extract server partially implements ISO13606 part 5 (34)

for an extract server. LinkEHR extract server supports the querying of data by several

parameters, such as archetype identifier, patient identifier, or time period. LinkEHR extract

server can be deployed in a distributed environment, i.e. an instance of the server can be

deployed in each organization and all of them can be queried from a central instance of the

server.

1.7.4. LinkEHR Viewer

LinkEHR viewer is a web-based generic EHR viewer for existing clinical information. It provides

a read-only view of patient EHR. It provides an user interface for user authentication and

patient search. As LinkEHR viewer is not a complete EHR system infrastructure, it can be

deployed on top of existing HIS or be integrated into them in order to provide access to all the

available information.

1.7.5. LinkEHR Concept Manager

LinkEHR concept manager (119) is a web application for the publication, management, and

governance of clinical information models and other reference materials including archetypes,

templates, or schematron rules.

As all the aforementioned LinkEHR platform modules, LinkEHR concept manager supports

multiple reference models and formats. The manager is focused on the management of

generic concepts which have attached definitions in several standards and formats, e.g.

ISO13606 archetypes, openEHR archetypes, HL7 CDA templates, or XML Schemas.

The application handles the versioning, specialization, validity period, and lifecycle

management of clinical information models. It provides the possibility of defining relationships

between clinical information models (such as specializations, inclusions, exclusions, etc.)

providing a graphical representation of these relationships. Figure 15 shows an example of

how models relationships are stored in LinkEHR concept manager.

68 | LinkEHR Normalization Platform

MEDICATION ALLERGY PATIENT SUMMARY

PROBLEM PROBLEM SUMMARYPROBLEM LIST INCLUDES SPECIALIZES

INCLUDES
EXCLUDES

ASSOCIATED

ASSOCIATED

openEHR
archetype

CEM IHE
EN13606
archetype

RESOURCES

FIGURE 15 EXAMPLE OF RELATIONSHIPS AND RESOURCES FOR PROBLEM CLINICAL MODEL

LinkEHR concept manager follows a social network approach to encourage clinicians’

engagement. Clinicians can subscribe to a given clinical model or archetype to be informed of

changes to that model. LinkEHR concept manager allows the definition of roles that have a set

of rights assigned to them in order to manage what each user is allowed to do in the platform.

Introduction | 69

Chapter 2.

Migration of Health Information Systems – Model perspective

2.1. Introduction

Dual model methodology allows the formal description of the clinical models of a given EHR

information model. This formal definition provides a set of advantages, such as knowledge

reuse, terminology bindings, or multilinguality. Usually traditional EHR architectures lack such

a formal mechanism. However, as long as the architecture supports directly or indirectly the

notion of detailed clinical models, they can be used as a reference model for the archetype

definition. This chapter describes a set of methodologies and developments to support the

definition of archetypes for EHR architectures that do not support dual model architecture

natively.

Parts of this chapter were presented at the Medical Informatics Europe (MIE 2015) conference

under the name “Combining Archetypes with Fast Health Interoperability Resources in Future-

proof Health Information Systems”1, at Medinfo 2013 conference under the name “Genetic

testing information standardization in HL7 CDA and ISO13606”2, and published in the Indian

Journal of Medical Informatics (IJMI) under the name “Reforming MML (Medical Markup

Language) Standard with Archetype Technology”3. The creation of MML Reference Model and

all the required developments were carried out during a Research Internship at the Graduate

School of Informatics in Kyoto University.

1
 Open access. Accessible at http://ebooks.iospress.nl/volumearticle/39320

2
 Open access. Accessible at http://ebooks.iospress.nl/volumearticle/34014

3
 Open access. Accessible at http://ijmi.org/index.php/ijmi/article/view/284

http://ebooks.iospress.nl/volumearticle/39320
http://ebooks.iospress.nl/volumearticle/34014
http://ijmi.org/index.php/ijmi/article/view/284

70 | Reference model archetypes

2.2. Reference model archetypes

Only a subset of the classes contained in reference models define logical building blocks of

EHRs and can be used to define archetypes. We call these classes ‘business concepts’. For

instance ISO EN13606 defines six business concepts, namely: Folder, Composition, Section,

Entry, Cluster, and Element. The representation of a business class as an archetype is what we

call a Reference Model Archetype (RMA).

A RMA contains all the attributes and classes of the reference model that are used to define

the business concept. For instance, the business class Element of ISO 13606 represents the leaf

nodes within the EHR hierarchy. Each instance of Element has a single data value (attribute

value), which is one of a defined set of data types (Boolean, coded value, physical quantity,

etc.). In the corresponding RMA all the possible data types are explicitly defined as an

alternative for the value attribute. RMAs represent the most general archetypes that can be

defined based on a reference model and hence any other archetype must be a specialization of

one of them.

The main consequence here is that with RMAs the archetype editing becomes a process of

subtyping by constraints (118). The rules used to control the archetype editing are those

specified in the archetype model such as strengthening of domain constraints on primitive

attributes or the narrowing of cardinality intervals. In other words, the same logic can be

applied both to the specialization of an existing archetype and to the definition of a new

archetype as shown in Figure 16. This has also interesting consequence for archetypes

validation, as the validation with respect to a reference model becomes a problem of finding a

subsumption function to the corresponding RMA. Those for which it is not possible to find such

functions are considered invalid with respect to the reference model. With RMAs the editors

can be then independent of the reference model as long as it is possible to create the set of

RMAs for a particular EHR information model. This approach was first implemented in LinkEHR

archetype editor(118), making it the first editor capable of handling multiple reference models.

In the rest of publicly available editors the reference model was hard-coded meaning they only

supported one reference model (namely openEHR reference model).

Creation of RMA | 71

LinkEHR-Ed

TERMINOLOGY

REFERENCE

MODEL

ARCHETYPE

PARENT

ARCHETYPE

COMPREHENSIVE

ARCHETYPESPECIALIZES

SEMANTIC

MANAGER

VALIDATESUSES

HEALTH

DOMAIN

EXPERT

DEFINITION

REFERENCE MODEL

XML SCHEMA

ONTOLOGY

0..*

BINDS TO

MERGE

USES

ARCHETYPE

DESCRIPTION
EDITS

DERIVES

FIGURE 16 LINKEHR ARCHETYPE EDITION

2.3. Creation of RMA

As seen above, in order to allow the edition of archetypes in a given model we must first

create the set of RMA for that model. Usually the standards provide some kind of information

model which can be expressed in formats such as XML Schema Definition (XSD). In (118) we

presented a methodology for the generation of RMA from XSD.

However, the process of deriving the reference model is not always possible by different

reasons such as the schema being not public (e.g. DICOM SR XML Schema (120)), being in a

non-supported format (e.g. MedXML MML provides DTD schemas and openEHR official

schemas are provided in Basic Meta Model or BMM(121)), or the complexity and size of the

schema makes the process impractical (e.g. HL7 FHIR DSTU and specially DSTU2 as the

Resource number increases). For these cases, alternative processes for generating the RM are

needed. To support these new RM we generate the RMA, which are archetypes containing

explicit and exhaustive definitions of the structure and possible contents for each business

class. We have used different approaches for each one of the aforementioned standards,

which exemplifies the different approaches when importing new reference models:

72 | Creation of RMA

 Creating RMA from meta-models: This approach was used for the creation of HL7 FHIR

DSTU reference model and the creation of BMM derived reference models.

 Creating RMA manually: This was used for the creation of MedXML MML reference

model

2.3.1. Creating RMA from meta-models

For this process, the meta-models are analyzed and RMA are created from them. The

problems are still the same as the ones found in the creation of RMA from XML Schema (118):

How to determine which classes are archetypable (i.e. which classes we want to define

archetypes from), and how to deduce the structure. We exemplify this approach for the

generation of HL7 FHIR RMA from an ecore model and the creation of RMA from BMM files.

OMG provides an standard format for the serialization of models in XML called XML Metadata

Interchange (XMI) (122). XMI is an ISO norm since 2005 (2005 ISO/IEC 19503 and 2014 ISO/IEC

19509). XMI suffers a number of issues, such as being too complex or not having a consistent

serialization format among different tools (123). Eclipse Modeling Framework (EMF) (124)

provides its own meta model (ecore) for describing models and runtime constraints, and it is

also serializable in XMI. HL7 FHIR DSTU provides the reference model in both XML Schema and

ecore definition (125). FHIR XML Schemas were too complicated to be analyzed by the XML

Schema reference model import due to the number of Resources, as each FHIR Resource is

potentially a RMA, and the possibility to include almost all resources into one another due to

the extension mechanism. For this reason, we created an iterative process that transforms

each one of the selected Resource types defined in the ecore model into RMA. The process for

the creation of FHIR archetypes is summarized in Figure 17.

Base of

FHIR Ecore model

Transformed into

FHIR archetypes /
extended resources

FHIR Reference
Model Archetype

Defined in

FHIR Resource

FIGURE 17 STEPS FOR THE CREATION OF FHIR ARCHETYPES

For the creation of the RMAs, first we chose the archetypable entities. We selected all clinical,

all administrative, and an infrastructure (namely Composition) resources. After selecting these

entities, we parsed the XMI to obtain all types, their attributes, and the types of these

attributes. From this analysis, a set of all the types in the model represented as small RMA are

created. These RMA contain the corresponding attributes defined in the ecore model and

Creation of RMA | 73

reference each one of the types inside them. There reference is made by using the archetype

slot mechanism to point to the RMA where the type is defined. In this step, inheritance is

solved by deriving any type into all their child types. If a type can be derived into more than

one type then an alternative of archetype slots is created for each one of the subtypes. In

order to reduce the size of the resulting RMA, only one type is referenced explicitly (i.e one

slot exists) in each RMA, and any further use of the same type in the archetype is transformed

into internal references to the first appearance of this type to avoid the repetition of archetype

structures. With all this set, the iterative process can begin. In each one of the iterations, every

archetype slot reference from the RMA is expanded with the corresponding archetype.

Internal references are adjusted so all point to the same archetype slot, as expanded slots can

include more slots to other RMA. Only one archetype slot is kept, and the other ones are

changed into internal references. The iterative process ends when the RM archetypes selected

as archetypable entities (i.e. the types we want to be able to generate archetypes from) do not

contain any external references (i.e. archetype slots) to other RMA, as a restriction of RMA is

that they must be completely defined on their own.

Once we have created a set of RMA from a given RM we can create archetypes from that RM

with LinkEHR Editor. Figure 18 shows an excerpt of a FHIR Systolic archetype.

74 | Creation of RMA

FIGURE 18 EXCERPT OF A SYSTOLIC FHIR ARCHETYPE

On the other hand, there also exist meta-model representations used only in dual model

reference model definitions. This is the case of openEHR BMM syntax (123), which has

available representations of openEHR (121), ISO13606 (12) and CIMI (19) reference models.

Although openEHR RM is also distributed in XSD format, BMM is considered as the primary

reference model definition, as XML schemas may have their own set of problems when

representing an object-oriented model. BMM is based in ODIN syntax (126) (formerly known

as dADL).

Creation of RMA | 75

An ad-hoc Java parser was created in order to generate the RMAs from a BMM reference

model specification. BMM format has some advantages over XMI, as the set of archetypable

classes is explicitly included in the meta-model definition and the translation of the structure

to archetypes is almost direct, but also needs additional documentation (such as knowing

which attribute contains the archetype node identifier) in order to correctly generate systems

and validators based on a BMM file. This specific parser was included in LinkEHR to generate

the RMA automatically from the BMM definitions.

2.3.2. AOM-based RMA creation

An alternative to create RMA when the meta-model definitions are not available or they are

available in a format not processable by our methodology is to create the RMA manually.

In the case of MedXML MML, RMA were created by hand from MML specifications (127). A

mode to edit archetypes without having available an underlying RM was developed, i.e. an

editor to create archetypes based on Archetype Object Model (AOM). This is based on the

principle that reference models define the basic constraints that describe a given information

model, which is precisely what in the end provides the AOM (i.e. the AOM provides the basic

blocks to define constraints over a given model). As RMA are in fact archetypes it is feasible to

build these archetypes by defining the object, attribute, and primitive type constraints they

contain. The usefulness of the creation of this kind of editors over simple tree models has been

proved in conversion systems like YAT (128). This process is possible due to the tool not being

based in any given reference model but in the AOM itself

To edit an archetype, first an object name must be provided. This object name is used in the

archetype identifier. This also creates the root object of the archetype. From there, it is

possible to constraint attributes on objects, as seen in Figure 19, and objects, data types,

internal references, and archetype slots in attributes, as seen in Figure 20. The only parameter

needed for the creation of attributes and objects is the attribute name and object name

respectively. Once the attribute, object, or data type is created it can be edited as a normal

constraint of its kind in order to modify occurrences, ranges, and allowed values.

76 | Creation of RMA

FIGURE 19 ARCHETYPE EDITING WITHOUT REFERENCE MODEL – CREATING ATTRIBUTES

FIGURE 20 ARCHETYPE EDITING WITHOUT REFERENCE MODEL – CREATING OBJECTS

With this new editor, a RMA for each business class can be created. In the case of MedXML

MML, RMAs were created for MML common formats and content modules. All the

requirements and structures from the MML documentation were able to be expressed with

archetypes. Archetypes were created using all the reutilization mechanisms that archetype

model provides (namely archetype slots and internal references). 9 common module

archetypes were created and 13 archetypes were created from the 12 clinical modules defined

in MML documentation. The additional one (mmlSm:Clinicalcourse) is a concept defined in

both mmSm:SummaryModule and mmlRe:ReferalModule with the same structure, and thus it

was extracted as a new RMA. The list of created archetypes can be seen in Table 1 and Table 2.

MML common format Created archetypes

mmlAd:Address MedXML-MML-Address.Address.v1

mmlPh:Phone MedXML-MML-Phone.Phone.v1

mmlCm:Id MedXML-MML-Id.Id.v1

Creation of RMA | 77

mmlCm:Ref MedXML-MML-Address.Address.v1

mmlNm:Name MedXML-MML-Name.Name.v1

mmlFc:Facility MedXML-MML-Facility.Facility.v1

mmlDp:Department MedXML-MML-Department.Department.v1

mmlPsi:PersonalizedInfo MedXML-MML-PersonalizedInfo.PersonalizedInfo.v1

mmlCi:CreatorInfo MedXML-MML-CreatorInfo.CreatorInfo.v1

TABLE 1 ARCHETYPES FROM MML COMMON FORMAT

MML module concepts Created archetypes

mmlPi:PatientModule MedXML-MML-PatientModule.PatientModule.v1

mmlHi:HealthInsuranceModule MedXML-MML-HealthInsuranceModule.HealthInsuranceModule.v1

mmlRd:RegisteredDiagnosisModule MedXML-MML-RegisteredDiagnosisModule.RegisteredDiagnosisModule.v1

mmlLs:LifestyleModule MedXML-MML-HealthInsuranceModule.HealthInsuranceModule.v1

mmlBc:BaseClinicModule MedXML-MML-BasicClinicModule. BasicClinicModule.v1

mmlFcl:FirstClinicModule MedXML-MML-FirstClinicModule.FirstClinicModule.v1

mmlPc:ProgressCourseModule MedXML-MML-ProgressCourseModule.ProgressCourseModule.v1

mmlSg:SurgeryModule MedXML-MML-SurgeryModule.SurgeryModule.v1

mmlSm:SummaryModule MedXML-MML-SummaryModule.SummaryModule.v1

mmlLb:TestModule MedXML-MML-TestModule.TestModule.v1

mmlRp:ReportModule MedXML-MML-ReportModule.ReportModule.v1

mmlRe:ReferralModule MedXML-MML-ReferralModule.ReferralModule.v1

- MedXML-MML-ClinicalCourse.ClinicalCourse.v1

TABLE 2 ARCHETYPES FROM MML MODULE CONCEPTS

These archetypes faithfully represent the structure and contents of MML modules. Some parts

of MML are influenced by HL7 CDA(129), which introduces XML-only constraints such as mixed

elements (elements with value that also contain attributes) and heavy use of namespaces.

Support for HL7 CDA particularities was included in the past into LinkEHR editor to support HL7

CDA archetype definition and thus supporting them for MML required no further additions.

Figure 21 shows an example of a created RMA for a MedXML MML module.

78 | Advanced archetype editing

FIGURE 21 EXAMPLE OF A MML BASICCLINICMODULE REFERENCE MODEL ARCHETYPE

Although creating an automatic process for the generation of RMA could be more time

consuming than just defining a set of RMAs, if the format for the definition of the schema is

shared by a set of models, it is preferable to create an automatic process.

2.4. Advanced archetype editing

Specific archetype editors for a particular reference model such as openEHR archetype editor

can be regarded as “concept centric” since they hide most of the complexity of the underlying

reference model. Therefore, they are suitable to be used by health domain specialists even

with moderate knowledge of the underlying reference model and archetype model. The main

drawback of this approach is that the reference model must be hard coded into the editor

making it difficult both to keep in pace with its evolution and to support multiple models.

Advanced archetype editing | 79

The “raw” use of RMA brings to the front the reference model during the editing process. This

makes the editor “structure-centric”, i.e. domain concepts are defined by directly constraining

the data structures present in the reference model according to the archetype formalism.

Obviously, this approach forces users to have a deeper knowledge of the reference model, but

facilitates working with multiple models. Figure 22 shows this “structure-centric” edition in a

FHIR Adverse Reaction archetype. In order to make the editor, in our case the LinkEHR editor,

more accessible and aligned with users’ knowledge of current standards, different approaches

and methodologies have been investigated, namely plug-ins, mapping to other standards,

semantic patterns, archetype creation from sample instances, and syntactic clinical model

transformation between standards. They are discussed next.

FIGURE 22 EDITING A FHIR ADVERSE REACTION ARCHETYPE

2.4.1. Plugin archetype editors

LinkEHR editor allows the creation of archetypes for a given reference model. As a basis

LinkEHR Editor assumes that user has knowledge over the full reference model. In order to

allow users with less specific expertise and knowledge of the underlying reference model to

edit archetypes, we developed specific editors that use knowledge about a given reference

model to hide archetype editing complexity. We have developed this kind of editors for

ISO13606, openEHR, and HL7 CDA (130). Figure 23 shows a HL7 CDA archetype being edited

with a custom editor.

80 | Advanced archetype editing

FIGURE 23 EDITING AN HL7 CDA ARCHETYPE WITH SPECIFIC EDITOR

Custom editors are created on the fly following a documentation file. This documentation file

contains the complete details specific to a given reference model. These details include

technical details (e.g. which is the attribute that contains the node identifier in a given

standard: archetype_id in ISO13606, archetype_node_id in openEHR, or even templateId in

HL7 CDA), properties related with class diagrams (e.g. which attributes contains a given class,

which types are allowed in given attributes), multilingual description of classes, UI related

properties (e.g. which icon should be used for this class or which transformation should be

used when showing the user a sample form), and editor related properties (e.g. which class

should be used to edit a given type or if an attribute is interesting enough to be shown in an

specific editor). The class diagram related properties and technical details are generated when

the model is imported. By default, the specific editor tree always hides the attributes, being

the types the basic blocks in the edition process. E.g. A user that creates a Composition can

include Sections or Entries, without worrying or knowing which attribute needs to navigate in

order to include them. If an attribute is found interesting, it can be selected as navigation

attribute. Navigation attribute child types will be the alternatives shown in the editor

contextual menu. Reference models can contain long navigation trees that traverse classes

that do not need to be constrained. For this use case, the ability to hide classes from the

archetype tree edition was added. An example of this can be seen in Figure 23, as HL7 CDA

Observations are related to other HL7 CDA Observations by an EntryRelationship class, which is

Advanced archetype editing | 81

not shown in the specific editor but is stored in the archetype. This process can also hide from

the edition process full archetype branches, even if they are still being created, e.g. when

creating a Physical Quantity (PQ), both the units and the value are created, but only the PQ will

be shown on the editor tree. These specific editors can be distributed as plugins and be

included into the editor without changing the application source code. This documentation file

is automatically generated on RM import, but can be updated in the documentation manager

called Reference Model Manager. Figure 24 shows the reference model documentation being

edited in the Reference Model Manager.

FIGURE 24 REFERENCE MODEL MANAGER INSIDE LINKEHR EDITOR

2.4.2. Mapping to non-dual models archetypes

One of the advantages of including a new reference model into LinkEHR is to generate

transformation programs from the archetypes. As described in (131), the mapping process is as

follows: First, an archetype with the use case specific constraints must be created. Second,

LinkEHR merges the archetype with the underlying RMA in order to assure that the constraints

from the archetype and the reference model will be in the final instance. Third, transformation

82 | Advanced archetype editing

functions can be assigned to the atomic values from this merged archetype in order to get the

correct values. These mappings can be either from another archetype (from any RM) or in

form of XML Paths. Fourth, when the defined mappings are enough to generate at least the

mandatory information in a given RM, LinkEHR can generate a transformation program from it.

This transformation program is an XQuery program that transforms source data into an XML

instance compliant with the merged archetype (and thus compliant with both the defined

archetype and the underlying RM). Source and target archetypes can be from dual model

standards (such as ISO13606 or openEHR) or non-dual model standards (e.g. HL7 CDA, HL7

FHIR, MedXML MML, etc.). Mapping process is explained in detail in chapter 3.

2.4.3. Semantic patterns

Archetype reuse is not limited to archetype slots and internal references. More advanced

reuse patterns can be defined for the reuse of complex structures with clear meaning.

SemanticHealthNet project (132) proposed the use of a kind of structure called semantic

patterns. Semantic patterns are reusable solutions to recurring modeling problems based on

an ontological framework in order to bridge between the EHR modeling community and the

semantic and formal ontology communities. Their purpose is to guide and standardize the

representation of the information meaning encoded by clinical models. For

SemanticHealthNet, semantic pattern is a concept that combines structural, terminological,

and ontological representations to enable multiple clinical models to be recognized as

overlapping and primarily aligned (even between different standards). SemanticHealthNet

proposed an OWL representation of semantic patterns. Other interoperability projects such as

CIMI have also analyzed, identified, and suggested the use of semantic patterns (also called

modelling patterns in CIMI) as part of their modeling approach (133).

Based on this notion, we propose one way of implementing the semantic patterns to help and

guide archetype creation. The use of these patterns will help in the achievement of

SemanticHealthNet’s original purpose, as the structural fragments we define can be translated

and used in other standards. In our view, semantic patterns are archetype fragments with

known semantics (i.e. usually bind to clinical terminologies to express its meaning). They are

designed to be reusable and thus have general meaning, as opposed to slots which fully define

a given clinical model on their own. I.e. patterns are expected to be modified upon inclusion

on the archetype to better represent the current clinical model use case. The kind of semantic

patterns we define are useful for creating equivalences between different reference models,

e.g. how an openEHR Observation is represented in ISO13606 reference model. Semantic

Advanced archetype editing | 83

patterns provide a way for including predefined meaningful structures, as the semantic pattern

themselves provide semantic bindings for a given archetype node. Examples of semantic

patterns include general use structures such as table, tree, or panels, semantic structures such

as observation, event, or history, and complex semantic patterns such as exam.

For the creation, reuse, and version of semantic patterns LinkEHR editor allows selecting any

node of a given archetype and transforming it to a semantic pattern. These patterns are stored

as archetypes and thus contain both metadata and vocabulary sections that are used for the

correct description of the pattern. This also enables the pattern versioning mechanism.

Semantic patterns can be edited as normal as they were normal archetypes. For the reuse of

semantic patterns, the process allows to include them in any place the reference model allows

that given type, in the same way as normal archetype creation does. When a semantic pattern

is selected, it is included in current archetype. A terminology binding is added in order to know

exactly which patterns were used when creating a given archetype. An example of the edition

is shown in Figure 25. In this figure, two ENTRY semantic patterns (Observation or

SubjectOfCare) can be included inside of a COMPOSITION EN13606 class.

FIGURE 25 INCLUDING A SEMANTIC PATTERN IN CURRENT ARCHETYPE

2.4.4. Archetype creation from instances

Probably one of the biggest challenges when applying archetypes to a non-dual reference

model is that defining a minimum set of archetypes is required in order to start taking

advantage of archetype-based methodologies and tools. This archetype creation task can be

time consuming and requires a deep knowledge of the system. However, as usually the system

is already deployed, it is feasible to have access to sample data instances. We developed an

84 | Advanced archetype editing

automatic process that traverses a set of data instances on a given reference model and

merges them into an archetype with the constraints detected on data. The process is based on

the same principle as the generation of XML instances, i.e. an XML instance is equivalent to an

archetype with the constraints fixed to constants (we call this constant archetypes, see chapter

4 for a full explanation of constant archetypes). If each XML instance can be seen as a constant

archetype, then the problem is reduced to merging the different constant archetypes into a

single one. This process of merging two constant archetypes traverses the constraints in each

archetype and loosens them according to their constraints values (e.g. widens ranges or makes

data types less restrictive).

Archetypes allow the definition of three kinds of constraints: object constraints (namely

occurrences), attribute constraints (existence and cardinality) and primitive constraints (which

depend on the data type). Occurrences, existence, and cardinality constraints can be guessed

by measuring what parts of the instance appear/disappear or repeat. For the first appearance

of an XML element or attribute, a mandatory attribute is created on the archetype. Each

successive instance is checked to see if a created attribute still exists on it. If the attribute

exists just once, nothing is done. If the attribute path exists more than once, the attribute is

converted into a multiple attribute (container attribute) and is given a cardinality according to

the number of times it appears in the instance. If the attribute does not exist in the instance,

then the attribute is made optional on the archetype. The process is similar for objects.

Archetype objects are created by looking at the xsi:type attributes, which are XML attributes

with special meaning containing the object class of a given attribute. If the underlying

reference model is known, archetype node identifier is used instead of the xsi:type (e.g.

archetype_node_id attribute in openEHR). For any new type (or node identifier) detected, a

new object with mandatory occurrences is created. Occurrences constraint will be relaxed with

new instances accordingly.

Getting meaningful results from unknown reference models is harder, as xsi:type attributes are

optional and do not need to be included in the data instances (and even if they do exist, sibling

nodes sharing the same type are impossible to distinguish). However, if the reference model is

available, not having an xsi:type can be worked out as missing types usually mean that the

attribute only has one allowed type, and thus can be automatically selected. It is also worth

noticing that with our methodology is impossible to guess 'not allowed' attributes (existence

0..0) or prohibited objects (occurrences 0..0), as they will never appear in data instances.

Advanced archetype editing | 85

Primitive constraints provide an interesting challenge. In this case, not only the value

constraint may be relaxed with every new instance, but also the type of the value constraint

can be modified into a more generic data type. When a new value is detected, it is checked

against patterns created to detect each type. Data types with very specific patterns such as

DateTime or Duration are checked first. Every other pattern is checked in descending

complexity order, and if nothing matches then the data type is considered to be of String data

type. In case of strings, two different string values create list constraints (e.g. if first we found

the value 'low' and the next instance contains the value 'high', a string constraint with the list

{'low','high'} is created. A similar process is used for the different data types.

As an example, if the first data instance had a value of “123.4” then it is interpreted as a real

value and a constraint to that exact value will be created on the archetype. If the next analyzed

data instance has another real value such as “543.2”, then the created real constraint is

modified to define a range from [123.4..543.2]. If the next instance includes another range it

will again modify the range accordingly. If another instance has any value that is incompatible

with the current guessed constraint type, then the type is changed by a more general data

type. E.g. a detected integer constraint can be modified into a real constraint (assuming that it

was a real with no decimal part) or a string constraint if the received value is from an

incompatible type.

As stated above, this instance creation process is more efficient if the information model has

been previously imported as a RM, as data types and existence constraints can be also be

obtained from the RM.

Once every instance has been merged, the generated archetype is offered to the user in order

to fine adjust the value, occurrences, existence, and cardinality constraints.

2.4.5. Syntactic clinical model transformation between standards

Transformation of clinical models between different standards is a difficult problem. One of

the most promising approaches is the ontology-based transformation of archetypes and data

instances between different reference models. This kind of transformation is already present

in the literature (58). However, most of the time class equivalences are clear enough or are

even part of the standards themselves (such as ISO13606 (32) or HL7 FHIR(15)) and thus

transformation of the archetype to ontology languages for reasoning is not needed. A

completely syntactic transformation is feasible as the translation of clinical models from one

reference model to another can be done with a number of rules in the same order of

86 | Advanced archetype editing

magnitude as the maximum number of classes of the reference model with more classes. For

this syntactic clinical model transformation, rules to transform the class name and attributes of

each class are created. Generated rules allow both the creation and removal of attributes and

classes that have no transformation, e.g. an openEHR ITEM_LIST is transformed into a

ISO13606 CLUSTER and adds both 'meaning' and 'structure_type' attributes (in an ISO13606 to

openEHR transformation these attributes and classes are removed). In addition to that, rules

for the transformation of the archetype metadata are also created.

Rules for class transformation can be categorized in three different kinds depending on what

triggers them: rules based on the structure of the source archetype, rules based on the

terminology binding of the class, and rules for the generic transformation of the type.

 Structure-based rule: this kind of rule uses conditions over the structure of the source

archetype to choose the corresponding class. These conditions cover at least one class

type, but can be made dependent of any number of other classes and values present

in the source archetype. E.g. to translate an ISO13606 ENTRY to openEHR Observation

it is necessary to create rules that search for an ENTRY object which 'meaning'

attribute has 'OE-01' code. This is the rule with highest priority from the three.

 Terminology binding-based rule: As archetype nodes support terminology bindings for

their complete description, we can use them in order to categorize the class. This

however requires that the semantics of target classes are fully described in a given

terminology (typically SNOMED-CT). This is the rule with the second highest priority

from the three.

 Generic transformation: Health information standards, such as ISO13606, openEHR, or

even HL7 CDA, contain a generic class intended to accommodate data coming from a

different standard. This last rule, which has the lowest priority, ensures that every

class translates to at least to a generic class.

Any given set of source classes can be translated into any set of classes in the target (using

insertion, deletion, and substitution operations).

We demonstrated the usefulness of this approach by studying the ISO13606 to openEHR

model and data automatic bidirectional transformation. On the one hand, as the ISO13606

part 3 standard already defines the class equivalences and what codes should be put, the

openEHR to ISO13606 was easier to develop. As the equivalences are already known, only

structural rules were created for openEHR to ISO13606 transformation, which makes the

Advanced archetype editing | 87

process completely deterministic. We generated a set of 57 rules for the translation of

openEHR archetypes to ISO13606 (46 rules for class translation and 11 for the translation of

archetype metadata). These rules transform types, attribute names, and also add the

corresponding 'meaning' attribute. This attribute is available in all record component classes in

ISO13606 and can be used in this context to provide a code describing the transformation

source. We applied these rules to a dump of all available openEHR archetypes in the

international CKM. This generated a set of 415 ISO13606 archetypes1. These archetypes were

validated against the ISO13606 reference model and all were compliant with it. For a deeper

explanation of the validation of archetypes see (134). The creation of the openEHR to

ISO13606 transformation is straightforward as ISO13606 model is more generic than openEHR

and usually a set of classes is transformed into a single class (e.g. in openEHR the Observation,

Instruction, Action, Evaluation, Admin_entry, and Generic_entry are transformed into the

ISO13606 Entry class). However, the inverse transformation (i.e. ISO13606 to openEHR) poses

a challenge, as a single class in the origin can be transformed into a given class from a set of

classes.

For the translation of ISO13606 classes into openEHR classes, a structural and a terminology

binding rule were defined for each target class the source class could be translated to. An

additional generic rule was created for each source class, to allow the class to be translated to

a class from the target reference model even if no other rule is launched.

In this case, for the structural rules, the 'meaning' attribute (which as stated above may

contain a code from ISO13606 part 3 terminology) was used. For the terminology binding

rules, we used SNOMED-CT expression constraint language (135) to provide tentative

descriptions of the openEHR entry classes. The expression is designed to return the tested

code itself if the binding is included in the expression, and to return nothing if it is not included

on it. Codes used in these expressions were extracted from current CKM archetypes

terminology bindings. As few archetypes contain bindings and there is not yet a unified way of

defining these bindings, created expressions may be incomplete. Table 3 shows the

expressions used to test if the terminology binding can be identified as a target openEHR class.

In these expressions, the unary operator “<<” stands for “descendants of the specified concept

plus the specified concept itself”. These expressions are evaluated by using web services

provided by the Snomed CT expression constraint execution engine SNQuery (136).

1
 Transformed archetypes can be downloaded from http://tiny.cc/ISO13606archetypes

88 | Improvements in LinkEHR Editor

Target class SNOMED CT subset

Observation << 363787002 | Observable entity (observable entity) |

OR << 284365007 | Examination of body site (procedure) |

OR << 122869004 | Measurement procedure (procedure) |

Evaluation << 243814003 | Interpretation of findings (observable entity) |

Instruction << 243120004 | Regimes and therapies (regime/therapy) |

OR << 400999005 | Procedure requested (situation) |

Action << 129264002 | Action (qualifier value) |

OR << 416118004 | Administration (procedure) |

OR << 443938003 | Procedure carried out on subject (situation) |

OR << 71388002 | Procedure (procedure) |

Admin_entry << 14734007 | Administrative procedure (procedure) |

OR << 304784009 | Administrative form (record artifact) |

Event << 272379006 | Event (event) |

TABLE 3 SNOMED CT GRAMMAR EXPRESSION FOR CATEGORIZATION OF OPENEHR CLASSES

The ISO13606 to openEHR translation direction was limitedly tested, as currently available

archetypes usually do not have associated 'meaning' or terminology binding, which in the end

causes generated archetypes to be transformed using the generic transformation.

In addition to guide the model transformation, rules also generate the attribute mapping

equivalence between the original archetype and the transformed one. This allows generating

automatically a transformation program to convert data instances based in a reference model

to another reference model (see chapter 3).

2.5. Improvements in LinkEHR Editor

The above methodologies have been incorporated into LinkEHR editor. The definition of plugin

editors provides a high level of customization to users and allows covering exactly their needs.

These plugins contain the reference model, their documentation, and the Java compiled UI

classes to specifically edit given reference model types. For the mapping of archetypes to data

sources, a new perspective was added in order to import data sources, edit mappings, and

generate transformation programs from within the tool. For the use of semantic patterns, the

Improvements in LinkEHR Editor | 89

options to include and generate semantic patterns were added, as well as a semantic pattern

manager to manage them from inside the tool. For the generation of archetypes from

instances a wizard was added that uses both a set of provided instances and the name of the

reference model and reference model entity for creating the archetype. For the syntactic

clinical model transformation between standards an export option was added to provide the

translation of current archetype. This export option changes depending on current archetype

reference model and gives access to an output transformation (if defined for the selected

reference model).

In addition to these changes, other improvements were included in the tool in order to deal

with new reference models and being able to use the tool into different standards workflow.

2.5.1. Connection to external repositories

Knowledge sharing is one of the key principles of archetypes. Several countries (such as

Norway, Brazil, or Spain) have deployed archetype repositories to store and publish their

clinical models. These archetypes establish national requirements for the semantic

interoperability of data transferred within a country. In order to reuse these clinical models, an

access to the repositories was provided. Both openEHR CKM and LinkEHR CM provide a set of

web services (SOAP or REST) to query and retrieve archetypes available in them. LinkEHR

Editor was improved to access both kinds of web services.

2.5.2. Template import

In dual model development cycle, templates provide ways to specialize an archetype for a local

use. They define local use constraints and complete the archetype slots in the original

archetype with their actual representation. In early openEHR days, these templates came in a

format that is deprecated in ADL 1.5. In order to provide a way of reusing these templates in

modern tools, a process to import templates and transform them into archetypes was created.

This process analyzes the template (in either OET or OPT format) and provides an equivalent

archetype from them. Templates in legacy format omit part of the structure of the clinical

model, as they are assumed to be based on openEHR RM. This makes a requirement that

openEHR RM is imported in the tool, as omitted parts are inferred from the remaining

structure This method can also connect to remote or local archetype repositories in order to

fulfill all the archetypes referenced by the template. The resulting archetype can be used for

mapping and reference material generation.

90 | Conclusions

2.5.3. Export JSON schema

As JSON (137) implementations become more common, there is also the need to validate data

and structure constraints in JSON. To allow this, a new method for the creation of JSON

Schema (138) from the archetype was implemented. This allows the validation of JSON

instances based on a given archetype in the same way a XML Schema or Schematron validate

XML. By generating JSON Schema, other derived materials can be automatically created such

as Java classes, API documentation, data sources schemas, forms, fake data instances, or

editors with autocomplete.

2.5.4. Export FHIR profiles

FHIR uses a mechanism similar to the archetypes and specializations that is called ‘profile’. In

order to allow the created archetypes to be used in FHIR servers and clients a method to

export FHIR archetypes to FHIR DSTU profiles was created. Archetype constraints are

translated into profile constraints. This process also allows the selection of which paths of the

archetype can be queried, providing a name for this parameter, the type, and path. With this

information, these query parameters are translated into profile query parameters and the

profile is generated.

2.6. Conclusions

Using archetypes for non-dual model based standards allows the use of all available

methodologies and tools, from archetype editors to repositories (both data and archetype

repositories). This can be really beneficial for all involved parties, as it allows the use of high

quality clinical information models in current data workflows and EHR systems. It also allows

the improvement of clinical models with new use cases and expertise by different people,

which in the end greatly enriches the original archetypes.

There are several advantages of using dual model methodology with non-dual model

standards, such as being able to check if a resource is valid against the reference model. This is

especially useful not only with draft standards such as FHIR or standards with few dedicated

tools such as MML, but also in the renewal of reference models like ISO13606, openEHR, or

HL7 CDA. The changes on the reference model could potentially invalidate the already

developed archetypes for the past reference model version. Our methodology allows

regenerating the RM when new versions are released and use established mechanisms for

archetypes like subsumption (134) to check if available archetypes are still valid with the

evolved model, i.e. to check for the consistency of the archetypes and reference models.

Conclusions | 91

The involvement of clinicians in systems creation is another of the clear advantages of using

clinical models. Most of the problems with health information systems evolution and use can

be tracked down to systems that were designed with clinical knowledge embedded into the

system underlying information model (e.g. deciding what parts are recorded in a given clinical

process). The use of clinical models allows for the separation of clinical knowledge from the

structure of the system. Using archetypes eases the communication between clinicians and

technical staff. They also allow for a better requirements capture, as clinicians themselves put

their requirements in the archetypes, avoiding miscommunication problems.

One of the advantages of archetypes is that they provide a way of linking clinical models with

clinical terminologies and vocabularies. This allows the clinical models to be clearly and

unambiguously described. Archetyped data can also be easily included in the system, as the

meaning and semantics are well known.

Multilinguality is one of key advantages of using archetypes on these standards. In fact, the

advantages are clear for each standard we have studied. In the case of FHIR, there is no explicit

support for multi-language representation in resources (139). FHIR-based archetypes can be

used to translate FHIR Resources to other languages without the need of creating profiles to

extend the resources. This is similar to the use case of MedXML MML. In MML, the need of

translations was already pointed out, as a modification of the original schemas was proposed

to give support to Chinese language (71). This arguably could be done by translating our

developed MML archetypes. When dealing with HL7 CDA, an implementation guide is typically

released for each language, which is harder to maintain and use. Having multilingual source

archetypes would allow the generation of reference materials such as implementation guides

for a given language automatically. Archetype terminology bindings also provide their own

mechanism to support multilinguality by looking up translations in a terminology server.

Another key advantages of using archetypes are the knowledge reuse, the ability to lock down

modelling optionality and vocabularies, the ability to generate derived reference materials

from the archetypes (such as Schematron, sample instances, sample formularies, and

implementation guides), the use of AQL(39) for data query, and even the transformation to

OWL to run SPARQL queries (61,140).

In particular, defining archetypes for non-dual model standards also allows us the mapping of

existing systems and standards from and to dual model standards like ISO13606 or openEHR.

This allows us to seamless include existing archetype systems into the workflow of current

92 | Conclusions

standards and vice versa. Archetypes can also be mapped from legacy data sources in order to

generate valid data for current systems. This methodology has been tested for other non-dual

model standards such as HL7 CDA (141) and CDISC ODM (142).

In addition to that, dual model approach allows the use of modelling methodologies for the

creation of clinical models in any given standard. These modelling methodologies are

independent of the chosen standard and put the reuse of validated clinical models as a key

phase of the process (46).

There are also a few disadvantages when using archetypes with non-dual models. In general,

narrative parts (as the ones available in HL7 CDA or HL7 FHIR) are difficult to handle in model

transformation (143). This is still true in the case of archetypes. In addition to that, each

standard usually has already defined a workflow which would need to be adjusted to also use

archetypes, which is not always possible.

One of the biggest drawbacks of using archetypes in non-dual model standards is that some

models have business concepts with low variability and thus using archetypes on them has

very little added value (e.g. ASTM CCR model, some HL7 FHIR resources, or even ISO13606

current demographic model). Even in this case, using archetypes provide added value such as

formally supporting multilinguality, knowledge reuse, and terminology bindings.

The advantages of a joint use of archetypes with non-dual model standards outweigh the

disadvantages. Creating archetypes for these standards allows us to reuse all the tools and

methodologies developed for dual model standards, and using archetypes for currently used

reference models such as HL7 CDA, HL7 FHIR, or MedXML MML will help to the rapid adoption

of both the original standard and the dual model approach.

Introduction | 93

Chapter 3.

Migration of Health Information Systems – Data perspective

3.1. Introduction

Health care is a sector where the need of sharing information is the norm rather than the

exception. However, the health data of one patient is usually scattered among the different

health facilities where they have been attended. As a consequence, it becomes increasingly

important to combine and communicate seamlessly all the distributed information with

minimal additional support or intervention from end users. Due to the special sensitivity of

health data and the wide range of ethical and legal constraints, health data communication

must be done in a meaningful way, avoiding all possibility of misunderstanding or

misinterpretation. This crucially depends on the standardization of the EHR architecture.

This chapter deals with one of the main problems when adopting EHR-related standards: how

to standardize existing data. In our scenario, this involves transforming EHR content into data

structure compliant with reference models and archetypes. We face a problem known in the

literature as the data exchange (translation or transformation) problem (4). This problem is a

difficult one, since it deals with differences and mismatches between heterogeneous data

formats and models. In the EHR scenario this problem is even more complex. On one side, we

have the legacy data that conform to a particular schema and with local semantics. On the

other side, we have EHR architectures and archetypes that have been defined without any

consideration regarding the internal architecture or database design of EHR systems. Our

objective is to create an instance of the target schema (archetype) taking data structured

under the source schema (legacy EHR). For this purpose, we require an explicit representation

94 | Data Model

of how the source schema and target schema are related to each other. These explicit

representations are called (schema) mappings (5,6).

The effort required to create and manage mappings is considerable since it involves writing

and managing complex data transformations programs. A simple approach is to write intricate

custom and non-reusable software in a general purpose language to perform the required

transformations. A more elaborated alternative is to use a “specify-generate” approach where

high-level declarative assertions are used to specify the relationship between the source and

target schemas. The assertions are then compiled automatically into executable scripts (such

as SQL/XQuery). This approach makes it possible to separate the design of the relationship

between schemas from its implementation.

In this chapter, we describe a declarative approach to specify mappings and from them to

generate automatically data transformation scripts expressed in XQuery that may be used to

integrate and communicate EHR systems. Our solution is based on the large body of research

on data exchange. The existing formalisms has been studied and adapted to cope with the

special requirements of archetypes.

We will also explain how this approach has been implemented in the LinkEHR platform to

support the mapping of archetypes based on any reference model. Our main requirements on

the target instances are that they shall be compliant with the target standard, be non-

redundant and contain all the available source information (144,145). Furthermore, we will

study how to incorporate expressive mappings that: a) not only cope with value couplings but

also with structural mappings b) take into account the wide range of constraints that can be

specified in archetypes.

Different parts of this chapter have previously published in two papers in the Journal of

Biomedical Informatics: “Using the ResearchEHR platform to facilitate the practical application

of the EHR standards”1 and “Interoperability of clinical decision-support systems and electronic

health records using archetypes: a case study in clinical trial eligibility”2.

3.2. Data Model

We need first to introduce the data model that is used to represent the source and target

schemas in our mapping framework. The source schemas may be either a XML Schema or an

1
 Available at http://www.sciencedirect.com/science/article/pii/S1532046411001924

2
 Available at http://www.sciencedirect.com/science/article/pii/S1532046413000701

Data Model | 95

archetype expressed in ADL whereas the target schema is an archetype expressed in ADL.

Thus, the data model shall be capable of representing both formalisms.

A data model is a collection of concepts that can be used to describe a data schema, i.e. the

data types, relationships, and constraints that should apply on the data. Since archetypes

(ADL) impose a hierarchical structure to the EHR we have chosen the nested relational (NR)

model (146). Furthermore, the NR model is the base of the existing mapping formalisms for

hierarchical data transformation. Therefore, its use will allows us to apply the existing

formalisms and methodologies to archetypes.

The NR model generalizes the relational model where tuples and relations are modeled as

records and set of records respectively. In the NR model, a non-atomic element (either records

or set of records) can be nested inside another element to build complex hierarchies as those

defined by archetypes. The proposed data model is similar to the data model described in

(147) but it has been adapted to deal with archetype data definition capabilities.

The set of atomic data types of our model are those supported by ADL archetypes, namely:

string, integer, real, date, time, date and time, duration and Boolean. Non-atomic types are

record types of the form Rcd [𝑎1
(𝑒1:𝑓1)

: 𝜏1, … , 𝑎𝑛
(𝑒𝑛:𝑓𝑛)

: 𝜏𝑛], set types of the form

SetOf [𝜏1
(𝑙1:𝑢1)

… 𝜏𝑛
(𝑙𝑛:𝑢𝑛)]

(𝑙𝜏:𝑢𝜏)
 and choice types of the form ChoiceOf[𝑎1: 𝜏1 … 𝑎𝑛: 𝜏𝑛]

where:

1. 𝜏 represents either an atomic, set, or record type

2. 𝑛 ≥ 1, 𝑒𝑖 ∈ {0,1}, 𝑒𝑓 ∈ {0,1} and 𝑒𝑖 ≤ 𝑒𝑓

3. li is a natural number, ui is a natural number or and li ui

4. ∑ 𝑙𝑖 ≤ 𝑢𝜏
𝑛
𝑖=1 and ∑ 𝑢𝑖 ≤ 𝑙𝜏

𝑛
𝑖=1

The symbols 𝑎1, … , 𝑎𝑛are called label or attributes.

Record values of type Rcd [𝑎1
(𝑒1:𝑓1)

: 𝜏1, … , 𝑎𝑛
(𝑒𝑛:𝑓𝑛)

: 𝜏𝑛] are ordered tuples of attribute-value

pairs: [𝑎1 = 𝑣1, … , 𝑎𝑛 = 𝑣𝑛] where 𝑣1, … , 𝑣𝑛 must be of types 𝜏1, … , 𝜏𝑛 respectively. In record

types (𝑒1: 𝑓1) represents the existence constraints, for instance (1:1) means the attribute is

mandatory.

Set values of type SetOf [𝜏1
(𝑙1:𝑢1)

… 𝜏𝑚
(𝑙𝑚:𝑢𝑚)]

(𝑙𝜏:𝑢𝜏)
 are set of values of one of the types

𝜏1, … , 𝜏𝑛. In set types, (𝑙𝜏: 𝑢𝜏) represents the cardinality of the corresponding attribute

96 | Data Model

whereas (𝑙𝑖: 𝑢𝑖) represents the occurrences constraints (how many times an instance of a

given type can occur).

Choice values of type ChoiceOf[𝑎1: 𝜏1 … 𝑎𝑛: 𝜏𝑛] are an attribute-value pair 𝑎𝑖 = 𝑣𝑖 where 𝑣𝑖

must be of type 𝜏𝑖. Note that the ChoiceOf type models alternatives of attributes a feature of

XML Schema that is not supported by archetypes. However, archetypes support alternatives of

types which are modeled by set types with upper cardinality equal to 1 in our formalism. For

instance, the following type definition models an alternative of two types QUANTITY[at0005]

and QUANTITY[at0006]:

𝑡𝑦𝑝𝑒𝑉𝑎𝑙𝑢𝑒 ∶≔ 𝑆𝑒𝑡𝑂𝑓[𝑄𝑈𝐴𝑁𝑇𝐼𝑇𝑌𝑎𝑡0005 𝑄𝑈𝐴𝑁𝑇𝐼𝑇𝑌𝑎𝑡0006](1:1)

For simplicity of presentation, we will assume strict alternation of set/Choice and records

types in a schema and default values in ADL 1.4 for existence, cardinality and occurrences.

Table 4 contains the representation of several archetypes constraints using our data model.

Note that we use SetOf to model the content of attributes (both mono-valued and multi-

valued).

In Figure 26, we show a simple ADL excerpt that may be represented as:

𝐻𝐼𝑆𝑇𝑂𝑅𝑌 ∷= 𝑅𝑐𝑑[𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐: 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒: 𝑡𝑦𝑝𝑒𝑉𝑎𝑙𝑢𝑒 𝑒𝑣𝑒𝑛𝑡𝑠: 𝑡𝑦𝑝𝑒𝐸𝑣𝑒𝑛𝑡]

𝑡𝑦𝑝𝑒𝑉𝑎𝑙𝑢𝑒 ∶≔ 𝑆𝑒𝑡𝑂𝑓[𝑄𝑈𝐴𝑁𝑇𝐼𝑇𝑌𝑎𝑡0005 𝑄𝑈𝐴𝑁𝑇𝐼𝑇𝑌𝑎𝑡0006](1:1)

𝑄𝑈𝐴𝑁𝑇𝐼𝑇𝑌𝑎𝑡0005 ∶≔ 𝑅𝑐𝑑[𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒: 𝑖𝑛𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦: 𝑠𝑡𝑟𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠: 𝑠𝑡𝑟𝑖𝑛𝑔]

𝑄𝑈𝐴𝑁𝑇𝐼𝑇𝑌𝑎𝑡0006 ∶≔ 𝑅𝑐𝑑[𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒: 𝑖𝑛𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦: 𝑠𝑡𝑟𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠: 𝑠𝑡𝑟𝑖𝑛𝑔]

𝑡𝑦𝑝𝑒𝐸𝑣𝑒𝑛𝑡 ∷= 𝑆𝑒𝑡𝑂𝑓[𝐸𝑣𝑒𝑛𝑡0002(0:1)𝐸𝑣𝑒𝑛𝑡0003(1:2)𝐸𝑣𝑒𝑛𝑡0004(0:∞)]
(0:∞)

Data Model | 97

FIGURE 26 ADL EXCERPT

Archetype constraint Representation in NR model

Mandatory primitive attribute attr 𝑎𝑡𝑡𝑟(1:1): 𝑎𝑡𝑜𝑚𝑖𝑐 𝑡𝑦𝑝𝑒

Opcional primitive attribute atrr 𝑎𝑡𝑡𝑟(0:1): 𝑎𝑡𝑜𝑚𝑖𝑐 𝑡𝑦𝑝𝑒

Class with attributes attr1....attrn Rcd [𝑎𝑡𝑡𝑟1
(𝑒1:𝑓1)

: 𝜏1, … , 𝑎𝑡𝑡𝑟𝑛
(𝑒𝑛:𝑓𝑛)

: 𝜏𝑛]

Mandatory mono-valued attribute attr. In case

m=1, we model an alternative.
attr∷=SetOf [𝜏1

(𝑙1:𝑢1)
… 𝜏𝑚

(𝑙𝑚:𝑢𝑚)]
(1:1)

Optional mono-valued attribute attr. In case

m=1, we model an alternative.
attr∷=SetOf [𝜏1

(𝑙1:𝑢1)
… 𝜏𝑚

(𝑙𝑚:𝑢𝑚)]
(0:1)

Multi-valued attribute attr with cardinality =

{cl..cu}
attr∷=SetOf [𝜏1

(𝑙1:𝑢1)
… 𝜏𝑛

(𝑙𝑛:𝑢𝑛)]
(𝑐𝑙:𝑐𝑢)

Class 𝜏𝑖with occurrences={𝑙𝑖: 𝑢𝑖} 𝜏𝑖
(𝑙𝑖:𝑢𝑖)

TABLE 4 REPRESENTATION OF ARCHETYPE CONSTRAINTS IN THE PROPOSED DATA MODEL

98 | Source and target schemas

3.3. Source and target schemas

3.3.1. XML Schemas

Type definitions in XML Schema can be reused in multiple places what may hinder the

mapping definition process. It becomes necessary to generate the exhaustive nested schema

for instance data by “unfolding” all the types at the place they are used in order to univocally

reference source data element. For this purpose, we have developed an algorithm that

analyses the schema and generates a visual tree that contains all possible paths from the root

to the atomic elements/attributes that may appear in instance XML documents. Figure 27

depicts an example, where the asterisk denotes a SetOf type. As a result, users do not have to

deal with the complexity of XML Schema when mapping archetypes. Note that for each XML

Schema the user must indicate the entity (element/attribute) that contains the patient

identifier. This information is vital in order not to mix data of multiple patients in a single EHR

extract.

The resulting mapping tool, LinkEHR, can also handle source relational schemas, as long as

they are converted in a canonical way into a W3C XML Schema. The tool extracts an existing

relational schema from a relational database using JDBC drivers. The imported schemas, stored

in an internal format, are used as the basis for GUI management of such source schemas. Once

a schema has been imported, users can select the portion of the database (tables and

relationships) that is relevant for a particular archetype. Only those tables that are related

directly (by means of a foreign key) or indirectly (by means of a foreign key path) to the table

that contains the patient identifier can be used in a mapping specification. Based on the

relationships between the root table and other tables, the tool generates a hierarchical view

expressed as a W3C XML Schema. Since the root entity corresponds to the table that contains

the patient identifier, all the patient data is nested inside this root node. The user selection

may contain cycles; the tool assists the users in their elimination before generating the

hierarchical view.

Source and target schemas | 99

FIGURE 27 EXAMPLE OF TREE VIEW OF AN XML SCHEMA

3.3.2. Archetypes

In ADL only the constrained entities (classes and attributes) of the reference model need to

appear in the archetype definition. It is supposed that the constraints imposed by the

underlying reference model are implicit constraints. The same occurs when specializing an

archetype, all the constraints in the parent archetype are implicit constraints of its

specializations. Note, that this is consistent with the object-oriented paradigm, where

attributes and methods of a superclass are automatically inherited by all its subclasses. The

main advantage of this rule is that archetype definitions in ADL are kept simple. For instance, if

all the classes and attributes of the reference model were to be included, archetypes would

have many constraints (hundreds in EN13606) making the archetype definition unnecessarily

complex.

This rule poses a difficulty when an archetype is to be mapped to a data source. In many cases

it would be necessary to map an unconstrained attribute, hence not present in the archetype.

Note that our final objective is to generate XML documents compliant with the reference

model. Thus, when an archetype needs to be mapped it becomes necessary to complete the

archetype definition with the reference model. We have implemented a merge function that

takes an archetype and the underlying reference model as inputs and outputs what we call a

comprehensive archetype. A comprehensive archetype includes all the explicit constraints

(those defined by the archetype to be mapped) and all the implicit ones (those defined by the

reference model) that data instances must satisfy. Figure 28 shows an example of

comprehensive archetype. On the left-hand side the original CEN/ISO 13606 archetype is

depicted, whereas the corresponding comprehensive archetype is shown on the right-hand

side. As it can be observed the comprehensive archetype contains all the constraints of the

100 | Mapping Language

original archetype as well as all the unconstrained entities from the reference model such as

act_status and archetype_id.

FIGURE 28 BLOOD PRESSURE ARCHETYPE AND AN EXCERPT OF THE COMPREHENSIVE ARCHETYPE SIDE BY

SIDE

3.4. Mapping Language

The mapping language is based on the tgds (tuple-generating-dependencies) (4) proposed in

(78,147). They are expressive enough to represent, in a declarative way, many of the schema

mappings of interest (147). The tgds basically define a value correspondence, i.e. how to

compute a value for an atomic attribute of the target schema (archetype) by using a set of

atomic elements from the data source. In our setting a value correspondence is defined by a

set of pairs, consisting of a transformation function and a filter. The latter contains the

conditions that source data must satisfy to be used in the transformation function. All the

atomic values, either from source or target data, eventually devolve to instances of the

primitive types of the archetype model, namely String, Integer, Real, String, Date, Time,

DateTime, Period and Boolean. Filters expression must yield a Boolean value whereas

transformation functions must produce a value compatible with the type of the target

attribute. Value correspondences allow us to hide much of the structural complexity of

archetypes and reference model. Users do not need to specify the logical relations between

the entities of the source and target schemas. It is only necessary to specify the navigation

path of the attributes used in the mapping.

Mapping Language | 101

The simplest kind of transformation function is the identity function which copies a single

source value into a target value. But quite often it is necessary to specify arbitrary complex

functions which transform a set of source values into a target value. To achieve this, a wide

range of transformation functions are supported. They can be divided into nine categories as

described in Table 5. The example in Figure 29 illustrates a simple value correspondence for

transforming gender codes. It transforms the local gender code in the path /patient/gender of

an XML EHR fragment (source data) into a normalized code to be stored by somewhere within

an archetype (target data). Note that the order is relevant and only one mapping function is

applied. Therefore, this correspondence should be interpreted as:

If (/patient/gender=’M’ OR /patient/gender=’m’) then 0

Else if (/patient/gender=’W’ OR /patient/gender=’w’) then 1

Else if (/patient/gender=0 OR /patient/gender=1) then /patient/gender

Else 9

FIGURE 29 EXAMPLE OF VALUE CORRESPONDENCE TRANSFORMING THE GENDER CODES FROM A XML

SOURCE.

Category Description Examples Sample mapping

Set value Enable to set a fixed value

to an archetype atomic

attribute. The value can be

either a constant or an

expression involving several

constants.

 /source/value

Type conversion Set of functions for the

conversion from one type to

another.

toString, toInteger,

toFloat

toString(58.7)

Mathematical Standard mathematical

functions for numerical

calculation using several

+, div, mod, round,

ceiling

(10 + 25) mod 30

102 | Mapping Language

source values.

Logical Main logical functions

including comparison

operators.

AND, OR, TRUE,

FALSE, <, >, <>,

NOT

/source/value < 30

String Main operator for handling

string values.

concat, matches,

contains,

substring_before

matches(“abc”,”[a-z]+”)

Date and time Transformation of source

values into values

conforming to the

international standard ISO

8601 for date and time

representation or the

extraction of portions of date

or time expressions.

toISODate,

toISOTime, day-

From-DateTime,

minutes-From-Time

toISODate(/source/date,”yyyy-MM-dd”)

Archetype

vocabulary

Allow the access to

archetype metadata such as

entity identification or the

text and description

attached to archetype

entities

Code, id,

description, text

description(“at0010”)

Terminology Functions that allow

terminology abstraction by

reasoning over the acyclic

taxonomic (is-a) hierarchy of

SNOMED CT,

In, ascendents,

descendents, union,

intersection

in(/diagnostic/code, @descendents

("128462008")))

Grouping Functions applied to a

source path representing

pointing to a set. Takes into

consideration this set of

paths to perform operations

using all set values.

Count, max, min,

average

max(/source/value)

TABLE 5 FUNCTIONS SUPPORTED BY LINKEHR MAPPING

Mapping Language | 103

FIGURE 30 AN EXAMPLE OF VALUE CORRESPONDENCE

Value correspondences can be translated into source-to-target tgds. For instance the value

correspondence depicted graphically in Figure 30 translates to the following tgd:

∀ ℎ ∈ 𝑠𝑜𝑢𝑟𝑐𝑒. ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛, 𝑎 ∈ ℎ. 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑟 | 𝑎. 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = "𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛" →

∃ℎ′ ∈ 𝑇𝑎𝑟𝑔𝑒𝑡. ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙, 𝑝 ∈ ℎ′. 𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 | 𝑝. 𝑛𝑎𝑚𝑒 = 𝑎. 𝑛𝑎𝑚𝑒

Note that the above tgd is essentially a GLAV mapping, where the left hand side of the

implication is a query over the source (𝑄𝑆) and the right hand side is a query over the target

(𝑄𝑡). The expression specifies a containment assertion: for each record value returned by 𝑄𝑆

there must exist a corresponding record value in 𝑄𝑡. We also point out that the above tgd (and

any tgd) does not capture the existence (the attribute “name” is mandatory in the target),

cardinality and occurrence constraints. We enforce these constraints in the generated XQuery.

One of the main problems of using value correspondences is that they must be combined in

order to generate a complete mapping. Value correspondences lack expressive power and

some mapping details must be worked out (146). The main problem is related to the grouping

semantics. Grouping semantics describes when instances should be grouped and nested into a

SetOf instance. Consider Figure 31 where a very simple, but yet illustrative, mapping scenario

is depicted. The target schema is nested on an extra level (procedures set). The value

correspondences require all patientId and SurgicalProcedure that can be found in the source to

104 | Mapping Language

be transferred to the target. However, the intended semantics dictates that all the different

SurgicalProcedure shall be grouped together, for the same value of patientId. This behavior

cannot be captured by a tdg which is stated at the level of flat record instances. As a result we

will obtain a different target instance for every different combination of

(patientID,SurgicalProcedure) in the source and every target instance will have just one nested

procedure. This output satisfies the tgds but it is not the correct one.

FIGURE 31 GROUPING MISMATCH BETWEEN SOURCE AND TARGET SCHEMAS

Our default grouping semantics is heavily inspired on CLIO (81). It is based on the Partition

Normal Form (PNF), i.e. we impose that the resulting target instances will satisfy the PNF (148).

This forces that in any target nested relation there cannot exist two distinct records that

coincide on all the atomic elements, in other words the non-multivalued attributes are the key

of nested relations. In Figure 32 the nested relations A and C are in PNF unlike B. As can

observed C contains the same information as B, in fact it is the normalized version of (b).

Mapping Language | 105

FIGURE 32 NESTED RELATIONS EXAMPLES, (A) AND (C) ARE IN PNF AND (B) IS NOT

This default grouping strategy has been proven suitable for most use cases. Since much of

context information (such dates or authors) is mono-valued, therefore clinical data that share

this context are grouped together. To achieve PNF on the target instances, we use skolem

functions. A skolem function returns a different value (identifier) for each combination of

parameters. A new instance will be only created if another instance with the same identifier

does not exist.

Our skolemization algorithm is based on a schema that associates to each type definition in the

comprehensive archetype a subset of the atomic attributes of the comprehensive archetype.

This subset controls the creation of fresh values in the target instances: they are the

parameters of the corresponding skolem function. The algorithm is as follows:

Input: a comprehensive archetype A and a set of correspondences of values S

Output: skolem function parameters for each set type node in A controlling the creation of

instances of archetype complex types

Propagate each atomic attribute of the comprehensive archetype to the complex type nodes,

in any of the following two ways:

1. Propagate up the atomic attributes with a correspondence of value until a multivalued

attribute is found.

106 | Customization of grouping semantics

2. Propagate down the atomic attributes with a correspondence of value.

The propagation rules are applied recursively until no rules can be applied.

The propagation process ends in a unique configuration in which each type node in the

comprehensive archetype has a list of the atomic attributes.

Figure 33 shows the result of the application of the previous algorithm to the example in

Figure 31. Note that the skolem function of the type “procedures” has two parameters

“/patientId” and “/procedures[at0001]/procedure”. Therefore, a different instance of

SurgicalProcedure will be created for each combination of patientId and procedure values.

Note that the archetype attribute /patientId is mapped to source path

/source/surgicalActivity/patientId and the attribute /procedures[at0001]/procedure to

/source/surgicalActivity/surgicalProcedure as shown in Figure 31.

FIGURE 33 ANNOTATED ARCHETYPE WITH SKOLEM PARAMETERS

Figure 34 depicts a more complex example of the application of the previous algorithm. For

instance, a fresh value in the set type Physician will be created for every combination of

patientId, hospital name, physician name and physician category.

3.5. Customization of grouping semantics

The semantic of the data transformation is defined in two parts. First it is defined in the set of

value correspondences and then in the default (implicit) grouping semantics. The nested

nature of archetypes makes the grouping semantics a key aspect. An important limitation is

that the default grouping semantic is not specified declaratively. Therefore, it cannot be

customized when it is not the desired semantics. In other to address this issue we propose two

different mechanisms to allow users to control the structural transformation.

3.5.1. Modification of skolem functions

Skolem functions can be modified in order to change the default grouping semantics, although

in a quite limited way. As can be observed, the set of parameters of outer types are included in

Customization of grouping semantics | 107

the set of inner nested types. This is important since it assures that the grouping context is

propagated downwards. In Figure 34 the skolem function of the archetype root (Target) has a

single parameter (/patientId). Intuitively this means that all the nested data is about a single

patient. The nested type Hospital has an extra parameter (/hospital[hospitalat]/name).

Therefore, the instances of this type will contain information for a patient in a particular

hospital. The same rationale is applied to the remaining types. This containment relationship

must be maintained in order to assure data coherence. For instance, If “/patientId” is removed

from the parameter set of the Hospital type, it will be possible to have data about different

patients in a single Hospital instance. In order to prevent this situation, the deletion of a

parameter is propagated to the remaining parameter sets.

FIGURE 34 PARAMETER OF THE SKOLEM FUNCTION TO CONTROL THE CREATION OF VALUES IN SET TYPES

3.5.2. Object Builders

As stated before default grouping semantic is not always adequate. To illustrate this, consider

the mapping example shown in Figure 35. The source schema is a nested schema describing

departments with their set of employees and project. The target schema is an archetype which

is a slight variation of the source schema. It also groups together employees and projects per

department but the department name is not included. The value correspondences relate

source project and employee names with target project and employee names. The

skolemization algorithms yields the empty set for the archetype root (Target) and

Dept[at0001]. In this case and since there is not information available about the generation of

108 | Customization of grouping semantics

Dept instances a single instance is generated. The single Dept instance encloses all the project

and employees, not preserving the containment and sibling relationships in the source. What

we need is to control the creation of target instances, in such a way that a new Dept instance

is constructed for each source department node.

FIGURE 35 SIMPLE MAPPING SCENARIO

A natural extension to the mapping language is the inclusion of assertions that connect

complex schema elements (instead of atomic elements as value correspondences). This type of

assertion are called object builders (78). An object builder has:

a) A set of incoming source complex elements that can be tagged with variable names.

b) One or none outgoing CComplexObject element of the target archetype. The upper

occurrences of the CComplexObject must be greater than 1. The archetype root is an

exception to this rule.

c) A filter on the source data.

d) One or none incoming object builder.

e) Zero to many outgoing object builders.

Intuitively, an object builder defines an iterator on the source nodes they are drawn from (a),

in each iteration, a new target element (b) is generated for each combination of source values

that satisfy the filter (c). It is possible to define hierarchies of builders where parent builders

propagate its context to its children. Figure 36 illustrates an example of mapping scenario with

three object builders. This mapping solves the problem discussed previously. The topmost

builder generates target Dept elements and its context is propagated to the remaining

XQuery generation | 109

builders. One of them generates Empl elements while the other generates proj elements

considering the current topmost mapping into Dept. Furthermore, only those employees with

a salary (source attribute ‘sal’) greater than 10000 are selected.

FIGURE 36 SIMPLE MAPPING SCENARIO WITH OBJECT BUILDERS

3.6. XQuery generation

3.6.1. Mapping covers

When two or more complex types in ADL archetypes appear nested inside an attribute which is

not a container (i.e. for which there is no cardinality constraint) are taken to be alternative

constraints, only one of which needs to be matched by the data. In Figure 26,

QUANTITY[at0005] and QUANTITY[at0006] are alternatives for the value attribute, leading to

the result that only one instance of one of both types can appear in runtime. This useful

feature provides an additional challenge in the generation of transformation programs as only

one of the alternatives can be present in target data. If more than one alternative has a

complete mapping (i.e. there are enough value correspondences to generate a valid instance)

then we have different ways of producing valid target instances. We overcome this problem by

generating what we call cover archetypes. A cover archetype of archetype A is generated by

removing all but one of the child type constraints of single-valued attributes, i.e. by selecting

one of the alternatives and removing the rest. If we take as example the archetype in Figure 26

two different covers can be generated, one where only QUANTITY[at0005] remains and other

where QUANTITY[at0006] remains. We note that this might lead to an explosion in the number

of covers if many alternatives are defined in the archetype. To alleviate this problem, we

110 | XQuery generation

automatically remove those alternatives that have not enough value correspondences to

create valid target instances.

3.6.2. Representation of domain constraints

Comprehensive archetypes may contain constraints on primitive types that may come either

from the reference model or the archetype itself. This kind of constraint is used to limit the set

of possible values that an atomic attribute can hold. For instance, Integers can be constrained

by using a list of integer values or an interval whereas Strings can be constrained in two ways:

by using a list of fixed strings or a regular expression. Since they are applied to atomic

attributes, these constraints must be taken into account in value correspondences.

Fixed values are the most restricted type of domain constraint. We transform automatically

fixed values into value correspondences, whose filter is the true value (it is always applied) and

the transformation function is a set value function which assigns the fixed value to the

corresponding atomic attribute. Therefore, the fixed value will always appear in instance data.

Constraints on primitive types that do not impose a single fixed value are treated in a different

way. User needs to specify value correspondence since there are multiple possible values. The

domain constraints are enforced in the generated XQuery. We will discuss our generation of

XQuery scripts in the following section. Table 6 shows two examples of how constraints are

automatically compiled into XQuery transformation script. First row contains an example of a

constraint that imposes the fixed value 1 to the attribute number. Whereas the second row

describe how a range constraint on an integer attribute is compiled into the XQuery

transformation script. In the example, the value is contained in the path

/data/measurements/value of the input XML document.

Archetype constraint Value correspondence XQuery extract

number matches {1} If true then 1
(automatically generated)

Return
<number> 1 </number>

number matches

{|1..10|}

If true
then /data/measurements/value
(specified by user)

For $val in
/data/measurements/value
Where $val≥0 and $val≤10
Return
<number> {data($val)}</number>

TABLE 6 EXAMPLES OF HOW CONSTRAINTS ARE PROCESSED

XQuery generation | 111

3.6.3. Translation of mappings into XQuery

It is important to note that XQuery is a possibility among others for implementing the mapping

specification. Since the proposed mapping language is declarative the mapping specification

can be “compiled” in other languages such as XSLT. We chose XQuery due to its rich set of

features that allow many different types of operations on XML documents such as selecting

information based on specific criteria, filtering out unwanted information, sorting, grouping

and aggregating data, performing arithmetic calculation on number and dates, manipulating

string and transforming and restructuring XML data into another structure.

Taking into account the abstract mapping specification, the archetype constraints and the

source schema an XQuery script is generated for each cover archetype. The resulting

transformation script takes as input an instance of the source EHR data and generates a XML

document that is compliant both with the archetype and the underlying reference model. The

template of such XQuery programs is shown in Figure 37.

For each object node (specialization of a reference model class) in the archetype a nested

XQuery FLWOR expression (149) is produced which contains:

a) An uppermost LET clause that contains all the combinations of a flat view of all the

data to be structured according the target archetype object node. This LET clause

includes a set of FOR clauses that iterates over the relevant source elements(for

instance incoming nodes of object builders), a set of LET clauses calculates target

values using values correspondences, a WHERE clause that includes the correlation

with parent object node and domain constrains on single-valued attributes, and a

RETURN clause that projects on the calculated target values;

b) A FOR clause ($combo) that iterates over the distinct values of the flat view of target

values. Note that this flat view contains the values of the mono-valuated attributes, i.e.

the parameters of skolem functions.

c) A WHERE clause that captures the cardinality and occurrence constraints

d) A RETURN clause that outputs the XML elements for the object node and contains

any other nested mapping.

112 | XQuery generation

FIGURE 37 XQUERY TEMPLATE FOR BUILDING ARCHETYPE INSTANCES FROM SOURCE DATA

Figure 38 shows the complete XQuery that is generated for the object node

Admission[Admissionat] in Figure 34. To begin, the values of the skolem parameters are

obtained (lines 3, 4 and 5). Note that in this case we bind one variable to each parameter by a

for clause since the value correspondences just copy the values in the source. Otherwise we

should use a let clause to calculate the target values. The where clause (line 6) contains the

correlation with the parameters (patientId and hospital name) of the upper object node

(Hospital). The return clause at line 7 outputs the flat view of the atomic attributes (skolem

parameters in this case), the code in line 8 deletes duplicates and the code in line 9 enforces

the occurrence constraint (at least one Admission instance must be exist). Finally, data is

structured according to the target schema; this is done in line 10.

Let $context

for $var_for in …..

let $var_let (: value transformation :)

where (: domain constraints, correlation with parent object node :)

 return

 <combo node_ID="…">

 (: flat view of data, it uses $var_for and $var_let’s :)

 </combo>

 for $combo in ((ibimeFunction:distinct-deep($context)))

 (: elimination of duplicates :)

 where (: occurrence and cardinality constraints :)

 return (: nesting: tagging and structuring + submappings:)

LinkEHR mapping module | 113

1 let $aux_4 :=
2 for $source_LinkEHRVar_0 in (/source)
3 for $hospital_LinkEHRVar_0 in ($source_LinkEHRVar_0/admission/hospital)
4 for $admission_LinkEHRVar_0 in (/source/admission)
5 for $idadmission_LinkEHRVar_0 in

 ibimeFunction:if-empty($admission_LinkEHRVar_0/idadmission,xs:QName("idadmission")))
6 where $source_LinkEHRVar_0/patID=$patID_LinkEHRVar_0 and

 $admission_LinkEHRVar_0/hospital=$hospital_LinkEHRVar_0 and
 $combo_1/hospitalHospitalat__name=$hospital_LinkEHRVar_0

7

 return
 <combo archetype_ID="Example-ExampleRM-Target.Target.v1::Admissionat">

<hospitalHospitalat__admissionAdmissionat__idAdmission>
{data($idadmission_LinkEHRVar_0)}

</hospitalHospitalat__admissionAdmissionat__idAdmission>
</combo>

8 for $combo_2 in ((ibimeFunction:distinct-deep($aux_4)))
9 where count(ibimeFunction:distinct-deep($aux_4))>=1

10 return
<admission xsi:type="Admission" archetype_ID="Example-ExampleRM-Target.Target.v1::Admissionat">

 <idAdmission>
 {data($combo_2/hospitalHospitalat__admissionAdmissionat__idAdmission)}
 </idAdmission>
 </admission>

FIGURE 38 EXAMPLE OF GENERATED XQUERY

3.7. LinkEHR mapping module

LinkEHR can be considered as a high-level schema mapping tool. In LinkEHR, users are

responsible of defining an abstract non-procedural mapping specification. This abstract

representation is specified using a set of value correspondences between the atomic attributes

of archetypes and source schemas that can be complemented with object builders. The

abstract specification is then compiled into an executable transformation script expressed in

XQuery. Figure 39 shows the overall architecture of LinkEHR mapping module.

In order to ease the definition of mappings, a completely new mapping perspective was added

to the tool. This perspective allows the edition of complex attribute mappings without the

need of typing text. This perspective also adds a set of specific visual interfaces for defining

attribute and object mappings, and a data source manager to import, edit, and delete data

sources in the tool.

Data source manager allows the import and use of relational data sources, XML schemas, and

archetypes as source schemas for the transformation. In case of sources based on XML

Schema, users must provide the location of the schema or schemas, an alias, the path to the

patient identifier, and the root entity from all the entities available in the XML schema. For

archetype import as a source, no extra parameter must be configured, as archetypes from

supported reference models already have all the needed information in the documentation file

114 | LinkEHR mapping module

(see chapter 2). In the case of relational data sources, they are included as LinkEHR Integration

Engine source definition files and do not need any additional configuration parameter.

Archetype

Reference
Model

XQuery script
Source

XML
instance

Output
XML

instance

Mapping source
(XML Schema or

archetype)
Mapping

Comprehensive
ArchetypeMerge

Defines

Defines

Autogenerates Instance of

Generates

Instance of

Instance of

FIGURE 39 MAPPING AND XQUERY GENERATION

For the specification of the transformation target, the starting point is the archetype being

edited in LinkEHR editor. Once the user has finished specializing the constraints that apply to a

particular use case, which is typically called 'templating' or 'creating a template' in dual model

architectures, the editor can be switched to mapping perspective and mapping process can

begin.

This mapping perspective completes the archetype with the underlying reference model,

transforming current archetype into a comprehensive archetype (see Figure 28 example)

containing both the constraints coming from the archetype and the ones coming from the

reference model. This perspective also freezes the archetype preventing their defined

constraints to be edited, although they can still be reviewed. As comprehensive archetypes

become very big and complex we discarded in the use of a graphical approach (e.g. showing

both source and target structures, lines for the mappings, and boxes for the operators). In

mapping editing perspective, only the comprehensive archetype is presented to the user and

specific attribute mappings and object mappings are shown when the user selects a suitable

node in the comprehensive archetype, mimicking the original LinkEHR editor perspective.

3.7.1. Mapping management

As mentioned above, comprehensive archetype can become big and complex. To alleviate this,

mapping perspective was provided with a set of mechanisms and visual clues to ease mapping

definition.

LinkEHR mapping module | 115

Filters

To reduce the quantity of information presented to the user, a filtering mechanism was

included. This filtering mechanism is defined for both label filters, i.e. filter nodes by their label

or node identifier, and source filters, i.e. filter nodes by certain conditions on the mapping

source, such as mappings to constant values, mappings to a given source, nodes containing

object mappings, or nodes with multiple mappings (mapping alternative). Both filters can be

used simultaneously to filter by two different criteria.

Coloring

As archetypes define complex structures with combinations of mandatory and optional objects

and attributes, it could be difficult to know when there are enough defined mappings to define

a correct data instance (i.e. enough mappings to generate a transformation program that

complies with both the archetype and the reference model). In order to ease mapping and

transformation process visual metaphors were introduced into the archetype visual tree. Three

different colors are used to provide feedback to the user: Green, meaning that the branch has

all the needed mappings to generate a correct instance, red, meaning that the branch is

missing a needed mapping to be able to generate a correct instance, and black, meaning that

this branch is optional and has no mapping assigned. Once the user defines a mapping, the

archetype tree is tested to be instantiable (i.e. able to generate a correct instance), and

updates the entire tree with the corresponding colors. Once the root node of the archetype

has been green colored (i.e. at least a data instance containing the root node can be

generated) the process to generate the transformation program can be started. There are also

visual metaphors to tell if an object contains object mappings. In this case the font from the

node is put into bold format if the object has an object mapping attached to it.

Entity cloning

Archetypes allow the definition of multiple occurrences to objects (e.g. to define a set or list of

medications, allergies, phones, or surnames). In mapping perspective, objects with multiple

occurrences can be cloned in order to define mappings to other paths from the same source.

Already defined mappings are also copied and can be modified later on. Object clones created

this way allow the definition of different object builders for the original object and the cloned

one.

116 | LinkEHR mapping module

3.7.2. Mapping reuse

Mapping propagation

When the comprehensive archetype is generated all the context attributes from the

underlying model are included. More often than not, the mappings of the same context

attribute in two different classes from the same type is exactly the same (e.g. 'name',

'archetype_id', and 'synthesised' attributes from ENTRY class share the same kinds of

mappings). An option was added to automatically copy all the mappings of a given type to all

the entities of the same type in the comprehensive archetype.

Attribute mapping copy

In addition to mapping propagation, an option to reuse individual attribute mappings was

introduced, which we called "favorite mappings". These mappings have aliases in order to

easily identify them. These mappings are kept from one mapping session to another. Available

favorite mapping list only shows the mappings that come from the selected data source.

Mappings that can be evaluated to a constant are always included in this list.

Archetype slot mapping reuse

Dual model allows reusing archetypes externally defined with the slot mechanism. These

archetypes can already have mappings defined. The transformation program generation

process allows reusing these mappings when the slot in the parent archetype is solved, as long

as the mappings from the archetype and the included slot use the same data source. The

process takes as input a set of schema mappings between the same source and target schema

and returns a schema mapping that correlates them, recalculating the target paths of the

archetype without the need of intervention by the user. The archetypes included in an

archetype slot can also contain slots to other archetypes. In this case, the process composes

and correlates the schemas recursively to generate valid mapping paths. To control how the

data will be generated, object mappings can also be applied to the slot object.

3.7.3. Value correspondence editing

Value correspondences can be assigned to every leaf node in the archetype (i.e. primitive

types). As seen in Figure 40, value correspondence mapping editor presents the user with a

filter/function table. This figure defines the same mapping as Figure 29. The edition of both the

filters and functions is made in an expression editor, which contains all the aforementioned

transformation functions (see Table 5), a view of the selected data source, and the list of fixed

value constraints from the archetype if applicable. Every transformation function contains an

LinkEHR mapping module | 117

associated help that explains the function behavior and provides examples of its use.

Expression can be typed or created by pressing the desired function button. Figure 41 shows

the edition of a mapping condition. When a mapping expression is accepted or validated, the

editor checks that the expression is both syntactically valid and that it is correct for the source

and target schemas, e.g. that defined source paths exist in the source, that conditions return a

boolean, and that the function returns the correct type for the archetype primitive object.

FIGURE 40 EDITING A MAPPING FUNCTION TABLE

FIGURE 41 EXPRESSION MAPPING EDITOR

118 | LinkEHR mapping module

3.7.4. Object builder editing

Object mapping editor allows editing the set of incoming source nodes (represented as

variables), the filter (which uses an editor similar to the one used in attribute mappings), and

the incoming object builder, which is selected from the ones already defined. The main

difference between the editor used in value correspondence editing and the object builder

filter editing is that condition paths are always dependent of the variables and return type is

always boolean. Figure 42 shows an object builder form with an incoming source node '$pat',

and a condition based on it. Parent available object builders are presented in 'Available

parents' combo and can be selected to specify the object builder hierarchy.

FIGURE 42 OBJECT BUILDER EDITING FORM

3.7.5. Generation of XQuery and Testing

Once there are enough mappings to generate at least a correct instance of the root node of

the archetype (and consequently the node is painted green) we can generate the

transformation program. A set of covers is generated from the value mappings. Users are

presented with that list of covers in order to found the valid combinations. Each cover is

identified by the set of the alternatives it contains. The covers can be previewed in the same

dialog. Figure 43 shows two different covers for an archetype, with a preview to the actual

archetype and their mappings.

LinkEHR mapping module | 119

FIGURE 43 EXPORT INTEGRATION ARCHETYPE DIALOG SHOWING A SET OF COVERS FOR AN ARCHETYPE

Mapping testing

Archetype mappings can become complex, which in the end means that errors can easily

occur. A set of validation and testing mechanisms were included in the mapping perspective to

ensure mapping quality.

Value testing

Value correspondences can be long and complicated on their own, e.g. invoking several

operations on a row or the output being dependent of a set of source values. Thus, obtaining

the desired result or testing all edge cases can become difficult. Creators need an immediate

connection to what they are creating (150), in this case, they need to be able to check the

mapping expression as they are building it. To ease this, a functionality to test the mapping

expressions in real time was included in the tool. The process provides the user with a field for

every path to the source. Values are evaluated as the user types and the result is previewed. In

case an error is thrown (e.g. division by zero, or trying to make an illegal type cast) the user is

informed so the mapping expression can be fixed.

Transformation validation

For the users, reviewing the output transformation program in XQuery can be complicated. In

order to test if the program works as intended a way of testing the XQuery with a given XML

was added to the export dialog. This process executes the transformation program and returns

a set of XML output instances. For selected reference models (namely ISO13606, openEHR,

and HL7 CDA) an additional HTML view is shown. These HTML view is the result of applying an

XSLT transformation to each one of the XML outputs. This XSLT files usually are provided by

120 | Validation

the standards bodies themselves. Figure 44 shows an example of a HL7 CDA transformation

program test in HTML.

FIGURE 44 HL7 CDA TRANSFORMATION PROGRAM TEST OUTPUT

Branch validation

In order to generate the transformation program, all the mandatory parts must have an

assigned value correspondence. In some cases, this means that the only way of testing a

transformation program is defining all mappings contained in mandatory paths first (i.e.

mappings where the archetype path has all required types and mandatory attributes).

However, if the transformation is not correct, it can become hard to fix it as all branches have

their own mapping. In order to provide an easy way to test this, the ability to test a single

branch of the archetype was included. This process prunes the comprehensive archetype of all

the branches except the selected one and generates the transformation program. The XQuery

generated this way can also be tested in order to see which part of the mapping needs to be

changed.

Cover mapping validation

In addition to all the above validation processes, the export dialog also includes an automatic

mapping validation. This process checks the cover archetypes and returns the errors found in

them. It detects errors such as wrong hierarchy of object builders, wrong return types for a

given function, or having mappings from more than a single data source in a single cover.

3.8. Validation

Validation | 121

3.8.1. Technical Evaluation

The first validation addresses the general mapping capabilities of LinkEHR. For this purpose, we

used the STBenchmark, a benchmark for evaluating mapping systems (151)1 At the time of

writing this document STBenchmark describes 17 basic mapping scenarios that are commonly

used in practice and therefore should be supported by mapping systems. This means that the

user should obtain from the mapping specification the desired executable code (in our case an

XQuery script) without having to modify the executable code. Each scenario contains a source

and target schema expressed as an XML Schema, an instance of the source schema, and a

visual and textual description of the scenario.

In our validation, we represented the target schemas as archetypes and source schemas as

common XML data sources. We tried all the mapping scenarios whose target schema could be

modeled as an archetype. Two scenarios could not be tested: self-join and order. The former

due to the presence of foreign keys in the target schema since foreign keys are not supported

by archetypes. The latter could not be tested due to limitations in the expressive power of

LinkEHR mapping language. In the order scenario only a subset of the source records must be

copied to the target, e.g. the 5 first records. The other 15 scenarios could be tested

successfully. The results were positive; the expected target instances were generated.

Although our XQuery scripts were more verbose, mainly due to our grouping semantics that

requires creating a flat view of data that is then nested according to the archetype structure.

3.8.2. Evaluation in real settings

The evaluation study was to use the platform in two real setting. The first one was a project for

medicines reconciliation between primary health and hospital care. The second one

demonstrates how Clinical Decision Support Systems (CDSS) and EHR interoperability could be

improved by the use of archetypes and mappings.

The medicines reconciliation project was carried out in the Hospital of Fuenlabrada (Spain).

The objective of this project was to obtain and evaluate a complete medication list of patients

regardless of where the medication came from (primary or hospital care). Obtaining an up-to

date and complete medication will avoid errors such as medication omission, duplication,

dossing errors, and drug interactions. For the solution, a set of ISO13606 patient summary and

medication archetypes were developed using the specifications from epSOS European Project

(68) and openEHR Clinical Knowledge Manager (CKM) (16) archetypes. Archetypes were

1
 Benchmark is available at http://db.disi.unitn.eu/pages/stbenchmark/.

122 | Validation

validated by a clinical team from the hospital composed by the Medical Director, the head of

Pharmacy Service and other clinical and technical staff. Archetypes were mapped to the

different data sources by using LinkEHR. The mapping was used for the generation of XQuery

scripts that were deployed in both hospital and primary care that is used to generate

normalized data from legacy systems.

Hospital EHR was upgraded to include a new tab containing the patient summary. With this

new view, clinicians have access to the full medication list including data from both the

hospital and primary care. Figure 45 shows the organization of the platform. The system is

currently being used by over 430 physicians and 600 nurses and has access to the patient

summary of more than 230,000 patients. This project was awarded with the Spanish Ministry

of Health quality award, in transparency category.

LinkEHR Platform

DATA NORMALIZATION

DATA INTEGRATION

NOMENCLATOR
DIGITALIS

INDEPENDENT
WEB VIEWER

HOSPITAL EHR
(SELENE)

Web Service

Primary care

OMI-AP

Hospital de Fuenlabrada

FARMATOOLS SELENE

FIGURE 45 PLATFORM FOR THE MEDICATION RECONCILIATION PROJECT

For the second project, archetypes and mappings at different levels of abstraction were used

in order to obtain if a patient was eligible for a given cancer clinical trial. In our use case, a

patient will not be eligible for the clinical trial if it has a severe comorbidity, has (in his history

or family history) any colorectal adenoma, colorectal cancer, colorectal polyposis, any

inflammatory bowel disease, any lynch syndrome, or has had any total colectomy.

Validation | 123

For this project, the archetype ‘openEHR-EHR-EVALUATION.problem.v1’ from CKM was

specialized to include information about the presence or absence of a problem and an

associated score for the comorbidity (called ‘openEHR-EHR-EVALUATION.problem-DS.v1’). This

specialized archetype was then specialized into a series of archetypes for each one of the

identified concepts that were detected on our case study dealing with the determination of

patient eligibility in a clinical trial. Mappings are created from a given level to the levels below

him, i.e. level 1 archetypes are mapped to the health summary archetype, level 2 archetypes

are mapped to level 1 archetypes and level 3 archetypes are mapped to level 2 and 1

archetypes. Figure 46 shows the dependences for the mappings of each level.

FIGURE 46 GRAPHICAL REPRESENTATION OF ARCHETYPE MAPPING DEPENDENCIES

This project makes heavy use of advanced mapping functions, such as grouping or terminology

(in this use case, based in SNOMED-CT). Table 7 shows an example of a mapping in a readable

from to know if a patient has a metastatic tumor (SNOMED-CT code 128462008). Also, some

mappings take into account more than one archetype as a source (e.g. a metastatic solid

tumor is present if both a metastatic tumor and a solid tumor are present). This example can

be seen in Table 8.

124 | Conclusions

Condition Mapping

(@count(summary/problems/problem, @in(summary/problems/problem/code,

@descendents(“128462008”)))>0

TRUE

TRUE FALSE

TABLE 7 ATTRIBUTE MAPPING FOR THE PRESENCE/ABSENCE OF A METASTATIC TUMOR IN A LEVEL 1

ARCHETYPE

Condition Mapping

(Evaluation_problem_DS_metastatic_tumor_v1/structure/present = TRUE) AND

(Evaluation_problem_DS_solid_tumor_v1/structure/present = TRUE)

TRUE

TRUE FALSE

TABLE 8 ATTRIBUTE MAPPING FOR THE PRESENCE/ABSENCE OF A METASTATIC SOLID TUMOR FROM TWO

DIFFERENT ARCHETYPES

Output values of this process can then be used directly in the different steps of the clinical

guideline.

3.9. Conclusions

This chapter deals with one of the main problems when adopting dual model EHR standards:

how to transform existing clinical data to meet the data structures and constraints defined by

reference models and archetypes. We face a problem known in the literature as the data

exchange. Data exchange at the schema level requires an explicit representation of how the

source schema (legacy data schema/archetype) and target schema (archetype) are related to

each other; these explicit representations are called mappings. The effort required to create

and manage such data transformations is considerable. This is even more complex in the case

of archetypes, since they generally define highly nested complex data structures and model

generic concepts without any regard to the internal structure of the EHR systems. Our solution

separates the specification of the relationships between the schemas from the

implementation of the actual transformation. The standardization process comprises four

main tasks: i) generation of an XML view of the local EHRs; ii) mapping specification between

source and target schemas; iii) compilation of the mapping specification into an executable

program; and iv) execution of the resulting program over the source instances.

Conclusions | 125

We have presented a set of integrated innovative tools to help current systems to achieve

semantic interoperability by normalizing data based on clear semantically-rich clinical models.

We provide methods and tools that help in automating and managing the problem of EHR data

normalization. We have provided methodologies to define mappings between relational, XML,

and archetypes. We deal with the complex constraints in the target such as cardinality,

occurrences, and existence. We have also provided a wide range of transformation functions,

including grouping and terminology functions.

We have also presented the mapping capabilities of the LinkEHR platform. The mapping

module of LinkEHR is a visual programming environment for defining and managing declarative

mappings and from them generating and validating the transformation scripts. This approach

brings about one important advantage for users since the declarative specification is

independent of the logical design of archetypes and data sources. Therefore, users do not have

to specify the grouping semantics (when entities shall be nested inside other entities) or how

attributes involved in a mapping are related to one another, for instance by means of parent-

child relationships (in the case of XML schemas). In contrast the generation of a correct

transformation scripts becomes a more difficult problem since the associations among the

attributes must be discovered in an automatic way and grouping, i.e. the creation and nesting

elements of the target, must be inferred from simple value correspondences. Although the

interpretation of the mapping specification must cover all correspondences there usually are

several alternatives, the deduction of semantics indented by the user is generally a matter of

heuristics. For this reason, apart from value correspondences, LinkEHR provides more complex

mappings constructs that allow users to customize the grouping semantics. Nevertheless,

default semantics for inferring grouping is provided. It is based on the clinical context of data,

i.e. data that share the same clinical context are grouped together.

LinkEHR allows the utilization of archetypes for upgrading already deployed systems in order

to make them compatible with an EHR standard. The overall objective is to maintain in-

production systems and applications without any changes while providing a mean for

publication of clinical information in the form of standardized EHR extracts, hiding technical

details, location, and heterogeneity of data repositories. Therefore, archetypes could be used

as a semantic layer over the underlying databases associating them with domain specific

concepts and therefore upgrading the semantics of the data they hold.

In the two described validation scenarios the mapping capabilities of LinkEHR were enough to

generate normalized extracts with the intended semantics in a short period of time. As a

126 | Conclusions

performance indicator, we considered the response time for serving a patient summary

request. Transformations of source data for a single patient into an ISO/CEN EN13606 XML

documents using the generated XQuery script took a fraction of a second, which was found to

be insignificant with respect to the data-retrieving time. These scenarios also show that the

use of these tools needs the involvement of the clinical users, which are the ones who can

precisely describe their requirements. Archetypes are a suitable mechanism to improve

communication between clinicians and technical staff. In our experience, even with dedicated

tools the involvement of clinicians it is still difficult, probably due to the fact that clinical users

still need to be aware of the dual model architecture and their implications. In order to involve

clinicians, additional actions must be taken: On the one hand, editors can be improved not

only to hide the complexity of the underlying models, but also provide mechanisms with

higher level of abstraction (such as step by step wizards) to allow users to use the tool right

away. On the other hand, in order to bring the archetypes to their original systems, archetypes

must be derived into materials and artifacts, such as forms, excel spreadsheets, or mindmaps,

that can be understood by clinicians and the technical staff already present in the

organizations.

Once the information and models are correctly represented, new research areas open up.

Areas such as application generation, semantic querying based on archetypes, clinical

research, or advanced Clinical Decision Support Systems (CDSS) would benefit from having big

quantities of normalized data based on formal models with clear semantics.

Conclusions | 127

128 | Conclusions

Chapter 4.

Archetypes for generation, validation, and use in EHR Systems

Introduction | 129

An updated version of this chapter was published as:

Diego Boscá Tomás; Jose Alberto Maldonado Segura; David Moner Cano; Montserrat

Robles Viejo. Automatic generation of computable implementation guides from clinical

information models. Journal of Biomedical Informatics. 55 - 1, pp. 143 - 152. 2015 DOI:

10.1016/j.jbi.2015.04.002

Abstract

Clinical information models are increasingly used to describe the contents of Electronic Health

Records. Implementation guides are a common specification mechanism used to define such

models. They contain, among other reference materials, all the constraints and rules that

clinical information must obey. However, these implementation guides typically are human-

readable, and thus cannot be processed by computers. As a consequence, they must be

reinterpreted and transformed manually into an executable language such as Schematron or

Object Constraint Language (OCL). This task can be difficult and error prone due to the big gap

between both representations. The challenge is to develop a methodology for the specification

of implementation guides in such a way that humans can read and understand easily and at

the same time can be processed by computers. In this paper, we propose and describe a novel

methodology that uses archetypes as basis for generation of implementation guides. We use

archetypes to generate formal rules expressed in Natural Rule Language (NRL) and other

reference materials usually included in implementation guides such as sample XML instances.

We also generate Schematron rules from NRL rules to be used for the validation of data

instances. We have implemented these methods in LinkEHR, an archetype editing platform,

and exemplify our approach by generating NRL rules and implementation guides from EN ISO

13606, openEHR, and HL7 CDA archetypes.

Keywords: Archetype, Natural Rule Language, Implementation Guide, Data Validation, Clinical

Information Model.

4.1. Introduction

Capturing requirements in the clinical domain is a difficult task (152). Traditional requirements

capture methodologies fail due to the continuous evolution of clinical knowledge, the different

vocabularies of clinicians and implementers, and the implicit definition of domain concepts (3).

Typically clinicians rely on non-formal approaches (such as Excel or Word files) to document

130 | Introduction

their domain requirements. This kind of approach is not suitable for cooperative and long term

use as it is prone to errors and version control problems. In order to solve these problems

several methodologies have been proposed.

Templates are the mechanism used by HL7 CDA (153) for the specification of clinical

information models. In spite of not being computable, CDA Implementation guides are the

most common way for the specification of such templates in an understandable way. They

usually include an introductory section describing purpose, scope, intended audience,

conventions used in the guide, and separated sections for each kind of CDA components

(mainly document, section, and clinical statement templates). Each one of these sections

contains all the relevant templates for a given clinical model. For each template, a template

identifier, a description, a set of constraints over the attributes of a given CDA component, and

an XML example are provided. The implementation guide is usually completed with

terminological value sets and bibliographic references. Implementation Guides play a central

role in HL7 world. As an example, they have been adopted for the definition of the

Consolidated CDA (C-CDA) Templates (154), which are being used to help providers to meet

the applicable Meaningful Use objectives (155). However, the interpretation of the constraints

in an implementation guide may differ from person to person (156), therefore limiting

semantic interoperability.

Another type of resource for the specification of clinical domain requirements are archetypes.

Archetypes are a key part of the dual model approach on which the EN ISO 13606 norm (12)

and openEHR specification (14) are based. The dual model approach is a recent paradigm for

the specification of EHR Architectures (EHRA). It distinguishes two models: the Reference

Model (RM) and archetype model. In a broad sense, a reference model is an abstract

representation of the generic and stable entities and relationships of a given domain. It is

designed to provide a basis for the development of more concrete models and

implementations. In the domain of Electronic Health Records (EHR), a reference model defines

the framework for describing all EHR entries or clinical statements, the way how they are

aggregated, and the context information needed to meet ethical, legal and provenance

requirements. The generality of the reference model is completed by the particularity of

archetypes. Archetypes are detailed and domain-specific definitions of clinical concepts in the

form of structured and constrained combinations of the entities of the reference model.

Archetypes may logically include other archetypes, and can be specialized to better fit the

specific requirements of each use case. They can be bound to clinical terminologies and

Introduction | 131

ontologies to semantically describe the elements of information. What is important here is

that for each domain concept, a definition can be developed in terms of constraints on the

reference model entities. Each domain concept is also given an archetype node identifier

(following the ‘atNNNN’ pattern where N stands for a digit) and a textual label. ADL (Archetype

Definition Language) (29) is a formal language developed by openEHR for expressing

archetypes that has been adopted by EN ISO 13606 standard. Even if archetypes are based on

a formal language (ADL) understandable by computers, users still need specific tools and

knowledge of the underlying reference model to define and understand the clinical models

completely.

To allow users unfamiliar with the archetype methodology or a particular reference model to

understand clinical models without using specific tools, a formal document similar to the

implementation guides is required. What we need is formal document that has at least the

same expressiveness than an archetype and at the same time is easily understandable even by

non-technical users.

Our proposal, as described in Figure 47, aims to achieve the automatic generation of

computable implementation guides from archetypes. Our objectives are twofold:

1. To generate implementation guides that can be used in the development of computer

systems by IT technical staff. For this purpose, we use archetype texts, descriptions,

and terminology bindings. We also include other automatically generated materials

such as sample XML instances and validators.

2. To document archetypes or templates in order to ease their understanding by health

professionals without the need of specific tools. For this purpose, we transform the

potentially complex archetype constraints into English-like rules. This is achieved by

the use of Natural Rules Language (NRL) (100). We also include additional reference

materials in the implementation guide, such as a mindmaps, value sets and

bibliographic references.

132 | Background and related work

Defines/Reuses Based on

Validates

Generate

Archetypes

Used byUnderstood by

Data
Instances

Health
professionals

Technical Staff

Modelling team

Implementation Guide

Natural
Rules

Language
Schematron

Mindmaps
XML

Instances

Value Sets Archetypes

FIGURE 47 – PROPOSED ARCHITECTURE FOR THE GENERATION OF IMPLEMENTATION GUIDES FROM

ARCHETYPES

We will exemplify our approach by generating implementation guides from an EN ISO 13606

archetype, openEHR archetypes from the Clinical Knowledge Manager (CKM) (157) and HL7

CDA archetypes from the Genetic Testing Report.

4.2. Background and related work

There exists a wide range of formal rule languages for the definition of constraints on data.

One of the most known is the Object Constraint Language (OCL) (30), an OMG (89) standard

for the definition of rules over UML models (95). There are also languages for defining Horn-

like rules for the Ontology Web Language (OWL) (96), such as Semantic Web Rule Language

(SWRL) (97) or RuleML (98). The widespread use of rules, formal or not, has caused the

creation of proposals, like the W3C Rule Interchange Format (RIF) (99), for the exchange of

rules between different rules languages. The main disadvantage with most rule languages is

that rules are not easily understood by non-technical staff. To solve this problem, some rule

languages with natural language-like syntax have been proposed. Two main examples are

Natural Rule Language (100) and Attempto Controlled English (101). Each one of them

addresses the problem of natural language rules representation from a different perspective.

Background and related work | 133

Natural Rule Language (NRL) is a formal language for specifying constraints and rules in a

human readable way. The main feature of this language is the capacity of defining constraints

in a way that facilitates their understanding by non-technical people. Moreover, NRL also

defines an extension to deal with actions, such as the creation or deletion of objects, or setting

values when certain conditions are met. Although we will not use this extension, it could be

used to complete the rules with actions, for instance to calculate derived values. To the

authors’ knowledge there is only one prior use of NRL in the clinical domain, concretely for the

representation of clinical practice guidelines and its evaluation in a real world case (102). Rules

drawn from a hypertension guideline were translated into NRL in order to be validated by

clinicians and subsequently they were transformed into OCL and finally used in the system. The

NRL rules were generated by hand which can be a time-consuming task.

Attempto Controlled English (ACE) (101) is a controlled natural language, which means that it

is a subset of Standard English with a restricted syntax. ACE can be translated into other

languages, such as RuleML, OWL, or SWRL. The meaning of words in ACE is not predefined and

must be defined in an existing ontology or in additional ACE sentences. Although ACE has been

in use for more than ten years, to the authors’ knowledge it only has been used once applied

to the clinical domain (103), specifically for clinical guidelines readability. In this work, rules

from a pediatric clinical guideline were expressed in ACE, although they were not applied to

real data.

There also exist formal languages for the validation of XML documents such as Schematron,

DTD or XML Schema. Schematron (104) is a rule-based validation language for making

assertions about patterns in XML trees that is an ISO norm since 2006. Since it is a path based

validation language, Schematron can express constraints that neither XML Schema nor DTD

can express. Each rule can be associated with a descriptive text of the type of error or warning

encountered. Schematron plays a key role on current CDA implementations as Schematron

rules are typically attached to implementation guides alongside sample XML instances. It has

been proved that Schematron rules can be directly generated from NRL rules (105) as well as

from archetypes (106). Advanced features of archetype methodology, such as reuse of internal

or external types can be also reproduced with Schematron.

The generation of reference materials from formal model definitions is also one of the goals of

other initiatives such as Open Health Tools (OHT) Model-Driven Health Tools (MDHT) Project

(94). MDHT is an open source effort for the promotion of shared artifacts between related

standards and the creation of modelling tools for their seamless integration. The project is

134 | Material and Methods

supported by the US Veteran’s Health Administration (VHA), IBM, and the US Office of the

National Coordinator (ONC). Their original focus was to develop HL7v3 specifications via UML,

but they later moved to work in the specification of HL7 CDA Implementation Guides. They

have provided models and reference implementations for several HL7 C-CDA Implementation

Guides. They are planning to support other standards besides HL7 CDA, for instance by using

UML for the specification of archetypes. A UML profile (Archetype Modeling Language, AML)

has been proposed to OMG to deal with the specific requirements of the archetype modeling.

MDHT is also working in the generation of Schematron for XML instance validation.

4.3. Material and Methods

4.3.1. LinkEHR platform

LinkEHR® (158) is software tool for the integration and normalization of health data (134).

LinkEHR employs archetypes for both the semantic description of the clinical concepts to be

shared and the transformation of existing clinical information into standardized EHR extracts.

It comprises two main modules that allow (i) the editing of archetypes based on different RMs

(several RMs have been tested successfully: EN ISO 13606, openEHR, HL7 CDA, CDISC ODM and

ASTM CCR); and (ii) the specification of declarative mappings between archetypes and data

sources, and from these mappings the automatic generation of XQuery scripts which translate

source data into archetype compliant XML documents. In our scenario, a crucial tool is the

LinkEHR archetype editor. During archetype editing, the tool provides support to ensure that

the archetype being edited is valid with respect to the reference model (and parent archetype,

if any), e.g. by showing the valid elements at any point. When the user wishes to add a new

entity to an archetype the editor displays the valid entities and the user must select one of

them. All the functionalities described in this paper have been added to LinkEHR archetype

editor.

4.3.2. Generation of implementation guides from archetypes

In order to generate a complete implementation guide we produce five different reference

materials from archetypes: Natural language rules, mindmap, XML instances, Schematron

rules, and value set tables. Although typical implementation guides are designed to be printed,

they can be improved with interactive elements such as sample data entry forms or mindmaps

that can be rendered on a computer screen. Reference materials used for the creation of the

implementation guide depend on its final purpose and use, e.g. the inclusion of mindmaps may

be very useful in an interactive implementation guide, but it may be not as useful in a printed

one.

Material and Methods | 135

As stated before, an implementation guide contains an introductory section, separated

sections for document, section, and clinical statements templates, and a final section with the

value sets used in the guide. All these sections are generated by combining the archetype

definitions with the generated reference materials.

Introductory section is generated from the archetype metadata, which includes the purpose,

keywords, intended use, references, etc. In archetypes, the entities of the clinical model can be

attached with a text label, a description, and a terminology binding. All this information is

organized into their own subsection of the implementation guide. The text label of each entity

becomes the template name of that entity and the description and terminology binding

become the template description. Archetype entities also include information about their

occurrences, cardinality and existence that are used to control what will be generated. For

instance, a mandatory entity must appear in XML instances and must be checked to exist with

a specific rule in Schematron, but could be hided in a mindmap or form if it is not considered

interesting to the final user. The last section of implementation guides are value set tables.

These tables specify a set of codes drawn from one or more code systems. As archetypes

already contain this kind of information in the constraint binding part of the ontology section,

we generate all the tables directly from there. This table is built by querying a terminology

server to obtain all codes from a given subset and all the codes descriptions. Finally, we also

generate a Table of Contents to easily navigate the implementation guide.

4.3.3. Generation of NRL rules

In the archetype methodology, archetype entities are created by constraining a reference

model type (3), concretely by constraining the values, structure, and/or terminology bindings.

New entities include implicitly all the constraints imposed by the reference model type that

have not been explicitly narrowed in the archetype. This supposition is consistent with the

object-oriented paradigm, where attributes and methods of a superclass are automatically

inherited by all its subclasses. If we were to create rules directly over the reference model

types, they would not be easily understandable because rules would refer to a given type and

a node identifier (e.g. “at least one ENTRY where archetype_id=’at0000’ exists”). This is the

reason why we create variables in NRL using the textual labels attached to the archetype

entities as variable names. When no label is defined (e.g. a data type) a label is derived from

their parent entity. If there is a label clash, the entity identifier is also used for the generation

of the readable name. The expression that defines the variable is built using entities identifiers,

i.e. the archetype node identifier if we are using an archetype-based standard or the

136 | Material and Methods

templateId if using HL7 CDA as reference model. As an example, the above rule is rewritten as

“at least one BloodPressure exists” which uses “BloodPressure” variable defined as

“BloodPressure is the ENTRY where archetype_id=’at0000’”. We exemplify this approach with

the generation of NRL rules from a blood pressure EN ISO 13606 archetype shown in Figure 48.

In Figure 49 we show how variables for each one of the reference model types are declared

and reused in other rules. The readable label is used as a variable that will be applied when

node identifier is found in data.

FIGURE 48 BLOOD PRESSURE EN ISO 13606 SAMPLE ARCHETYPE

FIGURE 49 DECLARATION OF VARIABLES IN NRL TO ALLOW THE GENERATION OF READABLE RULES

Material and Methods | 137

FIGURE 50 SAMPLE RULE FOR OCCURRENCES CONSTRAINT USING THE READABLE VARIABLES

Once we have created a variable for each archetype entity we are ready to create rules for the

archetype constraints. We create rules for each one of the constraints defined on the

archetype, such as entity occurrences (as shown in Figure 50), attributes existence and

cardinality (shown in Figure 51), and on data values (shown in Figure 52). Each rule has a

readable name to identify it. We can also generate comments to help even more with the

understanding of the rules. Comments are generated from entity constraints. Any part of a

rule line starting by ‘--‘ is considered a comment. For instance, in Figure 51 the rule

“Cardinality of ‘parts’ attribute from BloodPressureMeasurement” has an additional comment

stating the cardinality with an array notation, which can be easier to understand for people

used to work with archetypes.

FIGURE 51 SAMPLE RULES FOR CHECKING CARDINALITY AND EXISTENCE OF AN ATTRIBUTE

138 | Material and Methods

FIGURE 52 SAMPLE RULES FOR CHECKING DIFFERENT KINDS OF DATA VALUE CONSTRAINTS

The set of automatically generated rules can be extended with additional user-defined natural

language rules, for instance to express constraints that are not supported by ADL, e.g.

constraints such as “Mean blood pressure is calculated by adding to the systolic pressure two

times the diastolic pressure and dividing the result by three” that involves more than one

entity from the archetype.

4.3.4. XML instances Generation

For the generation of XML instances we use LinkEHR mapping capabilities in order to generate

valid XML sample instances compliant with the archetype and the underlying reference model.

As stated before, in archetypes only entities (classes and attributes) of the reference model

which are actually constrained need to appear in the archetype definition. It is supposed that

the constraints defined in the underlying reference model are implicit constraints for the

derived archetypes. As a consequence, it is necessary to complete (“merge”) the archetype

with the constraints defined in the underlying reference model in order to generate complete

XML data instances. A constant mapping, i.e. a mapping function that assigns a constant value,

is automatically generated for each leaf node of this "merged" archetype. Using this constant

mapping, we generate a XQuery transformation program on the fly whose output will be an

XML instance compliant with the original archetype and the underlying reference model (134).

The instance generation process can be tuned by several parameters, such as the inclusion of

optional attributes, selection of alternatives, or the contents and ranges of primitive types. The

aforementioned parameters can be set in LinkEHR Editor as shown in Figure 53.

Material and Methods | 139

FIGURE 53 OPTIONS FOR XML INSTANCE GENERATION IN LINKEHR

4.3.5. Schematron Generation

As stated before, NRL rules can be translated to Schematron for the validation of XML

instances with respect to archetypes and reference models. Schematron rules are based on

path conditions that specify where the assertion must be tested. The process traverses the

entities in the archetype recursively and generates a rule for each entity with an assertion for

each one of the tests (namely tests for occurrences, cardinality, existence, and values). In

Figure 54 we show the equivalent Schematron rule to the NRL rule described in Figure 50. As it

can be observed, Schematron rules are by far less understandable than NRL rules.

In addition to the Schematron rules generated from the explicit archetype constraints, we also

generate optional Schematron rules for checking the implicit constraints, i.e. the constraints

coming from the reference model. This is necessary for instance to assure that an archetype

type does not contain attributes that are not allowed by the reference model or that the type

of an unconstrained entity is one of the types allowed by the reference model.

140 | Results

FIGURE 54 SCHEMATRON RULE FOR BLOOD PRESSURE MEASUREMENT OCCURRENCES

4.3.6. Generation of Additional Reference Materials

In addition to the aforementioned reference materials, we generate other materials that have

not been traditionally included in implementation guides such as mindmaps or sample input

forms. These artefacts are interactive, and thus they lose part of their potential usefulness in

printed implementation guides. However they can be really useful when the implementation

guide is displayed on a computer screen. Mindmaps mimic the archetype structure but omit

non-clinical parts to make it easier for clinicians to understand the clinical meaning. Forms are

generated in a similar way, but their transformation from archetypes is reference model

dependent. Currently we are only able to generate sample forms for EN ISO 13606 archetypes.

4.4. Results

We have implemented our solution in several software modules in Java, each one producing a

different type of reference material from an archetype expressed in ADL. Both mindmap and

Schematron outputs are XML representations that are generated from the archetype

definition. NRL rules are also generated from the archetype following the process described

above. Sample instances are produced by generating a constant mapping and creating from it

an XQuery whose output is the data instance. Finally, Sample forms are created by applying an

XSLT transformation to the XML representation of archetypes and are displayed in a web

browser.

In addition to the previous modules, another module was implemented to combine all the

output into a complete implementation guide expressed in HTML. Mindmap interactive

visualization is included in the HTML page using an Adobe Flash plugin. We have defined

different CSS style sheets to render on-screen and print views. Printed views can also be

generated as PDF files to ease their distribution. Regarding terminology bindings, we employed

Results | 141

Indizen IT Server (159) to retrieve the concept text descriptions and get all codes in a

terminology subsets.

The load and generation time, i.e. the time to read and parse the archetype and the time to

generate the implementation guide respectively, closely reflects the archetype size in terms of

number of constraints as would be expected. On simple archetype, the generation time is

almost negligible while for large archetypes it can take as much as several seconds. In any case,

the time is negligible when compared with the time required to generate an implementation

guide manually.

All the developed modules have been included in the LinkEHR platform in order to provide

different export formats for archetypes. Each module used both a set of configuration

parameters and documentation about the reference model being to control the generation

process and output appearance of the corresponding material (XML instances, Schematron

rules, NRL rules, mindmaps, or sample input forms). In the case of implementation guides, this

set of parameters is predefined in such a way that the output resembles a real implementation

guide.

To exemplify the generation of implementation guides, we show two different examples. In

the first one we automatically generated implementation guides from a subset of CKM

archetypes created in (57) with improved terminology bindings. In the second example, we

generated an implementation guide from an HL7 CDA archetype (160). The complete examples

can be found in the supplementary material.

The first example exemplifies all the generated subsections included into a section of the

implementation guide: Description, terminology binding (looking up the terminology code in

an external terminology), a set of readable rules, an XML sample instance, and the Schematron

validation for this specific entity. Figure 55 shows an excerpt the output implementation guide

subsection for Heart rate entity from the Apgar score archetype. This contains the archetype

entity text as section header, a description of the entity, their terminology binding (along with

the text obtained from the terminology server), entity constraints stated as NRL rules, an XML

example section, and a Schematron section.

142 | Results

FIGURE 55 EXCERPT OF AN AUTOMATICALLY GENERATED IMPLEMENTATION GUIDE FROM AN APGAR

SCORE OPENEHR ARCHETYPE

In the second example we employed an archetype (160) created from the Genetic Testing

Report (GTR) HL7 implementation guide (161). The HL7 CDA archetype contains all the data

constraints defined by the GTR implementation guide. Figure 56 shows and excerpt of the

original implementation guide, whereas Figure 57 shows the same excerpt represented in the

automatically generated guide.

FIGURE 56 CELLS KARYOTYPED COUNT FROM THE ORIGINAL GENETIC TESTING REPORT

IMPLEMENTATION GUIDE

Discussion | 143

FIGURE 57 EXECUTABLE RULES FROM CELLS KARYOTYPED COUNT AUTOMATICALLY GENERATED FROM

THE HL7 CDA GENETIC TESTING REPORT ARCHETYPE

The generated rules express exactly the same constraints as the original implementation

guide, but they can be executed directly over data instances. We can express rules following

two alternatives, grouping the rules by context to ease their understanding, or generating an

individual rule for each kind of constraint (occurrences, existence, cardinality, etc.) to know

exactly which constraint fails. In Figure 57 we have followed the first approach.

4.5. Discussion

In this paper, we emphasize on the usefulness of archetypes for the generation of

implementation guides and reference materials. The generated reference materials include

human readable definition of clinical models for clinicians or computable artifacts for technical

staff. For instance, NRL rules facilitate the involvement of clinicians in the definition of clinical

models, ensuring that the systems to be developed satisfy their requirements. At the same

time, and since NRL is a formal language, the rules can be used to support the implementation

of EHR systems, for instance for data validation purposes.

If we compare our approach to other initiatives dealing with the generation of derived artifacts

such as MDHT, the main difference is we employ archetypes instead of UML as the formal

approach to model clinical data structures. MDHT Project also generates implementation

guides with alternative content structure depending on the target audience, e.g. by generating

ballot documents or implementer views of an UML diagram. Our proposal aims to deal with

both target audiences by creating formal, computable human-readable implementation

144 | Discussion

guides. Another important feature of our approach is it can deal with any reference model or

EHR standard. Since it is based on archetypes it is possible to generate implementation guides

for a wide range of EHR standards. The only requirement is to be able to define archetypes

based on the information model defined by the standard. This not only includes standards that

are “archetype native” such as openEHR, EN ISO 13606, or CIMI reference model, but also non-

archetype based standards such as HL7 CDA, HL7 FHIR, CDISC ODM, openCDS VMR,

Intermountain CEML, ASTM CCR, or MedXML MML, all of them already supported by LinkEHR

archetype editor. In the case of CDA, CDA archetypes are equivalent to a template fully

compliant with the HL7 Reference Information Model (RIM). Using archetypes as a basis for

implementation guides generation may seem unfitting for the HL7 world. However, using

archetypes over HL7 CDA model has already been proved useful in real life projects (160)(141).

This approach also solves common HL7 CDA problems (162) such as extensions of the CDA

standard, namespaces changes and element sequencing

It is important to notice that archetypes are multilingual, which means that the target

Implementation Guide can be automatically generated in any language supported by the

archetype. This is also true for the archetype terminological bindings, as long as a translation

of the terminology to the target language exists. Due the fact that NRL is a controlled

grammar, it is also feasible to translate the rules to different languages, and render them in

the language of the user. We used NRL over ACE because one of our objectives was data

validation. Formal rule validation languages, such as OCL or Schematron, are easily derived

from NRL rules. The fact that NRL can be directly transformed to OCL means that we can

automatically generate implementation guides with OCL rules instead of NRL rules to mimic

current implementation guides. We used NRL instead of OCL in order to make these

implementation guides readable to non-technical staff. ACE rules could still be used for

expressing the constraints if we give priority to OWL and SWRL transformations or we want to

use some kind of ontology reasoning, as ACE terms are defined in OWL. For this use case, every

word in an ACE rule should be mapped to an ontology concept, which needs to be done, or at

least supervised, by a domain expert. This turns the automatic rule generation process into a

semiautomatic one, which is not feasible for our use case.

NRL rules can also be used alongside archetypes, as archetypes can accommodate rules to

define further constraints. NRL may be used as the rules language for the Archetype Definition

Language (ADL). For instance, advanced constraints like the ones provided by the upcoming

ADL 2.0 (such as grouping or sorting) could be expressed with NRL rules in order to increase

Conclusion | 145

the expressivity of ADL 1.4 to match up to ADL 2.0. NRL also includes an action grammar,

which can be used not only to set values in the clinical model, but also for the creation of rules

for data transformation.

One of the main disadvantages of using NRL rules is that the vocabulary in current HL7 CDA

implementation guides differs from the one used by NRL grammar. HL7 CDA implementation

guides use specific reserved words for the definition of constraints such as

“SHALL”,”SHOULD”,”MAY”, etc. If needed, NRL rules could be transformed to generate rules

using this particular vocabulary. Furthermore, taking a generic approach means that there will

be some misalignments between an HL7 implementation guide and an automatically

generated implementation guide. Misalignments are caused by the explicit generation of

constraints from the archetype. It can be argued if it is preferable to check parts of the

template (e.g. the templateId or the entity type) with explicit rules to ensure correct data

instances, even if they are normally assumed for a given data instance (e.g. in Figure 56, both

the “Observation” type and the templateId are not explicitly defined with a “SHALL” rule).

Regarding Schematron, our generation process is similar to the one described in (106) for

Schematron generation from HL7 CDA archetypes, but we are able to generate Schematron for

any EHR standard. Also, our generated Schematron solution can distinguish if a rule should be

applied over XML elements or attributes. The final advantage of our solution is that we also

provide a set of optional rules to check the implicit constraints coming from the reference

model. This allows us to define different validation scenarios for the same archetype, like

validating only archetype constraints, or archetype and reference model constraints.

Finally, we can extend this methodology to generate implementation guides from Clinical

Practice Guidelines. There are several examples of representation of Clinical Practice

Guidelines with archetypes and formal rules (163–169). Usually the information required by

the clinical guide is modeled as archetypes, and rules and pathways are normally modeled in

languages such as CLIPS, Drools, or PROforma. These rules are not human-readable, but as

demonstrated in (102), they can be also expressed in NRL. Archetypes created by these

methods can be transformed into implementation guides using our methodology, and rules

and pathways transformed into NRL and then included in the resulting implementation guide.

This transformation will make clinical practice guidelines suitable to be used directly in data

validation and eases its understanding by computers and clinical staff alike.

4.6. Conclusion

146 | Conclusion

Implementation guides are one of the most common documents for the provision of clinical

specifications for particular domain. In this paper we have shown how it is possible to generate

automatically from archetypes all the parts and reference materials that are usually included in

implementation guides. In addition to that, other interesting materials that are not usually

included such as Schematron rules, mindmaps or sample forms can also be generated for their

distribution alongside implementation guides. The quality of the output implementation guide

and derived reference materials is directly related to the quality and completeness of the

source archetype. Missing or incomplete sections of the archetype (e.g. poor or no metadata

defined, or missing terminology bindings) will cause the generation of empty or incomplete

sections in the implementation guide. The quality of the resulting implementation guide

provides a measurement of the quality of the source archetype.

The proposed methodology promotes the involvement of clinical staff in the modeling and

validation process. Any possible misinterpretation is avoided as constraints and rules

definitions can be automatically translated into formal validation rule languages that can be

applied directly in the final system.

Reuse is one of the core principles of archetype methodology. When the same archetype is

included in other archetypes we can reuse this generated implementation guides. This not only

eases their generation, but also provides coherence between the different implementation

guides that reuse the same clinical models.

The presented methodology puts the emphasis on the generation of implementation guides

that humans can read and understand easily and at the same time can be processed by

computers. This approach may promote the adoption of clinical information models in the

development of EHR systems, thus increasing the quality of clinical data and its semantic

interoperability.

Conclusion | 147

148 |

Chapter 5.

Final Conclusions and Future Work

Final conclusions | 149

5.1. Final conclusions

Semantic interoperability has always been the Holy Grail in health informatics. Sending

information that could be completely understood by the receiver is one of the biggest

challenges in health informatics. This mainly requires capturing faithfully the original meaning

of health data. The intrinsic complexity and variability of health data makes standardization

crucial to achieve high levels of semantic interoperability. Fortunately, there is a mature body

of EHR standards that cover apart from generic information models, clinical models (such as

archetypes) as mechanisms to formalize both the syntax and the semantics of-specific clinical

concepts. The principal purpose of clinical models in general and archetypes in particular is to

provide a powerful way of managing the description, creation, validation, communication and

querying of EHRs. The definition and sharing of clinical models is acknowledged as a big step

forward in reaching high levels of semantic interoperability.

It must be noted that eHealth interoperability standards are usually defined as documented

specifications that must be brought to life by system designers and implementers. This initial

implementation effort requires deep expertise, often not accessible for many organizations.

Therefore, the current challenge is not the lack of standards, but its competitive

implementation at a reasonable effort and return of investment for all the actors involved

either clinical or technological.

This thesis intends to provide methodologies and tools to facilitate the adoption of EHR

standards and archetypes as a secure mechanism to achieve higher levels of semantic

interoperability for the EHR. Concretely, the main contributions of this thesis are:

1. A set of methodologies for applying the dual model approach to non-dual EHR information

models and a set of tools for the definition of archetypes based on these EHR models. The

definition of a set of clinical models of an already deployed system allows for their formal

description. These clinical models allow taking advantage of all available archetype-based

methodologies and tools for their use in current systems.

2. A methodology for the definition of mappings between legacy systems and archetypes.

This archetype-based mapping methodology generates transformation programs to

translate data contained in these legacy or non-legacy systems into data in any other

standard or specification. The presented mapping methodology has been validated by its

use in several academic and real world projects. This methodology was implemented in

150 | Future work

LinkEHR platform. Mapping definition still needs deep knowledge of the standards and

systems involved, which we try to ease as much as possible with the presented tools.

3. A methodology for the automatic generation of a set of reference materials from

archetypes. The methodology was implemented in a set of tools that allow the automatic

generation of each reference material. These tools can be used independently or

combined to generate rich implementation guides. The creation of reference materials

allows the validation of the data and workflows in the systems and the technical validation

of requirements. Different validation scenarios make use of different sets of reference

materials to check the systems. Validating if systems follow the requirements is eased as

clinical-defined archetypes are also the ones used in by technical people in the creation of

systems. This allows for a better communication of the requirements between clinical and

technical people, as archetypes act as a common language.

The presented methodologies and tools ease the joint use of the three layers of semantic

interoperability to achieve it (reference models, clinical models, and clinical terminologies).

Assuring that the archetypes have good quality allows for the meaningful communication of

legacy health data, and will allow true technology-independent, patient centric EHR.

This will make available for analysis more patient health data than ever. These big amounts of

data need to be curated and processed for being able to get the most out of it. Data

normalization and standardization is a basic step for measuring and increasing data quality

(170). In fact, as seen in the medication conciliation use case, archetype-based normalization

can improve data coherence among different systems by agreeing in a common set of

archetypes. This is useful in any multicentre research project. Advanced data analysis greatly

benefits from knowing the semantics of data, as do clinical research, clinical guidelines, and

public health (2).

5.2. Future work

Once the barrier of integrating dual model systems with legacy health information systems has

been broken, new and interesting challenges unfold.

From the data perspective, we have detected several challenges. Variability in original sources

continuously provides new challenges for the transformation definition. New methodologies

must be researched in order to not lose any significant clinical data from legacy systems. Our

methodology assumes that all data needed for the normalization comes from a single data

source, which is not always the case. The methodology must be improved in order to support

Journal and congress contributions | 151

multiple source schemas. In addition to that, the generation and managing of mappings

requires a considerable effort. Automatic schema matching techniques can potentially be used

to detect relationships between health information standards and generate automatic

mappings between clinical information models. Tree-matching algorithms are specially

promising due to the structured nature of these models (171,172). These mappings will use

model semantics and archetype terminology bindings, so defining precise and coherent

terminology bindings must be a requirement in archetype creation.

In fact, the use of clinical vocabularies and ontologies gives a challenge on its own. The

integration of ontologies, such as SNOMED CT, in queries and reasoning used in real world

systems will benefit both patient and public health. The presented solution currently provides

a basic support to SNOMED CT queries and subsets. More complex and powerful languages

such as the SNOMED CT expression constraint language (135) must be evaluated and

incorporated into our mapping language. The frontier between archetypes, clinical guidelines,

and clinical terminologies and ontologies is still an open issue and must be studied.

From the reference material perspective, every reference material can benefit from

terminology bindings, as the generation of implementation guides, rules, and validators can be

improved by reusing these bindings. Other reference materials as the example data instances

can be greatly improved to better mimic real data values and distributions, e.g. how the clinical

diagnosis are distributed in a real world EHR system. Recent developments have provided ways

of simulating better looking fake data instances (173) and our work can greatly benefit from

them. The use of these materials helps in the improvement of data quality (106,174,175).

However, presented methodologies only measure the quality of the systems limited to their

compliance with standards, being impossible to calculate general compliance degrees or

where are the errors typically located. Meaningful formal definitions of clinical data will allow

for more advanced quality measurements, such as correctness, completeness, multi-source

stability, predictive value, and temporal stability (176,177).

The archetype-based mapping mechanism over legacy data allows us to obtain big quantities

of patient data based on archetypes. We can take advantage of having meaningful patient

historic data by generating research and public health repositories. These new repositories

should be able to query data based on archetype information. Big data and parallelization

issues must be solved in order to create useful clinical data repositories.

5.3. Journal and congress contributions

152 | Journal and congress contributions

5.3.1. Journal contributions and book chapters

 D. Boscá, J. A. Maldonado, D. Moner, and M. Robles, “Automatic generation of

computable implementation guides from clinical information models,” J Biomed

Inform, vol. 55, pp. 143–152, Jun. 2015.

 S. Kobayashi, D. Boscá, N. Kume, and H. Yoshihara, “Reforming MML (Medical Markup

Language) Standard with Archetype Technology,” Indian Association for Medical

Informatics, vol. 91, p. 57, 2014.

 M. Marcos, J. A. Maldonado, B. Martínez-Salvador, D. Boscá, and M. Robles,

“Interoperability of clinical decision-support systems and electronic health records

using archetypes: a case study in clinical trial eligibility,” Journal of biomedical

informatics, vol. 46, no. 4, pp. 676–689, 2013.

 J. A. Maldonado, D. Boscá, D. Moner, and M. Robles, “LinkEHR: A Platform for the

Normalization of Legacy Clinical Data Based on Archetypes,” Interoperability in

Healthcare Information Systems: Standards, Management, and Technology: Standards,

Management, and Technology, p. 45, 2013.

 J. A. Maldonado, C. M. Costa, D. Moner, M. Menárguez-Tortosa, D. Boscá, J. A. M.

Giménez, J. T. Fernández-Breis, and M. Robles, “Using the ResearchEHR platform to

facilitate the practical application of the EHR standards,” Journal of biomedical

informatics, vol. 45, no. 4, pp. 746–762, 2012.

 M. Marcos, J. A. Maldonado, B. Martínez-Salvador, D. Moner, D. Boscá, and M. Robles,

“An archetype-based solution for the interoperability of computerised guidelines and

electronic health records,” in Artificial Intelligence in Medicine, Springer Berlin

Heidelberg, 2011, pp. 276–285.

 J. A. Maldonado, D. Moner, D. Boscá, J. T. Fernández-Breis, C. Angulo, and M. Robles,

“LinkEHR-Ed: A multi-reference model archetype editor based on formal semantics,”

International journal of medical informatics, vol. 78, no. 8, pp. 559–570, 2009.

5.3.2. Congress contributions

 D. Boscá, D. Moner, J. A. Maldonado, and M. Robles, “Combining Archetypes with Fast

Health Interoperability Resources in Future-proof Health Information Systems.,”

Studies in health technology and informatics, vol. 210, pp. 180–184, 2014.

 D. Boscá, L. Marco, D. Moner, J. A. Maldonado, L. Insa, and M. Robles, “Detailed

Clinical Models Governance System in a Regional EHR Project,” in XIII Mediterranean

Journal and congress contributions | 153

Conference on Medical and Biological Engineering and Computing 2013, Springer,

2014, pp. 1266–1269.

 D. Moner, J. A. Maldonado, D. Boscá, A. Mañas, and M. Robles, “Development of a

Visual Editor for the Definition of HL7 CDA Archetypes,” in XIII Mediterranean

Conference on Medical and Biological Engineering and Computing 2013, Springer,

2014, pp. 1258–1261.

 D. Boscá, L. Marco, V. Burriel, T. Jaijo, J. M. Millán, A. M. Levin, O. Pastor, M. Robles,

and J. A. Maldonado, “Genetic testing information standardization in HL7 CDA and

ISO13606.,” in MedInfo, 2013, pp. 338–342.

 C. Martínez-Costa, D. Bosca, M. C. Legaz-García, C. Tao, B. J. Fernández, S. Schulz, and

C. G. Chute, “Isosemantic rendering of clinical information using formal ontologies and

RDF.,” Studies in health technology and informatics, vol. 192, pp. 1085–1085, 2012.

 D. Boscá, J. A. Maldonado, D. Moner, and M. Robles, “Detailed clinical models to

facilitate interstandard interoperability of data types,” 23rd International Conference

of the European Federation for Medical Informatics. Oslo, Norway: European

Federation for Medical Informatics, 2011

 J. Maldonado, D. Moner, D. Boscá, C. Angulo, L. Marco, E. Reig, M. Robles, and others,

“Concept-based exchange of healthcare information: The LinkEHR approach,” in

Healthcare Informatics, Imaging and Systems Biology (HISB), 2011 First IEEE

International Conference on, 2011, pp. 150–157.

 D. Moner, J. A. Maldonado, D. Boscá, C. Angulo, M. Robles, D. Pérez, and P. Serrano,

“CEN EN13606 normalisation framework implementation experiences,” Seamless Care,

Safe Care: The Challenges of Interoperability and Patient Safety in Health Care:

Proceedings of the EFMI Special Topic Conference, June 2-4, 2010, Reykjavik, Iceland,

vol. 155, p. 136, 2010.

 M. Robles, J. T. Fernández-Breis, J. A. Maldonado, D. Moner, C. Martínez-Costa, D.

Boscá, and M. Menárguez-Tortosa, “ResearchEHR: Use of semantic web technologies

and archetypes for the description of EHRs,” Studies in health technology and

informatics, vol. 155, p. 129, 2010

154 | B i b l i o g r a p h y

Bibliography

1. Menachemi N, Collum TH. Benefits and drawbacks of electronic health record systems.
Risk Manag Healthc Policy. 2011 May 11;4:47–55.

2. Stroetman V, Kalra D, Lewalle P, Rector A, Rodrigues J, Stroetman K, et al. Semantic
Interoperability for Better health and Safer Healthcare [Internet]. The European
Commission; 2009 [cited 2015 Sep 7] p. 1–34. Available from:
http://discovery.ucl.ac.uk/66190/

3. Beale T. Archetypes Constraint-based Domain Models for Futureproof Information
Systems. 2000.

4. Fagin R, Kolaitis PG, Miller RJ, Popa L. Data exchange: semantics and query answering.
Theor Comput Sci. 2005 May 25;336(1):89–124.

5. Lenzerini M. Data Integration: A Theoretical Perspective. In: Proceedings of the Twenty-
first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
[Internet]. New York, NY, USA: ACM; 2002 [cited 2015 Sep 4]. p. 233–46. Available from:
http://doi.acm.org/10.1145/543613.543644

6. Ten Cate B, Kolaitis PG. Structural characterizations of schema-mapping languages.
Commun ACM. 2010 Jan 1;53(1):101.

7. ISO/TR 20514:2015 Health informatics - Electronic health record - Definition, scope and
context. 2005.

8. Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better
research applications and clinical care. Nat Rev Genet. 2012 Jun;13(6):395–405.

9. Kohane IS. Using electronic health records to drive discovery in disease genomics. Nat
Rev Genet. 2011 Jun;12(6):417–28.

10. Luciano JS, Andersson B, Batchelor C, Bodenreider O, Clark T, Denney CK, et al. The
Translational Medicine Ontology and Knowledge Base: driving personalized medicine by
bridging the gap between bench and bedside. J Biomed Semant. 2011;2 Suppl 2:S1.

11. Prokosch HU, Ganslandt T. Perspectives for medical informatics. Reusing the electronic
medical record for clinical research. Methods Inf Med. 2009;48(1):38–44.

12. ISO 13606 Health informatics - Electronic health record communication - Part 1:
Reference model and Part 2: Archetype interchange specification. 2008.

13. HL7 Standards Product Brief - CDA® Release 2 [Internet]. 2005 [cited 2015 Aug 7].
Available from:
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=7

14. The openEHR Foundation [Internet]. 2000 [cited 2015 Nov 2]. Available from:
http://www.openehr.org

15. openEHR foundation. Clinical Knowledge Manager - CKM [Internet]. 2007 [cited 2015
Aug 17]. Available from: http://www.openehr.org/ckm/

B i b l i o g r a p h y | 155

16. Parker CG, Rocha RA, Campbell JR, Tu SW, Huff SM. Detailed clinical models for
sharable, executable guidelines. Stud Health Technol Inform. 2004;107:145–8.

17. Tao C, Jiang G, Oniki TA, Freimuth RR, Zhu Q, Sharma D, et al. A semantic-web oriented
representation of the clinical element model for secondary use of electronic health
records data. J Am Med Inform Assoc JAMIA. 2013 May 1;20(3):554–62.

18. Clinical Information Modeling Initiative (CIMI) [Internet]. 2011 [cited 2015 Sep 8].
Available from: http://www.opencimi.org/

19. ihtsdo.org [Internet]. SNOMED CT. 2007 [cited 2015 Jul 30]. Available from:
http://www.ihtsdo.org/snomed-ct

20. World health Organization. The International Classification of Diseases 11th Revision
[Internet]. WHO. 2015 [cited 2015 Sep 16]. Available from:
http://www.who.int/classifications/icd/revision/en/

21. Rector AL. The interface between information, terminology, and inference models. Stud
Health Technol Inform. 2001;84:246–50.

22. Martínez-Costa C, de Andrade A, Karlsson D, Kalra D, Schulz S. Towards the
harmonization of Clinical Information and Terminologies by Formal Representation.
EJBI. 2012;8(3):3–10.

23. Health Level Seven International [Internet]. 1987 [cited 2015 Sep 16]. Available from:
http://www.hl7.org

24. ISO 12967 Health informatics - Service architecture. 2009.

25. CDISC [Internet]. 1997 [cited 2015 Sep 16]. Available from: http://cdisc.org/

26. Maldonado JA, Costa CM, Moner D, Menárguez-Tortosa M, Boscá D, Miñarro Giménez
JA, et al. Using the ResearchEHR platform to facilitate the practical application of the
EHR standards. J Biomed Inform. 2012 Aug;45(4):746–62.

27. openEHR Architecture Overview [Internet]. 2003 [cited 2015 Sep 3]. Available from:
http://openehr.org/releases/BASE/latest/docs/architecture_overview/architecture_ove
rview.html

28. Archetype Definition Language 1.4 (ADL) [Internet]. 2003 [cited 2015 Nov 2]. Available
from: http://www.openehr.org/releases/1.0.2/architecture/am/adl.pdf

29. Object Constraint Language (OCL) Specification v2.4 [Internet]. 2014 [cited 2014 Oct
23]. Available from: http://www.omg.org/spec/OCL/2.4/

30. ISO 13606 Health informatics - Electronic health record communication - Part 2:
Archetype interchange specification. 2008.

31. ISO 13606 Health informatics - Electronic health record communication - Part 3:
Reference archetypes and term lists. 2009.

32. ISO 13606 Health informatics - Electronic health record communication - Part 4:
Security. 2009.

156 | B i b l i o g r a p h y

33. ISO 13606 Health informatics - Electronic health record communication - Part 5:
Exchange models. 2010.

34. Recursos de Modelado Clínico (arquetipos) [Internet]. 2013 [cited 2015 Jan 16].
Available from:
https://www.msssi.gob.es/profesionales/hcdsns/areaRecursosSem/Rec_mod_clinico_a
rquetipos.htm

35. Helen Broberg. CEN/ISO EN13606 in Sweden [Internet]. EN13606 assembly; 2010 Jun 24
[cited 2015 Nov 2]; Madrid. Available from:
http://www.en13606.org/images/docs/workshop2010/08-EN13606Sweden-Broberg-
Rosenalv-CEHIS.pdf

36. Abreu Maia T, Fernandes De Muylder C, Mendonça Queiroga R. Archetype
Development Process of Electronic Health Record of Minas Gerais. Stud Health Technol
Inform. 2015;216:938.

37. Secretaria de Saúde - B-RES - Arquétipos Publicados [Internet]. 2010 [cited 2015 Sep
14]. Available from: http://sres.saude.mg.gov.br/arquetipo/listar

38. Archetype Query Language (AQL) Description [Internet]. 2008 [cited 2015 Nov 2].
Available from:
http://www.openehr.org/wiki/display/spec/Archetype+Query+Language+Description

39. openEHR Guideline Definition Language (GDL) [Internet]. 2013 [cited 2015 Sep 1].
Available from: http://www.openehr.org/releases/CDS/latest/docs/GDL/GDL.html

40. Nasjonal IKT Clinical Knowledge Manager [Internet]. 2014 [cited 2015 Oct 27]. Available
from: http://arketyper.no/ckm/

41. CENTERMS Clinical Knowledge Manager [Internet]. 2014 [cited 2015 Oct 27]. Available
from: http://www.centerms.org.br:8009/ckm/

42. UK Clinical Knowledge Manager [Internet]. 2007 [cited 2015 Oct 27]. Available from:
http://www.clinicalmodels.org.uk/ckm/

43. NEHTA Clinical Knowledge Manager [Internet]. 2005 [cited 2015 Oct 27]. Available
from: http://dcm.nehta.org.au/ckm/

44. Upravljavec kliničnega znanja [Internet]. 2007 [cited 2015 Oct 27]. Available from:
http://ukz.ezdrav.si/ckm/OKM_sl.html

45. Moreno-Conde A, Moner D, da Cruz WD, Santos MR, Maldonado JA, Robles M, et al.
Clinical information modeling processes for semantic interoperability of electronic
health records: systematic review and inductive analysis. J Am Med Inform Assoc.
2015;ocv008.

46. Braun M, Brandt AU, Schulz S, Boeker M. Validating archetypes for the Multiple
Sclerosis Functional Composite. BMC Med Inform Decis Mak. 2014;14(1).

47. Kalra D, Tapuria A, Austin T, De Moor G. Quality requirements for EHR archetypes. Stud
Health Technol Inform. 2012;180:48–52.

B i b l i o g r a p h y | 157

48. Ahn S, Huff SM, Kim Y, Kalra D. Quality metrics for detailed clinical models. Int J Med Inf.
2013 May;82(5):408–17.

49. ISO 18864 Health informatics - Quality metrics for detailed clinical models.

50. Berges I, Bermudez J, Illarramendi A. Binding SNOMED CT terms to archetype elements.
Establishing a baseline of results. Methods Inf Med. 2015;54(1):45–9.

51. Meizoso M, Allones JL, Taboada M, Martinez D, Tellado S. Automated Mapping of
Observation Archetypes to SNOMED CT Concepts. In: Ferrández JM, Sánchez JRÁ, Paz F
de la, Toledo FJ, editors. Foundations on Natural and Artificial Computation [Internet].
Springer Berlin Heidelberg; 2011 [cited 2015 Oct 27]. p. 550–61. Available from:
http://link.springer.com/chapter/10.1007/978-3-642-21344-1_57

52. Sundvall E, Qamar R, Nyström M, Forss M, Petersson H, Karlsson D, et al. Integration of
tools for binding archetypes to SNOMED CT. BMC Med Inform Decis Mak. 2008 Oct
27;8(Suppl 1):S7.

53. Yu S, Berry D, Bisbal J. An Investigation of Semantic Links to Archetypes in an External
Clinical Terminology through the Construction of Terminological“ Shadows.” 2010 [cited
2015 Nov 13]; Available from:
http://arrow.dit.ie/teapotcon/9/?utm_source=arrow.dit.ie%2Fteapotcon%2F9&utm_m
edium=PDF&utm_campaign=PDFCoverPages

54. Menárguez-Tortosa M, Fernández-Breis JT. OWL-based reasoning methods for
validating archetypes. J Biomed Inform. 2013 Abril;46(2):304–17.

55. Legaz-García MDC, Martínez-Costa C, Fernández-breis JT. Exploitation of ontologies for
the management of clinical archetypes in ArchMS. 2012 [cited 2015 Oct 27]; Available
from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.416.6594

56. Allones JL, Taboada M, Martinez D, Lozano R, Sobrido MJ. SNOMED CT module-driven
clinical archetype management. J Biomed Inform. 2013 Jun;46(3):388–400.

57. Martínez-Costa C, Menárguez-Tortosa M, Fernández-Breis JT, Maldonado JA. A model-
driven approach for representing clinical archetypes for Semantic Web environments. J
Biomed Inform. 2009 Feb;42(1):150–64.

58. Porn AM, Peres LM, Didonet Del Fabro M. A Process for the Representation of openEHR
ADL Archetypes in OWL Ontologies. Stud Health Technol Inform. 2015;216:827–31.

59. Martínez Costa C, Menárguez-Tortosa M, Fernández-Breis JT. Clinical data
interoperability based on archetype transformation. J Biomed Inform. 2011;44(5):869–
80.

60. Dentler K, ten Teije A, Cornet R, de Keizer N. Semantic Integration of Patient Data and
Quality Indicators Based on openEHR Archetypes. In: Lenz R, Miksch S, Peleg M,
Reichert M, Riaño D, ten Teije A, editors. Process Support and Knowledge
Representation in Health Care [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg;
2013 [cited 2015 Aug 7]. p. 85–97. Available from:
http://link.springer.com/10.1007/978-3-642-36438-9_6

158 | B i b l i o g r a p h y

61. Lezcano L, Sicilia M-A, Rodríguez-Solano C. Integrating reasoning and clinical archetypes
using OWL ontologies and SWRL rules. J Biomed Inform. 2011 Abril;44(2):343–53.

62. Fernández-Breis JT, Maldonado JA, Marcos M, Legaz-García M del C, Moner D, Torres-
Sospedra J, et al. Leveraging electronic healthcare record standards and semantic web
technologies for the identification of patient cohorts. J Am Med Inform Assoc JAMIA.
2013 Dec;20(e2):e288–96.

63. Marco-Ruiz L, Moner D, Maldonado JA, Kolstrup N, Bellika JG. Archetype-based data
warehouse environment to enable the reuse of electronic health record data. Int J Med
Inf. 2015;84(9):702–14.

64. HL7 Standards - HL7 Version 2 [Internet]. 2011 [cited 2015 Sep 14]. Available from:
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185

65. Boone KW. The CDA TM book [Internet]. Springer-Verlag London; 2011 [cited 2015 Nov
2]. Available from: http://www.springer.com/public+health/book/978-0-85729-335-0

66. Introduction to Meaningful Use - CDC [Internet]. 2012 [cited 2015 Sep 8]. Available
from: http://www.cdc.gov/ehrmeaningfuluse/introduction.html

67. European Patients Smart Open Services (epSOS) [Internet]. 2008 [cited 2015 Aug 17].
Available from: http://www.epsos.eu/

68. Fast Healthcare Interoperability Resources (FHIR) Specification [Internet]. 2014 [cited
2015 Nov 2]. Available from: http://hl7.org/implement/standards/fhir/

69. Publicly Available FHIR Servers for testing - HL7Wiki [Internet]. 2014 [cited 2015 Sep
14]. Available from:
http://wiki.hl7.org/index.php?title=Publicly_Available_FHIR_Servers_for_testing

70. Kobayashi S, Kume N, Yoshihara H. Restructuring an EHR system and the Medical
Markup Language (MML) standard to improve interoperability by archetype
technology. Stud Health Technol Inform. 2015;216:881.

71. Guo J, Takada A, Niu T, He M, Tanaka K, Sato J, et al. Enhancement of MML Medical
Data Exchange Standard for a Localized Chinese Version. J Med Syst. 2005
Oct;29(5):555–67.

72. IHTSDO. SNOMED CT Compositional Grammar Specification and Guide - July 2015
[Internet]. [cited 2015 Sep 11]. Available from:
http://snomed.org/compgrammar.pdf.html

73. WHO | International Classification of Diseases (ICD) [Internet]. WHO. 1990 [cited 2015
Oct 28]. Available from: http://www.who.int/classifications/icd/en/

74. Logical Observation Identifiers Names and Codes (LOINC) [Internet]. 1994 [cited 2015
Sep 7]. Available from: https://loinc.org/

75. Ling Liu. Encyclopedia of Database Systems [Internet]. Springer; 2009 [cited 2015 Oct
13]. Available from: http://www.springer.com/us/book/9780387355443

B i b l i o g r a p h y | 159

76. Gruninger, M, Lee, J. Ontology Applications and Design. Commun ACM. 2002;45(2):39–
41.

77. Friedman M, Levy AY, Millstein TD, others. Navigational plans for data integration.
AAAI/IAAI. 1999;1999:67–73.

78. Raffio A, Braga D, Ceri S, Papotti P, Hernández M, others. Clip: a visual language for
explicit schema mappings. In: Data Engineering, 2008 ICDE 2008 IEEE 24th International
Conference on [Internet]. IEEE; 2008 [cited 2015 Oct 27]. p. 30–9. Available from:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4497411

79. Bojańczyk M, Kołodziejczyk LA, Murlak F. Solutions in XML data exchange. J Comput Syst
Sci. 2013 Sep;79(6):785–815.

80. Foundations of Data Exchange. 1 edition. Cambridge, UK; New York: Cambridge
University Press; 2014. 341 p.

81. Clio: Schema Mapping Creation and Data Exchange - Springer [Internet]. 2009 [cited
2015 Oct 13]. Available from: http://link.springer.com/chapter/10.1007%2F978-3-642-
02463-4_12

82. Bonifati A, Chang EQ, Lakshmanan AVS, Ho T, Pottinger R. HePToX: Marrying XML and
Heterogeneity in Your P2P Databases. In: Proceedings of the 31st International
Conference on Very Large Data Bases [Internet]. Trondheim, Norway: VLDB
Endowment; 2005 [cited 2015 Oct 13]. p. 1267–70. Available from:
http://dl.acm.org/citation.cfm?id=1083592.1083745

83. Alexe B, Tan W-C. A New Framework for Designing Schema Mappings. In: Tannen V,
Wong L, Libkin L, Fan W, Tan W-C, Fourman M, editors. In Search of Elegance in the
Theory and Practice of Computation [Internet]. Springer Berlin Heidelberg; 2013 [cited
2015 Oct 29]. p. 56–88. Available from: http://link.springer.com/chapter/10.1007/978-
3-642-41660-6_4

84. Alexe B, Hernández M, Popa L, Tan W-C. MapMerge: Correlating Independent Schema
Mappings. VLDB J. 2012 Abril;21(2):191–211.

85. Duftschmid G, Wrba T, Rinner C. Extraction of standardized archetyped data from
Electronic Health Record systems based on the Entity-Attribute-Value Model. Int J Med
Inf. 2010 Aug;79(8):585–97.

86. Duftschmid G, Chaloupka J, Rinner C. Towards plug-and-play integration of archetypes
into legacy electronic health record systems: the ArchiMed experience. BMC Med
Inform Decis Mak. 2013;13:11.

87. Model Driven Architecture (MDA) Specifications [Internet]. 2001 [cited 2015 Jan 12].
Available from: http://www.omg.org/mda/specs.htm

88. Truyen F. The Fast Guide to Model Driven Architecture - The basics of Model Driven
Architecture. 2006 Enero [cited 2015 Jan 12]; Available from:
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf

89. Object Management Group (OMG) [Internet]. 1989 [cited 2015 Nov 2]. Available from:
http://www.omg.org/

160 | B i b l i o g r a p h y

90. Menárguez Tortosa, Marcos. Modelos de representación de arquetipos en sistemas de
información sanitarios [Internet] [Thesis]. Universidad de Murcia; 2013. Available from:
http://www.tdx.cat/bitstream/handle/10803/117386/TMMT.pdf?sequence=1

91. Atalag K, Yang HY, Tempero E, Warren J. Model driven development of clinical
information sytems using openEHR. Stud Health Technol Inform. 2011;169:849–53.

92. Kobayashi S, Kimura E, Ishihara K. Archetype model-driven development framework for
EHR web system. Healthc Inform Res. 2013;19(4):271–7.

93. Martínez-Costa C, Menárguez-Tortosa M, Fernández-Breis JT. An approach for the
semantic interoperability of ISO EN 13606 and OpenEHR archetypes. J Biomed Inform.
2010 Oct;43(5):736–46.

94. Model-Driven Health Tools (MDHT) [Internet]. 2009 [cited 2015 Nov 2]. Available from:
https://www.projects.openhealthtools.org/sf/projects/mdht/

95. Unified Modeling Language (UML) v2.5 [Internet]. 2015 [cited 2015 Nov 2]. Available
from: http://www.omg.org/spec/UML/

96. Web Ontology Language (OWL) [Internet]. 2004 [cited 2015 Nov 2]. Available from:
http://www.w3.org/TR/owl-ref/

97. SWRL: A Semantic Web Rule Language Combining OWL and RuleML [Internet]. 2004
[cited 2015 Nov 2]. Available from: http://www.w3.org/Submission/SWRL/

98. Rule Markup Language (RuleML) [Internet]. 2001 [cited 2015 Nov 2]. Available from:
http://www.ruleml.org/

99. World Wide Web (W3C) Rule Interchange Format [Internet]. 2013 [cited 2014 Oct 23].
Available from: http://www.w3.org/TR/rif-overview/

100. Natural Rule Language (NRL) Specification 1.4.0 [Internet]. 2010 [cited 2014 Oct 23].
Available from: http://nrl.sourceforge.net/spec/

101. Project Attempto [Internet]. 1995 [cited 2015 Nov 2]. Available from:
http://attempto.ifi.uzh.ch

102. Farkash A, Timm JTE, Waks Z. A model-driven approach to clinical practice guidelines
representation and evaluation using standards. Stud Health Technol Inform.
2013;192:200–4.

103. Fuchs NE, Schwertel U, Schwitter R. Attempto Controlled English — Not Just Another
Logic Specification Language. In: Flener P, editor. Logic-Based Program Synthesis and
Transformation [Internet]. Springer Berlin Heidelberg; 1999 [cited 2015 Nov 2]. p. 1–20.
Available from: http://link.springer.com/chapter/10.1007/3-540-48958-4_1

104. ISO/IEC 19757-3:2006 Information technology -- Document Schema Definition Language
(DSDL) -- Part 3: Rule-based validation – Schematron [Internet]. 2006 [cited 2015 Nov
2]. Available from: http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

105. Alexandru A. NRL to Schematron generation tutorial [Internet]. 2011 [cited 2015 Nov 2].
Available from: http://nrl.sourceforge.net/tutorials/schematron/tutorial.html

B i b l i o g r a p h y | 161

106. Pfeiffer K, Duftschmid G, Rinner C. Validating EHR documents: automatic schematron
generation using archetypes. Stud Health Technol Inform. 2014;198:101–7.

107. Drools - Business Rules Management System (JavaTM, Open Source) [Internet]. 2005
[cited 2015 Nov 9]. Available from: http://www.drools.org/

108. openCDS [Internet]. 2011 [cited 2015 Sep 1]. Available from: http://www.opencds.org

109. SemanticHealthNet [Internet]. 2011 [cited 2015 Sep 8]. Available from:
http://www.semantichealthnet.eu/

110. Blumenthal D, Tavenner M. The “Meaningful Use” Regulation for Electronic Health
Records. N Engl J Med. 2010 Agosto;363(6):501–4.

111. Medicare.gov [Internet]. 1965 [cited 2015 Sep 8]. Available from:
https://www.medicare.gov/

112. Medicaid [Internet]. 1965 [cited 2015 Sep 8]. Available from: http://www.medicaid.gov/

113. Trillium Bridge [Internet]. 2013 [cited 2015 Sep 8]. Available from:
http://www.trilliumbridge.eu/

114. Expand Project [Internet]. 2014 [cited 2015 Sep 22]. Available from:
http://www.expandproject.eu/

115. Angulo C, Crespo P, Maldonado JA, Moner D, Pérez D, Abad I, et al. Non-invasive
lightweight integration engine for building EHR from autonomous distributed systems.
Int J Med Inf. 2007 Dec;76:S417–24.

116. Kalra D. EHR archetypes in practice: getting feedback from clinicians and the role of
EuroRec. [Internet]. 2007 [cited 2015 Aug 13]. Available from:
http://www.eurorec.org/news_events/eurorec2007.cfm

117. Kuper GM, Siméon J. Subsumption for XML Types. In: Bussche JV den, Vianu V, editors.
Database Theory — ICDT 2001 [Internet]. Springer Berlin Heidelberg; 2001 [cited 2015
Jan 15]. p. 331–45. Available from: http://link.springer.com/chapter/10.1007/3-540-
44503-X_21

118. Maldonado JA, Moner D, Boscá D, Fernández-Breis JT, Angulo C, Robles M. LinkEHR-Ed:
A multi-reference model archetype editor based on formal semantics. Int J Med Inf.
2009 Aug;78(8):559–70.

119. Bosca D, Marco L, Moner D, Maldonado JA, Insa L, Robles M. Detailed Clinical Models
Governance System in a Regional EHR Project. In: Roa Romero LM, editor. XIII
Mediterranean Conference on Medical and Biological Engineering and Computing 2013
[Internet]. Cham: Springer International Publishing; 2014 [cited 2015 Aug 31]. p. 1266–
9. Available from: http://link.springer.com/10.1007/978-3-319-00846-2_313

120. Lee KP, Hu J. XML Schema Representation of DICOM Structured Reporting. J Am Med
Inform Assoc JAMIA. 2003 Apr;10(2):213–23.

121. openEHR - Basic Meta-Model (BMM) files [Internet]. 2008 [cited 2015 Aug 5]. Available
from: http://www.openehr.org/releases/1.0.2/reference-models/openEHR/BMM/

162 | B i b l i o g r a p h y

122. XMI v2.5.1 [Internet]. 2015 [cited 2015 Sep 21]. Available from:
http://www.omg.org/spec/XMI/

123. openEHR/bmm [Internet]. 2008 [cited 2015 Sep 21]. Available from:
https://github.com/openEHR/bmm

124. Eclipse Modeling Framework [Internet]. 2013 [cited 2015 Sep 21]. Available from:
http://www.eclipse.org/modeling/emf/

125. FHIR resources ecore definitions [Internet]. 2014 [cited 2014 Oct 15]. Available from:
http://www.hl7.org/implement/standards/fhir/ecoredefinitions.xml

126. openEHR/odin [Internet]. 2003 [cited 2015 Sep 21]. Available from:
https://github.com/openEHR/odin

127. MML Version 3.0 [Internet]. 2003 [cited 2015 Aug 5]. Available from:
http://www.medxml.net/E_mml30/

128. Cluet S, Siméon J. Data Integration Based on Data Conversion and Restructuring. In:
Proceedings of WebDB’98. 1997.

129. Guo J, Takada A, Tanaka K, Sato J, Suzuki M, Suzuki T, et al. The Development of MML
(Medical Markup Language) Version 3.0 as a Medical Document Exchange Format for
HL7 Messages. J Med Syst. 2004 Dec;28(6):523–33.

130. Moner D, Maldonado JA, Boscá D, Mañas A, Robles M. Development of a Visual Editor
for the Definition of HL7 CDA Archetypes. In: Roa Romero LM, editor. XIII
Mediterranean Conference on Medical and Biological Engineering and Computing 2013
[Internet]. Cham: Springer International Publishing; 2014 [cited 2015 Aug 19]. p. 1258–
61. Available from: http://link.springer.com/10.1007/978-3-319-00846-2_311

131. Maldonado JA, Moner D, Tomás D, Angulo C, Robles M, Fernández JT. Framework for
clinical data standardization based on archetypes. Stud Health Technol Inform.
2007;129(Pt 1):454–8.

132. SemanticHealthNet. Semantic Interoperability for Health Network Deliverable 4.5:
Design Guides and Roadmap [Internet]. 2015. Available from:
http://www.semantichealthnet.eu/SemanticHealthNet/assets/File/SHN%20288408%20
D4_5%20Design%20Guides%20and%20Roadmap.pdf

133. Linda Bird. Modelling Patterns Review & Suggestions [Internet]. 2012 Aug 16; CIMI.
Available from:
https://drive.google.com/file/d/0B_i5YqHx_cMoMXRac2x3WlNLeUE/view

134. Maldonado JA, Moner D, Boscá D, Fernández-Breis JT, Angulo C, Robles M. LinkEHR-Ed:
a multi-reference model archetype editor based on formal semantics. Int J Med Inf.
2009 Aug;78(8):559–70.

135. IHTSDO. SNOMED CT Expression Constraint Language Specification and Guide
[Internet]. 2015 [cited 2015 Nov 10]. Available from:
http://snomed.org/expressionconstraint

B i b l i o g r a p h y | 163

136. V.M. Giménez, J.A. Maldonado, M. Robles. Definición de subconjuntos en SNOMED CT.
In Madrid; 2015 [cited 2015 Nov 6]. p. 224–7. Available from:
http://snquery.veratech.es/

137. JSON [Internet]. 2014 [cited 2015 Sep 9]. Available from: http://json.org/

138. JSON Schema and Hyper-Schema [Internet]. 2014 [cited 2015 Sep 9]. Available from:
http://json-schema.org/

139. Grahame Grieve. Language Localization in #FHIR [Internet]. Health Intersections Pty Ltd.
2015 [cited 2015 Nov 4]. Available from:
http://www.healthintersections.com.au/?p=2382

140. Martínez Costa C. Modelos de representación y transformación para la
interoperabilidad semántica entre estándares de Historia Clínica Electrónica basados en
arquitectura de modelo dual / Catalina Martínez Costa; director, Jesualdo Tomás
Fernández Breis. [Internet]. 2011 [cited 2015 Aug 7]. Available from:
https://digitum.um.es/xmlui/handle/10201/31557

141. Moner D, Moreno A, Maldonado JA, Robles M, Parra C. Using archetypes for defining
CDA templates. Stud Health Technol Inform. 2012;180:53–7.

142. Moner D, Bru, Juan, Maldonado, José A., Robles, Montserrat. Clinical Trials powered by
Electronic Health Records. In: CDISC Interchange Europe. Stockholm, Sweden; 2012.

143. Smits M, Kramer E, Harthoorn M, Cornet R. A comparison of two Detailed Clinical Model
representations: FHIR and CDA. EJBI [Internet]. 2015 [cited 2015 Aug 19];11(2).
Available from: http://www.ejbi.org/img/ejbi/2015/2/Smits_en.pdf

144. Fagin R, Kolaitis PG, Popa L. Data Exchange: Getting to the Core. 2003.

145. Bonifati A, Mecca G, Papotti P, Velegrakis Y. Discovery and Correctness of Schema
Mapping Transformations. In: Bellahsene Z, Bonifati A, Rahm E, editors. Schema
Matching and Mapping [Internet]. Springer Berlin Heidelberg; 2011 [cited 2015 Aug 14].
p. 111–47. Available from: http://link.springer.com/chapter/10.1007/978-3-642-16518-
4_5

146. Popa L, Velegrakis Y, Hernández MA, Miller RJ, Fagin R. Translating Web Data. In:
Proceedings of the 28th International Conference on Very Large Data Bases [Internet].
Hong Kong, China: VLDB Endowment; 2002 [cited 2015 Aug 14]. p. 598–609. Available
from: http://dl.acm.org/citation.cfm?id=1287369.1287421

147. Fuxman A, Hernandez MA, Ho H, Miller RJ, Papotti P, Popa L. Nested Mappings: Schema
Mapping Reloaded. In: Proceedings of the 32Nd International Conference on Very Large
Data Bases [Internet]. Seoul, Korea: VLDB Endowment; 2006 [cited 2015 Nov 10]. p. 67–
78. Available from: http://dl.acm.org/citation.cfm?id=1182635.1164135

148. Abiteboul S, Bidoit N. Non First Normal Form relations: An algebra allowing data
restructuring. J Comput Syst Sci. 1986 Diciembre;33(3):361–93.

149. Michael Kay. Blooming FLWOR - An Introduction to the XQuery FLWOR Expression
[Internet]. 2006 [cited 2015 Oct 26]. Available from:
http://www.stylusstudio.com/whitepapers/blooming_flwor.pdf

164 | B i b l i o g r a p h y

150. Bret Victor. Inventing on Principle [Internet]. CUSEC 2012; 2012 Jan 21 [cited 2015 Nov
2]; Montreal, Quebec. Available from: https://vimeo.com/36579366

151. Alexe B, Tan W-C, Velegrakis Y. Comparing and Evaluating Mapping Systems with
STBenchmark. In 2008. p. 1468–71. Available from:
http://portal.acm.org/ft_gateway.cfm?id=1454203

152. Reddy M, Pratt W, Dourish P, Shabot MM. Sociotechnical requirements analysis for
clinical systems. Methods Inf Med. 2003;42(4):437–44.

153. Dolin RH, Alschuler L, Boyer S, Beebe C, Behlen FM, Biron PV, et al. HL7 Clinical
Document Architecture, Release 2. J Am Med Inform Assoc JAMIA. 2006;13(1):30–9.

154. HL7 Implementation Guide for CDA® Release 2: IHE Health Story Consolidation, Release
1.1 - US Realm. 2012.

155. Medicare and Medicaid Programs; Electronic Health Record Incentive Program – Stage
2. 171 Sep 4, 2012 p. 53967–4162.

156. D’Amore JD, Mandel JC, Kreda DA, Swain A, Koromia GA, Sundareswaran S, et al. Are
Meaningful Use Stage 2 certified EHRs ready for interoperability? Findings from the
SMART C-CDA Collaborative. J Am Med Inform Assoc. 2014;

157. Garde S, Chen R, Leslie H, Beale T, McNicoll I, Heard S. Archetype-based knowledge
management for semantic interoperability of electronic health records. Stud Health
Technol Inform. 2009;150:1007–11.

158. LinkEHR Platform [Internet]. 2005 [cited 2015 Nov 2]. Available from:
http://www.linkehr.com

159. Indizen ITServer [Internet]. 2015 [cited 2015 Nov 2]. Available from:
http://www.itserver.es

160. Bosca D, Marco L, Burriel V, Jaijo T, Millán JM, Levin A, et al. Genetic testing information
standardization in HL7 CDA and ISO13606. Stud Health Technol Inform. 2013;192:338–
42.

161. CDA Implementation Guide for Genetic Testing Report (GTR) (September 2011 Draft).
2011.

162. Rene Spronk, Grahame Grieve. Common issues found in implementations of the HL7
Clinical Document Architecture (CDA) [Internet]. 2008 [cited 2015 Nov 2]. Available
from: http://www.ringholm.com/docs/03020_en_HL7_CDA_common_issues_error.htm

163. Chen R, Georgii-Hemming P, Ahlfeldt H. Representing a chemotherapy guideline using
openEHR and rules. Stud Health Technol Inform. 2009;150:653–7.

164. Anani N, Chen R, Moreira TP, Koch S. Retrospective checking of compliance with
practice guidelines for acute stroke care: a novel experiment using openEHR’s Guideline
Definition Language. BMC Med Inform Decis Mak. 2014 May 10;14(1):39.

B i b l i o g r a p h y | 165

165. M. Bacelar-Silva G, Chen R, J. Cruz-Correia R. From Clinical Guideline to openEHR:
Converting JNC7 Into Archetypes and Template. In: Anais do XIII Congresso Brasileiro de
Informática em Saúde, ISSN: 2178-2857. Curitiba, Brazil; 2012.

166. Barretto SA, Warren J, Goodchild A, Bird L, Heard S, Stumptner M. Linking Guidelines to
Electronic Health Record Design for Improved Chronic Disease Management. AMIA
Annu Symp Proc. 2003;2003:66–70.

167. Marcos M, Maldonado JA, Martínez-Salvador B, Boscá D, Robles M. Interoperability of
clinical decision-support systems and electronic health records using archetypes: A case
study in clinical trial eligibility. J Biomed Inform. 2013 Agosto;46(4):676–89.

168. González-Ferrer A, Peleg M, Verhees B, Verlinden J-M, Marcos C. Data Integration for
Clinical Decision Support Based on openEHR Archetypes and HL7 Virtual Medical
Record. In: Proceedings of the 2012 International Conference on Process Support and
Knowledge Representation in Health Care [Internet]. Berlin, Heidelberg: Springer-
Verlag; 2013 [cited 2014 Jul 15]. p. 71–84. Available from:
http://dx.doi.org/10.1007/978-3-642-36438-9_5

169. Garcia D, Moro CMC, Cicogna PE, Carvalho DR. Method to integrate clinical guidelines
into the electronic health record (EHR) by applying the archetypes approach. Stud
Health Technol Inform. 2013;192:871–5.

170. Institute of Medicine (US). Standardization to Enhance Data Sharing. 2013 Mar 29 [cited
2015 Nov 11]; Available from: http://www.ncbi.nlm.nih.gov/books/NBK137818/

171. Pawlik M, Augsten N. RTED: A Robust Algorithm for the Tree Edit Distance. Proc VLDB
Endow. 2011 Diciembre;5(4):334–45.

172. Pawlik M, Augsten N. A Memory-Efficient Tree Edit Distance Algorithm. In: Decker H,
Lhotská L, Link S, Spies M, Wagner RR, editors. Database and Expert Systems
Applications [Internet]. Springer International Publishing; 2014 [cited 2015 Nov 10]. p.
196–210. Available from: http://link.springer.com/chapter/10.1007/978-3-319-10073-
9_16

173. Cunningham J, Ainsworth J. Simulating realistic enough patient records. Stud Health
Technol Inform. 2015;210:35–9.

174. Kate Hamilton, Lauren Wood. Schematron in the Context of the Clinical Document
Architecture (CDA). In: Proceedings of Balisage: The Markup Conference 2012
[Internet]. Montréal, Canada; 2012 [cited 2015 Nov 11]. Available from:
http://www.balisage.net/Proceedings/vol8/html/Wood01/BalisageVol8-Wood01.html

175. Boone KW. Validating the Content of a CDATM Document. CDA TM Book. 2011;

176. Sáez C, Rodrigues PP, Gama J, Robles M, García-Gómez JM. Probabilistic change
detection and visualization methods for the assessment of temporal stability in
biomedical data quality. Data Min Knowl Discov. 2014 Sep 2;29(4):950–75.

177. Sáez C, Robles M, García-Gómez JM. Stability metrics for multi-source biomedical data
based on simplicial projections from probability distribution distances. Stat Methods
Med Res. 2014 Aug 4;

