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III. Abstract 

Healthcare domain produces and consumes big quantities of people’s health data. Although 

data exchange is the norm rather than the exception, being able to access to all patient data is 

still far from achieved. Current developments such as personal health records will introduce 

even more data and complexity to the Electronic Health Records (EHR). Achieving semantic 

interoperability is one of the biggest challenges to overcome in order to benefit from all the 

information contained in the distributed EHR. This requires that the semantics of the 

information can be understood by all involved parties. It has been stablished that three layers 

are needed to achieve semantic interoperability: Reference models, clinical models 

(archetypes), and clinical terminologies.  

As seen in the literature, information models (reference models and clinical models) are 

lacking methodologies and tools to improve EHR systems and to develop new systems that can 

be semantically interoperable. The purpose of this thesis is to provide methodologies and 

tools for advancing the use of archetypes in three different scenarios: 

 Archetype definition over specifications with no dual model architecture native 

support. Any EHR architecture that directly or indirectly has the notion of detailed 

clinical models (such as HL7 CDA templates) can be potentially used as a reference 

model for archetype definition. This allows transforming single-model architectures 

(which contain only a reference model) into dual-model architectures (reference 

model with archetypes). A set of methodologies and tools has been developed to 

support the definition of archetypes from multiple reference models. 

 Data transformation. A complete methodology and tools are proposed to deal with the 

transformation of legacy data into XML documents compliant with the archetype and 

the underlying reference model. If the reference model is a standard then the 

transformation is a standardization process. The methodologies and tools allow both 

the transformation of legacy data and the transformation of data between different 

EHR standards. 

 Automatic generation of implementation guides and reference materials from 

archetypes. A methodology for the automatic generation of a set of reference 

materials is provided. These materials are useful for the development and use of EHR 

systems. These reference materials include data validators, example instances, 

implementation guides, human-readable formal rules, sample forms, mindmaps, etc. 

These reference materials can be combined and organized in different ways to adapt 



to different types of users (clinical or information technology staff). This way, users can 

include the detailed clinical model in their organization workflow and cooperate in the 

model definition.  

These methodologies and tools put clinical models as a key part of the system. The set of 

presented methodologies and tools ease the achievement of semantic interoperability by 

providing means for the semantic description, normalization, and validation of existing and 

new systems.  



IV. Resumen 

El sector sanitario produce y consume una gran cantidad de datos sobre la salud de las 

personas. La necesidad de intercambiar esta información es una norma más que una 

excepción, aunque este objetivo está lejos de ser alcanzado. Actualmente estamos viviendo 

avances como la medicina personalizada que incrementarán aún más el tamaño y complejidad 

de la Historia Clínica Electrónica (HCE). La consecución de altos grados de interoperabilidad 

semántica es uno de los principales retos para aprovechar al máximo toda la información 

contenida en las HCEs. Esto a su vez requiere una representación fiel de la información de tal 

forma que asegure la consistencia de su significado entre todos los agentes involucrados. 

Actualmente está reconocido que para la representación del significado clínico necesitamos 

tres tipos de artefactos: modelos de referencia, modelos clínicos (arquetipos) y terminologías.  

En el caso concreto de los modelos de información (modelos de referencia y modelos clínicos) 

se observa en la literatura una falta de metodologías y herramientas que faciliten su uso tanto 

para la mejora de sistemas de HCE ya existentes como en el desarrollo de nuevos sistemas con 

altos niveles de interoperabilidad semántica. Esta tesis tiene como propósito proporcionar 

metodologías y herramientas para el uso avanzado de arquetipos en tres escenarios 

diferentes: 

 Definición de arquetipos sobre especificaciones sin soporte nativo al modelo dual. 

Cualquier arquitectura de HCE que posea directa o indirectamente la noción de 

modelos clínicos detallados (por ejemplo, las plantillas en HL7 CDA) puede ser 

potencialmente usada como modelo de referencia para la definición de arquetipos. 

Con esto se consigue transformar arquitecturas de HCE de modelo único (solo con 

modelo de referencia) en arquitecturas de doble modelo (modelo de referencia + 

arquetipos). Se han desarrollado metodologías y herramientas que faciliten a los 

editores de arquetipos el soporte a múltiples modelos de referencia. 

 Transformación de datos. Se propone una metodología y herramientas para la 

transformación de datos ya existentes a documentos XML conformes con los 

arquetipos y el modelo de referencia subyacente. Si el modelo de referencia es un 

estándar entonces la transformación será un proceso de estandarización de datos. La 

metodología y herramientas permiten tanto la transformación de datos no 

estandarizados como la transformación de datos entre diferentes estándares. 

 Generación automática de guías de implementación y artefactos procesables a partir 

de arquetipos. Se aporta una metodología para la generación automática de un 



conjunto de materiales de referencia de utilidad en el desarrollo y uso de sistemas de 

HCE, concretamente validadores de datos, instancias de ejemplo, guías de 

implementación , reglas formales legibles por humanos, formularios de ejemplo, 

mindmaps, etc. Estos materiales pueden ser combinados y organizados de diferentes 

modos para facilitar que los diferentes tipos de usuarios (clínicos, técnicos) puedan 

incluir los modelos clínicos detallados en el flujo de trabajo de su sistema y colaborar 

en su definición.  

Estas metodologías y herramientas ponen los modelos clínicos como una parte clave en el 

sistema. El conjunto de las metodologías y herramientas presentadas facilitan la consecución 

de la interoperabilidad semántica al proveer medios para la descripción semántica, 

normalización y validación tanto de sistemas nuevos como ya existentes. 

 

  



V. Resum 

El sector sanitari produeix i consumeix una gran quantitat de dades sobre la salut de les 

persones. La necessitat d'intercanviar aquesta informació és una norma més que una excepció, 

encara que aquest objectiu està lluny de ser aconseguit. Actualment estem vivint avanços com 

la medicina personalitzada que incrementaran encara més la grandària i complexitat de la 

Història Clínica Electrònica (HCE). La consecució d'alts graus d'interoperabilitat semàntica és un 

dels principals reptes per a aprofitar al màxim tota la informació continguda en les HCEs. Açò, 

per la seua banda, requereix una representació fidel de la informació de tal forma que 

assegure la consistència del seu significat entre tots els agents involucrats. Actualment està 

reconegut que per a la representació del significat clínic necessitem tres tipus d'artefactes: 

models de referència, models clínics (arquetips) i terminologies.  

En el cas concret dels models d'informació (models de referència i models clínics) s'observa en 

la literatura una mancança de metodologies i eines que en faciliten l’ús tant per a la millora de 

sistemes de HCE ja existents com per al desenvolupament de nous sistemes amb alts nivells 

d'interoperabilitat semàntica. Aquesta tesi té com a propòsit proporcionar metodologies i 

eines per a l'ús avançat d'arquetips en tres escenaris diferents: 

 Definició d'arquetips sobre especificacions sense suport natiu al model dual. Qualsevol 

arquitectura de HCE que posseïsca directa o indirectament la noció de models clínics 

detallats (per exemple, les plantilles en HL7 CDA) pot ser potencialment usada com a 

model de referència per a la definició d'arquetips. Amb açò s'aconsegueix transformar 

arquitectures de HCE de model únic (solament amb model de referència) en 

arquitectures de doble model (model de referència + arquetips). S'han desenvolupat 

metodologies i eines que faciliten als editors d'arquetips el suport a múltiples models 

de referència. 

 Transformació de dades. Es proposa una metodologia i eines per a la transformació de 

dades ja existents a documents XML conformes amb els arquetips i el model de 

referència subjacent. Si el model de referència és un estàndard llavors la transformació 

serà un procés d'estandardització de dades. La metodologia i eines permeten tant la 

transformació de dades no estandarditzades com la transformació de dades entre 

diferents estàndards. 

 Generació automàtica de guies d'implementació i artefactes processables a partir 

d'arquetips. S’hi inclou una metodologia per a la generació automàtica d'un conjunt de 

materials de referència d'utilitat en el desenvolupament i ús de sistemes de HCE, 



concretament validadors de dades, instàncies d'exemple, guies d'implementació, 

regles formals llegibles per humans, formularis d'exemple, mapes mentals, etc. 

Aquests materials poden ser combinats i organitzats de diferents maneres per a 

facilitar que els diferents tipus d'usuaris (clínics, tècnics) puguen incloure els models 

clínics detallats en el flux de treball del seu sistema i col·laborar en la seua definició. 

Aquestes metodologies i eines posen els models clínics com una part clau del sistemes. El 

conjunt de les metodologies i eines presentades faciliten la consecució de la interoperabilitat 

semàntica en proveir mitjans per a la seua descripció semàntica, normalització i validació tant 

de sistemes nous com ja existents. 
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VII. Introduction 

In a world each time more interconnected, healthcare domain still lags behind, mostly due to 

the complexity, variability, and the always evolving knowledge of the clinical domain. 

Accessing the full Electronic Health Records (EHR) of the patients is still difficult, as the 

information tends to be distributed among different systems. This leads to a situation where 

the existence of information islands prevents the efficient use of the data stored in these 

systems. Sharing EHR in a meaningful and secure way will improve significantly patient care, 

patient safety, and clinical research (1).  

Semantic interoperability (2) has always been the holy grail of medical informatics. From their 

first usages in the early 1960s until today, traditional systems development has not been able 

to achieve semantic interoperability. After 2010, interoperability projects started to emphasize 

the need of three different layers: generic reference models, clinical models, and clinical 

vocabularies. Despite of this, governments and providers still try to achieve high levels of 

semantic interoperability by removing diversity (e.g. by explicitly defining the messages that 

must be used). They tend to avoid variability, which at the end only allows interoperability on a 

limited level, as assumes that everyone will have exactly the same information needs and 

everything outside it is just ignored. Variability is almost intrinsic of clinic domain. New tests 

and data needs are continuously being introduced and changed due to improvements in the 

clinical practice. Systems should support this evolution and not discourage it.  

One of the prerequisites to achieve semantic interoperability is the standardization of both the 

data and concepts present in information systems. This is even more important in healthcare 

domain where data needs to be exchanged in a way that its precise meaning is preserved. To 

achieve this goal, the syntax, structure, and semantics of health data need to be standardized. 

The new generation of EHR architectures (EHRA) use Detailed Clinical Models (DCM) as the 

discrete set of precise documentable clinical knowledge to specify the structure and 

constraints to follow. A set of these EHRA are based on what is called dual model methodology 

(3). It tries to overcome the problems caused by the complexity and continuous evolution of 

health domain. Dual model methodology distinguishes two models, the Reference Model that 

contains the basic and stable entities for representing any entry in an EHR, and the DCM 

(expressed as archetypes), which formally define the domain and application-specific domain 

models such as blood pressure, discharge report, or lab result. Despite using dual model 

systems provides advantages, the migration or integration of current systems is not always 
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easy. Existing clinical data must be transformed to meet the data structures defined by 

reference model and archetypes. We face a problem known in literature as the data exchange 

(translation or transformation) problem (4). Data exchange at schema level requires an explicit 

representation of how the source schema (legacy data schema) and target schema 

(archetypes) are related to each other. These explicit representations are called mappings 

(5,6). The application of data exchange methods to map existing legacy EHR systems and 

archetypes allow the enrichment of legacy data and their meaningful communication. Apart 

from mappings, the application of dual modeling to legacy EHR systems allows their 

improvement by means of all the available archetype-based methodologies and tools. Finally, 

the use of archetypes as basis for the automatic generation of reference materials such as 

implementation guides or Schematron rules provides further benefits, for instance, in the 

development of new EHR systems or the validation of legacy EHR systems.   

VIII. Hypothesis 

Detailed clinical models can be applied to describe the structure, content, and meaning of 

existing EHR systems as well as to facilitate the development and deployment of new EHR 

systems that require semantic interoperability. 

IX. Objectives 

The overall objective of this thesis is to provide a set of methodologies and tools based on 

archetypes for the achievement of higher levels of EHR semantic interoperability.  

The concrete objectives of the research are: 

1. To provide means of applying dual model methodology to non-dual model standards. 

This includes providing support for the definition of archetypes based on any EHR 

information model, either a standard or local model. 

2. To provide tools for the transformation of existing data into data instances compliant 

with archetypes and underlying reference models. Due to the potential complexity of 

reference models and the evolving nature of archetypes, the transformation shall be 

guided by high-level non-procedural mappings that describe the relationship between 

archetypes and legacy clinical data. These high-level mapping must be then 

automatically compiled into executable scripts.  

3. To enable the automatic generation of sets of reference materials from clinical 

archetypes, regardless of the reference model on which archetypes are based. This 
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includes the combination of the reference materials into views suitable for each type 

of final user. 

X. Document organization 

This thesis is divided into five chapters. 

First chapter contains the background and state of the art, which offers a vision on EHR and 

EHR architectures, terminologies, data transformation, model-based transformations, format 

transformations, constraint definition languages, interoperability projects, and LinkEHR 

normalization platform. 

Second chapter describes the methodologies and tools for the representation of non-dual 

model based reference models with archetypes. 

Third chapter presents the created methodologies and tools for the transformation of both 

legacy EHR data and standard-based data into archetype-based data. 

Fourth chapter describes and discusses the use of archetypes for the generation of reference 

materials, in the upgrade of existing clinical information systems as well as the development of 

new ones. 

Fifth chapter presents the final conclusions, future work, related publications, and congress 

papers.  
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XI. Abbreviations and acronyms 

ACE   Attempto Controlled English 
ADL Archetype Definition Language 
AML Archetype Modelling Language 
ANSI American National Standards Institute 
AOM Archetype Object Model 
AQL Archetype Query Language 
AM Archetype Model 
API Application Programming Interface 
C-CDA Consolidated Clinical Document Architecture 
CCR Continuity of Care Record 
CDA Clinical Document Architecture 
CDISC Clinical Data Interchange Standards Consortium 
CEN European Committee for Standardization 
CEM Clinical Element Model 
CEML Clinical Element Modelling Language 
CM Clinical Model. Detailed, reusable and domain-specific definition of a 

clinical concept. 
CIM Computation Independent Model 
CKM Clinical Knowledge Manager 
CSS Cascading Style Sheets 
D-MIM Domain Message Information Model 
DCM Detailed Clinical Models 
DICOM  Digital Imaging and Communication in Medicine 
DTD Document Type Definition. A description of the structure of an XML 

document. 
DSTU Draft Standard for Trial Use 
EHR Electronic Health Record 
EHRA Electronic Health Record Architectures 
EMF Eclipse Modeling Framework 
EMR Electronic Medical Record 
epSOS european patient Smart Open Services 
FHIR Fast Healthcare Interoperability Resources 
FLWOR XQuery expression acronym of FOR-LET-WHERE-ORDER BY-RETURN, 

analogous to the SQL SELECT-FROM-WHERE 
GEHR Good European Health Record 
GTR Genetic Testing Report 
GUI Graphic User Interface 
HCDSNS Historia Clínica Digital del Sistema Nacional de Salud 
HIT Health Information Technology 
HL7 Health Level Seven 
HTML HyperText Markup Language 
ICD International Classification of Diseases 
IHTSDO International Health Terminology Standards Development Organization 
IM  Information Model, a conceptual model of the information needed to 

support a business function or process 
ISO International Organization for Standardization 
LOINC Logical Observation Identifiers Names and Codes 
MDA Model-Driven Architecture 
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MDD Model Driven Development 
MDE Model Driven Engineering 
MDHT Model-Driven Health Tools 
MML Medical Markup Language 
NEHTA National E-Health Transition Authority 
NHS National Health Service 
NPO Non-Profit Organization 
NRL Natural Rule Language 
OCL Object Constraint Language 
ODM Operational Data Model 
OET Operational Template. An internal format from Ocean Informatics 

Template Designer 
OHT Open Health Tools 
OMG Object Management Group 
ONC US Office of the National Coordinator 
OPT Operational Template. An artefact used in ADL to represent local 

archetype specializations. 
OWL Web Ontology Language 
PIM Platform Independent Model 
PDF Portable Document Format 
POJO Plain Old Java Objects. Simple Java classes that need no framework to be 

used  
REST Representational State Transfer. 
R-MIM Refined Message Information Model 
RM Reference Model 
SNOMED-CT Systematized Nomenclature of Medicine – Clinical Terminology 
SWRL Semantic Web Rule Language 
UCUM Unified Code for Units of Measure 
UI User Interface 
UML Unified Modeling Language 
UMLS Unified Medical Language System 
URI Uniform Resource Identifier 
VHA Veterans Health Administration 
VMR Virtual Medical Record 
WSDL Web Services Description Language 
W3C World Wide Consortium 
XMI XML Metadata Interchange 
XML Extensible Markup Language 
WSDL Web Services Description Language 
XSD XML Schema Definition 
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Chapter 1.  

Background and State of the Art 

 

 

 

1.1. Electronic Health Records 

Health care is increasingly producing and consuming large amounts of information. Most of 

this information is the health record of individuals, in digital form, which is referred to as the 

Electronic Health Record (EHR).  Although being a cornerstone concept in medical informatics 

there is not a common definition of EHR. An ISO report (7) states that “Previous attempts to 

develop a definition for the Electronic Health Record have foundered due to the difficulty of 

encapsulating all of the many and varied facet of the EHR in a single comprehensive 

definition”. Nevertheless, this report provides a definition that attempts to consolidate the 

various definitions: 

“A repository of information regarding the health of a subject of care in computer processable 

form, stored and transmitted securely, and accessible by multiple authorized users. It has a 

standardized information model, which is independent of EHR systems. Its primary purpose is 

the support of continuing efficient and quality-integrated healthcare and it contains 

information, which is retrospective, concurrent, and prospective” 

From the previous definition it is clear that EHR is not owned by any single information system 

and contains complete records of encounters of a patient throughout the visited healthcare 

organizations. The distribution of EHR content makes that sharing information is the norm 

rather than the exception, although this desideratum is far from being sufficiently addressed. 

Furthermore, the predictable shift towards personalized medicine will cause drastic increase in 

size and complexity of EHR systems, which will again affect clinical data integration. Achieving 
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a high level of semantic interoperability is one of the most important challenges for 

meaningful use of EHR. Semantic interoperability is the ability, facilitated by ICT applications 

and systems, to exchange, understand and act on Health-related information and knowledge 

among linguistically and culturally disparate health professionals, patients and organizations 

(2). It is vital to assure global consistency in meaning, a basic requirement to enable better 

health care as well as secondary use of EHR data for research (8–10). From the health care 

delivery perspective, interoperable EHR systems ideally enable the automation of processes 

across different healthcare organizations, save time and resources while increasing patient 

safety. From a research perspective, interoperable EHRs provide a computable collection of 

fine-grained longitudinal phenotypic profiles, facilitating cohort-wide investigations and 

knowledge discovery on an unprecedented scale (11).  

The intrinsic complexity and variability of health data makes standardization crucial to achieve 

a high level of semantic interoperability. Currently there is a mature body of EHR standards 

covering the three layers of artefacts to represent the meaning of health data (2): 

 Generic Reference Models for EHR communication. They contain a basic and stable 

representational framework for describing all EHR entries, the way how they are 

aggregated, and the context information required to meet ethical, legal and 

provenance requirements. The last generation of such models is the result of 

international research over the past decades, e.g. ISO/EN13606 (12), HL7 CDA Release 

2 (13), the openEHR Reference Model (14) or HL7 FHIR (15). 

 Clinical models are detailed, reusable and domain-specific definition of a clinical 

concept (such as Apgar score, discharge report, and primary care EHR). Examples of 

such models are openEHR/ISO13606 archetypes (16), CDA templates, detailed clinical 

models (17) and Clinical Element Model (CEM) (18). Currently, the International 

Clinical Information Modelling Initiative (CIMI) (19) is working on providing a common 

format for the definition of health information content based on the 

openEHR/ISO13606 archetype model. Concretely, archetypes are standardized and 

reusable models for capturing and representing clinical content. They are formed by 

the constrained combination of the reference model entities. Archetypes may logically 

include other archetypes, and can be specialized. They provide a powerful way of 

managing the description, creation and validation of the EHRs.  

 Clinical vocabularies such as terminologies, ontologies and classification systems. 

Increasingly clinical vocabularies, particularly the clinical terminology SNOMED CT (20) 
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and the upcoming ICD-11 (21) classification, are based on ontologies. This means that 

they do not only aggregate the common meaning of domain terms as concepts, but 

also provide precise description about the things these terms denote in the clinical 

domain. One important challenge to be met is to find an effective way to use them 

within the EHR (22). The semantic description of information models (expressed as 

archetypes) is achieved by linking data structures and content to terminologies and 

ontologies. The crucial difference is that information models describe information in 

the EHR whereas ontologies describe (classes of) objects and processes in the world 

(23). 

 

The deployment of interoperable information systems in the healthcare sector is presently 

much less than in other public service sectors or industries. This is mainly due to the 

complexity and variability of health data. There already exist a plethora of proprietary and 

standardized data and metadata definitions, organized vocabularies in the form of 

classifications and terminologies, communication standards and profiles. But their rapid 

change and increasing complexity makes them barely affordable to be implemented even for 

big companies. It must be noted that eHealth interoperability standards are usually defined as 

documented specifications that must be brought to life by system designers and 

implementers. This initial implementation effort requires deep expertise in the profiles and 

standards, often not accessible for many organizations (companies, hospitals, health 

authorities, etc.). But this challenge is even more acute given the significant efforts needed to 

test and meet conformance criteria. When organizations fail to perform these conformance 

and interoperability tests, they are faced with a large variability among the implementations, 

and have to resolve incompatibilities project by project in an ad-hoc and reactive manner. 

Those induced costs not only discourage, but they also slowdown the adoption of profiles and 

standards, thus generating uncertainty about standards. 

1.2. Electronic Health Record architectures 

It is widely acknowledged that standardization of data and concepts is a prerequisite to 

achieve semantic interoperability in any domain. This is even more important in the healthcare 

sector where the need to exchange data is not an exception but the rule. The faithful 

communication of EHRs crucially depends on the standardization of its syntax, structure and 

semantics, i.e. on the standardization of the EHR architecture (EHRA) and vocabulary used to 

communicate data. Currently there are several international organizations working on the 
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standardization of EHRA. Health Level 7 (24) is an international standardization organization 

that has defined standards for communicating data between different systems through 

messaging (HL7v2.x and HL7 v3 messages) and also a model that defines the structure and 

semantics of medical documents (the Clinical Document Architecture, CDA). The Technical 

Committee (TC) 251 of the European Committee for Standardization (CEN) has also developed 

a European Standard, now also accepted as an ISO standard, for the communication of the 

electronic health record called ISO/EN13606 (12). TC 251 has also developed the Health 

Informatics Service Architecture (HISA) (25), a 3 part standard for specifying unified and open 

service architectures based upon a middleware of information services. The openEHR 

foundation (14) has also developed the specifications of a complete architecture designed to 

support the constructions of distributed, patient-centered, life-long, shared care health 

records. ISO13606 and openEHR share the same dual model philosophy. Finally, Clinical Data 

Interchange Standards Consortium (CDISC) is an open organization that develops data 

standards that enable information system interoperability to improve medical research and 

related areas of healthcare (26).  

1.1.1. Dual model architecture 

Due to the complexity and the continuous evolution of the health domain the development of 

EHRA is not an easy task. A new approach for their development has been proposed known as 

the dual model methodology. The most remarkable feature of the dual model approach is 

separation of information models representing the generic and stables properties of EHR 

(called the reference model) from domain models such as blood pressure measurement, 

discharge report, prescription or microbiology result which are represented by archetypes. 

Only the stable reference model is hard-coded in database schemas or software, while the 

possible numerous and volatile domain concepts (archetypes) are modeled separately by 

domain specialists. Since the software is only bound to the reference model it has no direct 

dependency on domain concepts. Therefore, systems do not need to be changed when 

domain concepts are created or altered. Examples of Dual Model architectures are CEN/ISO 

13606 and openEHR. Although HL7 v3 cannot be considered a true Dual Model standard; it 

uses a quite similar approach. These architectures will be discussed in the following sections. 

In EHR environments, a reference model represents the generic and stable properties of health 

record information. It specifies the set of classes that form the generic building blocks of the 

EHR, how these building blocks should be aggregated to create more complex data structures 

and the context information that must accompany every piece of data in order to meet ethical, 
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legal and provenance requirements (27). The generality of reference models is complemented 

by the particularity of archetypes. Archetypes are formal definitions of a distinct domain-level 

concept in the form of constrained hierarchies of the building blocks defined in the reference 

model. Archetypes define or constrain the names and other relevant attribute values, 

optionality and multiplicity at any point in the hierarchy, the data types and value range that 

atomic attributes may take. Their formal description is achieved by linking the data structures 

and content to knowledge resources such as terminologies and ontologies.  

Figure 1 (28) shows the implications of a dual model approach. The information created by the 

user is compliant both with the defined archetypes/templates and the underlying Reference 

Model. Archetypes constraint the Reference Model and are created by domain experts by 

using the Archetype Object Model (AOM). AOM can be serialized into Archetype Definition 

Language (ADL). Terminologies are used in archetypes to express the archetype semantics and 

to constrain the codes that will be used when the user creates the information. 

AOM

Domain expertDomain expertUserUser

Terminology

Archetype
Model

Reference
Model

      ADL      ADL

Archetypes & TemplatesInformation

Semantics of
 constraint

Instance of

Conforms creates

Instance of

Used in Referenced by

creates

 

FIGURE 1 DUAL MODEL META-ARCHITECTURE 

1.1.2. Archetype Definition Language 

Archetype Definition Language (ADL) (29) is a model independent structured syntax for the 

specification of clinical information models. Both ISO13606 and openEHR use ADL for 

archetype specification. Current stable version of ADL is 1.4, which is the one used in this 

thesis. ADL defines three syntaxes: cADL for constraint definition, dADL for data definition and 
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a version of first-order predicate logic (FOPL) similar to OCL (30) to describe additional 

invariants. The cADL syntax is used to express the archetype ‘definition’ section while dADL 

syntax is used to express the ‘language’, ‘description’, and ‘terminology’ (formerly ‘ontology’), 

and ‘revision_history’ sections.  The FOPL is used in the ‘rules’ (formerly ‘assertions’) section. 

Archetype structure includes the following sections: 

 An archetype header containing the archetype identifier 

 An optional parent archetype identifier that the current archetype specializes 

 A concept code that represents the real world concept this archetype represents, such 

as “body mass”, “patient”, or “blood pressure” 

 The original language of the archetype 

 An optional description section containing the archetype metadata 

 A definition section containing the formal constraint definitions of the archetype 

 An optional assertions section containing the invariants 

 A mandatory section containing the definition of the terms in different languages and 

the terminology definitions and bindings 

 An optional revision history section containing the history of changes and audit 

dADL 

dADL syntax (also called Object Data Instance Notation, ODIN) provides formal means of 

expressing instance data based on an underlying information model. dADL is intended to be 

readable by humans and machines. An example of dADL code can be seen in Figure 2. 

 

FIGURE 2 DADL SYNTAX EXAMPLE 

dADL is intended to represent data making as few assumptions as possible about the 

underlying information model. Only a simple set of types are included in the syntax, namely 

Integer, Real, Boolean, String, and ranges of Dates and Times. Every other complex type is 
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derived from these. dADL is similar to XML, but one of dADL principles is being human-

readable and is designed to better represent object-oriented semantics. 

There are two types of identifiers in dADL: type names and attribute names. Type names are 

identifiers with the initial letter in uppercase followed by a combination of letters, digits, and 

underscores. An attribute name is an identifier with an initial lowercase letter followed by a 

combination of letters, digits, and underscores. As a convention, all type names are written all 

in uppercase, e.g. COMPOSITION. This excludes the built-in types, that are written in mixed 

case (String, Real, Integer, etc.). Also as a convention, attribute names are written all in 

lowercase. However, some reference models (e.g. HL7 CDA) do not follow this pattern, and 

require additional steps and transformations before being able to represent their data in dADL 

syntax. 

dADL primitive types allow the definition of values in leaf nodes. These values include 

instances of primitive types (e.g. "a string", 123.4, True, 2015-10-26), lists, or intervals of 

primitive types. In addition to that, everything following '--' is considered a comment and is 

ignored during parsing. 

cADL 

cADL is a syntax that enables the definition of constraints over data defined by object-oriented 

information models expressed as archetypes or other knowledge representation formalisms. 

cADL constraints can be used at runtime to allow the systems to validate data following a given 

information model. An example of cADL code can be seen in Figure 3. 

 

FIGURE 3 CADL SYNTAX EXAMPLE 

Unlike dADL, cADL includes a set of reserved words, such as matches, occurrences, existence, 

cardinality, includes, use_node, etc. Of these reserved words, 'matches' is probably the most 

important one, as is the one used for the definition of constraints in both objects or parts of an 

object (attributes). When it occurs between a name and a braces-delimited block refers to the 
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set of valid values for that name. In data, constraints are recursively matched for either objects 

and attributes until leaf level constraints are matched. 

Identifiers in cADL follow the same rules that in dADL: A type name is an identifier with an 

initial uppercase letter followed by a combination of letters, digits, or underscores. An 

attribute name is an identifier with an initial lowercase letter followed by a combination of 

letters, digits, or underscores. In the same way, everything following '--' is considered a 

comment and is ignored during parsing. As in dADL, some reference models do not adhere to 

these rules and thus must be processed for their representation in cADL. 

In cADL, an entity in brackets e.g. [xxxx] is used to identify "object nodes", i.e. nodes 

expressing constraints over types. These identifiers allow the definition of different sets of 

constraints over the same type (e.g. PERSON[at0001] could define male actors and 

PERSON[at0002] define actresses, each one with their own set of constraints). These object 

nodes correspond to entities in an object-oriented information model. 

cADL constraints always constraint parts from the underlying information model. This implies, 

on the one hand, that constraints cannot be stronger than the ones in the information model. 

On the other hand, cADL includes only the constraints for the parts of the information model 

which are useful or meaningful to constraint. E.g. it is useful to constrain the valid values for a 

measure, but probably is not useful to constrain the name of the patient. 

Different kinds of constraints can be defined depending on the kind of node being constrained 

(element, attribute, or primitive type). For attribute constraints, every attribute can redefine 

their existence. These constraints say if an attribute must exist. There are three states on the 

existence (0..1 optional, 1..1 mandatory, and 0..0 not allowed; default is 1..1). Figure 4 shows 

an example of an existence constraint for the mandatory attribute 'identifier' or for the 

optional 'actors'. In addition to existence constraints, container attributes (also known as 

multiple attributes as opposed to the single attributes) allow to define constraints over lists 

and sets. These attributes use cardinality keyword to indicate both the allowed membership of 

the container (e.g. 0..* for 0 to many, 2..4 for from 2 to 4, etc.) and the semantics of the set 

(ordered, unique). Figure 4 shows an example of 'actors' cardinality and semantics. In this case, 

at least one actor or actress must be included and is a logical set (as it is unordered and 

unique). 

It is also possible to define how many times in runtime an instance of an object can occur. This 

is stated by defining the object occurrences. Objects inside a single attribute are only allowed 
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to have occurrences of 0..1 or 1..1. In Figure 4 both the actor (PERSON[at0001]) and actress 

(PERSON[at0002]) have occurrences 0..*, i.e. any number of actors or actresses can be 

included under 'actors' attribute. 

More than one object constraint can be defined inside an attribute, and the meaning depends 

on whether the attribute is a single attribute or multiple attribute. If more than one object 

constraint is included inside a single attribute then they are considered as alternatives, and 

only one of the constraints needs to be matched on the data. As shown in Figure 4, a valid 

instance needs to include either a TEXT object or an INTEGER object inside an 'identifier' 

attribute. 

 

FIGURE 4 CADL EXAMPLE SHOWING OCCURRENCE, EXISTENCE, CARDINALITY, AND PRIMITIVE VALUE 

CONSTRAINTS 

cADL also allows to leave a constraint open. This is called "any", and is shown by an asterisk in 

braces. This shows explicitly that the property can have any value (always having the 

underlying information model as a basis). In Figure 4, 'name' attribute can contain any value 

that is allowed by the underlying model. 

cADL also allows the reuse of complex structures from inside and outside of the archetype. The 

former is called archetype internal reference, which allows including a constraint already 

defined in a different block. Archetype internal references are denoted by the keyword 

'use_node'. The latter is called archetype slot and allows the use of other external archetypes 

rather than define the constraints inline. Archetype slots are defined by a set of assertions 

(includes, excludes) which define the set of allowed or excluded archetypes in the slot. 

Archetype slots are denoted by the keyword 'allow_archetype'. Figure 5 shows both an 
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example of an archetype internal reference (in 'director') and an archetype slot (for the 

definition of PERSON[at0003], 'extra'). 

 

FIGURE 5 CADL EXAMPLE SHOWING INTERNAL REFERENCES AND ARCHETYPE SLOTS 

Finally, cADL also allows the definition of constraints over primitive types. For the definition of 

these constraints, type name is omitted and the constraint is put directly on the braces. Each 

different kind of primitive types allows a different set of valid constraints. For String 

constraints, they can be constrained in two ways: a list of fixed strings, or by using a regular 

expression. For Integer and Real constraints, either a list of values or a range can be defined. 

For Date, Time, DateTime, and Duration constraints specific lists of values, intervals, or patters 

can be defined. Figure 4 shows several examples of primitive constraints, namely the pattern 

“/.+/” for defining non-empty strings inside a TEXT object, the range from 0 to 1000 for the 

INTEGER object, or the list of valid honorific for actor and actress. 

1.2.1. Dual Model Standards and specifications 

1.2.1.1 ISO/EN13606, International standard 

ISO/CEN EN13606 (12) is a five-part standard for the communication of Electronic Health 

Records (EHR). It was first approved as a European norm by the TC/251 in 1999. The norm was 

proposed and accepted as an ISO norm in 2008 (parts 1 and 2), 2009 (parts 3 and 4) and 2010 

(part 5). The five parts are: 
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 ISO13606 part 1: Reference model (12).defines a generic information model that 

defines generic data structures and their relationships to express any kind of 

information that can be included in the EHR. 

ISO13606 part 1 most relevant classes are: 

EHR_EXTRACT 

The EHR_EXTRACT is the top-level container of the complete or partial EHR of a single 

patient. 

FOLDER 

Folders are higher level hierarchical organizers of the EHR. Folders logically join several 

compositions by different criteria. Examples of folders include pediatrics, all patient 

EHR, episodes from last year, GP folder, etc. 

COMPOSITION 

A composition is all the information committed by a single agent as a result of a single 

clinical encounter. Examples of this include discharge summary, referral letter, 

radiology report, health summary, etc. 

SECTION 

A section groups data within a composition in order to reflect the flow of information 

gathering during a clinical encounter, or to structure it in order to ease human 

readership. Examples of this include family history, subjective symptoms, treatment, 

reason for encounter, past history, etc. 

ENTRY 

An entry includes all the information recorded in the EHR as a result of a clinical 

observation, evaluation (clinical interpretation), instruction (intention), or action. 

Examples of entries include blood pressure measurement, diagnosis, a symptom, an 

observation, etc. 

CLUSTER 
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A cluster is the way of representing columns or tables, and other nested data 

structures such as time series. Examples of clusters include Electro-encephalogram 

interpretation, heart rate response to exercise diagrams, etc. 

ELEMENT 

The element is the leaf node of the EHR. It contains a single value. Examples of 

elements include body weight, body height, allergy code, allergy name, medication 

dose, etc. 

 ISO13606 part 2: Archetype interchange specification (31) 

Part 2 includes a generic information model to define archetypes, which are re-usable 

models of a domain concept. It also includes the formal language for the specification 

of these archetypes called Archetype Definition Language (ADL). This part is based on 

the openEHR ADL. 

 ISO13606 part 3: Reference archetypes and term lists (32) 

Contains both the local terminology used by part 1 and a set of reference archetypes 

that represent how other standards can be expressed with this norm. 

 ISO13606 part 4: Security (33) 

This part includes a basic security framework for the specification and communication 

of security and access policies for the EHR. 

 ISO13606 part 5: Exchange models (34) 

Part 5 includes a minimal interface and messaging specification for the EHR 

communication. 

ISO13606 archetypes are expressed in ADL. Figure 6 shows an excerpt from an ISO13606 

medication administration archetype. The first section includes a header with the archetype 

identifier (CEN-EN13606-CLUSTER.medication_admin.v1). The next section to appear is the 

concept code (pointing to “Medication Administration”). Then the original language of the 

archetype (English) is stated. Next, it comes a description section containing information about 

the original author, the archetype lifecycle or language dependent metadata such as purpose, 
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use, misuse, etc. The archetype definition section contains the medication administration 

(CLUSTER[at0000]) with the different parts of its structure, namely the route 

(ELEMENT[at0001]), site (ELEMENT[at0002]), delivery method (ELEMENT[at0003]), dose 

duration (ELEMENT[at0004]), and infusion details (CLUSTER[at0005]) which is defined in its 

own archetype CEN-EN13606-CLUSTER.infusion_details. Finally the ontology section contains 

the definition for the terms used in the archetype. 

 

FIGURE 6 EXCERPT FROM ISO 13606 MEDICATION ADMINISTRATION ARCHETYPE 

ISO13606 has been adopted by several national and regional projects, such as Spain (35), 

Sweden (36), or Minas Gerais (Brazil) (37,38). 

1.2.1.2 openEHR specifications 

openEHR (14) is an international non-profit foundation created by University College London, 

UK and Ocean Informatics in 2000. They have developed a technology-independent 
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architecture that includes a reference model, archetypes, and templates. OpenEHR is based 

around the openEHR reference model, which is closely related to ISO 13606-1, and openEHR 

archetype model, which has been adopted by ISO 13606-2. The most relevant classes of 

OpenEHR reference model are: 

COMPOSITION Class 

In openEHR, COMPOSITION is the top level data container. It is the committal unit where all 

information within the EHR will be contained. Compositions can contain SECTION or ENTRY 

classes to contain the clinical content. 

Compositions correspond to commonly used clinical documents, such as Discharge summary, 

Referral document, Health Summary, Pharmacy dispense, etc. 

openEHR Composition class is equivalent to ISO13606 Composition Class 

SECTION Class 

Sections provide both a logical structure and a navigational structure for readers of the record. 

openEHR Section class is equivalent to ISO13606 Section Class. 

ENTRY Class 

The abstract entry class can be subclassed in order to record clinical statements. openEHR 

entries can be one of the following: Observation, Evaluation, Instruction, Action, or 

Admin_entry. openEHR Entry class is equivalent to ISO13606 Entry Class. 

OBSERVATION 

Observation is the kind of Entry whose purpose is to document all the information about 

observed phenomena, including any kind of measure or responses in an interview. 

EVALUATION 

Evaluation is the kind of Entry whose purpose is to document all the information about 

assessments, diagnoses, or plans. 

INSTRUCTION 

Instruction is the kind of Entry whose purpose is to document all the information about 

actionable statements such as care plans, medication orders, etc. They are statements about 

what should happen in the future. 
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ACTION 

Action is the kind of Entry whose purpose is to document all the information recorded as a 

result of performing instructions. These are statements about things that were actually 

performed. 

ADMIN_ENTRY 

Admin entry is the kind of Entry whose purpose is to document all the administrative 

information. 

openEHR also includes CLUSTER and ELEMENT classes similar to the ones described for 

ISO13606. 

Figure 7 shows an overview of the openEHR information model. 

 

FIGURE 7 OPENEHR INFORMATION MODEL OVERVIEW. © OPENEHR 

OpenEHR also contains a top level structure, the EHR, which provides access control settings 

(EHR_ACCESS), the current status of the EHR (EHR_STATUS), the versioned data containers 

(VERSIONED_COMPOSITION), a set of the changes to the EHR (CONTRIBUTION) and optionally 

a higher level hierarchical organizer (FOLDER). 

OpenEHR archetypes are also expressed in ADL format. Figure 8 shows an excerpt from an 

openEHR triage archetype. The header contains the archetype identifier (openEHR-EHR-

EVALUATION.triage.v1). The concept code (pointing to “Triage evaluation”) appears next, 

followed by the original language of the archetype (English). The description section contains 
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information about the original author, the archetype lifecycle or other metadata such as 

keywords, purpose, etc. The archetype definition section contains the Triage evaluation 

(EVALUATION[at0000]) containing both the data in the triage evaluation (ELEMENT[at0002]),  

and rationale (ELEMENT[at0008]). Triage evaluation contains an ordinal to code each one of 

the values to a code. Finally the ontology section contains the definition for the terms and 

labels used in the archetype.  

OpenEHR also provides specifications for Archetype Query Language (AQL) (39), a query 

language based on archetypes and pattern matching, and a Guideline Definition Language 

(GDL) (40), a formal language for the expressing decision support logic. 

 

FIGURE 8 EXCERPT FROM OPENEHR TRIAGE ARCHETYPE 

OpenEHR has been used for several national and regional projects, such as Australia, Brazil, 

Norway, and Slovenia. 

1.2.1.3 Dual model EHR experiences 

The number of archetype-based developments is continuously growing. Every year more 

governments provide definitions of their clinical models as archetypes. Countries such as 
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Norway (41), Brazil(38,42), UK(43), Spain(35), Australia(44), or Slovenia (45) already publish 

their national archetypes and more countries and regions are planning to do it in the 

foreseeable future. The involvement of official bodies and governments has been translated 

into an exponential growth of available archetypes. As an example, currently there are almost 

600 archetypes available in the openEHR archetype repository (16), almost a fourth of them 

were created in the last year and more than 250 are currently on active development. 

However, as there is no commonly used methodology for the definition of archetypes (46), the 

resulting archetypes can have great variability (47) and inconsistent terminology bindings. This 

is directly related with the quality of archetypes and clinical information models (48–50). 

Creating good terminology bindings and improving current bindings is in fact one of key 

archetype research areas. The generation of semi-automatic bindings to clinical terminologies 

is important to reduce medical errors and to achieve interoperability between health 

information systems (51–54). These well-defined terminology bindings allow the correct 

validation (55) and management (56,57) of archetypes. 

Archetypes themselves can be considered as semantic constructs and several projects have 

been devoted to their representation by semantic web technologies. For instance, they have 

been transformed into OWL (58,59), for advanced use cases such as clinical model 

transformation (60) or the calculation of health care quality indicators (61). 

Semantic web technologies also allow the reasoning over clinical data. Clinical research and 

Clinical Decision Support Systems (CDSS) can benefit the most from reasoning over quality 

agreed definitions of the clinical models included in the systems. Advanced alert systems (62), 

identification of patient cohorts (63), or creation of research data warehouses from legacy 

data (64) are only a few examples of the joint use of archetypes and semantic web 

technologies. 

1.2.2. Non-Dual Model Standards 

1.2.2.1 HL7 Standards 

HL7 v2.x Messaging 

HL7 v2 (65) is a messaging standard used for the electronic exchange of clinical, care, 

economic, and logistic information to support workflow between applications, between 

organizations, or inside of an organization. HL7 v2 messages use a non-XML syntax based on 

segments and delimiters. 
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There have been several releases of HL7 v2.x (e.g. v2.1, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.7, etc.). Every 

new version of v2 is designed to be backwards compatible (i.e. messages developed for a given 

version will be understood on applications that support newer versions). 

HL7 v2.x is one of the most used healthcare standards. More than 35 countries have HL7 v2.x 

implementations. In fact, 95% of United States healthcare organizations use HL7 v2.x (65). 

HL7 CDA 

HL7 Clinical Document Architecture (CDA) (13,66) is a XML-based document markup standard 

for the exchange of clinical documents. It specifies the encoding, structure, and semantics of 

the data elements to describe the actors, actions, and events in healthcare. HL7 is based on 

the HL7 Reference Information Model (RIM) and uses HL7 v3 data types. CDA defines clinical 

documents which have the following characteristics: persistence, stewardship, potential for 

authentication, context, wholeness, and human readability. HL7 CDA release 2.0 was published 

by HL7 in 2005 and has been adopted as an ISO standard 27932 in 2009. 

HL7 CDA can contain any type of clinical content, from discharge summaries to genetic testing 

information. CDA contains a mandatory textual part to ensure the human interpretation of the 

contents and an optional structured part used for automatic processing. LOINC is 

recommended to specify the document types, but any terminology (such as SNOMED, ICD or 

LOINC itself) can be used inside of the structured part to represent the contents. 

The entry point for HL7 CDA is the ClinicalDocument class. A CDA document is logically divided 

into the CDA Header and CDA body. The purpose of the CDA header is to enable clinical 

document exchange between institutions, facilitate clinical document management, and ease 

the process of obtaining a patient lifelong electronic health record. Header contains 

information about the participants (e.g. patient, clinician), the custodian of the information, 

information about the clinical encounter and related documents. On the other hand, the CDA 

body can be either an unstructured blob or a structured body. A structured body contains one 

or more sections that can contain zero or more clinical statements (CDA entries). HL7 CDA 

provides the following set of entry classes: 

Act class 

Act class is a type of entry that should be used when no other entry class is found suitable. 

Encounter class 
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Encounter class is used to represent related clinical encounters between healthcare provider 

and a patient, such as referenced past visits or follow-up visits 

Observation class 

Observation class is the entry used to document information about observed phenomena. 

Observation can be seen as similar to a non-altering procedure. 

ObservationMedia class 

ObservationMedia class is a derived observation that represents multimedia that is logically 

part of the document, such as an imaging result. 

Organizer class 

Organizer is a class designed to support grouping of information that shares a common context 

Organizer can contain other organizers and/or other CDA entries. 

Procedure class 

Procedure class is the class to document information about a procedure that results in a 

physical alteration of the subject. 

RegionOfInterest class 

RegionOfInterest is the class that represents a region of interest on an image, using an overlay 

shape. 

SubstanceAdministration class 

Substance administration is the class intended to represent the administration, past or 

planned, of a particular substance such as medication. This also includes information about the 

exposure of the patient to a substance they have to be treated for. 

Supply class 

Supply class is used to document the information about the provision of materials between to 

entities, such as the medications given to a patient for a later use. 

Both CDA section and entry classes can redefine the information provided in the 

ClinicalDocument header (e.g. author, informant, and subject). In addition to that, entries can 

be semantically linked to other entries contained in the same document by traversing the 

entryRelationship class. 
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HL7 CDA is the basis of several national and international projects, such as the United States 

Meaningful Use (67) and Europe epSOS (68) projects. 

HL7 FHIR 

Fast Health Interoperability Resources (FHIR) (15) is a HL7 Draft Standard for Trial Use (DSTU) 

open specification for the electronic exchange of healthcare information. FHIR takes advantage 

of the lessons learnt with HL7 v2 and HL7 v3 to provide a specification for the interoperability 

of healthcare information with focus on implementation ease. FHIR is based on a set of basic 

modular components called Resources, which describe the contents of the health records 

(clinical or administrative) that can be exchanged. Resources are reusable profiles defined in a 

common way based on other Resources and a set of data types. They also include a human 

readable part to ease their understanding by clinicians. Resources can be used directly, 

extended, or combined to satisfy most common use cases. 

FHIR Resources are based on the 80-20 principle where an element will be included only if 80% 

of the systems implement it. 

FHIR resources can be expressed in either XML or JSON. Figure 9 shows an example of a FHIR 

DSTU2 Medication resource definition. Every FHIR resource includes implicitly all the attributes 

from their parent resources, in this example ‘Resource’ and ‘DomainResource’. Resources 

attributes can point either to primitive types (e.g. ‘name’ has data type ‘string’ and ‘isBrand’ 

has data type ‘boolean’), complex data types (e.g. code contains a ‘CodeableConcept’), or to 

other resources (usually in the form of references to a given resource such as manufacturer 

that references an ‘Organization’. Figure 10 shows an XML example of an intravenous 

medication based on FHIR Medication resource. 
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FIGURE 9 FHIR DSTU2 MEDICATION RESOURCE IN XML 

 



50 | Electronic Health Record architectures 

 

 

FIGURE 10 EXAMPLE INTRAVENOUS MEDICATION INSTANCE BASED ON MEDICATION RESOURCE 

Despite being still a draft, new HL7 FHIR servers and applications using FHIR API are constantly 

emerging (69) 

1.2.2.2 MedXML MML 

Medical Markup Language (MML) is a standard for the exchange of medical data developed in 

Japan in 1995. MML is a standard for the exchange of medical data from different health 

institutions. Since version 2.2.1, XML is used as a meta-language. From version 3.0 and onward 

MML conforms to HL7 CDA. 

MML specification is divided into two big parts, MML common formats and MML content 

modules. The common formats module contains these definitions: 

 Address expression: A common format for indicating addresses. A choice between a 

full address and an address divided in four elements 

 Telephone number format: A common format for indicating telephone numbers. A 

choice between a separated phone number and a full telephone number 

 ID format: Common format for expressing identifiers 
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 External reference format: A common format for expressing references to external 

contents 

 Name expression format: Common format for expressing names. A choice between a 

separated name expressed as three elements and a full name expression 

 Facility information format: Common format for expressing locations and facilities 

 Medical department information format: A common format for expressing medical 

departments 

 Personal information format: Common format for expressing all the available 

information from a person, such as names, department, addresses, phones, identifiers, 

etc. 

 Creator information format: Common format for expressing the author. Includes the 

personal information and the classification of the creator (doctor, nurse, lab, etc.) 

On the other hand, MML content modules are defined as follows: 

 Patient information: A module to store all the demographic information known from a 

single patient 

 Health insurance: A module to store both public and private patient insurance 

information. This module has some Japan specific elements 

 Diagnosis record: A module to store one or more diagnosis from a patient. Supports 

full disease name including modifiers or name divided into a main disease part and 

modifiers 

 Lifestyle: A module to describe and store a set of daily behaviors of a given patient 

 Basic clinical: A module to describe information about allergies, blood information and 

infection 

 Initial-consultation-specific information: A module used to describe the information of 

a child regarding his birth, vaccination, family history, and past history 

 Progress course: A module to describe a progress course in free text form or as a SOAP 

(Subjective, Objective, Analysis, Plan) structure 
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 Surgery record: A module to describe a set of surgeries performed to a patient, with all 

the available context information 

 Clinical summary: A module to group various items of information (such as patient 

information, diagnosis, surgery, etc.) 

 Test history: A module to provide laboratory test result information 

 Report: A module to provide reports on radiological, physiological, and pathological 

tests 

 Referral: A module used to specify the data needed when a patient is referred from  a 

hospital and a local clinic 

MedXML MML is currently being used in several Japanese (70) and Chinese (71) regions. 

1.3. Terminologies 

Terminologies, and more precisely clinical terminologies are structured vocabularies (or lists of 

terms) used in clinical practice to describe accurately and unambiguously the care and 

treatment of patients. These vocabularies or terms cover concepts such as diseases, 

operations, drugs, or treatments. 

As the way of describing different kinds of terminologies usually is confusing as different 

authors have used the same words differently (e.g. 'ontology' or 'knowledge'), we will use the 

glossary of terms proposed by SemanticHealth European Project (2) for the clear definition of 

terms in this context. 

 Controlled Vocabulary: A list of specified items to be used for some purpose, usually in 

an information system to reduce ambiguity, misspellings, etc.  

 System of identifiers ("codes"): Controlled vocabularies and many lexicons, ontologies 

and thesauri are usually accompanied by systems of identifiers for their units, e.g. 

typically, identifiers act as the primary unambiguous means of referring to the entities 

in the system for computational purposes with the text form being used for 

communication with users. Examples include the Concept Unique Identifiers(CUIs) 

from UMLS, the SNOMED identifiers, etc. In many contexts, identifiers are known as 

"codes."  

 Lexicon: A list of linguistic units that may be attached to a controlled vocabulary or 

ontology, in a specific language or sublanguage, often including linguistic information 
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such as synonyms, preferred terms, parts of speech, inflections and other grammatical 

material. Example: Term terms and lexical material in UMLS identified by Lexical 

Unique Identifiers LUIs).  

 Ontology: A symbolic logical model of some part of the meanings of the notions used 

in a field, i.e. those things that are universally true or true by definition. The key 

relationship in an ontology is "subsumption" or "kind-of". Every instance of a subkind 

must be an instance of the kind, without exception. Typically, ontologies are 

implemented in logic languages such as Ontylog or OWL or frame systems such as 

Protégé-Frames. Examples: The GALEN Core Model, the stated form of SNOMED.  

 Classification: An organisation of entities into classes for a specific purpose such as 

international reporting or remuneration. Examples ICD and Diagnosis Related Groups.  

 Thesaurus: A system of terms organised for navigation with the primary relationship 

being “broader than”/”narrower than”. The “broader than”/”Narrower than” relation 

is explicitly not limited to subsumption/kind of relation. It  is a general form of 

linguistic hyper/hyponymy aimed at assisting human navigation. However, it is 

explicitly not intended that it be used as the basis for logical interferences, e.g. in 

decision support. Examples MeSH, WordNet.  

 Knowledge Representation System / Background knowledge base: The common 

knowledge to be assumed by the system, including both the ontology – what is 

universally true – and generalisations about what is typically true.  

 Terminology: Any or all of the above in various combinations. Most health 

terminologies consist, at a minimum, of a controlled vocabulary and a system of 

identifiers. They may include extended lexicons, ontologies, thesauri or background 

knowledge base. This definition is deliberately broader and less specific than that in 

most of the standard references and intended to approximate common usage.  

 Coding system: A terminology with attached identifiers or “codes”. 

1.3.1. Relevant Terminologies and ontologies 

SNOMED CT 

SNOMED CT (20)(Systematic Nomenclature of Medicine – Clinical Terms) is clinical terminology 

result of the fusion of SNOMED RT (Reference Terminology) developed from the College of 

American Pathologist (CAP) and Clinical Terms Version 3 (CTV3) from the UK National Health 

Service (NHS). Currently IHTSDO (International Health Terminology Standards Development 

Organization) has SNOMED CT development and distribution rights. IHTSDO is a Non-for-profit 
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(NPO) international organization established in Denmark. This organization was founded in 

2007 by 9 countries (Australia, Canada, Denmark, Lithuania, the Netherlands, New Zealand, 

Sweden, United Kingdom, and United States of America) with the objective of maintaining and 

developing international clinical terminologies. This is the reason because IHTSDO purchased 

the intellectual property of SNOMED CT. Currently IHTSDO has over 25 members, and Spain is 

a member of IHTSDO since 2009. New versions of SNOMED CT are released twice a year, with a 

Spanish version released at the same time. 

SNOMED is the most comprehensive, multilingual clinical vocabulary available in English or any 

other language. SNOMED CT contains more than 300.000 active concepts, their descriptions 

and relationships. Each SNOMED CT concept represents a clinical thought. Concepts have a 

numeric identifier and are included in a hierarchy, organized from the general to the more 

detailed. 

Each concept can be further described by various clinical terms or phrases called Descriptions, 

which are divided into Fully Specified Name (unique across all SNOMED CT), Preferred Terms 

(selected by a group of clinicians as the most common way of expressing the meaning of a 

concept) and synonyms (which are additional ways to refer to this concept). Each concept has 

exactly one unambiguous Fully Specified Name, exactly one preferred term, and zero to many 

synonyms. An example of an SNOMED CT structure can be seen in Figure 11. 

 

FIGURE 11 SNOMED CT EXAMPLE CONCEPT 

SNOMED CT concepts can also be linked to other concepts whose meaning is related in some 

way by relationships. These relationships provide formal definitions and properties for the 

concept. One of the most common relationships in SNOMED CT is the ‘is a’ relationship, which 

define hierarchies in the terminology (e.g. Myocardial infarction ‘is a’ Myocardial disease). 
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Figure 12 shows an example of the relationships in SNOMED CT for Myocardial infarction 

concept. 

 

FIGURE 12 SNOMED CT RELATIONSHIPS EXAMPLE 

One of SNOMED CT characteristics is that concepts are usually the result of linking already 

existing concepts. This is called pre-coordination. In the same way, new concepts that do not 

appear in the terminology can be expressed as a result of existing concepts. This is called post-

coordination. 

IHTSDO has also provided a compositional grammar (72) for the representation of SNOMED CT 

expressions.  

ICD 

The International Classification of Diseases (ICD) (73) is the standard diagnostic tool for 

epidemiology, health management, and clinical purposes. It is especially useful for the analysis 

of general health situation in countries and populations. Most countries part of World Health 

Organization (WHO) use ICD to report mortality data, which is a primary indicator of health 

status. 

Currently, most systems use ICD 9, which is being replaced by ICD 10. There is also an ICD 11 in 

draft form that is expected to be approved by 2018. 

LOINC 

Logical Observation Identifiers Names and Codes (LOINC) (74) is a terminology standard for 

identifying laboratory and clinical observations. LOINC provides a catalog of laboratory tests, 

clinical, and anthropomorphic measures. LOINC initiated at 1994 in the Regenstrief Institute. It 

is endorsed by the American Clinical Laboratory Association and the College of American 
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Pathologists. LOINC uses six fields (or axis) for the unique specification of each test, 

observation, or measurement: 

 Component: What is measured, evaluated, or observed. 

 Kind of property: Which are the characteristics of what is measured (e.g. mass, 

substance, catalytic activity). 

 Time aspect: When was measured, evaluated, or observed (typically a time or interval 

of time).  

 System type: What context or specimen type within the measurement was made (e.g. 

blood, urine) 

 Scale: Which kind of scale was used in the measure. It can be quantitative, ordinal, 

nominal, or narrative. 

 Method: What procedure was used to perform the measurement. This axis is optional 

and is used to distinguish between different measurements when every other axis 

does not provide enough information. 

1.3.2. Archetype terminology binding 

One of the basic parts of an archetype definition are the terminology bindings. These bindings 

give the archetype an exact meaning. Archetypes allow the definition of terminology bindings 

in the form of label bindings and value bindings. 

Label bindings describe the equivalences between archetype local terms and external 

terminology terms. They provide clear meaning to the archetype labels and can be used for 

their semantic description. 

Value bindings provide the means to bind value constraints in the archetype as sets of terms 

from an external terminology. These sets of terms, called usually subsets, can be defined in an 

extensional manner (by enumerating all the terms in the subset) or in an intensional manner 

(by defining the necessary and sufficient conditions for belonging to the set). This mechanism 

is used for defining which terminology subset is valid in a given coded text constraint. The 

definition of subsets is a key issue, as each implementation usually requires a particular set of 

concepts, descriptions, and relationships. IHTSDO provides an expression syntax for the 

definition of these SNOMED CT subsets (72). 

These different types of bindings are stored into the archetypes section called 'ontology' 

(which will be renamed to 'terminology' in ADL2) where node identifiers, constraints on texts 
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or terms, and bindings to terminologies are defined using dADL. This section is divided into 

four subsections: term definitions, constraint definitions, term bindings, and constraint 

bindings. Term definitions refer to label bindings and Constraint definitions refer to value 

bindings.  

1.4. Data, Model, and Format transformation 

1.4.1. Data transformation 

Existing clinical data must be transformed to meet the data structures and constraints defined 

by reference models and archetypes. We face a problem known in the literature as the data 

exchange (translation or transformation) problem (4). Data exchange is the problem of 

generating an instance of a target schema from a source schema and a given set of 

relationships between both. More precisely, data exchange is a quadruple expressed as (S, T, 

∑st, ∑t), where S is the source schema, T is the target schema, ∑st is the mapping expressing the 

relationships between S and T, and ∑t is a set of constraints on T. The data exchange problem 

can be defined as: given an instance I over source schema S, find and instance J over target 

schema T such that both I and J satisfy the relationship ∑st and J satisfies ∑t. That J instance is 

called a solution for I in the data exchange setting. Different solutions can exist for a given I 

instance, and the challenge is to find the best one (75).  

Typically, the explicit relationships ∑st are called schema mappings (5,6). Research in this area 

has focused on the formal specification of schema mappings and their semantics (4,6), most of 

the formalisms use a subset of first-order logic to specify them. There are three basic 

approaches for specifying the mapping in the literature: global-as-view (GAV), local-as-view 

(LAV) and global-local-as-View (GLAV) (5). In GAV systems the intermediate schema is defined 

in terms of the source schemas. Alternatively, in LAV systems each element of the source 

schemas is defined in terms of the intermediate schema. LAV mapping are suitable, in 

particular, when the intermediate schema is based on an enterprise model, standard or an 

ontology (76). Conversely, GAV approach is suitable when the data sources are stable since the 

addition or modification of a source schema would require the redefinition of various elements 

of the intermediate schema. GLAV approach (77) generalizes LAV and GAV and allows flexible 

schema definitions independent of the particular details of the sources. Intuitively, GLAV 

mappings relate a query over the source schema S to a query over the target schema T.  

Schema mappings are used in two different, but highly related problems: data integration (also 

known as data federation) (5) and data transformation (4). In data translation users pose 
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queries on the target schema that are answered using the local data sources. The key point 

here is that the translated source data are not materialized in the target, i.e. no target instance 

is generated. In contrast, in data transformation the data structured under the source schema 

is transformed into data structured under the target schema. Any target query is then 

answered using the materialized target instance without reference to the original source 

instance. 

In data transformation, source-to-target dependencies are the prevailing option to specify how 

and what source data should appear in the target. Source-to-target dependencies are 

assertion between a source query and a target query and therefore are a kind of GLAV 

mappings. Formally, a source-to-target dependency has the form: 

∀𝑥(𝜙𝑠(𝑥) → 𝜒𝑇(𝑥)) 

Where ϕs(x) is a formula in some logical formalism over the source schema S and χT(x) is a 

formula in some (perhaps different) logical formalism over T [6]. 

Among the different types of source-to-target dependencies source-to-target tuple-

generating-dependencies (TGDs) is the most commonly used specification for schema 

mappings. TGSs have the form: 

∀𝑥(𝜙𝑠(𝑥) → ∃y𝜓𝑇(𝑥, 𝑦)) 

where ϕs(x) is a conjunction of atomic formulas in some logical formalism over the source 

schema S and ψT(x, y) is a conjunction of atomic formulas in some (perhaps different) logical 

formalism over T (75).  A full TGD is a TGD with no existential quantifiers in the right-hand side. 

Figure 13 shows an example of TGD and Figure 14 an example of full TGD: 

 

∀ 𝑑𝑖𝑎𝑔 ∀ 𝑑𝑎𝑡𝑒(𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐(𝑑𝑖𝑎𝑔) ∧ 𝑒𝑛𝑑𝑠(𝑑𝑖𝑎𝑔, 𝑑𝑎𝑡𝑒)

→ ∃ initDate 𝑐𝑙𝑜𝑠𝑒𝑑𝑃𝑟𝑜𝑏𝑙𝑒𝑚(𝑑𝑖𝑎𝑔, 𝑖𝑛𝑖𝑡𝐷𝑎𝑡𝑒, 𝑒𝑛𝑑𝐷𝑎𝑡𝑒)) 

FIGURE 13 EXAMPLE OF TGD 

 

∀ 𝑑𝑖𝑎𝑔 ∀ 𝑑𝑎𝑡𝑒(𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐(𝑑𝑖𝑎𝑔) ∧ 𝑒𝑛𝑑𝑠(𝑑𝑖𝑎𝑔, 𝑑𝑎𝑡𝑒) →  𝑐𝑙𝑜𝑠𝑒𝑑𝑃𝑟𝑜𝑏𝑙𝑒𝑚(𝑑𝑖𝑎𝑔, 𝑒𝑛𝑑𝐷𝑎𝑡𝑒)) 

FIGURE 14 EXAMPLE OF FULL TGD 
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TGDs offer a balance between high expressive power and good algorithmic properties (6). The 

unrestricted use of first-order logic as a schema-mapping specification gives rise to 

undecidability of basic algorithmic problems about schema mappings. 

The use of high-level schema mappings, such as TGDs, makes it possible to separate the 

specification (design) from the implementation.  This is a crucial issue since the effort required 

to create and manage data transformations is considerable, as it may involve writing and 

managing complex data transformations programs. This is even more complex when one deals 

with EHR standards due to their complexity. High-level mapping are easier to specify and 

manage than executable scripts or programs such as XSLT, XQuery or SQL. Therefore, schema 

mapping generation has received lots of attention. It studies how to compile into a processable 

language a mapping specification between two schemas (4,78–80). Systems supporting data 

exchange and schema mapping generation are more necessary than ever, as new formats, 

technologies, and approaches are continuously emerging, for instance archetypes. Schema 

generation tools usually provide GUIs that places the source schema on one side and the 

target schema on the other side. Users can specify the high-level assertions by drawing lines 

connecting source and target elements. Examples of modern data exchange systems include 

Clio (81), HePToX (82), EIRENE (83), CLIP (78), and MapMerge (84). Clio and CLIP are 

particularly interesting in our scenario since they are capable of dealing with hierarchical data 

structures. 

In health care domain very few generic EHR data transformation efforts exist. Although several 

research prototypes and commercial mapping tools are capable of processing XML schemas 

they cannot handle archetypes. The reason is the lack of expressivity of XML Schemas due to 

the unique particle attribution constraint rule. This rule is violated by most archetypes.  

Therefore, such tools cannot be used for archetype-based data transformation. Furthermore, 

archetypes are used to model arbitrary complex domain concepts without any consideration 

regarding the potential internal architecture or database design of EHR systems. As a 

consequence, complex and expressive mapping specifications are necessary due to the low 

similarity between archetypes and EHR systems. Nevertheless, some previous experiences 

exist, probably the most interesting is the work by Duftschmid et al. (85,86). They proposed an 

approach for transforming data from an Entity-Attribute-Value based EHR into XML documents 

compliant with ISO 13606. It was based on mapping the structure of the local EHR systems 

(described by a generic XML schema) to archetypes, which are, in turn, also expressed as XML 

Schemas. In order to overcome the unique particle attribution constraint they rename some 
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schema elements. The main disadvantage of this approach is that a specific XML schema has to 

be created for each archetype making it complex and not completely archetype-based. 

1.4.2. Model-based transformations 

Model-Driven Development (MDD) tries to improve correctness and productivity in software 

creation by producing software from modeling diagrams created by humans. Model-Driven 

Architecture (MDA) (87)(88) is the OMG (89)proposal to support Model-driven engineering. In 

MDA the applications and business processes are specified using Platform-Independent 

Models (PIM), which define the functionality of the systems. PIMs are then transformed into 

Platform-Specific Models (PSM) and final implementation languages with standard mapping 

techniques. MDA also defines a layer to bridge the gap between domain experts and IT people 

called Computation Independent Model (CIM). Requirements expressed in CIM should be 

traceable to both PIM and PSM implementations. 

MDD is similar to dual model approach, as both put models as key parts of the methodologies. 

In fact, archetypes can be considered as MDA CIMs (90), and have been used as such in several 

projects. E.g. for the automatic generation of Graphical User Interfaces in an endoscoping 

reporting application (91), the creation of an agile EHR web framework from archetypes (92), 

or combined with semantic web technologies for the translation between reference models 

(namely, ISO13606 and openEHR)(93). 

1.4.3. Format transformation 

Promoting interoperability in healthcare infrastructure through shared artifacts generated 

from formal model definitions is the main goal of initiatives such as Model-Driven Health Tools 

(MDHT) Project (94) from Open Health Tools (OHT). MDHT is an open source effort for the 

promotion of shared artifacts between related standards and the creation of modeling tools 

for their seamless integration. The project is supported by the US Veteran’s Health 

Administration (VHA), IBM, and the US Office of the National Coordinator (ONC). Their original 

focus was to develop HL7v3 specifications via UML, but they later moved to work in the 

specification of HL7 CDA Implementation Guides. They have provided models and reference 

implementations for several HL7 C-CDA Implementation Guides. They are planning to support 

other standards besides HL7 CDA, for instance by using UML for the specification of 

archetypes. A UML profile (Archetype Modeling Language, AML) has been proposed to OMG to 

deal with the specific requirements of the archetype modeling. MDHT is also working in the 

generation of Schematron for XML instance validation. 
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1.5. Constraint definition languages 

There exists a wide range of formal rule languages for the definition of constraints on data. 

One of the most known is the Object Constraint Language (OCL) (30), an OMG (89) standard 

for the definition of rules over UML models (95). There are also languages for defining Horn-

like rules for the Ontology Web Language (OWL) (96), such as Semantic Web Rule Language 

(SWRL) (97) or RuleML (98). The widespread use of rules, formal or not, has caused the 

creation of proposals, like the W3C Rule Interchange Format (RIF) (99), for the exchange of 

rules between different rules languages. The main disadvantage with most rule languages is 

that rules are not easily understood by non-technical staff. To solve this problem, some rule 

languages with natural language-like syntax have been proposed. Two main examples are 

Natural Rule Language (100) and Attempto Controlled English (101). Each one of them 

addresses the problem of natural language rules representation from a different perspective. 

Human-readable validation languages 

Natural Rule Language (NRL) is a formal language for specifying constraints and rules in a 

human readable way. The main feature of this language is the capacity of defining constraints 

in a way that facilitates their understanding by non-technical people. Moreover, NRL also 

defines an extension to deal with actions, such as the creation or deletion of objects, or setting 

values when certain conditions are met.  Although we will not use this extension, it could be 

used to complete the rules with actions, for instance to calculate derived values. There is only 

one prior use of NRL in the clinical domain, concretely for the representation of clinical 

practice guidelines and its evaluation in a real world case (102). Rules drawn from a 

hypertension guideline were translated into NRL in order to be validated by clinicians and 

subsequently they were transformed into OCL and finally used in the system. The NRL rules 

were generated by hand which can be a time-consuming task. 

Attempto Controlled English (ACE) (101) is a controlled natural language, which means that it 

is a subset of Standard English with a restricted syntax. ACE can be translated into other 

languages, such as RuleML, OWL, or SWRL. The meaning of words in ACE is not predefined and 

must be defined in an existing ontology or in additional ACE sentences. Although ACE has been 

in use for more than ten years, it only has been used once applied to the clinical domain (103), 

specifically for clinical guidelines readability. In this work, rules from a pediatric clinical 

guideline were expressed in ACE, although they were not applied to real data. 
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XML validation languages 

XML documents contain specific characteristics that also need to be validated. These specific 

constraints can be validated with technologies such as Schematron, DTD, or XML Schema. 

Schematron (104) is a rule-based validation language for making assertions about patterns in 

XML trees that is an ISO norm since 2006. Since it is a path based validation language, 

Schematron can express constraints that neither XML Schema nor DTD can express. Each rule 

can be associated with a descriptive text of the type of error or warning encountered. 

Schematron plays a key role on current CDA implementations as Schematron rules are typically 

attached to implementation guides alongside sample XML instances. It has been proved that 

Schematron rules can be directly generated from NRL rules (105) as well as from archetypes 

(106). Advanced features of archetype methodology, such as reuse of internal or external 

types can be also reproduced with Schematron.  

Drools 

Drools (107) is an open source Business Rule Management System (BRMS) written in java for 

the centralization and management of business logic. In addition to provide syntax based on 

First Order Logic to describe the rules, Drools also provides a business rule engine for their 

execution. Drools uses an optimized version of Rete algorithm for object oriented systems. 

Drools also supports the definition of Domain-specific languages (DSL) to write rules in natural 

language. Drools uses a knowledge base for the collection of compiled definitions (such as 

rules and processes). Knowledge base can be updated from inside the rules in order to insert, 

update, or delete objects to it. 

Both openEHR Guideline Definition Language (GDL) (40) and open source project openCDS 

(108) use Drools for the implementation of their execution engine. 

1.6. Interoperability projects 

SemanticHEALTH 

SemanticHealth (2) was a European Project from the 6th Framework Programme. The project 

objective was to identify the steps needed to achieve semantic interoperability. For this, 

SemanticHEALTH developed a roadmap for semantic interoperability of EHR, focusing on 

patient care, clinical research and public health. 

SemantiHEALTH identifies four levels of interoperability: 
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 Level 0: No interoperability at all. E.g. the patient must repeat tests in order to know 

what is happening. 

 Level 1: Technical and syntactical interoperability (no semantic interoperability). E.g. 

Doctors are able to retrieve electronic documents on the original language. 

 Level 2: Partial semantic interoperability 

o Level 2a: unidirectional semantic interoperability. E.g. the electronic 

documents can be accessed remotely and few parts (demographics, diagnosis, 

etc.) can be understood by the receiving system. 

o Level 2b: bidirectional semantic interoperability. E.g. same as above, but both 

ends of the system can do it. 

 Level 3: Full semantic interoperability, sharable context, seamless co-operation. E.g. 

the foreign Hospital Information System (HIS) can access, interpret, and present all 

necessary information about the patient. 

SemanticHEALTH recommends the use of generic reference models (ISO13606, openEHR, and 

HL7 CDA R2), archetypes or templates, and clinical terminologies such as SNOMED CT and 

LOINC (74) as needed to achieve level 3 interoperability. 

SemanticHealthNet 

SemanticHealthNet (SHN) (109) was a European Union Project  from 7th Framework 

Programme. SHN developed a scalable and sustainable pan-European organizational and 

governance process for the semantic interoperability of clinical knowledge. SHN follows the 

recommendations from SemanticHEALTH project for the integration of clinical information 

models, ontologies, and terminologies to achieve semantic interoperability. The project used 

heart failure use case to capture the needs from patient and public health perspectives. 

Different standards were used for the modeling of the use case, which were included in an 

ontology framework to achieve semantic interoperability. 

epSOS 

European Patients – Smart Open Services (epSOS) project (68) was a 7th Framework 

Programme. Project team consisted of 22 European Union (EU) and 3 non-EU member states. 

epSOS project was aimed to design, build, and evaluate a service infrastructure that can 

provide cross-border interoperability between EHR systems in Europe. A cross-border patient 

summary and electronic prescription pilots were demonstrated. 
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Meaningful use 

Meaningful Use (MU) (67,110) is a Medicare (111) and Medicaid (112) United States (US) 

government program that awards incentives for using certified EHR to improve the exchange 

of clinical data between healthcare providers, between providers and insurers, and between 

providers and patients. The program defines three stages for a gradual EHR adoption. 

 Stage 1 is focused in basic EHR adoption. 

 Stage 2 is focused in advanced clinical processes such as clinical decision support. 

 Stage 3 is focused in health information exchange and improvements of healthcare 

incomes 

MU policy outcome priorities is to improve quality, safety, efficiency, care coordination, 

population and public health, reduce health disparities, to engage patients in their health, and 

to ensure privacy and security of personal health information. 

Trillium Bridge 

The Trillium Bridge support action (113) extends epSOS and Meaningful use to establish an 

interoperability bridge for the exchange of patient summaries and EHR among EU and US. 

Trillium Bridge objective is to make epSOS and Meaningful use outcomes compatible by 

identifying the misalignments and provide solutions to them. 

Expand 

Expanding Health Data Interoperability Services (EXPAND) (114) is thematic network created 

for the integration and deployment of the results of the relevant eHealth European projects 

pilots and deploy them as large-scale cross border services. Expand started in January 2014 

and is expected to finish by the end of 2015. 17 countries are currently represented in the 

thematic network 

Clinical Information Modeling Initiative (CIMI) 

Clinical Information Modeling Initiative (CIMI) (19) is an international collaboration whose 

objective is to provide a common format for representing shared implementable clinical 

information models. CIMI is formed by both individuals and organizations including standards 

bodies (CEN, HL7, IHTSDO, CDISC), national agencies (NEHTA, NHS), and software developers 

(SMART, Tolven). CIMI uses ADL 1.5 as the modeling formalism, and SNOMED CT as the 

primary reference terminology. CIMI will also make use of AML profile (Archetype Modeling 
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Language UML profile) for the definition of the clinical models. CIMI provides a Reference 

Model and a set of models and patterns in an open repository. 

1.7. LinkEHR Normalization Platform 

The work of this thesis is based on LinkEHR normalization platform. LinkEHR is a modular 

platform whose objective is to facilitate the achievement of semantic interoperability of 

biomedical information. LinkEHR Normalization Platform allows the creation of a normalized 

virtual federated view of the EHR of a patient with data distributed among heterogeneous 

systems, as long as the original data is accessible. LinkEHR modules can be used standalone or 

combined together as a complete EHR integration and normalization system. All the 

developments of this thesis have been incorporated into different modules of the platform, 

mainly in the archetype editor. 

1.7.1. LinkEHR Integration Engine 

LinkEHR integration engine (115) is a lightweight, fully scalable integration engine to access 

multiple heterogeneous and distributed data sources, launch queries over them, and integrate 

all the results into a single XML document. 

To know what part of the EHR can be shared, LinkEHR-IE provides the Integration Message 

Definitions (IMD). IMD definitions include the specification on the data sources and the tables 

and fields that will be used for each source. It also includes query parameters to filter the 

results, and the nested labeled structure constituting the output XML document structure. 

IMD is the minimum communication unit, i.e. petitions to LinkEHR-IE are based on IMD with 

parameters. When a request is received by the system, the corresponding IMD is executed, 

which queries the original legacy sources into an integrated XML view. The output of this 

process is an XML with a known format, which allows us to apply further transformations for 

data visualization or the normalization of the unified view 

1.7.2. LinkEHR Archetype Editor 

LinkEHR Editor is a framework for editing archetypes based on different reference models. 

LinkEHR Editor is not the only framework that supports the review of archetypes from 

different reference models (3). However, usually the reference models are hardcoded in these 

tools, which makes adding new model or evolving current ones a difficult task. LinkEHR Editor 

allows the inclusion of new reference models based on the analysis of the reference model 

schemas. 



66 | LinkEHR Normalization Platform 

 

For all classes available in the source schema, only a subset of them is suitable to be used to 

define archetypes. These are called the reference model business concepts. These business 

classes are different for each reference model. E.g. ISO13606 has six business classes: Folder, 

Composition, Section, Entry, Cluster and Element, openEHR on the other hand has more: 

Composition, Section, Observation, Evaluation, Instruction, Action, Admin_entry, Item_tree, 

Item_list, Item_table, Item_single, Cluster, and Element. 

As long as the XML Schema is available, any reference model can be imported into LinkEHR 

Editor. In the import process, users need to specify the business classes from all the classes 

available in the model. The available classes are sorted by complexity in order to easily find the 

business classes over all class set. With the business classes selected, a module analyses the 

schemas and generates a set of archetypes that represent the reference model. These 

archetypes are called business archetypes or reference model archetypes. This method has 

been tested with several reference models, such as ISO13606, openEHR, HL7 CDA (and CCD), 

CDISC ODM, and ASTM CCR. 

Having the reference model represented as archetypes allows reusing the same process for 

archetype creation that we use for archetype specialization, i.e. new archetypes are 

archetypes that specialize the reference model archetype. By using the business archetype, the 

editor guides the edition process to guarantee that the archetype will follow the reference 

model, as only allows to constraint the types or attributes allowed at any point in the 

archetype. 

LinkEHR Editor also supports the edition of ADL syntax by hand with an included ADL editor. It 

is possible to go from the tree-based editor to the ADL editor at any time. However, this 

functionality provides a major challenge for the archetype creation: Syntactically valid ADL are 

not necessary semantically valid (e.g. classes have been correctly used in the correct place in 

the hierarchy). There is a need of having formal methods for the validating the design and 

contents of the archetypes (116). An archetype is valid if the constraints are compatible with 

the ones in the reference model and the parent archetype (if there is one). 

To validate this, we assume that archetypes are labeled trees. Every constraint on an 

archetype is expressed by either a regular expression, which describe a set of valid labels, or a 

label predicate. We can formalize the inheritance relationship of archetypes by a subsumption 

relation (117) based on the containment of regular expressions and label predicates. We say 

that an archetype specializes another if the other archetype subsumes it. An exhaustive 
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explanation of the subsumption applied to archetypes we refer the reader to (27,118). We use 

this approach in LinkEHR Editor for the validation of the archetypes being edited. 

1.7.3. LinkEHR Extract Server 

LinkEHR extract server provides a simple web service interface for accessing the integration 

and normalization modules. LinkEHR extract server partially implements ISO13606 part 5 (34) 

for an extract server. LinkEHR extract server supports the querying of data by several 

parameters, such as archetype identifier, patient identifier, or time period. LinkEHR extract 

server can be deployed in a distributed environment, i.e. an instance of the server can be 

deployed in each organization and all of them can be queried from a central instance of the 

server. 

1.7.4. LinkEHR Viewer 

LinkEHR viewer is a web-based generic EHR viewer for existing clinical information. It provides 

a read-only view of patient EHR. It provides an user interface for user authentication and 

patient search. As LinkEHR viewer is not a complete EHR system infrastructure, it can be 

deployed on top of existing HIS or be integrated into them in order to provide access to all the 

available information. 

1.7.5. LinkEHR Concept Manager 

LinkEHR concept manager (119) is a web application for the publication, management, and 

governance of clinical information models and other reference materials including archetypes, 

templates, or schematron rules. 

As all the aforementioned LinkEHR platform modules, LinkEHR concept manager supports 

multiple reference models and formats. The manager is focused on the management of 

generic concepts which have attached definitions in several standards and formats, e.g. 

ISO13606 archetypes, openEHR archetypes, HL7 CDA templates, or XML Schemas.  

The application handles the versioning, specialization, validity period, and lifecycle 

management of clinical information models. It provides the possibility of defining relationships 

between clinical information models (such as specializations, inclusions, exclusions, etc.) 

providing a graphical representation of these relationships. Figure 15 shows an example of 

how models relationships are stored in LinkEHR concept manager. 
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FIGURE 15 EXAMPLE OF RELATIONSHIPS AND RESOURCES FOR PROBLEM CLINICAL MODEL 

LinkEHR concept manager follows a social network approach to encourage clinicians’ 

engagement. Clinicians can subscribe to a given clinical model or archetype to be informed of 

changes to that model. LinkEHR concept manager allows the definition of roles that have a set 

of rights assigned to them in order to manage what each user is allowed to do in the platform. 
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Chapter 2.  

Migration of Health Information Systems – Model perspective 

 

 

 

2.1. Introduction 

Dual model methodology allows the formal description of the clinical models of a given EHR 

information model. This formal definition provides a set of advantages, such as knowledge 

reuse, terminology bindings, or multilinguality. Usually traditional EHR architectures lack such 

a formal mechanism. However, as long as the architecture supports directly or indirectly the 

notion of detailed clinical models, they can be used as a reference model for the archetype 

definition. This chapter describes a set of methodologies and developments to support the 

definition of archetypes for EHR architectures that do not support dual model architecture 

natively. 

Parts of this chapter were presented at the Medical Informatics Europe (MIE 2015) conference 

under the name “Combining Archetypes with Fast Health Interoperability Resources in Future-

proof Health Information Systems”1, at Medinfo 2013 conference under the name “Genetic 

testing information standardization in HL7 CDA and ISO13606”2, and published in the Indian 

Journal of Medical Informatics (IJMI) under the name “Reforming MML (Medical Markup 

Language) Standard with Archetype Technology”3. The creation of MML Reference Model and 

all the required developments were carried out during a Research Internship at the Graduate 

School of Informatics in Kyoto University. 

                                                           

1
 Open access. Accessible at http://ebooks.iospress.nl/volumearticle/39320 

2
 Open access. Accessible at http://ebooks.iospress.nl/volumearticle/34014 

3
 Open access. Accessible at http://ijmi.org/index.php/ijmi/article/view/284 

http://ebooks.iospress.nl/volumearticle/39320
http://ebooks.iospress.nl/volumearticle/34014
http://ijmi.org/index.php/ijmi/article/view/284


70 | Reference model archetypes 

 

2.2. Reference model archetypes  

Only a subset of the classes contained in reference models define logical building blocks of 

EHRs and can be used to define archetypes. We call these classes ‘business concepts’. For 

instance ISO EN13606 defines six business concepts, namely: Folder, Composition, Section, 

Entry, Cluster, and Element. The representation of a business class as an archetype is what we 

call a Reference Model Archetype (RMA).  

A RMA contains all the attributes and classes of the reference model that are used to define 

the business concept. For instance, the business class Element of ISO 13606 represents the leaf 

nodes within the EHR hierarchy. Each instance of Element has a single data value (attribute 

value), which is one of a defined set of data types (Boolean, coded value, physical quantity, 

etc.). In the corresponding RMA all the possible data types are explicitly defined as an 

alternative for the value attribute. RMAs represent the most general archetypes that can be 

defined based on a reference model and hence any other archetype must be a specialization of 

one of them.  

The main consequence here is that with RMAs the archetype editing becomes a process of 

subtyping by constraints (118). The rules used to control the archetype editing are those 

specified in the archetype model such as strengthening of domain constraints on primitive 

attributes or the narrowing of cardinality intervals. In other words, the same logic can be 

applied both to the specialization of an existing archetype and to the definition of a new 

archetype as shown in Figure 16. This has also interesting consequence for archetypes 

validation, as the validation with respect to a reference model becomes a problem of finding a 

subsumption function to the corresponding RMA. Those for which it is not possible to find such 

functions are considered invalid with respect to the reference model. With RMAs the editors 

can be then independent of the reference model as long as it is possible to create the set of 

RMAs for a particular EHR information model. This approach was first implemented in LinkEHR 

archetype editor(118), making it the first editor capable of handling multiple reference models. 

In the rest of publicly available editors the reference model was hard-coded meaning they only 

supported one reference model (namely openEHR reference model). 
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FIGURE 16 LINKEHR ARCHETYPE EDITION 

 

2.3. Creation of RMA 

As seen above, in order to allow the edition of archetypes in a given model we must first 

create the set of RMA for that model. Usually the standards provide some kind of information 

model which can be expressed in formats such as XML Schema Definition (XSD). In (118) we 

presented a methodology for the generation of RMA from XSD. 

However, the process of deriving the reference model is not always possible by different 

reasons such as the schema being not public (e.g. DICOM SR XML Schema (120)), being in a 

non-supported format (e.g. MedXML MML provides DTD schemas and openEHR official 

schemas are provided in Basic Meta Model or BMM(121)), or the complexity and size of the 

schema makes the process impractical (e.g. HL7 FHIR DSTU and specially DSTU2 as the 

Resource number increases). For these cases, alternative processes for generating the RM are 

needed. To support these new RM we generate the RMA, which are archetypes containing 

explicit and exhaustive definitions of the structure and possible contents for each business 

class. We have used different approaches for each one of the aforementioned standards, 

which exemplifies the different approaches when importing new reference models: 
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 Creating RMA from meta-models: This approach was used for the creation of HL7 FHIR 

DSTU reference model and the creation of BMM derived reference models. 

 Creating RMA manually: This was used for the creation of MedXML MML reference 

model 

2.3.1. Creating RMA from meta-models 

For this process, the meta-models are analyzed and RMA are created from them. The 

problems are still the same as the ones found in the creation of RMA from XML Schema (118): 

How to determine which classes are archetypable (i.e. which classes we want to define 

archetypes from), and how to deduce the structure. We exemplify this approach for the 

generation of HL7 FHIR RMA from an ecore model and the creation of RMA from BMM files. 

OMG provides an standard format for the serialization of models in XML called XML Metadata 

Interchange (XMI) (122). XMI is an ISO norm since 2005 (2005 ISO/IEC 19503 and 2014 ISO/IEC 

19509). XMI suffers a number of issues, such as being too complex or not having a consistent 

serialization format among different tools (123). Eclipse Modeling Framework (EMF) (124) 

provides its own meta model (ecore) for describing models and runtime constraints, and it is 

also serializable in XMI. HL7 FHIR DSTU provides the reference model in both XML Schema and 

ecore definition (125). FHIR XML Schemas were too complicated to be analyzed by the XML 

Schema reference model import due to the number of Resources, as each FHIR Resource is 

potentially a RMA, and the possibility to include almost all resources into one another due to 

the extension mechanism. For this reason, we created an iterative process that transforms 

each one of the selected Resource types defined in the ecore model into RMA. The process for 

the creation of FHIR archetypes is summarized in Figure 17. 

Base of

FHIR Ecore model

Transformed into

FHIR archetypes / 
extended resources

FHIR Reference 
Model Archetype

Defined in

FHIR Resource

 

FIGURE 17 STEPS FOR THE CREATION OF FHIR ARCHETYPES 

For the creation of the RMAs, first we chose the archetypable entities. We selected all clinical, 

all administrative, and an infrastructure (namely Composition) resources. After selecting these 

entities, we parsed the XMI to obtain all types, their attributes, and the types of these 

attributes. From this analysis, a set of all the types in the model represented as small RMA are 

created. These RMA contain the corresponding attributes defined in the ecore model and 
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reference each one of the types inside them. There reference is made by using the archetype 

slot mechanism to point to the RMA where the type is defined. In this step, inheritance is 

solved by deriving any type into all their child types. If a type can be derived into more than 

one type then an alternative of archetype slots is created for each one of the subtypes. In 

order to reduce the size of the resulting RMA, only one type is referenced explicitly (i.e one 

slot exists) in each RMA, and any further use of the same type in the archetype is transformed 

into internal references to the first appearance of this type to avoid the repetition of archetype 

structures. With all this set, the iterative process can begin. In each one of the iterations, every 

archetype slot reference from the RMA is expanded with the corresponding archetype. 

Internal references are adjusted so all point to the same archetype slot, as expanded slots can 

include more slots to other RMA. Only one archetype slot is kept, and the other ones are 

changed into internal references. The iterative process ends when the RM archetypes selected 

as archetypable entities (i.e. the types we want to be able to generate archetypes from) do not 

contain any external references (i.e. archetype slots) to other RMA, as a restriction of RMA is 

that they must be completely defined on their own. 

Once we have created a set of RMA from a given RM we can create archetypes from that RM 

with LinkEHR Editor. Figure 18 shows an excerpt of a FHIR Systolic archetype. 
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FIGURE 18 EXCERPT OF A SYSTOLIC FHIR ARCHETYPE 

 

On the other hand, there also exist meta-model representations used only in dual model 

reference model definitions. This is the case of openEHR BMM syntax (123), which has 

available representations of openEHR (121), ISO13606 (12) and CIMI (19) reference models. 

Although openEHR RM is also distributed in XSD format, BMM is considered as the primary 

reference model definition, as XML schemas may have their own set of problems when 

representing an object-oriented model. BMM is based in ODIN syntax (126) (formerly known 

as dADL). 
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An ad-hoc Java parser was created in order to generate the RMAs from a BMM reference 

model specification. BMM format has some advantages over XMI, as the set of archetypable 

classes is explicitly included in the meta-model definition and the translation of the structure 

to archetypes is almost direct, but also needs additional documentation (such as knowing 

which attribute contains the archetype node identifier) in order to correctly generate systems 

and validators based on a BMM file. This specific parser was included in LinkEHR to generate 

the RMA automatically from the BMM definitions. 

2.3.2. AOM-based RMA creation 

An alternative to create RMA when the meta-model definitions are not available or they are 

available in a format not processable by our methodology is to create the RMA manually. 

In the case of MedXML MML, RMA were created by hand from MML specifications (127). A 

mode to edit archetypes without having available an underlying RM was developed, i.e. an 

editor to create archetypes based on Archetype Object Model (AOM). This is based on the 

principle that reference models define the basic constraints that describe a given information 

model, which is precisely what in the end provides the AOM (i.e. the AOM provides the basic 

blocks to define constraints over a given model). As RMA are in fact archetypes it is feasible to 

build these archetypes by defining the object, attribute, and primitive type constraints they 

contain. The usefulness of the creation of this kind of editors over simple tree models has been 

proved in conversion systems like YAT (128). This process is possible due to the tool not being 

based in any given reference model but in the AOM itself 

To edit an archetype, first an object name must be provided. This object name is used in the 

archetype identifier. This also creates the root object of the archetype. From there, it is 

possible to constraint attributes on objects, as seen in Figure 19, and objects, data types, 

internal references, and archetype slots in attributes, as seen in Figure 20. The only parameter 

needed for the creation of attributes and objects is the attribute name and object name 

respectively. Once the attribute, object, or data type is created it can be edited as a normal 

constraint of its kind in order to modify occurrences, ranges, and allowed values. 
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FIGURE 19 ARCHETYPE EDITING WITHOUT REFERENCE MODEL – CREATING ATTRIBUTES 

 

FIGURE 20 ARCHETYPE EDITING WITHOUT REFERENCE MODEL – CREATING OBJECTS 

With this new editor, a RMA for each business class can be created. In the case of MedXML 

MML, RMAs were created for MML common formats and content modules. All the 

requirements and structures from the MML documentation were able to be expressed with 

archetypes. Archetypes were created using all the reutilization mechanisms that archetype 

model provides (namely archetype slots and internal references). 9 common module 

archetypes were created and 13 archetypes were created from the 12 clinical modules defined 

in MML documentation. The additional one (mmlSm:Clinicalcourse) is a concept defined in 

both mmSm:SummaryModule and mmlRe:ReferalModule with the same structure, and thus it 

was extracted as a new RMA. The list of created archetypes can be seen in Table 1 and Table 2. 

MML common format  Created archetypes 

mmlAd:Address MedXML-MML-Address.Address.v1 

mmlPh:Phone MedXML-MML-Phone.Phone.v1 

mmlCm:Id MedXML-MML-Id.Id.v1 
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mmlCm:Ref MedXML-MML-Address.Address.v1 

mmlNm:Name MedXML-MML-Name.Name.v1 

mmlFc:Facility MedXML-MML-Facility.Facility.v1 

mmlDp:Department MedXML-MML-Department.Department.v1 

mmlPsi:PersonalizedInfo MedXML-MML-PersonalizedInfo.PersonalizedInfo.v1 

mmlCi:CreatorInfo MedXML-MML-CreatorInfo.CreatorInfo.v1 

TABLE 1 ARCHETYPES FROM MML COMMON FORMAT 

MML module concepts Created archetypes 

mmlPi:PatientModule MedXML-MML-PatientModule.PatientModule.v1 

mmlHi:HealthInsuranceModule MedXML-MML-HealthInsuranceModule.HealthInsuranceModule.v1 

mmlRd:RegisteredDiagnosisModule MedXML-MML-RegisteredDiagnosisModule.RegisteredDiagnosisModule.v1 

mmlLs:LifestyleModule MedXML-MML-HealthInsuranceModule.HealthInsuranceModule.v1 

mmlBc:BaseClinicModule MedXML-MML-BasicClinicModule. BasicClinicModule.v1 

mmlFcl:FirstClinicModule MedXML-MML-FirstClinicModule.FirstClinicModule.v1 

mmlPc:ProgressCourseModule MedXML-MML-ProgressCourseModule.ProgressCourseModule.v1 

mmlSg:SurgeryModule MedXML-MML-SurgeryModule.SurgeryModule.v1 

mmlSm:SummaryModule MedXML-MML-SummaryModule.SummaryModule.v1 

mmlLb:TestModule MedXML-MML-TestModule.TestModule.v1 

mmlRp:ReportModule MedXML-MML-ReportModule.ReportModule.v1 

mmlRe:ReferralModule MedXML-MML-ReferralModule.ReferralModule.v1 

- MedXML-MML-ClinicalCourse.ClinicalCourse.v1 

TABLE 2 ARCHETYPES FROM MML MODULE CONCEPTS 

These archetypes faithfully represent the structure and contents of MML modules. Some parts 

of MML are influenced by HL7 CDA(129), which introduces XML-only constraints such as mixed 

elements (elements with value that also contain attributes) and heavy use of namespaces. 

Support for HL7 CDA particularities was included in the past into LinkEHR editor to support HL7 

CDA archetype definition and thus supporting them for MML required no further additions. 

Figure 21 shows an example of a created RMA for a MedXML MML module. 
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FIGURE 21 EXAMPLE OF A MML BASICCLINICMODULE REFERENCE MODEL ARCHETYPE 

Although creating an automatic process for the generation of RMA could be more time 

consuming than just defining a set of RMAs, if the format for the definition of the schema is 

shared by a set of models, it is preferable to create an automatic process. 

2.4. Advanced archetype editing 

Specific archetype editors for a particular reference model such as openEHR archetype editor 

can be regarded as “concept centric” since they hide most of the complexity of the underlying 

reference model. Therefore, they are suitable to be used by health domain specialists even 

with moderate knowledge of the underlying reference model and archetype model. The main 

drawback of this approach is that the reference model must be hard coded into the editor 

making it difficult both to keep in pace with its evolution and to support multiple models. 
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The “raw” use of RMA brings to the front the reference model during the editing process. This 

makes the editor “structure-centric”, i.e. domain concepts are defined by directly constraining 

the data structures present in the reference model according to the archetype formalism. 

Obviously, this approach forces users to have a deeper knowledge of the reference model, but 

facilitates working with multiple models. Figure 22 shows this “structure-centric” edition in a 

FHIR Adverse Reaction archetype. In order to make the editor, in our case the LinkEHR editor, 

more accessible and aligned with users’ knowledge of current standards, different approaches 

and methodologies have been investigated, namely plug-ins, mapping to other standards, 

semantic patterns, archetype creation from sample instances, and syntactic clinical model 

transformation between standards. They are discussed next. 

 

FIGURE 22 EDITING A FHIR ADVERSE REACTION ARCHETYPE 

2.4.1. Plugin archetype editors 

LinkEHR editor allows the creation of archetypes for a given reference model. As a basis 

LinkEHR Editor assumes that user has knowledge over the full reference model. In order to 

allow users with less specific expertise and knowledge of the underlying reference model to 

edit archetypes, we developed specific editors that use knowledge about a given reference 

model to hide archetype editing complexity. We have developed this kind of editors for 

ISO13606, openEHR, and HL7 CDA (130). Figure 23 shows a HL7 CDA archetype being edited 

with a custom editor. 
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FIGURE 23 EDITING AN HL7 CDA ARCHETYPE WITH SPECIFIC EDITOR 

Custom editors are created on the fly following a documentation file. This documentation file 

contains the complete details specific to a given reference model. These details include 

technical details (e.g. which is the attribute that contains the node identifier in a given 

standard: archetype_id in ISO13606, archetype_node_id in openEHR, or even templateId in 

HL7 CDA), properties related with class diagrams (e.g. which attributes contains a given class, 

which types are allowed in given attributes), multilingual description of classes, UI related 

properties (e.g. which icon should be used for this class or which transformation should be 

used when showing the user a sample form), and editor related properties (e.g. which class 

should be used to edit a given type or if an attribute is interesting enough to be shown in an 

specific editor). The class diagram related properties and technical details are generated when 

the model is imported. By default, the specific editor tree always hides the attributes, being 

the types the basic blocks in the edition process. E.g. A user that creates a Composition can 

include Sections or Entries, without worrying or knowing which attribute needs to navigate in 

order to include them. If an attribute is found interesting, it can be selected as navigation 

attribute. Navigation attribute child types will be the alternatives shown in the editor 

contextual menu. Reference models can contain long navigation trees that traverse classes 

that do not need to be constrained. For this use case, the ability to hide classes from the 

archetype tree edition was added. An example of this can be seen in Figure 23, as HL7 CDA 

Observations are related to other HL7 CDA Observations by an EntryRelationship class, which is 
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not shown in the specific editor but is stored in the archetype. This process can also hide from 

the edition process full archetype branches, even if they are still being created, e.g. when 

creating a Physical Quantity (PQ), both the units and the value are created, but only the PQ will 

be shown on the editor tree. These specific editors can be distributed as plugins and be 

included into the editor without changing the application source code. This documentation file 

is automatically generated on RM import, but can be updated in the documentation manager 

called Reference Model Manager. Figure 24 shows the reference model documentation being 

edited in the Reference Model Manager. 

 

FIGURE 24 REFERENCE MODEL MANAGER INSIDE LINKEHR EDITOR 

2.4.2. Mapping to non-dual models archetypes 

One of the advantages of including a new reference model into LinkEHR is to generate 

transformation programs from the archetypes. As described in (131), the mapping process is as 

follows: First, an archetype with the use case specific constraints must be created. Second, 

LinkEHR merges the archetype with the underlying RMA in order to assure that the constraints 

from the archetype and the reference model will be in the final instance. Third, transformation 
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functions can be assigned to the atomic values from this merged archetype in order to get the 

correct values. These mappings can be either from another archetype (from any RM) or in 

form of XML Paths. Fourth, when the defined mappings are enough to generate at least the 

mandatory information in a given RM, LinkEHR can generate a transformation program from it. 

This transformation program is an XQuery program that transforms source data into an XML 

instance compliant with the merged archetype (and thus compliant with both the defined 

archetype and the underlying RM). Source and target archetypes can be from dual model 

standards (such as ISO13606 or openEHR) or non-dual model standards (e.g. HL7 CDA, HL7 

FHIR, MedXML MML, etc.). Mapping process is explained in detail in chapter 3. 

2.4.3. Semantic patterns 

Archetype reuse is not limited to archetype slots and internal references. More advanced 

reuse patterns can be defined for the reuse of complex structures with clear meaning. 

SemanticHealthNet project (132) proposed the use of a kind of structure called semantic 

patterns. Semantic patterns are reusable solutions to recurring modeling problems based on 

an ontological framework in order to bridge between the EHR modeling community and the 

semantic and formal ontology communities. Their purpose is to guide and standardize the 

representation of the information meaning encoded by clinical models. For 

SemanticHealthNet, semantic pattern is a concept that combines structural, terminological, 

and ontological representations to enable multiple clinical models to be recognized as 

overlapping and primarily aligned (even between different standards). SemanticHealthNet 

proposed an OWL representation of semantic patterns. Other interoperability projects such as 

CIMI have also analyzed, identified, and suggested the use of semantic patterns (also called 

modelling patterns in CIMI) as part of their modeling approach (133). 

Based on this notion, we propose one way of implementing the semantic patterns to help and 

guide archetype creation. The use of these patterns will help in the achievement of 

SemanticHealthNet’s original purpose, as the structural fragments we define can be translated 

and used in other standards. In our view, semantic patterns are archetype fragments with 

known semantics (i.e. usually bind to clinical terminologies to express its meaning). They are 

designed to be reusable and thus have general meaning, as opposed to slots which fully define 

a given clinical model on their own. I.e. patterns are expected to be modified upon inclusion 

on the archetype to better represent the current clinical model use case. The kind of semantic 

patterns we define are useful for creating equivalences between different reference models, 

e.g. how an openEHR Observation is represented in ISO13606 reference model. Semantic 
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patterns provide a way for including predefined meaningful structures, as the semantic pattern 

themselves provide semantic bindings for a given archetype node. Examples of semantic 

patterns include general use structures such as table, tree, or panels, semantic structures such 

as observation, event, or history, and complex semantic patterns such as exam. 

For the creation, reuse, and version of semantic patterns LinkEHR editor allows selecting any 

node of a given archetype and transforming it to a semantic pattern. These patterns are stored 

as archetypes and thus contain both metadata and vocabulary sections that are used for the 

correct description of the pattern. This also enables the pattern versioning mechanism. 

Semantic patterns can be edited as normal as they were normal archetypes. For the reuse of 

semantic patterns, the process allows to include them in any place the reference model allows 

that given type, in the same way as normal archetype creation does. When a semantic pattern 

is selected, it is included in current archetype. A terminology binding is added in order to know 

exactly which patterns were used when creating a given archetype. An example of the edition 

is shown in Figure 25. In this figure, two ENTRY semantic patterns (Observation or 

SubjectOfCare) can be included inside of a COMPOSITION EN13606 class. 

 

FIGURE 25 INCLUDING A SEMANTIC PATTERN IN CURRENT ARCHETYPE 

 

2.4.4. Archetype creation from instances 

Probably one of the biggest challenges when applying archetypes to a non-dual reference 

model is that defining a minimum set of archetypes is required in order to start taking 

advantage of archetype-based methodologies and tools. This archetype creation task can be 

time consuming and requires a deep knowledge of the system. However, as usually the system 

is already deployed, it is feasible to have access to sample data instances. We developed an 
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automatic process that traverses a set of data instances on a given reference model and 

merges them into an archetype with the constraints detected on data. The process is based on 

the same principle as the generation of XML instances, i.e. an XML instance is equivalent to an 

archetype with the constraints fixed to constants (we call this constant archetypes, see chapter 

4 for a full explanation of constant archetypes). If each XML instance can be seen as a constant 

archetype, then the problem is reduced to merging the different constant archetypes into a 

single one. This process of merging two constant archetypes traverses the constraints in each 

archetype and loosens them according to their constraints values (e.g. widens ranges or makes 

data types less restrictive).  

Archetypes allow the definition of three kinds of constraints: object constraints (namely 

occurrences), attribute constraints (existence and cardinality) and primitive constraints (which 

depend on the data type). Occurrences, existence, and cardinality constraints can be guessed 

by measuring what parts of the instance appear/disappear or repeat. For the first appearance 

of an XML element or attribute, a mandatory attribute is created on the archetype. Each 

successive instance is checked to see if a created attribute still exists on it. If the attribute 

exists just once, nothing is done. If the attribute path exists more than once, the attribute is 

converted into a multiple attribute (container attribute) and is given a cardinality according to 

the number of times it appears in the instance. If the attribute does not exist in the instance, 

then the attribute is made optional on the archetype. The process is similar for objects. 

Archetype objects are created by looking at the xsi:type attributes, which are XML attributes 

with special meaning containing the object class of a given attribute. If the underlying 

reference model is known, archetype node identifier is used instead of the xsi:type (e.g. 

archetype_node_id attribute in openEHR). For any new type (or node identifier) detected, a 

new object with mandatory occurrences is created. Occurrences constraint will be relaxed with 

new instances accordingly. 

Getting meaningful results from unknown reference models is harder, as xsi:type attributes are 

optional and do not need to be included in the data instances (and even if they do exist, sibling 

nodes sharing the same type are impossible to distinguish). However, if the reference model is 

available, not having an xsi:type can be worked out as missing types usually mean that the 

attribute only has one allowed type, and thus can be automatically selected. It is also worth 

noticing that with our methodology is impossible to guess 'not allowed' attributes (existence 

0..0) or prohibited objects (occurrences 0..0), as they will never appear in data instances. 



Advanced archetype editing | 85 

 

Primitive constraints provide an interesting challenge. In this case, not only the value 

constraint may be relaxed with every new instance, but also the type of the value constraint 

can be modified into a more generic data type. When a new value is detected, it is checked 

against patterns created to detect each type. Data types with very specific patterns such as 

DateTime or Duration are checked first. Every other pattern is checked in descending 

complexity order, and if nothing matches then the data type is considered to be of String data 

type. In case of strings, two different string values create list constraints (e.g. if first we found 

the value 'low' and the next instance contains the value 'high', a string constraint with the list 

{'low','high'} is created. A similar process is used for the different data types. 

As an example, if the first data instance had a value of “123.4” then it is interpreted as a real 

value and a constraint to that exact value will be created on the archetype. If the next analyzed 

data instance has another real value such as “543.2”, then the created real constraint is 

modified to define a range from [123.4..543.2]. If the next instance includes another range it 

will again modify the range accordingly. If another instance has any value that is incompatible 

with the current guessed constraint type, then the type is changed by a more general data 

type. E.g. a detected integer constraint can be modified into a real constraint (assuming that it 

was a real with no decimal part) or a string constraint if the received value is from an 

incompatible type. 

As stated above, this instance creation process is more efficient if the information model has 

been previously imported as a RM, as data types and existence constraints can be also be 

obtained from the RM. 

Once every instance has been merged, the generated archetype is offered to the user in order 

to fine adjust the value, occurrences, existence, and cardinality constraints. 

2.4.5. Syntactic clinical model transformation between standards 

Transformation of clinical models between different standards is a difficult problem. One of 

the most promising approaches is the ontology-based transformation of archetypes and data 

instances between different reference models. This kind of transformation is already present 

in the literature (58). However, most of the time class equivalences are clear enough or are 

even part of the standards themselves (such as ISO13606 (32) or HL7 FHIR(15)) and thus 

transformation of the archetype to ontology languages for reasoning is not needed. A 

completely syntactic transformation is feasible as the translation of clinical models from one 

reference model to another can be done with a number of rules in the same order of 
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magnitude as the maximum number of classes of the reference model with more classes. For 

this syntactic clinical model transformation, rules to transform the class name and attributes of 

each class are created. Generated rules allow both the creation and removal of attributes and 

classes that have no transformation, e.g. an openEHR ITEM_LIST is transformed into a 

ISO13606 CLUSTER and adds both 'meaning' and 'structure_type' attributes (in an ISO13606 to 

openEHR transformation these attributes and classes are removed). In addition to that, rules 

for the transformation of the archetype metadata are also created. 

Rules for class transformation can be categorized in three different kinds depending on what 

triggers them: rules based on the structure of the source archetype, rules based on the 

terminology binding of the class, and rules for the generic transformation of the type. 

 Structure-based rule: this kind of rule uses conditions over the structure of the source 

archetype to choose the corresponding class. These conditions cover at least one class 

type, but can be made dependent of any number of other classes and values present 

in the source archetype. E.g. to translate an ISO13606 ENTRY to openEHR Observation 

it is necessary to create rules that search for an ENTRY object which 'meaning' 

attribute has 'OE-01' code. This is the rule with highest priority from the three. 

 Terminology binding-based rule: As archetype nodes support terminology bindings for 

their complete description, we can use them in order to categorize the class. This 

however requires that the semantics of target classes are fully described in a given 

terminology (typically SNOMED-CT). This is the rule with the second highest priority 

from the three. 

 Generic transformation: Health information standards, such as ISO13606, openEHR, or 

even HL7 CDA, contain a generic class intended to accommodate data coming from a 

different standard. This last rule, which has the lowest priority, ensures that every 

class translates to at least to a generic class. 

Any given set of source classes can be translated into any set of classes in the target (using 

insertion, deletion, and substitution operations). 

We demonstrated the usefulness of this approach by studying the ISO13606 to openEHR 

model and data automatic bidirectional transformation. On the one hand, as the ISO13606 

part 3 standard already defines the class equivalences and what codes should be put, the 

openEHR to ISO13606 was easier to develop. As the equivalences are already known, only 

structural rules were created for openEHR to ISO13606 transformation, which makes the 
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process completely deterministic. We generated a set of 57 rules for the translation of 

openEHR archetypes to ISO13606 (46 rules for class translation and 11 for the translation of 

archetype metadata). These rules transform types, attribute names, and also add the 

corresponding 'meaning' attribute. This attribute is available in all record component classes in 

ISO13606 and can be used in this context to provide a code describing the transformation 

source. We applied these rules to a dump of all available openEHR archetypes in the 

international CKM. This generated a set of 415 ISO13606 archetypes1. These archetypes were 

validated against the ISO13606 reference model and all were compliant with it. For a deeper 

explanation of the validation of archetypes see (134). The creation of the openEHR to 

ISO13606 transformation is straightforward as ISO13606 model is more generic than openEHR 

and usually a set of classes is transformed into a single class (e.g. in openEHR the Observation, 

Instruction, Action, Evaluation, Admin_entry, and Generic_entry are transformed into the 

ISO13606 Entry class). However, the inverse transformation (i.e. ISO13606 to openEHR) poses 

a challenge, as a single class in the origin can be transformed into a given class from a set of 

classes.  

For the translation of ISO13606 classes into openEHR classes, a structural and a terminology 

binding rule were defined for each target class the source class could be translated to. An 

additional generic rule was created for each source class, to allow the class to be translated to 

a class from the target reference model even if no other rule is launched.  

In this case, for the structural rules, the 'meaning' attribute (which as stated above may 

contain a code from ISO13606 part 3 terminology) was used. For the terminology binding 

rules, we used SNOMED-CT expression constraint language (135) to provide tentative 

descriptions of the openEHR entry classes. The expression is designed to return the tested 

code itself if the binding is included in the expression, and to return nothing if it is not included 

on it. Codes used in these expressions were extracted from current CKM archetypes 

terminology bindings. As few archetypes contain bindings and there is not yet a unified way of 

defining these bindings, created expressions may be incomplete. Table 3 shows the 

expressions used to test if the terminology binding can be identified as a target openEHR class. 

In these expressions, the unary operator “<<” stands for “descendants of the specified concept 

plus the specified concept itself”. These expressions are evaluated by using web services 

provided by the Snomed CT expression constraint execution engine SNQuery (136). 

                                                           

1
 Transformed archetypes can be downloaded from http://tiny.cc/ISO13606archetypes 
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Target class SNOMED CT subset 

Observation << 363787002 | Observable entity (observable entity) |  

OR << 284365007 | Examination of body site (procedure) |  

OR << 122869004 | Measurement procedure (procedure) | 

Evaluation << 243814003 | Interpretation of findings (observable entity) | 

Instruction << 243120004 | Regimes and therapies (regime/therapy) |  

OR << 400999005 | Procedure requested (situation) | 

Action << 129264002 | Action (qualifier value) |  

OR << 416118004 | Administration (procedure) |  

OR << 443938003 | Procedure carried out on subject (situation) |  

OR << 71388002 | Procedure (procedure) | 

Admin_entry << 14734007 | Administrative procedure (procedure) |  

OR << 304784009 | Administrative form (record artifact) | 

Event << 272379006 | Event (event) | 

TABLE 3 SNOMED CT GRAMMAR EXPRESSION FOR CATEGORIZATION OF OPENEHR CLASSES 

The ISO13606 to openEHR translation direction was limitedly tested, as currently available 

archetypes usually do not have associated 'meaning' or terminology binding, which in the end 

causes generated archetypes to be transformed using the generic transformation. 

In addition to guide the model transformation, rules also generate the attribute mapping 

equivalence between the original archetype and the transformed one. This allows generating 

automatically a transformation program to convert data instances based in a reference model 

to another reference model (see chapter 3). 

2.5. Improvements in LinkEHR Editor 

The above methodologies have been incorporated into LinkEHR editor. The definition of plugin 

editors provides a high level of customization to users and allows covering exactly their needs. 

These plugins contain the reference model, their documentation, and the Java compiled UI 

classes to specifically edit  given reference model types. For the mapping of archetypes to data 

sources, a new perspective was added in order to import data sources, edit mappings, and 

generate transformation programs from within the tool. For the use of semantic patterns, the 
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options to include and generate semantic patterns were added, as well as a semantic pattern 

manager to manage them from inside the tool. For the generation of archetypes from 

instances a wizard was added that uses both a set of provided instances and the name of the 

reference model and reference model entity for creating the archetype. For the syntactic 

clinical model transformation between standards an export option was added to provide the 

translation of current archetype. This export option changes depending on current archetype 

reference model and gives access to an output transformation (if defined for the selected 

reference model). 

In addition to these changes, other improvements were included in the tool in order to deal 

with new reference models and being able to use the tool into different standards workflow. 

2.5.1. Connection to external repositories 

Knowledge sharing is one of the key principles of archetypes. Several countries (such as 

Norway, Brazil, or Spain) have deployed archetype repositories to store and publish their 

clinical models. These archetypes establish national requirements for the semantic 

interoperability of data transferred within a country. In order to reuse these clinical models, an 

access to the repositories was provided. Both openEHR CKM and LinkEHR CM provide a set of 

web services (SOAP or REST) to query and retrieve archetypes available in them. LinkEHR 

Editor was improved to access both kinds of web services. 

2.5.2. Template import 

In dual model development cycle, templates provide ways to specialize an archetype for a local 

use. They define local use constraints and complete the archetype slots in the original 

archetype with their actual representation. In early openEHR days, these templates came in a 

format that is deprecated in ADL 1.5. In order to provide a way of reusing these templates in 

modern tools, a process to import templates and transform them into archetypes was created. 

This process analyzes the template (in either OET or OPT format) and provides an equivalent 

archetype from them. Templates in legacy format omit part of the structure of the clinical 

model, as they are assumed to be based on openEHR RM. This makes a requirement that 

openEHR RM is imported in the tool, as omitted parts are inferred from the remaining 

structure This method can also connect to remote or local archetype repositories in order to 

fulfill all the archetypes referenced by the template. The resulting archetype can be used for 

mapping and reference material generation. 
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2.5.3. Export JSON schema 

As JSON (137) implementations become more common, there is also the need to validate data 

and structure constraints in JSON. To allow this, a new method for the creation of JSON 

Schema (138) from the archetype was implemented. This allows the validation of JSON 

instances based on a given archetype in the same way a XML Schema or Schematron validate 

XML. By generating JSON Schema, other derived materials can be automatically created such 

as Java classes, API documentation, data sources schemas, forms, fake data instances, or 

editors with autocomplete. 

2.5.4. Export FHIR profiles 

FHIR uses a mechanism similar to the archetypes and specializations that is called ‘profile’. In 

order to allow the created archetypes to be used in FHIR servers and clients a method to 

export FHIR archetypes to FHIR DSTU profiles was created. Archetype constraints are 

translated into profile constraints. This process also allows the selection of which paths of the 

archetype can be queried, providing a name for this parameter, the type, and path. With this 

information, these query parameters are translated into profile query parameters and the 

profile is generated. 

2.6. Conclusions 

Using archetypes for non-dual model based standards allows the use of all available 

methodologies and tools, from archetype editors to repositories (both data and archetype 

repositories). This can be really beneficial for all involved parties, as it allows the use of high 

quality clinical information models in current data workflows and EHR systems. It also allows 

the improvement of clinical models with new use cases and expertise by different people, 

which in the end greatly enriches the original archetypes. 

There are several advantages of using dual model methodology with non-dual model 

standards, such as being able to check if a resource is valid against the reference model. This is 

especially useful not only with draft standards such as FHIR or standards with few dedicated 

tools such as MML, but also in the renewal of reference models like ISO13606, openEHR, or 

HL7 CDA. The changes on the reference model could potentially invalidate the already 

developed archetypes for the past reference model version. Our methodology allows 

regenerating the RM when new versions are released and use established mechanisms for 

archetypes like subsumption (134) to check if available archetypes are still valid with the 

evolved model, i.e. to check for the consistency of the archetypes and reference models. 
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The involvement of clinicians in systems creation is another of the clear advantages of using 

clinical models. Most of the problems with health information systems evolution and use can 

be tracked down to systems that were designed with clinical knowledge embedded into the 

system underlying information model (e.g. deciding what parts are recorded in a given clinical 

process). The use of clinical models allows for the separation of clinical knowledge from the 

structure of the system. Using archetypes eases the communication between clinicians and 

technical staff. They also allow for a better requirements capture, as clinicians themselves put 

their requirements in the archetypes, avoiding miscommunication problems. 

One of the advantages of archetypes is that they provide a way of linking clinical models with 

clinical terminologies and vocabularies. This allows the clinical models to be clearly and 

unambiguously described. Archetyped data can also be easily included in the system, as the 

meaning and semantics are well known. 

Multilinguality is one of key advantages of using archetypes on these standards. In fact, the 

advantages are clear for each standard we have studied. In the case of FHIR, there is no explicit 

support for multi-language representation in resources (139). FHIR-based archetypes can be 

used to translate FHIR Resources to other languages without the need of creating profiles to 

extend the resources. This is similar to the use case of MedXML MML. In MML, the need of 

translations was already pointed out, as a modification of the original schemas was proposed 

to give support to Chinese language (71). This arguably could be done by translating our 

developed MML archetypes. When dealing with HL7 CDA, an implementation guide is typically 

released for each language, which is harder to maintain and use. Having multilingual source 

archetypes would allow the generation of reference materials such as implementation guides 

for a given language automatically. Archetype terminology bindings also provide their own 

mechanism to support multilinguality by looking up translations in a terminology server.  

Another key advantages of using archetypes are the knowledge reuse, the ability to lock down 

modelling optionality and vocabularies, the ability to generate derived reference materials 

from the archetypes (such as Schematron, sample instances, sample formularies, and 

implementation guides), the use of AQL(39) for data query, and even the transformation to 

OWL to run SPARQL queries (61,140). 

In particular, defining archetypes for non-dual model standards also allows us the mapping of 

existing systems and standards from and to dual model standards like ISO13606 or openEHR. 

This allows us to seamless include existing archetype systems into the workflow of current 
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standards and vice versa. Archetypes can also be mapped from legacy data sources in order to 

generate valid data for current systems. This methodology has been tested for other non-dual 

model standards such as HL7 CDA (141) and CDISC ODM (142). 

In addition to that, dual model approach allows the use of modelling methodologies for the 

creation of clinical models in any given standard. These modelling methodologies are 

independent of the chosen standard and put the reuse of validated clinical models as a key 

phase of the process (46). 

There are also a few disadvantages when using archetypes with non-dual models. In general, 

narrative parts (as the ones available in HL7 CDA or HL7 FHIR) are difficult to handle in model 

transformation (143). This is still true in the case of archetypes. In addition to that, each 

standard usually has already defined a workflow which would need to be adjusted to also use 

archetypes, which is not always possible. 

One of the biggest drawbacks of using archetypes in non-dual model standards is that some 

models have business concepts with low variability and thus using archetypes on them has 

very little added value (e.g. ASTM CCR model, some HL7 FHIR resources, or even ISO13606 

current demographic model). Even in this case, using archetypes provide added value such as 

formally supporting multilinguality, knowledge reuse, and terminology bindings. 

The advantages of a joint use of archetypes with non-dual model standards outweigh the 

disadvantages. Creating archetypes for these standards allows us to reuse all the tools and 

methodologies developed for dual model standards, and using archetypes for currently used 

reference models such as HL7 CDA, HL7 FHIR, or MedXML MML will help to the rapid adoption 

of both the original standard and the dual model approach. 
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Chapter 3.  

Migration of Health Information Systems – Data perspective 

 

 

 

3.1. Introduction 

Health care is a sector where the need of sharing information is the norm rather than the 

exception. However, the health data of one patient is usually scattered among the different 

health facilities where they have been attended. As a consequence, it becomes increasingly 

important to combine and communicate seamlessly all the distributed information with 

minimal additional support or intervention from end users. Due to the special sensitivity of 

health data and the wide range of ethical and legal constraints, health data communication 

must be done in a meaningful way, avoiding all possibility of misunderstanding or 

misinterpretation. This crucially depends on the standardization of the EHR architecture.  

This chapter deals with one of the main problems when adopting EHR-related standards: how 

to standardize existing data. In our scenario, this involves transforming EHR content into data 

structure compliant with reference models and archetypes. We face a problem known in the 

literature as the data exchange (translation or transformation) problem (4). This problem is a 

difficult one, since it deals with differences and mismatches between heterogeneous data 

formats and models. In the EHR scenario this problem is even more complex. On one side, we 

have the legacy data that conform to a particular schema and with local semantics. On the 

other side, we have EHR architectures and archetypes that have been defined without any 

consideration regarding the internal architecture or database design of EHR systems. Our 

objective is to create an instance of the target schema (archetype) taking data structured 

under the source schema (legacy EHR). For this purpose, we require an explicit representation 
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of how the source schema and target schema are related to each other. These explicit 

representations are called (schema) mappings (5,6).  

The effort required to create and manage mappings is considerable since it involves writing 

and managing complex data transformations programs. A simple approach is to write intricate 

custom and non-reusable software in a general purpose language to perform the required 

transformations. A more elaborated alternative is to use a “specify-generate” approach where 

high-level declarative assertions are used to specify the relationship between the source and 

target schemas. The assertions are then compiled automatically into executable scripts (such 

as SQL/XQuery). This approach makes it possible to separate the design of the relationship 

between schemas from its implementation. 

In this chapter, we describe a declarative approach to specify mappings and from them to 

generate automatically data transformation scripts expressed in XQuery that may be used to 

integrate and communicate EHR systems. Our solution is based on the large body of research 

on data exchange. The existing formalisms has been studied and adapted to cope with the 

special requirements of archetypes.  

We will also explain how this approach has been implemented in the LinkEHR platform to 

support the mapping of archetypes based on any reference model. Our main requirements on 

the target instances are that they shall be compliant with the target standard, be non-

redundant and contain all the available source information (144,145). Furthermore, we will 

study how to incorporate expressive mappings that: a) not only cope with value couplings but 

also with structural mappings b) take into account the wide range of constraints that can be 

specified in archetypes. 

Different parts of this chapter have previously published in two papers in the Journal of 

Biomedical Informatics: “Using the ResearchEHR platform to facilitate the practical application 

of the EHR standards”1 and “Interoperability of clinical decision-support systems and electronic 

health records using archetypes: a case study in clinical trial eligibility”2. 

3.2. Data Model 

We need first to introduce the data model that is used to represent the source and target 

schemas in our mapping framework. The source schemas may be either a XML Schema or an 

                                                           

1
 Available at http://www.sciencedirect.com/science/article/pii/S1532046411001924 

2
 Available at http://www.sciencedirect.com/science/article/pii/S1532046413000701 
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archetype expressed in ADL whereas the target schema is an archetype expressed in ADL. 

Thus, the data model shall be capable of representing both formalisms. 

A data model is a collection of concepts that can be used to describe a data schema, i.e. the 

data types, relationships, and constraints that should apply on the data. Since archetypes 

(ADL) impose a hierarchical structure to the EHR we have chosen the nested relational (NR) 

model (146). Furthermore, the NR model is the base of the existing mapping formalisms for 

hierarchical data transformation. Therefore, its use will allows us to apply the existing 

formalisms and methodologies to archetypes. 

The NR model generalizes the relational model where tuples and relations are modeled as 

records and set of records respectively. In the NR model, a non-atomic element (either records 

or set of records) can be nested inside another element to build complex hierarchies as those 

defined by archetypes. The proposed data model is similar to the data model described in 

(147) but it has been adapted to deal with archetype data definition capabilities. 

The set of atomic data types of our model are those supported by ADL archetypes, namely: 

string, integer, real, date, time, date and time, duration and Boolean. Non-atomic types are 

record types of the form Rcd [𝑎1
(𝑒1:𝑓1)

: 𝜏1, … , 𝑎𝑛
(𝑒𝑛:𝑓𝑛)

: 𝜏𝑛], set types of the form 

SetOf [𝜏1
(𝑙1:𝑢1)

… 𝜏𝑛
(𝑙𝑛:𝑢𝑛)]

(𝑙𝜏:𝑢𝜏)
 and choice types of the form ChoiceOf[𝑎1: 𝜏1 … 𝑎𝑛: 𝜏𝑛 ] 

where: 

1. 𝜏 represents either an atomic, set, or record type  

2. 𝑛 ≥ 1, 𝑒𝑖 ∈ {0,1}, 𝑒𝑓 ∈ {0,1} and 𝑒𝑖 ≤ 𝑒𝑓 

3. li is a natural number, ui is a natural number or  and  li  ui  

4.  ∑ 𝑙𝑖 ≤ 𝑢𝜏
𝑛
𝑖=1  and ∑ 𝑢𝑖 ≤ 𝑙𝜏

𝑛
𝑖=1  

The symbols 𝑎1, … , 𝑎𝑛are called label or attributes.  

Record values of type Rcd [𝑎1
(𝑒1:𝑓1)

: 𝜏1, … , 𝑎𝑛
(𝑒𝑛:𝑓𝑛)

: 𝜏𝑛] are ordered tuples of attribute-value 

pairs: [𝑎1 = 𝑣1, … , 𝑎𝑛 = 𝑣𝑛 ] where 𝑣1, … , 𝑣𝑛 must be of types 𝜏1, … , 𝜏𝑛 respectively. In record 

types (𝑒1: 𝑓1) represents the existence constraints, for instance (1:1) means the attribute is 

mandatory.  

Set values of type SetOf [𝜏1
(𝑙1:𝑢1)

… 𝜏𝑚
(𝑙𝑚:𝑢𝑚)]

(𝑙𝜏:𝑢𝜏)
 are set of values of one of the types 

𝜏1, … , 𝜏𝑛. In set types, (𝑙𝜏: 𝑢𝜏) represents the cardinality of the corresponding attribute 
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whereas (𝑙𝑖: 𝑢𝑖) represents the occurrences constraints (how many times an instance of a 

given type can occur).  

Choice values of type ChoiceOf[𝑎1: 𝜏1 … 𝑎𝑛: 𝜏𝑛 ] are an attribute-value pair 𝑎𝑖 = 𝑣𝑖 where 𝑣𝑖 

must be of type 𝜏𝑖. Note that the ChoiceOf type models alternatives of attributes a feature of 

XML Schema that is not supported by archetypes. However, archetypes support alternatives of 

types which are modeled by set types with upper cardinality equal to 1 in our formalism. For 

instance, the following type definition models an alternative of two types QUANTITY[at0005] 

and QUANTITY[at0006]: 

𝑡𝑦𝑝𝑒𝑉𝑎𝑙𝑢𝑒 ∶≔ 𝑆𝑒𝑡𝑂𝑓[𝑄𝑈𝐴𝑁𝑇𝐼𝑇𝑌𝑎𝑡0005 𝑄𝑈𝐴𝑁𝑇𝐼𝑇𝑌𝑎𝑡0006](1:1) 

For simplicity of presentation, we will assume strict alternation of set/Choice and records 

types in a schema and default values in ADL 1.4 for existence, cardinality and occurrences. 

Table 4 contains the representation of several archetypes constraints using our data model. 

Note that we use SetOf to model the content of attributes (both mono-valued and multi-

valued). 

In Figure 26, we show a simple ADL excerpt that may be represented as: 

𝐻𝐼𝑆𝑇𝑂𝑅𝑌 ∷= 𝑅𝑐𝑑[𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐: 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒: 𝑡𝑦𝑝𝑒𝑉𝑎𝑙𝑢𝑒 𝑒𝑣𝑒𝑛𝑡𝑠: 𝑡𝑦𝑝𝑒𝐸𝑣𝑒𝑛𝑡] 

𝑡𝑦𝑝𝑒𝑉𝑎𝑙𝑢𝑒 ∶≔ 𝑆𝑒𝑡𝑂𝑓[𝑄𝑈𝐴𝑁𝑇𝐼𝑇𝑌𝑎𝑡0005 𝑄𝑈𝐴𝑁𝑇𝐼𝑇𝑌𝑎𝑡0006](1:1) 

𝑄𝑈𝐴𝑁𝑇𝐼𝑇𝑌𝑎𝑡0005 ∶≔ 𝑅𝑐𝑑[𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒: 𝑖𝑛𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦: 𝑠𝑡𝑟𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠: 𝑠𝑡𝑟𝑖𝑛𝑔] 

𝑄𝑈𝐴𝑁𝑇𝐼𝑇𝑌𝑎𝑡0006 ∶≔ 𝑅𝑐𝑑[𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒: 𝑖𝑛𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦: 𝑠𝑡𝑟𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠: 𝑠𝑡𝑟𝑖𝑛𝑔] 

𝑡𝑦𝑝𝑒𝐸𝑣𝑒𝑛𝑡 ∷= 𝑆𝑒𝑡𝑂𝑓[𝐸𝑣𝑒𝑛𝑡0002(0:1)𝐸𝑣𝑒𝑛𝑡0003(1:2)𝐸𝑣𝑒𝑛𝑡0004(0:∞)]
(0:∞)
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FIGURE 26 ADL EXCERPT 

 

Archetype constraint Representation in NR model 

Mandatory primitive attribute attr  𝑎𝑡𝑡𝑟(1:1): 𝑎𝑡𝑜𝑚𝑖𝑐 𝑡𝑦𝑝𝑒 

Opcional primitive attribute atrr 𝑎𝑡𝑡𝑟(0:1): 𝑎𝑡𝑜𝑚𝑖𝑐 𝑡𝑦𝑝𝑒 

Class with attributes attr1....attrn Rcd [𝑎𝑡𝑡𝑟1
(𝑒1:𝑓1)

: 𝜏1, … , 𝑎𝑡𝑡𝑟𝑛
(𝑒𝑛:𝑓𝑛)

: 𝜏𝑛] 

Mandatory mono-valued attribute attr. In case 

m=1, we model an alternative. 
attr∷=SetOf [𝜏1

(𝑙1:𝑢1)
… 𝜏𝑚

(𝑙𝑚:𝑢𝑚)]
(1:1)

 

Optional mono-valued attribute attr. In case 

m=1, we model an alternative. 
attr∷=SetOf [𝜏1

(𝑙1:𝑢1)
… 𝜏𝑚

(𝑙𝑚:𝑢𝑚)]
(0:1)

 

Multi-valued attribute attr with cardinality = 

{cl..cu} 
attr∷=SetOf [𝜏1

(𝑙1:𝑢1)
… 𝜏𝑛

(𝑙𝑛:𝑢𝑛)]
(𝑐𝑙:𝑐𝑢)

 

Class 𝜏𝑖with occurrences={𝑙𝑖: 𝑢𝑖} 𝜏𝑖
(𝑙𝑖:𝑢𝑖)

 

TABLE 4 REPRESENTATION OF ARCHETYPE CONSTRAINTS IN THE PROPOSED DATA MODEL 
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3.3. Source and target schemas 

3.3.1. XML Schemas 

Type definitions in XML Schema can be reused in multiple places what may hinder the 

mapping definition process. It becomes necessary to generate the exhaustive nested schema 

for instance data by “unfolding” all the types at the place they are used in order to univocally 

reference source data element. For this purpose, we have developed an algorithm that 

analyses the schema and generates a visual tree that contains all possible paths from the root 

to the atomic elements/attributes that may appear in instance XML documents. Figure 27 

depicts an example, where the asterisk denotes a SetOf type. As a result, users do not have to 

deal with the complexity of XML Schema when mapping archetypes. Note that for each XML 

Schema the user must indicate the entity (element/attribute) that contains the patient 

identifier. This information is vital in order not to mix data of multiple patients in a single EHR 

extract. 

The resulting mapping tool, LinkEHR, can also handle source relational schemas, as long as 

they are converted in a canonical way into a W3C XML Schema. The tool extracts an existing 

relational schema from a relational database using JDBC drivers. The imported schemas, stored 

in an internal format, are used as the basis for GUI management of such source schemas. Once 

a schema has been imported, users can select the portion of the database (tables and 

relationships) that is relevant for a particular archetype. Only those tables that are related 

directly (by means of a foreign key) or indirectly (by means of a foreign key path) to the table 

that contains the patient identifier can be used in a mapping specification. Based on the 

relationships between the root table and other tables, the tool generates a hierarchical view 

expressed as a W3C XML Schema. Since the root entity corresponds to the table that contains 

the patient identifier, all the patient data is nested inside this root node. The user selection 

may contain cycles; the tool assists the users in their elimination before generating the 

hierarchical view. 
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FIGURE 27 EXAMPLE OF TREE VIEW OF AN XML SCHEMA 

3.3.2. Archetypes 

In ADL only the constrained entities (classes and attributes) of the reference model need to 

appear in the archetype definition. It is supposed that the constraints imposed by the 

underlying reference model are implicit constraints. The same occurs when specializing an 

archetype, all the constraints in the parent archetype are implicit constraints of its 

specializations. Note, that this is consistent with the object-oriented paradigm, where 

attributes and methods of a superclass are automatically inherited by all its subclasses. The 

main advantage of this rule is that archetype definitions in ADL are kept simple. For instance, if 

all the classes and attributes of the reference model were to be included, archetypes would 

have many constraints (hundreds in EN13606) making the archetype definition unnecessarily 

complex. 

This rule poses a difficulty when an archetype is to be mapped to a data source. In many cases 

it would be necessary to map an unconstrained attribute, hence not present in the archetype. 

Note that our final objective is to generate XML documents compliant with the reference 

model. Thus, when an archetype needs to be mapped it becomes necessary to complete the 

archetype definition with the reference model. We have implemented a merge function that 

takes an archetype and the underlying reference model as inputs and outputs what we call a 

comprehensive archetype. A comprehensive archetype includes all the explicit constraints 

(those defined by the archetype to be mapped) and all the implicit ones (those defined by the 

reference model) that data instances must satisfy. Figure 28 shows an example of 

comprehensive archetype. On the left-hand side the original CEN/ISO 13606 archetype is 

depicted, whereas the corresponding comprehensive archetype is shown on the right-hand 

side. As it can be observed the comprehensive archetype contains all the constraints of the 



100 | Mapping Language 

 

original archetype as well as all the unconstrained entities from the reference model such as 

act_status and archetype_id. 

 

FIGURE 28 BLOOD PRESSURE ARCHETYPE AND AN EXCERPT OF THE COMPREHENSIVE ARCHETYPE SIDE BY 

SIDE 

3.4. Mapping Language 

The mapping language is based on the tgds (tuple-generating-dependencies) (4) proposed in 

(78,147). They are expressive enough to represent, in a declarative way, many of the schema 

mappings of interest (147). The tgds basically define a value correspondence, i.e. how to 

compute a value for an atomic attribute of the target schema (archetype) by using a set of 

atomic elements from the data source. In our setting a value correspondence is defined by a 

set of pairs, consisting of a transformation function and a filter. The latter contains the 

conditions that source data must satisfy to be used in the transformation function. All the 

atomic values, either from source or target data, eventually devolve to instances of the 

primitive types of the archetype model, namely String, Integer, Real, String, Date, Time, 

DateTime, Period and Boolean. Filters expression must yield a Boolean value whereas 

transformation functions must produce a value compatible with the type of the target 

attribute. Value correspondences allow us to hide much of the structural complexity of 

archetypes and reference model. Users do not need to specify the logical relations between 

the entities of the source and target schemas. It is only necessary to specify the navigation 

path of the attributes used in the mapping. 
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The simplest kind of transformation function is the identity function which copies a single 

source value into a target value. But quite often it is necessary to specify arbitrary complex 

functions which transform a set of source values into a target value. To achieve this, a wide 

range of transformation functions are supported. They can be divided into nine categories as 

described in Table 5. The example in Figure 29 illustrates a simple value correspondence for 

transforming gender codes. It transforms the local gender code in the path /patient/gender of 

an XML EHR fragment (source data) into a normalized code to be stored by somewhere within 

an archetype (target data). Note that the order is relevant and only one mapping function is 

applied. Therefore, this correspondence should be interpreted as: 

If (/patient/gender=’M’ OR /patient/gender=’m’) then 0 

Else if (/patient/gender=’W’ OR /patient/gender=’w’) then 1 

Else if (/patient/gender=0 OR /patient/gender=1) then /patient/gender 

Else 9 

 

FIGURE 29 EXAMPLE OF VALUE CORRESPONDENCE TRANSFORMING THE GENDER CODES FROM A XML 

SOURCE. 

Category Description Examples Sample mapping 

Set value  Enable to set a fixed value 

to an archetype atomic 

attribute. The value can be 

either a constant or an 

expression involving several 

constants. 

 /source/value 

Type conversion Set of functions for the 

conversion from one type to 

another.  

toString, toInteger, 

toFloat 

toString(58.7) 

Mathematical Standard mathematical 

functions for numerical 

calculation using several 

+, div, mod, round, 

ceiling  

(10 + 25) mod 30 
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source values.  

Logical Main logical functions 

including comparison 

operators. 

AND, OR, TRUE, 

FALSE, <, >, <>, 

NOT 

/source/value < 30 

String Main operator for handling 

string values. 

concat, matches, 

contains, 

substring_before 

matches(“abc”,”[a-z]+”) 

Date and time Transformation of source 

values into values 

conforming to the 

international standard ISO 

8601 for date and time 

representation or the 

extraction of portions of date 

or time expressions. 

toISODate, 

toISOTime, day-

From-DateTime, 

minutes-From-Time 

toISODate(/source/date,”yyyy-MM-dd”) 

Archetype 

vocabulary 

Allow the access to 

archetype metadata such as 

entity identification or the 

text and description 

attached to archetype 

entities 

Code, id, 

description, text 

description(“at0010”) 

Terminology Functions that allow 

terminology abstraction by 

reasoning over the acyclic 

taxonomic (is-a) hierarchy of 

SNOMED CT, 

In, ascendents, 

descendents, union, 

intersection 

in(/diagnostic/code, @descendents 

("128462008"))) 

Grouping Functions applied to a 

source path representing 

pointing to a set. Takes into 

consideration this set of 

paths to perform operations 

using all set values. 

Count, max, min, 

average 

max(/source/value) 

TABLE 5 FUNCTIONS SUPPORTED BY LINKEHR MAPPING 
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FIGURE 30 AN EXAMPLE OF VALUE CORRESPONDENCE 

Value correspondences can be translated into source-to-target tgds. For instance the value 

correspondence depicted graphically in Figure 30 translates to the following tgd: 

∀ ℎ ∈ 𝑠𝑜𝑢𝑟𝑐𝑒. ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛, 𝑎 ∈ ℎ. 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑟 | 𝑎. 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = "𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛" → 

∃ℎ′ ∈ 𝑇𝑎𝑟𝑔𝑒𝑡. ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙, 𝑝 ∈ ℎ′. 𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 | 𝑝. 𝑛𝑎𝑚𝑒 = 𝑎. 𝑛𝑎𝑚𝑒 

Note that the above tgd is essentially a GLAV mapping, where the left hand side of the 

implication is a query over the source (𝑄𝑆) and the right hand side is a query over the target 

(𝑄𝑡). The expression specifies a containment assertion: for each record value returned by 𝑄𝑆 

there must exist a corresponding record value in 𝑄𝑡. We also point out that the above tgd (and 

any tgd) does not capture the existence (the attribute “name” is mandatory in the target), 

cardinality and occurrence constraints. We enforce these constraints in the generated XQuery. 

One of the main problems of using value correspondences is that they must be combined in 

order to generate a complete mapping. Value correspondences lack expressive power and 

some mapping details must be worked out (146). The main problem is related to the grouping 

semantics. Grouping semantics describes when instances should be grouped and nested into a 

SetOf instance. Consider Figure 31 where a very simple, but yet illustrative, mapping scenario 

is depicted. The target schema is nested on an extra level (procedures set). The value 

correspondences require all patientId and SurgicalProcedure that can be found in the source to 



104 | Mapping Language 

 

be transferred to the target. However, the intended semantics dictates that all the different 

SurgicalProcedure shall be grouped together, for the same value of patientId. This behavior 

cannot be captured by a tdg which is stated at the level of flat record instances. As a result we 

will obtain a different target instance for every different combination of 

(patientID,SurgicalProcedure) in the source and every target instance will have just one nested 

procedure. This output satisfies the tgds but it is not the correct one. 

 

FIGURE 31 GROUPING MISMATCH BETWEEN SOURCE AND TARGET SCHEMAS 

Our default grouping semantics is heavily inspired on CLIO (81). It is based on the Partition 

Normal Form (PNF), i.e. we impose that the resulting target instances will satisfy the PNF (148). 

This forces that in any target nested relation there cannot exist two distinct records that 

coincide on all the atomic elements, in other words the non-multivalued attributes are the key 

of nested relations. In Figure 32 the nested relations A and C are in PNF unlike B. As can 

observed C contains the same information as B, in fact it is the normalized version of (b). 
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FIGURE 32 NESTED RELATIONS EXAMPLES, (A) AND (C) ARE IN PNF AND (B) IS NOT 

This default grouping strategy has been proven suitable for most use cases. Since much of 

context information (such dates or authors) is mono-valued, therefore clinical data that share 

this context are grouped together. To achieve PNF on the target instances, we use skolem 

functions. A skolem function returns a different value (identifier) for each combination of 

parameters. A new instance will be only created if another instance with the same identifier 

does not exist.  

Our skolemization algorithm is based on a schema that associates to each type definition in the 

comprehensive archetype a subset of the atomic attributes of the comprehensive archetype. 

This subset controls the creation of fresh values in the target instances: they are the 

parameters of the corresponding skolem function.  The algorithm is as follows: 

Input: a comprehensive archetype A and a set of correspondences of values S 

Output: skolem function parameters for each set type node in A controlling the creation of 

instances of archetype complex types 

Propagate each atomic attribute of the comprehensive archetype to the complex type nodes, 

in any of the following two ways: 

1. Propagate up the atomic attributes with a correspondence of value until a multivalued 

attribute is found.  
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2. Propagate down the atomic attributes with a correspondence of value. 

The propagation rules are applied recursively until no rules can be applied. 

The propagation process ends in a unique configuration in which each type node in the 

comprehensive archetype has a list of the atomic attributes. 

Figure 33 shows the result of the application of the previous algorithm to the example in 

Figure 31. Note that the skolem function of the type “procedures” has two parameters 

“/patientId” and “/procedures[at0001]/procedure”. Therefore, a different instance of 

SurgicalProcedure will be created for each combination of patientId and procedure values. 

Note that the archetype attribute /patientId is mapped to source path 

/source/surgicalActivity/patientId and the attribute /procedures[at0001]/procedure to 

/source/surgicalActivity/surgicalProcedure as shown in Figure 31. 

 

FIGURE 33 ANNOTATED ARCHETYPE WITH SKOLEM PARAMETERS 

Figure 34 depicts a more complex example of the application of the previous algorithm.  For 

instance, a fresh value in the set type Physician will be created for every combination of 

patientId, hospital name, physician name and physician category. 

3.5. Customization of grouping semantics 

The semantic of the data transformation is defined in two parts. First it is defined in the set of 

value correspondences and then in the default (implicit) grouping semantics. The nested 

nature of archetypes makes the grouping semantics a key aspect. An important limitation is 

that the default grouping semantic is not specified declaratively. Therefore, it cannot be 

customized when it is not the desired semantics. In other to address this issue we propose two 

different mechanisms to allow users to control the structural transformation. 

3.5.1. Modification of skolem functions 

Skolem functions can be modified in order to change the default grouping semantics, although 

in a quite limited way. As can be observed, the set of parameters of outer types are included in 
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the set of inner nested types. This is important since it assures that the grouping context is 

propagated downwards. In Figure 34 the skolem function of the archetype root (Target) has a 

single parameter (/patientId). Intuitively this means that all the nested data is about a single 

patient. The nested type Hospital has an extra parameter (/hospital[hospitalat]/name). 

Therefore, the instances of this type will contain information for a patient in a particular 

hospital.  The same rationale is applied to the remaining types. This containment relationship 

must be maintained in order to assure data coherence. For instance, If “/patientId” is removed 

from the parameter set of the Hospital type, it will be possible to have data about different 

patients in a single Hospital instance. In order to prevent this situation, the deletion of a 

parameter is propagated to the remaining parameter sets.  

 

FIGURE 34 PARAMETER OF THE SKOLEM FUNCTION TO CONTROL THE CREATION OF VALUES IN SET TYPES 

3.5.2. Object Builders 

As stated before default grouping semantic is not always adequate. To illustrate this, consider 

the mapping example shown in Figure 35. The source schema is a nested schema describing 

departments with their set of employees and project. The target schema is an archetype which 

is a slight variation of the source schema. It also groups together employees and projects per 

department but the department name is not included. The value correspondences relate 

source project and employee names with target project and employee names. The 

skolemization algorithms yields the empty set for the archetype root (Target) and 

Dept[at0001]. In this case and since there is not information available about the generation of 
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Dept instances a single instance is generated. The single Dept instance encloses all the project 

and employees, not preserving the containment and sibling relationships in the source. What 

we need is to control the creation of target instances, in such a way that a new Dept instance 

is constructed for each source department node. 

 

FIGURE 35 SIMPLE MAPPING SCENARIO 

A natural extension to the mapping language is the inclusion of assertions that connect 

complex schema elements (instead of atomic elements as value correspondences). This type of 

assertion are called object builders (78). An object builder has: 

a) A set of incoming source complex elements that can be tagged with variable names.  

b) One or none outgoing CComplexObject element of the target archetype. The upper 

occurrences of the CComplexObject must be greater than 1. The archetype root is an 

exception to this rule. 

c) A filter on the source data. 

d) One or none incoming object builder.  

e) Zero to many outgoing object builders.  

 

Intuitively, an object builder defines an iterator on the source nodes they are drawn from (a), 

in each iteration, a new target element (b) is generated for each combination of source values 

that satisfy the filter (c). It is possible to define hierarchies of builders where parent builders 

propagate its context to its children. Figure 36 illustrates an example of mapping scenario with 

three object builders. This mapping solves the problem discussed previously. The topmost 

builder generates target Dept elements and its context is propagated to the remaining 
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builders. One of them generates Empl elements while the other generates proj elements 

considering the current topmost mapping into Dept. Furthermore, only those employees with 

a salary (source attribute ‘sal’) greater than 10000 are selected. 

 

FIGURE 36 SIMPLE MAPPING SCENARIO WITH OBJECT BUILDERS 

3.6. XQuery generation 

3.6.1. Mapping covers 

When two or more complex types in ADL archetypes appear nested inside an attribute which is 

not a container (i.e. for which there is no cardinality constraint) are taken to be alternative 

constraints, only one of which needs to be matched by the data. In Figure 26, 

QUANTITY[at0005] and QUANTITY[at0006] are alternatives for the value attribute, leading to 

the result that only one instance of one of both types can appear in runtime. This useful 

feature provides an additional challenge in the generation of transformation programs as only 

one of the alternatives can be present in target data. If more than one alternative has a 

complete mapping (i.e. there are enough value correspondences to generate a valid instance) 

then we have different ways of producing valid target instances. We overcome this problem by 

generating what we call cover archetypes. A cover archetype of archetype A is generated by 

removing all but one of the child type constraints of single-valued attributes, i.e. by selecting 

one of the alternatives and removing the rest. If we take as example the archetype in Figure 26 

two different covers can be generated, one where only QUANTITY[at0005] remains and other 

where QUANTITY[at0006] remains. We note that this might lead to an explosion in the number 

of covers if many alternatives are defined in the archetype. To alleviate this problem, we 
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automatically remove those alternatives that have not enough value correspondences to 

create valid target instances. 

3.6.2. Representation of domain constraints 

Comprehensive archetypes may contain constraints on primitive types that may come either 

from the reference model or the archetype itself. This kind of constraint is used to limit the set 

of possible values that an atomic attribute can hold. For instance, Integers can be constrained 

by using a list of integer values or an interval whereas Strings can be constrained in two ways: 

by using a list of fixed strings or a regular expression. Since they are applied to atomic 

attributes, these constraints must be taken into account in value correspondences.  

Fixed values are the most restricted type of domain constraint. We transform automatically 

fixed values into value correspondences, whose filter is the true value (it is always applied) and 

the transformation function is a set value function which assigns the fixed value to the 

corresponding atomic attribute. Therefore, the fixed value will always appear in instance data.  

Constraints on primitive types that do not impose a single fixed value are treated in a different 

way. User needs to specify value correspondence since there are multiple possible values. The 

domain constraints are enforced in the generated XQuery. We will discuss our generation of 

XQuery scripts in the following section. Table 6 shows two examples of how constraints are 

automatically compiled into XQuery transformation script. First row contains an example of a 

constraint that imposes the fixed value 1 to the attribute number. Whereas the second row 

describe how a range constraint on an integer attribute is compiled into the XQuery 

transformation script. In the example, the value is contained in the path 

/data/measurements/value of the input XML document. 

Archetype constraint Value correspondence XQuery extract 

number matches {1} If true then 1 
(automatically generated) 

Return  
<number> 1 </number> 

 
number matches 

{|1..10|} 

If true  
then /data/measurements/value 
(specified by user) 

For $val in 
/data/measurements/value 
Where $val≥0 and $val≤10 
Return 
<number> {data($val)}</number> 

TABLE 6 EXAMPLES OF HOW CONSTRAINTS ARE PROCESSED 
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3.6.3. Translation of mappings into XQuery 

It is important to note that XQuery is a possibility among others for implementing the mapping 

specification. Since the proposed mapping language is declarative the mapping specification 

can be “compiled” in other languages such as XSLT.  We chose XQuery due to its rich set of 

features that allow many different types of operations on XML documents such as selecting 

information based on specific criteria, filtering out unwanted information, sorting, grouping 

and aggregating data, performing arithmetic calculation on number and dates, manipulating 

string and transforming and restructuring XML data into another structure. 

Taking into account the abstract mapping specification, the archetype constraints and the 

source schema an XQuery script is generated for each cover archetype. The resulting 

transformation script takes as input an instance of the source EHR data and generates a XML 

document that is compliant both with the archetype and the underlying reference model. The 

template of such XQuery programs is shown in Figure 37.  

For each object node (specialization of a reference model class) in the archetype a nested 

XQuery FLWOR expression (149) is produced which contains:  

a) An uppermost LET clause that contains all the combinations of a flat view of all the 

data to be structured according the target archetype object node. This LET clause 

includes a set of FOR clauses that iterates over the relevant source elements(for 

instance incoming nodes of object builders), a set of LET clauses calculates target 

values using values correspondences, a WHERE clause that includes the correlation 

with parent object node and domain constrains on single-valued attributes, and a 

RETURN clause that projects on the calculated target values; 

b) A FOR clause ($combo) that iterates over the distinct values of the flat view of target 

values. Note that this flat view contains the values of the mono-valuated attributes, i.e. 

the parameters of skolem functions. 

c) A WHERE clause that captures the cardinality and occurrence constraints 

d) A RETURN clause that outputs the XML elements for the object node and contains 

any other nested mapping. 
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FIGURE 37 XQUERY TEMPLATE FOR BUILDING ARCHETYPE INSTANCES FROM SOURCE DATA 

Figure 38 shows the complete XQuery that is generated for the object node 

Admission[Admissionat] in Figure 34.  To begin, the values of the skolem parameters are 

obtained (lines 3, 4 and 5). Note that in this case we bind one variable to each parameter by a 

for clause since the value correspondences just copy the values in the source. Otherwise we 

should use a let clause to calculate the target values. The where clause (line 6) contains the 

correlation with the parameters (patientId and hospital name) of the upper object node 

(Hospital).  The return clause at line 7 outputs the flat view of the atomic attributes (skolem 

parameters in this case), the code in line 8 deletes duplicates and the code in line 9 enforces 

the occurrence constraint (at least one Admission instance must be exist). Finally, data is 

structured according to the target schema; this is done in line 10. 

 

 

 

 

Let $context 

for $var_for in ….. 

let $var_let  (: value transformation :) 

where  (: domain constraints, correlation with parent object node :) 

       return 

      <combo node_ID="…"> 

            (: flat view of data, it uses $var_for and $var_let’s :) 

      </combo> 

 for $combo in ((ibimeFunction:distinct-deep($context)))  

                                (: elimination of  duplicates :) 

 where   (: occurrence and cardinality constraints :) 

 return   (: nesting:  tagging and structuring +  submappings:) 
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1 let $aux_4 :=  
2    for $source_LinkEHRVar_0 in (/source) 
3 for $hospital_LinkEHRVar_0 in ($source_LinkEHRVar_0/admission/hospital) 
4 for $admission_LinkEHRVar_0 in (/source/admission) 
5 for $idadmission_LinkEHRVar_0 in 

                ibimeFunction:if-empty($admission_LinkEHRVar_0/idadmission,xs:QName("idadmission"))) 
6 where $source_LinkEHRVar_0/patID=$patID_LinkEHRVar_0 and  

              $admission_LinkEHRVar_0/hospital=$hospital_LinkEHRVar_0 and  
              $combo_1/hospitalHospitalat__name=$hospital_LinkEHRVar_0 

7 
 

  return 
  <combo archetype_ID="Example-ExampleRM-Target.Target.v1::Admissionat"> 

<hospitalHospitalat__admissionAdmissionat__idAdmission> 
{data($idadmission_LinkEHRVar_0)} 

</hospitalHospitalat__admissionAdmissionat__idAdmission> 
</combo> 

8 for $combo_2 in ((ibimeFunction:distinct-deep($aux_4))) 
9 where count(ibimeFunction:distinct-deep($aux_4))>=1 

10 return 
<admission xsi:type="Admission" archetype_ID="Example-ExampleRM-Target.Target.v1::Admissionat"> 

 <idAdmission> 
        {data($combo_2/hospitalHospitalat__admissionAdmissionat__idAdmission)} 
 </idAdmission> 
         </admission> 
 

FIGURE 38 EXAMPLE OF GENERATED XQUERY 

3.7. LinkEHR mapping module 

LinkEHR can be considered as a high-level schema mapping tool. In LinkEHR, users are 

responsible of defining an abstract non-procedural mapping specification. This abstract 

representation is specified using a set of value correspondences between the atomic attributes 

of archetypes and source schemas that can be complemented with object builders. The 

abstract specification is then compiled into an executable transformation script expressed in 

XQuery. Figure 39 shows the overall architecture of LinkEHR mapping module.  

In order to ease the definition of mappings, a completely new mapping perspective was added 

to the tool. This perspective allows the edition of complex attribute mappings without the 

need of typing text. This perspective also adds a set of specific visual interfaces for defining 

attribute and object mappings, and a data source manager to import, edit, and delete data 

sources in the tool. 

Data source manager allows the import and use of relational data sources, XML schemas, and 

archetypes as source schemas for the transformation. In case of sources based on XML 

Schema, users must provide the location of the schema or schemas, an alias, the path to the 

patient identifier, and the root entity from all the entities available in the XML schema. For 

archetype import as a source, no extra parameter must be configured, as archetypes from 

supported reference models already have all the needed information in the documentation file 
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(see chapter 2). In the case of relational data sources, they are included as LinkEHR Integration 

Engine source definition files and do not need any additional configuration parameter. 
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XQuery script
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instance

Output
XML 

instance
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Mapping
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FIGURE 39 MAPPING AND XQUERY GENERATION 

For the specification of the transformation target, the starting point is the archetype being 

edited in LinkEHR editor. Once the user has finished specializing the constraints that apply to a 

particular use case, which is typically called 'templating' or 'creating a template' in dual model 

architectures, the editor can be switched to mapping perspective and mapping process can 

begin.  

This mapping perspective completes the archetype with the underlying reference model, 

transforming current archetype into a comprehensive archetype (see Figure 28 example) 

containing both the constraints coming from the archetype and the ones coming from the 

reference model. This perspective also freezes the archetype preventing their defined 

constraints to be edited, although they can still be reviewed. As comprehensive archetypes 

become very big and complex we discarded in the use of a graphical approach (e.g. showing 

both source and target structures, lines for the mappings, and boxes for the operators). In 

mapping editing perspective, only the comprehensive archetype is presented to the user and 

specific attribute mappings and object mappings are shown when the user selects a suitable 

node in the comprehensive archetype, mimicking the original LinkEHR editor perspective. 

3.7.1. Mapping management 

As mentioned above, comprehensive archetype can become big and complex. To alleviate this, 

mapping perspective was provided with a set of mechanisms and visual clues to ease mapping 

definition. 
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Filters 

To reduce the quantity of information presented to the user, a filtering mechanism was 

included. This filtering mechanism is defined for both label filters, i.e. filter nodes by their label 

or node identifier, and source filters, i.e. filter nodes by certain conditions on the mapping 

source, such as mappings to constant values, mappings to a given source, nodes containing 

object mappings, or nodes with multiple mappings (mapping alternative). Both filters can be 

used simultaneously to filter by two different criteria. 

Coloring 

As archetypes define complex structures with combinations of mandatory and optional objects 

and attributes, it could be difficult to know when there are enough defined mappings to define 

a correct data instance (i.e. enough mappings to generate a transformation program that 

complies with both the archetype and the reference model). In order to ease mapping and 

transformation process visual metaphors were introduced into the archetype visual tree. Three 

different colors are used to provide feedback to the user: Green, meaning that the branch has 

all the needed mappings to generate a correct instance, red, meaning that the branch is 

missing a needed mapping to be able to generate a correct instance, and black, meaning that 

this branch is optional and has no mapping assigned. Once the user defines a mapping, the 

archetype tree is tested to be instantiable (i.e. able to generate a correct instance), and 

updates the entire tree with the corresponding colors. Once the root node of the archetype 

has been green colored (i.e. at least a data instance containing the root node can be 

generated) the process to generate the transformation program can be started. There are also 

visual metaphors to tell if an object contains object mappings. In this case the font from the 

node is put into bold format if the object has an object mapping attached to it. 

Entity cloning 

Archetypes allow the definition of multiple occurrences to objects (e.g. to define a set or list of 

medications, allergies, phones, or surnames). In mapping perspective, objects with multiple 

occurrences can be cloned in order to define mappings to other paths from the same source. 

Already defined mappings are also copied and can be modified later on. Object clones created 

this way allow the definition of different object builders for the original object and the cloned 

one. 
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3.7.2. Mapping reuse 

Mapping propagation 

When the comprehensive archetype is generated all the context attributes from the 

underlying model are included. More often than not, the mappings of the same context 

attribute in two different classes from the same type is exactly the same (e.g. 'name', 

'archetype_id', and 'synthesised' attributes from ENTRY class share the same kinds of 

mappings). An option was added to automatically copy all the mappings of a given type to all 

the entities of the same type in the comprehensive archetype. 

Attribute mapping copy 

In addition to mapping propagation, an option to reuse individual attribute mappings was 

introduced, which we called "favorite mappings". These mappings have aliases in order to 

easily identify them. These mappings are kept from one mapping session to another. Available 

favorite mapping list only shows the mappings that come from the selected data source. 

Mappings that can be evaluated to a constant are always included in this list. 

Archetype slot mapping reuse 

Dual model allows reusing archetypes externally defined with the slot mechanism. These 

archetypes can already have mappings defined. The transformation program generation 

process allows reusing these mappings when the slot in the parent archetype is solved, as long 

as the mappings from the archetype and the included slot use the same data source. The 

process takes as input a set of schema mappings between the same source and target schema 

and returns a schema mapping that correlates them, recalculating the target paths of the 

archetype without the need of intervention by the user. The archetypes included in an 

archetype slot can also contain slots to other archetypes. In this case, the process composes 

and correlates the schemas recursively to generate valid mapping paths. To control how the 

data will be generated, object mappings can also be applied to the slot object. 

3.7.3. Value correspondence editing 

Value correspondences can be assigned to every leaf node in the archetype (i.e. primitive 

types). As seen in Figure 40, value correspondence mapping editor presents the user with a 

filter/function table. This figure defines the same mapping as Figure 29. The edition of both the 

filters and functions is made in an expression editor, which contains all the aforementioned 

transformation functions (see Table 5), a view of the selected data source, and the list of fixed 

value constraints from the archetype if applicable. Every transformation function contains an 
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associated help that explains the function behavior and provides examples of its use. 

Expression can be typed or created by pressing the desired function button. Figure 41 shows 

the edition of a mapping condition. When a mapping expression is accepted or validated, the 

editor checks that the expression is both syntactically valid and that it is correct for the source 

and target schemas, e.g. that defined source paths exist in the source, that conditions return a 

boolean, and that the function returns the correct type for the archetype primitive object. 

 

FIGURE 40 EDITING A MAPPING FUNCTION TABLE 

 

 

FIGURE 41 EXPRESSION MAPPING EDITOR 
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3.7.4. Object builder editing 

Object mapping editor allows editing the set of incoming source nodes (represented as 

variables), the filter (which uses an editor similar to the one used in attribute mappings), and 

the incoming object builder, which is selected from the ones already defined. The main 

difference between the editor used in value correspondence editing and the object builder 

filter editing is that condition paths are always dependent of the variables and return type is 

always boolean. Figure 42 shows an object builder form with an incoming source node '$pat', 

and a condition based on it. Parent available object builders are presented in 'Available 

parents' combo and can be selected to specify the object builder hierarchy.  

 

FIGURE 42 OBJECT BUILDER EDITING FORM 

3.7.5. Generation of XQuery and Testing 

Once there are enough mappings to generate at least a correct instance of the root node of 

the archetype (and consequently the node is painted green) we can generate the 

transformation program. A set of covers is generated from the value mappings. Users are 

presented with that list of covers in order to found the valid combinations. Each cover is 

identified by the set of the alternatives it contains. The covers can be previewed in the same 

dialog. Figure 43 shows two different covers for an archetype, with a preview to the actual 

archetype and their mappings. 
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FIGURE 43 EXPORT INTEGRATION ARCHETYPE DIALOG SHOWING A SET OF COVERS FOR AN ARCHETYPE 

Mapping testing 

Archetype mappings can become complex, which in the end means that errors can easily 

occur. A set of validation and testing mechanisms were included in the mapping perspective to 

ensure mapping quality. 

Value testing 

Value correspondences can be long and complicated on their own, e.g. invoking several 

operations on a row or the output being dependent of a set of source values. Thus, obtaining 

the desired result or testing all edge cases can become difficult. Creators need an immediate 

connection to what they are creating (150), in this case, they need to be able to check the 

mapping expression as they are building it. To ease this, a functionality to test the mapping 

expressions in real time was included in the tool. The process provides the user with a field for 

every path to the source. Values are evaluated as the user types and the result is previewed. In 

case an error is thrown (e.g. division by zero, or trying to make an illegal type cast) the user is 

informed so the mapping expression can be fixed. 

Transformation validation 

For the users, reviewing the output transformation program in XQuery can be complicated. In 

order to test if the program works as intended a way of testing the XQuery with a given XML 

was added to the export dialog. This process executes the transformation program and returns 

a set of XML output instances. For selected reference models (namely ISO13606, openEHR, 

and HL7 CDA) an additional HTML view is shown. These HTML view is the result of applying an 

XSLT transformation to each one of the XML outputs. This XSLT files usually are provided by 
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the standards bodies themselves. Figure 44 shows an example of a HL7 CDA transformation 

program test in HTML. 

 

FIGURE 44 HL7 CDA TRANSFORMATION PROGRAM TEST OUTPUT 

Branch validation 

In order to generate the transformation program, all the mandatory parts must have an 

assigned value correspondence. In some cases, this means that the only way of testing a 

transformation program is defining all mappings contained in mandatory paths first (i.e. 

mappings where the archetype path has all required types and mandatory attributes). 

However, if the transformation is not correct, it can become hard to fix it as all branches have 

their own mapping. In order to provide an easy way to test this, the ability to test a single 

branch of the archetype was included. This process prunes the comprehensive archetype of all 

the branches except the selected one and generates the transformation program. The XQuery 

generated this way can also be tested in order to see which part of the mapping needs to be 

changed. 

Cover mapping validation 

In addition to all the above validation processes, the export dialog also includes an automatic 

mapping validation. This process checks the cover archetypes and returns the errors found in 

them. It detects errors such as wrong hierarchy of object builders, wrong return types for a 

given function, or having mappings from more than a single data source in a single cover. 

3.8. Validation 
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3.8.1. Technical Evaluation 

The first validation addresses the general mapping capabilities of LinkEHR. For this purpose, we 

used the STBenchmark, a benchmark for evaluating mapping systems (151)1 At the time of 

writing this document STBenchmark describes 17 basic mapping scenarios that are commonly 

used in practice and therefore should be supported by mapping systems. This means that the 

user should obtain from the mapping specification the desired executable code (in our case an 

XQuery script) without having to modify the executable code. Each scenario contains a source 

and target schema expressed as an XML Schema, an instance of the source schema, and a 

visual and textual description of the scenario. 

In our validation, we represented the target schemas as archetypes and source schemas as 

common XML data sources. We tried all the mapping scenarios whose target schema could be 

modeled as an archetype. Two scenarios could not be tested: self-join and order. The former 

due to the presence of foreign keys in the target schema since foreign keys are not supported 

by archetypes. The latter could not be tested due to limitations in the expressive power of 

LinkEHR mapping language. In the order scenario only a subset of the source records must be 

copied to the target, e.g. the 5 first records. The other 15 scenarios could be tested 

successfully. The results were positive; the expected target instances were generated. 

Although our XQuery scripts were more verbose, mainly due to our grouping semantics that 

requires creating a flat view of data that is then nested according to the archetype structure.  

3.8.2. Evaluation in real settings 

The evaluation study was to use the platform in two real setting. The first one was a project for 

medicines reconciliation between primary health and hospital care. The second one 

demonstrates how Clinical Decision Support Systems (CDSS) and EHR interoperability could be 

improved by the use of archetypes and mappings. 

The medicines reconciliation project was carried out in the Hospital of Fuenlabrada (Spain). 

The objective of this project was to obtain and evaluate a complete medication list of patients 

regardless of where the medication came from (primary or hospital care). Obtaining an up-to 

date and complete medication will avoid errors such as medication omission, duplication, 

dossing errors, and drug interactions. For the solution, a set of ISO13606 patient summary and 

medication archetypes were developed using the specifications from epSOS European Project 

(68) and openEHR Clinical Knowledge Manager (CKM) (16) archetypes. Archetypes were 

                                                           

1
 Benchmark is available at http://db.disi.unitn.eu/pages/stbenchmark/. 
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validated by a clinical team from the hospital composed by the Medical Director, the head of 

Pharmacy Service and other clinical and technical staff. Archetypes were mapped to the 

different data sources by using LinkEHR. The mapping was used for the generation of XQuery 

scripts that were deployed in both hospital and primary care that is used to generate 

normalized data from legacy systems. 

Hospital EHR was upgraded to include a new tab containing the patient summary. With this 

new view, clinicians have access to the full medication list including data from both the 

hospital and primary care. Figure 45 shows the organization of the platform. The system is 

currently being used by over 430 physicians and 600 nurses and has access to the patient 

summary of more than 230,000 patients. This project was awarded with the Spanish Ministry 

of Health quality award, in transparency category. 

LinkEHR Platform
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FIGURE 45 PLATFORM FOR THE MEDICATION RECONCILIATION PROJECT 

For the second project, archetypes and mappings at different levels of abstraction were used 

in order to obtain if a patient was eligible for a given cancer clinical trial. In our use case, a 

patient will not be eligible for the clinical trial if it has a severe comorbidity, has (in his history 

or family history) any colorectal adenoma, colorectal cancer, colorectal polyposis, any 

inflammatory bowel disease, any lynch syndrome, or has had any total colectomy.  
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For this project, the archetype ‘openEHR-EHR-EVALUATION.problem.v1’ from CKM was 

specialized to include information about the presence or absence of a problem and an 

associated score for the comorbidity (called ‘openEHR-EHR-EVALUATION.problem-DS.v1’). This 

specialized archetype was then specialized into a series of archetypes for each one of the 

identified concepts that were detected on our case study dealing with the determination of 

patient eligibility in a clinical trial. Mappings are created from a given level to the levels below 

him, i.e. level 1 archetypes are mapped to the health summary archetype, level 2 archetypes 

are mapped to level 1 archetypes and level 3 archetypes are mapped to level 2 and 1 

archetypes. Figure 46 shows the dependences for the mappings of each level. 

  

 

FIGURE 46 GRAPHICAL REPRESENTATION OF ARCHETYPE MAPPING DEPENDENCIES 

This project makes heavy use of advanced mapping functions, such as grouping or terminology 

(in this use case, based in SNOMED-CT). Table 7 shows an example of a mapping in a readable 

from to know if a patient has a metastatic tumor (SNOMED-CT code 128462008). Also, some 

mappings take into account more than one archetype as a source (e.g. a metastatic solid 

tumor is present if both a metastatic tumor and a solid tumor are present). This example can 

be seen in Table 8. 
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Condition Mapping 

(@count(summary/problems/problem, @in(summary/problems/problem/code, 

@descendents(“128462008”)))>0  

TRUE 

TRUE FALSE 

TABLE 7 ATTRIBUTE MAPPING FOR THE PRESENCE/ABSENCE OF A METASTATIC TUMOR IN A LEVEL 1 

ARCHETYPE 

Condition Mapping 

(Evaluation_problem_DS_metastatic_tumor_v1/structure/present = TRUE) AND 

(Evaluation_problem_DS_solid_tumor_v1/structure/present = TRUE)   

TRUE 

TRUE FALSE 

TABLE 8 ATTRIBUTE MAPPING FOR THE PRESENCE/ABSENCE OF A METASTATIC SOLID TUMOR FROM TWO 

DIFFERENT ARCHETYPES 

Output values of this process can then be used directly in the different steps of the clinical 

guideline. 

3.9. Conclusions 

This chapter deals with one of the main problems when adopting dual model EHR standards: 

how to transform existing clinical data to meet the data structures and constraints defined by 

reference models and archetypes. We face a problem known in the literature as the data 

exchange. Data exchange at the schema level requires an explicit representation of how the 

source schema (legacy data schema/archetype) and target schema (archetype) are related to 

each other; these explicit representations are called mappings. The effort required to create 

and manage such data transformations is considerable. This is even more complex in the case 

of archetypes, since they generally define highly nested complex data structures and model 

generic concepts without any regard to the internal structure of the EHR systems. Our solution 

separates the specification of the relationships between the schemas from the 

implementation of the actual transformation.  The standardization process comprises four 

main tasks: i) generation of an XML view of the local EHRs; ii) mapping specification between 

source and target schemas; iii) compilation of the mapping specification into an executable 

program; and iv) execution of the resulting program over the source instances.  
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We have presented a set of integrated innovative tools to help current systems to achieve 

semantic interoperability by normalizing data based on clear semantically-rich clinical models. 

We provide methods and tools that help in automating and managing the problem of EHR data 

normalization. We have provided methodologies to define mappings between relational, XML, 

and archetypes. We deal with the complex constraints in the target such as cardinality, 

occurrences, and existence. We have also provided a wide range of transformation functions, 

including grouping and terminology functions.  

We have also presented the mapping capabilities of the LinkEHR platform. The mapping 

module of LinkEHR is a visual programming environment for defining and managing declarative 

mappings and from them generating and validating the transformation scripts. This approach 

brings about one important advantage for users since the declarative specification is 

independent of the logical design of archetypes and data sources. Therefore, users do not have 

to specify the grouping semantics (when entities shall be nested inside other entities) or how 

attributes involved in a mapping are related to one another, for instance by means of parent-

child relationships (in the case of XML schemas). In contrast the generation of a correct 

transformation scripts becomes a more difficult problem since the associations among the 

attributes must be discovered in an automatic way and grouping, i.e. the creation and nesting 

elements of the target, must be inferred from simple value correspondences. Although the 

interpretation of the mapping specification must cover all correspondences there usually are 

several alternatives, the deduction of semantics indented by the user is generally a matter of 

heuristics. For this reason, apart from value correspondences, LinkEHR provides more complex 

mappings constructs that allow users to customize the grouping semantics. Nevertheless, 

default semantics for inferring grouping is provided. It is based on the clinical context of data, 

i.e. data that share the same clinical context are grouped together. 

LinkEHR allows the utilization of archetypes for upgrading already deployed systems in order 

to make them compatible with an EHR standard. The overall objective is to maintain in-

production systems and applications without any changes while providing a mean for 

publication of clinical information in the form of standardized EHR extracts, hiding technical 

details, location, and heterogeneity of data repositories. Therefore, archetypes could be used 

as a semantic layer over the underlying databases associating them with domain specific 

concepts and therefore upgrading the semantics of the data they hold.  

In the two described validation scenarios the mapping capabilities of LinkEHR were enough to 

generate normalized extracts with the intended semantics in a short period of time. As a 
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performance indicator, we considered the response time for serving a patient summary 

request. Transformations of source data for a single patient into an ISO/CEN EN13606 XML 

documents using the generated XQuery script took a fraction of a second, which was found to 

be insignificant with respect to the data-retrieving time. These scenarios also show that the 

use of these tools needs the involvement of the clinical users, which are the ones who can 

precisely describe their requirements. Archetypes are a suitable mechanism to improve 

communication between clinicians and technical staff. In our experience, even with dedicated 

tools the involvement of clinicians it is still difficult, probably due to the fact that clinical users 

still need to be aware of the dual model architecture and their implications. In order to involve 

clinicians, additional actions must be taken: On the one hand, editors can be improved not 

only to hide the complexity of the underlying models, but also provide mechanisms with 

higher level of abstraction (such as step by step wizards) to allow users to use the tool right 

away. On the other hand, in order to bring the archetypes to their original systems, archetypes 

must be derived into materials and artifacts, such as forms, excel spreadsheets, or mindmaps, 

that can be understood by clinicians and the technical staff already present in the 

organizations. 

Once the information and models are correctly represented, new research areas open up. 

Areas such as application generation, semantic querying based on archetypes, clinical 

research, or advanced Clinical Decision Support Systems (CDSS) would benefit from having big 

quantities of normalized data based on formal models with clear semantics. 

  



Conclusions | 127 

 

 

 

 

  



128 | Conclusions 

 

 

Chapter 4.  

Archetypes for generation, validation, and use in EHR Systems 
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Abstract 

Clinical information models are increasingly used to describe the contents of Electronic Health 

Records. Implementation guides are a common specification mechanism used to define such 

models. They contain, among other reference materials, all the constraints and rules that 

clinical information must obey. However, these implementation guides typically are human-

readable, and thus cannot be processed by computers. As a consequence, they must be 

reinterpreted and transformed manually into an executable language such as Schematron or 

Object Constraint Language (OCL). This task can be difficult and error prone due to the big gap 

between both representations. The challenge is to develop a methodology for the specification 

of implementation guides in such a way that humans can read and understand easily and at 

the same time can be processed by computers. In this paper, we propose and describe a novel 

methodology that uses archetypes as basis for generation of implementation guides.  We use 

archetypes to generate formal rules expressed in Natural Rule Language (NRL) and other 

reference materials usually included in implementation guides such as sample XML instances. 

We also generate Schematron rules from NRL rules to be used for the validation of data 

instances. We have implemented these methods in LinkEHR, an archetype editing platform, 

and exemplify our approach by generating NRL rules and implementation guides from EN ISO 

13606, openEHR, and HL7 CDA archetypes. 

Keywords: Archetype, Natural Rule Language, Implementation Guide, Data Validation, Clinical 

Information Model. 

4.1. Introduction 

Capturing requirements in the clinical domain is a difficult task (152). Traditional requirements 

capture methodologies fail due to the continuous evolution of clinical knowledge, the different 

vocabularies of clinicians and implementers, and the implicit definition of domain concepts (3). 

Typically clinicians rely on non-formal approaches (such as Excel or Word files) to document 
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their domain requirements. This kind of approach is not suitable for cooperative and long term 

use as it is prone to errors and version control problems. In order to solve these problems 

several methodologies have been proposed. 

Templates are the mechanism used by HL7 CDA (153) for the specification of clinical 

information models. In spite of not being computable, CDA Implementation guides are the 

most common way for the specification of such templates in an understandable way. They 

usually include an introductory section describing purpose, scope, intended audience, 

conventions used in the guide, and separated sections for each kind of CDA components 

(mainly document, section, and clinical statement templates). Each one of these sections 

contains all the relevant templates for a given clinical model. For each template, a template 

identifier, a description, a set of constraints over the attributes of a given CDA component, and 

an XML example are provided. The implementation guide is usually completed with 

terminological value sets and bibliographic references. Implementation Guides play a central 

role in HL7 world. As an example, they have been adopted for the definition of the 

Consolidated CDA (C-CDA) Templates (154), which are being used to help providers to meet 

the applicable Meaningful Use objectives (155). However, the interpretation of the constraints 

in an implementation guide may differ from person to person (156),  therefore limiting 

semantic interoperability. 

Another type of resource for the specification of clinical domain requirements are archetypes. 

Archetypes are a key part of the dual model approach on which the EN ISO 13606 norm (12) 

and openEHR specification (14) are based. The dual model approach is a recent paradigm for 

the specification of EHR Architectures (EHRA). It distinguishes two models: the Reference 

Model (RM) and archetype model. In a broad sense, a reference model is an abstract 

representation of the generic and stable entities and relationships of a given domain. It is 

designed to provide a basis for the development of more concrete models and 

implementations. In the domain of Electronic Health Records (EHR), a reference model defines 

the framework for describing all EHR entries or clinical statements, the way how they are 

aggregated, and the context information needed to meet ethical, legal and provenance 

requirements. The generality of the reference model is completed by the particularity of 

archetypes. Archetypes are detailed and domain-specific definitions of clinical concepts in the 

form of structured and constrained combinations of the entities of the reference model. 

Archetypes may logically include other archetypes, and can be specialized to better fit the 

specific requirements of each use case. They can be bound to clinical terminologies and 
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ontologies to semantically describe the elements of information. What is important here is 

that for each domain concept, a definition can be developed in terms of constraints on the 

reference model entities. Each domain concept is also given an archetype node identifier 

(following the ‘atNNNN’ pattern where N stands for a digit) and a textual label. ADL (Archetype 

Definition Language) (29) is a formal language developed by openEHR for expressing 

archetypes that has been adopted by EN ISO 13606 standard. Even if archetypes are based on 

a formal language (ADL) understandable by computers, users still need specific tools and 

knowledge of the underlying reference model to define and understand the clinical models 

completely.  

To allow users unfamiliar with the archetype methodology or a particular reference model to 

understand clinical models without using specific tools, a formal document similar to the 

implementation guides is required. What we need is formal document that has at least the 

same expressiveness than an archetype and at the same time is easily understandable even by 

non-technical users. 

Our proposal, as described in Figure 47, aims to achieve the automatic generation of 

computable implementation guides from archetypes. Our objectives are twofold: 

1. To generate implementation guides that can be used in the development of computer 

systems by IT technical staff. For this purpose, we use archetype texts, descriptions, 

and terminology bindings. We also include other automatically generated materials 

such as sample XML instances and validators. 

2. To document archetypes or templates in order to ease their understanding by health 

professionals without the need of specific tools. For this purpose, we transform the 

potentially complex archetype constraints into English-like rules. This is achieved by 

the use of Natural Rules Language (NRL) (100). We also include additional reference 

materials in the implementation guide, such as a mindmaps, value sets and 

bibliographic references.  
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FIGURE 47 – PROPOSED ARCHITECTURE FOR THE GENERATION OF IMPLEMENTATION GUIDES FROM 

ARCHETYPES 

We will exemplify our approach by generating implementation guides from an EN ISO 13606 

archetype, openEHR archetypes from the Clinical Knowledge Manager (CKM) (157) and HL7 

CDA archetypes from the Genetic Testing Report.  

4.2. Background and related work 

There exists a wide range of formal rule languages for the definition of constraints on data. 

One of the most known is the Object Constraint Language (OCL) (30), an OMG (89) standard 

for the definition of rules over UML models (95). There are also languages for defining Horn-

like rules for the Ontology Web Language (OWL) (96), such as Semantic Web Rule Language 

(SWRL) (97) or RuleML (98). The widespread use of rules, formal or not, has caused the 

creation of proposals, like the W3C Rule Interchange Format (RIF) (99), for the exchange of 

rules between different rules languages. The main disadvantage with most rule languages is 

that rules are not easily understood by non-technical staff. To solve this problem, some rule 

languages with natural language-like syntax have been proposed. Two main examples are 

Natural Rule Language (100) and Attempto Controlled English (101). Each one of them 

addresses the problem of natural language rules representation from a different perspective. 
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Natural Rule Language (NRL) is a formal language for specifying constraints and rules in a 

human readable way. The main feature of this language is the capacity of defining constraints 

in a way that facilitates their understanding by non-technical people. Moreover, NRL also 

defines an extension to deal with actions, such as the creation or deletion of objects, or setting 

values when certain conditions are met.  Although we will not use this extension, it could be 

used to complete the rules with actions, for instance to calculate derived values. To the 

authors’ knowledge there is only one prior use of NRL in the clinical domain, concretely for the 

representation of clinical practice guidelines and its evaluation in a real world case (102). Rules 

drawn from a hypertension guideline were translated into NRL in order to be validated by 

clinicians and subsequently they were transformed into OCL and finally used in the system. The 

NRL rules were generated by hand which can be a time-consuming task. 

Attempto Controlled English (ACE) (101) is a controlled natural language, which means that it 

is a subset of Standard English with a restricted syntax. ACE can be translated into other 

languages, such as RuleML, OWL, or SWRL. The meaning of words in ACE is not predefined and 

must be defined in an existing ontology or in additional ACE sentences. Although ACE has been 

in use for more than ten years, to the authors’ knowledge it only has been used once applied 

to the clinical domain (103), specifically for clinical guidelines readability. In this work, rules 

from a pediatric clinical guideline were expressed in ACE, although they were not applied to 

real data. 

There also exist formal languages for the validation of XML documents such as Schematron, 

DTD or XML Schema. Schematron (104) is a rule-based validation language for making 

assertions about patterns in XML trees that is an ISO norm since 2006. Since it is a path based 

validation language, Schematron can express constraints that neither XML Schema nor DTD 

can express. Each rule can be associated with a descriptive text of the type of error or warning 

encountered. Schematron plays a key role on current CDA implementations as Schematron 

rules are typically attached to implementation guides alongside sample XML instances. It has 

been proved that Schematron rules can be directly generated from NRL rules (105) as well as 

from archetypes (106). Advanced features of archetype methodology, such as reuse of internal 

or external types can be also reproduced with Schematron.  

The generation of reference materials from formal model definitions is also one of the goals of 

other initiatives such as Open Health Tools (OHT) Model-Driven Health Tools (MDHT) Project 

(94). MDHT is an open source effort for the promotion of shared artifacts between related 

standards and the creation of modelling tools for their seamless integration. The project is 
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supported by the US Veteran’s Health Administration (VHA), IBM, and the US Office of the 

National Coordinator (ONC). Their original focus was to develop HL7v3 specifications via UML, 

but they later moved to work in the specification of HL7 CDA Implementation Guides. They 

have provided models and reference implementations for several HL7 C-CDA Implementation 

Guides. They are planning to support other standards besides HL7 CDA, for instance by using 

UML for the specification of archetypes. A UML profile (Archetype Modeling Language, AML) 

has been proposed to OMG to deal with the specific requirements of the archetype modeling. 

MDHT is also working in the generation of Schematron for XML instance validation. 

4.3. Material and Methods 

4.3.1. LinkEHR platform 

LinkEHR® (158) is software tool for the integration and normalization of health data (134). 

LinkEHR employs archetypes for both the semantic description of the clinical concepts to be 

shared and the transformation of existing clinical information into standardized EHR extracts. 

It comprises two main modules that allow (i) the editing of archetypes based on different RMs 

(several RMs have been tested successfully: EN ISO 13606, openEHR, HL7 CDA, CDISC ODM and 

ASTM CCR); and (ii) the specification of declarative mappings between archetypes and data 

sources, and from these mappings the automatic generation of XQuery scripts which translate 

source data into archetype compliant XML documents. In our scenario, a crucial tool is the 

LinkEHR archetype editor. During archetype editing, the tool provides support to ensure that 

the archetype being edited is valid with respect to the reference model (and parent archetype, 

if any), e.g. by showing the valid elements at any point. When the user wishes to add a new 

entity to an archetype the editor displays the valid entities and the user must select one of 

them. All the functionalities described in this paper have been added to LinkEHR archetype 

editor. 

4.3.2. Generation of implementation guides from archetypes 

In order to generate a complete implementation guide we produce five different reference 

materials from archetypes: Natural language rules, mindmap, XML instances, Schematron 

rules, and value set tables. Although typical implementation guides are designed to be printed, 

they can be improved with interactive elements such as sample data entry forms or mindmaps 

that can be rendered on a computer screen. Reference materials used for the creation of the 

implementation guide depend on its final purpose and use, e.g. the inclusion of mindmaps may 

be very useful in an interactive implementation guide, but it may be not as useful in a printed 

one. 
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As stated before, an implementation guide contains an introductory section, separated 

sections for document, section, and clinical statements templates, and a final section with the 

value sets used in the guide. All these sections are generated by combining the archetype 

definitions with the generated reference materials.  

Introductory section is generated from the archetype metadata, which includes the purpose, 

keywords, intended use, references, etc. In archetypes, the entities of the clinical model can be 

attached with a text label, a description, and a terminology binding.  All this information is 

organized into their own subsection of the implementation guide. The text label of each entity 

becomes the template name of that entity and the description and terminology binding 

become the template description. Archetype entities also include information about their 

occurrences, cardinality and existence that are used to control what will be generated. For 

instance, a mandatory entity must appear in XML instances and must be checked to exist with 

a specific rule in Schematron, but could be hided in a mindmap or form if it is not considered 

interesting to the final user. The last section of implementation guides are value set tables. 

These tables specify a set of codes drawn from one or more code systems. As archetypes 

already contain this kind of information in the constraint binding part of the ontology section, 

we generate all the tables directly from there. This table is built by querying a terminology 

server to obtain all codes from a given subset and all the codes descriptions. Finally, we also 

generate a Table of Contents to easily navigate the implementation guide. 

4.3.3. Generation of NRL rules 

In the archetype methodology, archetype entities  are created by constraining  a reference 

model type (3), concretely by constraining the values, structure, and/or terminology bindings. 

New entities include implicitly all the constraints imposed by the reference model type that 

have not been explicitly narrowed in the archetype. This supposition is consistent with the 

object-oriented paradigm, where attributes and methods of a superclass are automatically 

inherited by all its subclasses. If we were to create rules directly over the reference model 

types, they would not be easily understandable because rules would refer to a given type and 

a node identifier (e.g. “at least one ENTRY where archetype_id=’at0000’ exists”). This is the 

reason why we create variables in NRL using the textual labels attached to the archetype 

entities as variable names. When no label is defined (e.g. a data type) a label is derived from 

their parent entity. If there is a label clash, the entity identifier is also used for the generation 

of the readable name. The expression that defines the variable is built using entities identifiers, 

i.e. the archetype node identifier if we are using an archetype-based standard or the 
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templateId if using HL7 CDA as reference model. As an example, the above rule is rewritten as 

“at least one BloodPressure exists” which uses “BloodPressure” variable defined as 

“BloodPressure is the ENTRY where archetype_id=’at0000’”. We exemplify this approach with 

the generation of NRL rules from a blood pressure EN ISO 13606 archetype shown in Figure 48. 

In Figure 49 we show how variables for each one of the reference model types are declared 

and reused in other rules. The readable label is used as a variable that will be applied when 

node identifier is found in data.  

 

FIGURE 48 BLOOD PRESSURE EN ISO 13606 SAMPLE ARCHETYPE 

 

FIGURE 49 DECLARATION OF VARIABLES IN NRL TO ALLOW THE GENERATION OF READABLE RULES 
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FIGURE 50 SAMPLE RULE FOR OCCURRENCES CONSTRAINT USING THE READABLE VARIABLES 

 

Once we have created a variable for each archetype entity we are ready to create rules for the 

archetype constraints. We create rules for each one of the constraints defined on the 

archetype, such as entity occurrences (as shown in Figure 50), attributes existence and 

cardinality (shown in Figure 51), and on data values (shown in Figure 52). Each rule has a 

readable name to identify it. We can also generate comments to help even more with the 

understanding of the rules. Comments are generated from entity constraints. Any part of a 

rule line starting by ‘--‘ is considered a comment. For instance, in Figure 51 the rule 

“Cardinality of ‘parts’ attribute from BloodPressureMeasurement” has an additional comment 

stating the cardinality with an array notation, which can be easier to understand for people 

used to work with archetypes. 

 

FIGURE 51 SAMPLE RULES FOR CHECKING CARDINALITY AND EXISTENCE OF AN ATTRIBUTE 
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FIGURE 52 SAMPLE RULES FOR CHECKING DIFFERENT KINDS OF DATA VALUE CONSTRAINTS 

The set of automatically generated rules can be extended with additional user-defined natural 

language rules, for instance to express constraints that are not supported by ADL, e.g. 

constraints such as “Mean blood pressure is calculated by adding to the systolic pressure two 

times the diastolic pressure and dividing the result by three” that involves more than one 

entity from the archetype.  

4.3.4. XML instances Generation 

For the generation of XML instances we use LinkEHR mapping capabilities in order to generate 

valid XML sample instances compliant with the archetype and the underlying reference model. 

As stated before, in archetypes only entities (classes and attributes) of the reference model 

which are actually constrained need to appear in the archetype definition. It is supposed that 

the constraints defined in the underlying reference model are implicit constraints for the 

derived archetypes. As a consequence, it is necessary to complete (“merge”) the archetype 

with the constraints defined in the underlying reference model in order to generate complete 

XML data instances.  A constant mapping, i.e. a mapping function that assigns a constant value, 

is automatically generated for each leaf node of this "merged" archetype. Using this constant 

mapping, we generate a XQuery transformation program on the fly whose output will be an 

XML instance compliant with the original archetype and the underlying reference model (134). 

The instance generation process can be tuned by several parameters, such as the inclusion of 

optional attributes, selection of alternatives, or the contents and ranges of primitive types. The 

aforementioned parameters can be set in LinkEHR Editor as shown in Figure 53.  
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FIGURE 53 OPTIONS FOR XML INSTANCE GENERATION IN LINKEHR 

4.3.5. Schematron Generation 

As stated before, NRL rules can be translated to Schematron for the validation of XML 

instances with respect to archetypes and reference models. Schematron rules are based on 

path conditions that specify where the assertion must be tested. The process traverses the 

entities in the archetype recursively and generates a rule for each entity with an assertion for 

each one of the tests (namely tests for occurrences, cardinality, existence, and values). In 

Figure 54 we show the equivalent Schematron rule to the NRL rule described in Figure 50. As it 

can be observed, Schematron rules are by far less understandable than NRL rules. 

In addition to the Schematron rules generated from the explicit archetype constraints, we also 

generate optional Schematron rules for checking the implicit constraints, i.e. the constraints 

coming from the reference model. This is necessary for instance to assure that an archetype 

type does not contain attributes that are not allowed by the reference model or that the type 

of an unconstrained entity is one of the types allowed by the reference model.  
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FIGURE 54 SCHEMATRON RULE FOR BLOOD PRESSURE MEASUREMENT OCCURRENCES 

4.3.6. Generation of Additional Reference Materials  

In addition to the aforementioned reference materials, we generate other materials that have 

not been traditionally included in implementation guides such as mindmaps or sample input 

forms. These artefacts are interactive, and thus they lose part of their potential usefulness in 

printed implementation guides. However they can be really useful when the implementation 

guide is displayed on a computer screen. Mindmaps mimic the archetype structure but omit 

non-clinical parts to make it easier for clinicians to understand the clinical meaning. Forms are 

generated in a similar way, but their transformation from archetypes is reference model 

dependent. Currently we are only able to generate sample forms for EN ISO 13606 archetypes. 

4.4. Results 

We have implemented our solution in several software modules in Java, each one producing a 

different type of reference material from an archetype expressed in ADL.  Both mindmap and 

Schematron outputs are XML representations that are generated from the archetype 

definition. NRL rules are also generated from the archetype following the process described 

above. Sample instances are produced by generating a constant mapping and creating from it 

an XQuery whose output is the data instance. Finally, Sample forms are created by applying an 

XSLT transformation to the XML representation of archetypes and are displayed in a web 

browser. 

In addition to the previous modules, another module was implemented to combine all the 

output into a complete implementation guide expressed in HTML. Mindmap interactive 

visualization is included in the HTML page using an Adobe Flash plugin. We have defined 

different CSS style sheets to render on-screen and print views. Printed views can also be 

generated as PDF files to ease their distribution. Regarding terminology bindings, we employed 
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Indizen IT Server (159) to retrieve the concept text descriptions and get all codes in a 

terminology subsets. 

The load and generation time, i.e. the time to read and parse the archetype and the time to 

generate the implementation guide respectively, closely reflects the archetype size in terms of 

number of constraints as would be expected. On simple archetype, the generation time is 

almost negligible while for large archetypes it can take as much as several seconds. In any case, 

the time is negligible when compared with the time required to generate an implementation 

guide manually. 

All the developed modules have been included in the LinkEHR platform in order to provide 

different export formats for archetypes. Each module used both a set of configuration 

parameters and documentation about the reference model being to control the generation 

process and output appearance of the corresponding material (XML instances, Schematron 

rules, NRL rules, mindmaps, or sample input forms). In the case of implementation guides, this 

set of parameters is predefined in such a way that the output resembles a real implementation 

guide.  

To exemplify the generation of implementation guides, we show two different examples. In 

the first one we automatically generated implementation guides from a subset of CKM 

archetypes created in (57) with improved terminology bindings. In the second example, we 

generated an implementation guide from an HL7 CDA archetype (160). The complete examples 

can be found in the supplementary material. 

The first example exemplifies all the generated subsections included into a section of the 

implementation guide: Description, terminology binding (looking up the terminology code in 

an external terminology), a set of readable rules, an XML sample instance, and the Schematron 

validation for this specific entity. Figure 55 shows an excerpt the output implementation guide 

subsection for Heart rate entity from the Apgar score archetype. This contains the archetype 

entity text as section header, a description of the entity, their terminology binding (along with 

the text obtained from the terminology server), entity constraints stated as NRL rules, an XML 

example section, and a Schematron section. 
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FIGURE 55 EXCERPT OF AN AUTOMATICALLY GENERATED IMPLEMENTATION GUIDE FROM AN APGAR 

SCORE OPENEHR ARCHETYPE  

In the second example we employed an archetype (160) created from the Genetic Testing 

Report (GTR) HL7 implementation guide (161). The HL7 CDA archetype contains all the data 

constraints defined by the GTR implementation guide. Figure 56 shows and excerpt of the 

original implementation guide, whereas Figure 57 shows the same excerpt represented in the 

automatically generated guide. 

 

FIGURE 56 CELLS KARYOTYPED COUNT FROM THE ORIGINAL GENETIC TESTING REPORT 

IMPLEMENTATION GUIDE 
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FIGURE 57 EXECUTABLE RULES FROM CELLS KARYOTYPED COUNT AUTOMATICALLY GENERATED FROM 

THE HL7 CDA GENETIC TESTING REPORT ARCHETYPE 

The generated rules express exactly the same constraints as the original implementation 

guide, but they can be executed directly over data instances. We can express rules following 

two alternatives, grouping the rules by context to ease their understanding, or generating an 

individual rule for each kind of constraint (occurrences, existence, cardinality, etc.) to know 

exactly which constraint fails. In Figure 57 we have followed the first approach. 

4.5. Discussion 

In this paper, we emphasize on the usefulness of archetypes for the generation of 

implementation guides and reference materials. The generated reference materials include 

human readable definition of clinical models for clinicians or computable artifacts for technical 

staff. For instance, NRL rules facilitate the involvement of clinicians in the definition of clinical 

models, ensuring that the systems to be developed satisfy their requirements. At the same 

time, and since NRL is a formal language, the rules can be used to support the implementation 

of EHR systems, for instance for data validation purposes. 

If we compare our approach to other initiatives dealing with the generation of derived artifacts 

such as MDHT, the main difference is we employ archetypes instead of UML as the formal 

approach to model clinical data structures. MDHT Project also generates implementation 

guides with alternative content structure depending on the target audience, e.g. by generating 

ballot documents or implementer views of an UML diagram. Our proposal aims to deal with 

both target audiences by creating formal, computable human-readable implementation 
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guides. Another important feature of our approach is it can deal with any reference model or 

EHR standard. Since it is based on archetypes it is possible to generate implementation guides 

for a wide range of EHR standards. The only requirement is to be able to define archetypes 

based on the information model defined by the standard. This not only includes standards that 

are “archetype native” such as openEHR, EN ISO 13606, or CIMI reference model, but also non-

archetype based standards such as HL7 CDA, HL7 FHIR, CDISC ODM, openCDS VMR, 

Intermountain CEML, ASTM CCR, or MedXML MML, all of them already supported by LinkEHR 

archetype editor. In the case of CDA, CDA archetypes are equivalent to a template fully 

compliant with the HL7 Reference Information Model (RIM). Using archetypes as a basis for 

implementation guides generation may seem unfitting for the HL7 world. However, using 

archetypes over HL7 CDA model has already been proved useful in real life projects (160)(141). 

This approach also solves common HL7 CDA problems (162) such as extensions of the CDA 

standard, namespaces changes and element sequencing 

It is important to notice that archetypes are multilingual, which means that the target 

Implementation Guide can be automatically generated in any language supported by the 

archetype. This is also true for the archetype terminological bindings, as long as a translation 

of the terminology to the target language exists. Due the fact that NRL is a controlled 

grammar, it is also feasible to translate the rules to different languages, and render them in 

the language of the user. We used NRL over ACE because one of our objectives was data 

validation. Formal rule validation languages, such as OCL or Schematron, are easily derived 

from NRL rules. The fact that NRL can be directly transformed to OCL means that we can 

automatically generate implementation guides with OCL rules instead of NRL rules to mimic 

current implementation guides. We used NRL instead of OCL in order to make these 

implementation guides readable to non-technical staff. ACE rules could still be used for 

expressing the constraints if we give priority to OWL and SWRL transformations or we want to 

use some kind of ontology reasoning, as ACE terms are defined in OWL. For this use case, every 

word in an ACE rule should be mapped to an ontology concept, which needs to be done, or at 

least supervised, by a domain expert. This turns the automatic rule generation process into a 

semiautomatic one, which is not feasible for our use case.  

NRL rules can also be used alongside archetypes, as archetypes can accommodate rules to 

define further constraints. NRL may be used as the rules language for the Archetype Definition 

Language (ADL). For instance, advanced constraints like the ones provided by the upcoming 

ADL 2.0 (such as grouping or sorting) could be expressed with NRL rules in order to increase 
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the expressivity of ADL 1.4 to match up to ADL 2.0. NRL also includes an action grammar, 

which can be used not only to set values in the clinical model, but also for the creation of rules 

for data transformation.  

One of the main disadvantages of using NRL rules is that the vocabulary in current HL7 CDA 

implementation guides differs from the one used by NRL grammar. HL7 CDA implementation 

guides use specific reserved words for the definition of constraints such as 

“SHALL”,”SHOULD”,”MAY”, etc. If needed, NRL rules could be transformed to generate rules 

using this particular vocabulary. Furthermore, taking a generic approach means that there will 

be some misalignments between an HL7 implementation guide and an automatically 

generated implementation guide. Misalignments are caused by the explicit generation of 

constraints from the archetype. It can be argued if it is preferable to check parts of the 

template (e.g. the templateId or the entity type) with explicit rules to ensure correct data 

instances, even if they are normally assumed for a given data instance (e.g. in Figure 56, both 

the “Observation” type and the templateId are not explicitly defined with a “SHALL” rule). 

Regarding Schematron, our generation process  is similar to the one described in (106) for 

Schematron generation from HL7 CDA archetypes, but we are able to generate Schematron for 

any EHR standard. Also, our generated Schematron solution can distinguish if a rule should be 

applied over XML elements or attributes. The final advantage of our solution is that we also 

provide a set of optional rules to check the implicit constraints coming from the reference 

model. This allows us to define different validation scenarios for the same archetype, like 

validating only archetype constraints, or archetype and reference model constraints. 

Finally, we can extend this methodology to generate implementation guides from Clinical 

Practice Guidelines. There are several examples of representation of Clinical Practice 

Guidelines with archetypes and formal rules (163–169). Usually the information required by 

the clinical guide is modeled as archetypes, and rules and pathways are normally modeled in 

languages such as CLIPS, Drools, or PROforma. These rules are not human-readable, but as 

demonstrated in (102), they can be also expressed in NRL. Archetypes created by these 

methods can be transformed into implementation guides using our methodology, and rules 

and pathways transformed into NRL and then included in the resulting implementation guide. 

This transformation will make clinical practice guidelines suitable to be used directly in data 

validation and eases its understanding by computers and clinical staff alike. 

4.6. Conclusion 
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Implementation guides are one of the most common documents for the provision of clinical 

specifications for particular domain. In this paper we have shown how it is possible to generate 

automatically from archetypes all the parts and reference materials that are usually included in 

implementation guides. In addition to that, other interesting materials that are not usually 

included such as Schematron rules, mindmaps or sample forms can also be generated for their 

distribution alongside implementation guides. The quality of the output implementation guide 

and derived reference materials is directly related to the quality and completeness of the 

source archetype. Missing or incomplete sections of the archetype (e.g. poor or no metadata 

defined, or missing terminology bindings) will cause the generation of empty or incomplete 

sections in the implementation guide. The quality of the resulting implementation guide 

provides a measurement of the quality of the source archetype.  

The proposed methodology promotes the involvement of clinical staff in the modeling and 

validation process. Any possible misinterpretation is avoided as constraints and rules 

definitions can be automatically translated into formal validation rule languages that can be 

applied directly in the final system.  

Reuse is one of the core principles of archetype methodology. When the same archetype is 

included in other archetypes we can reuse this generated implementation guides. This not only 

eases their generation, but also provides coherence between the different implementation 

guides that reuse the same clinical models. 

The presented methodology puts the emphasis on the generation of implementation guides 

that humans can read and understand easily and at the same time can be processed by 

computers. This approach may promote the adoption of clinical information models in the 

development of EHR systems, thus increasing the quality of clinical data and its semantic 

interoperability.  
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Chapter 5.  

Final Conclusions and Future Work 
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5.1. Final conclusions 

Semantic interoperability has always been the Holy Grail in health informatics. Sending 

information that could be completely understood by the receiver is one of the biggest 

challenges in health informatics. This mainly requires capturing faithfully the original meaning 

of health data. The intrinsic complexity and variability of health data makes standardization 

crucial to achieve high levels of semantic interoperability. Fortunately, there is a mature body 

of EHR standards that cover apart from generic information models, clinical models (such as 

archetypes) as mechanisms to formalize both the syntax and the semantics of-specific clinical 

concepts. The principal purpose of clinical models in general and archetypes in particular is to 

provide a powerful way of managing the description, creation, validation, communication and 

querying of EHRs. The definition and sharing of clinical models is acknowledged as a big step 

forward in reaching high levels of semantic interoperability.  

It must be noted that eHealth interoperability standards are usually defined as documented 

specifications that must be brought to life by system designers and implementers. This initial 

implementation effort requires deep expertise, often not accessible for many organizations. 

Therefore, the current challenge is not the lack of standards, but its competitive 

implementation at a reasonable effort and return of investment for all the actors involved 

either clinical or technological. 

This thesis intends to provide methodologies and tools to facilitate the adoption of EHR 

standards and archetypes as a secure mechanism to achieve higher levels of semantic 

interoperability for the EHR. Concretely, the main contributions of this thesis are: 

1. A set of methodologies for applying the dual model approach to non-dual EHR information 

models and a set of tools for the definition of archetypes based on these EHR models. The 

definition of a set of clinical models of an already deployed system allows for their formal 

description. These clinical models allow taking advantage of all available archetype-based 

methodologies and tools for their use in current systems.  

2. A methodology for the definition of mappings between legacy systems and archetypes. 

This archetype-based mapping methodology generates transformation programs to 

translate data contained in these legacy or non-legacy systems into data in any other 

standard or specification. The presented mapping methodology has been validated by its 

use in several academic and real world projects. This methodology was implemented in 
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LinkEHR platform. Mapping definition still needs deep knowledge of the standards and 

systems involved, which we try to ease as much as possible with the presented tools. 

3. A methodology for the automatic generation of a set of reference materials from 

archetypes. The methodology was implemented in a set of tools that allow the automatic 

generation of each reference material. These tools can be used independently or 

combined to generate rich implementation guides. The creation of reference materials 

allows the validation of the data and workflows in the systems and the technical validation 

of requirements. Different validation scenarios make use of different sets of reference 

materials to check the systems. Validating if systems follow the requirements is eased as 

clinical-defined archetypes are also the ones used in by technical people in the creation of 

systems. This allows for a better communication of the requirements between clinical and 

technical people, as archetypes act as a common language. 

The presented methodologies and tools ease the joint use of the three layers of semantic 

interoperability to achieve it (reference models, clinical models, and clinical terminologies). 

Assuring that the archetypes have good quality allows for the meaningful communication of 

legacy health data, and will allow true technology-independent, patient centric EHR. 

This will make available for analysis more patient health data than ever. These big amounts of 

data need to be curated and processed for being able to get the most out of it. Data 

normalization and standardization is a basic step for measuring and increasing data quality 

(170). In fact, as seen in the medication conciliation use case, archetype-based normalization 

can improve data coherence among different systems by agreeing in a common set of 

archetypes. This is useful in any multicentre research project. Advanced data analysis greatly 

benefits from knowing the semantics of data, as do clinical research, clinical guidelines, and 

public health (2). 

5.2. Future work 

Once the barrier of integrating dual model systems with legacy health information systems has 

been broken, new and interesting challenges unfold. 

From the data perspective, we have detected several challenges. Variability in original sources 

continuously provides new challenges for the transformation definition. New methodologies 

must be researched in order to not lose any significant clinical data from legacy systems. Our 

methodology assumes that all data needed for the normalization comes from a single data 

source, which is not always the case. The methodology must be improved in order to support 
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multiple source schemas. In addition to that, the generation and managing of mappings 

requires a considerable effort. Automatic schema matching techniques can potentially be used 

to detect relationships between health information standards and generate automatic 

mappings between clinical information models. Tree-matching algorithms are specially 

promising due to the structured nature of these models (171,172). These mappings will use 

model semantics and archetype terminology bindings, so defining precise and coherent 

terminology bindings must be a requirement in archetype creation. 

In fact, the use of clinical vocabularies and ontologies gives a challenge on its own. The 

integration of ontologies, such as SNOMED CT, in queries and reasoning used in real world 

systems will benefit both patient and public health. The presented solution currently provides 

a basic support to SNOMED CT queries and subsets. More complex and powerful languages 

such as the SNOMED CT expression constraint language (135) must be evaluated and 

incorporated into our mapping language. The frontier between archetypes, clinical guidelines, 

and clinical terminologies and ontologies is still an open issue and must be studied. 

From the reference material perspective, every reference material can benefit from 

terminology bindings, as the generation of implementation guides, rules, and validators can be 

improved by reusing these bindings. Other reference materials as the example data instances 

can be greatly improved to better mimic real data values and distributions, e.g. how the clinical 

diagnosis are distributed in a real world EHR system. Recent developments have provided ways 

of simulating better looking fake data instances (173) and our work can greatly benefit from 

them. The use of these materials helps in the improvement of data quality (106,174,175). 

However, presented methodologies only measure the quality of the systems limited to their 

compliance with standards, being impossible to calculate general compliance degrees or 

where are the errors typically located. Meaningful formal definitions of clinical data will allow 

for more advanced quality measurements, such as correctness, completeness, multi-source 

stability, predictive value, and temporal stability (176,177). 

The archetype-based mapping mechanism over legacy data allows us to obtain big quantities 

of patient data based on archetypes. We can take advantage of having meaningful patient 

historic data by generating research and public health repositories. These new repositories 

should be able to query data based on archetype information. Big data and parallelization 

issues must be solved in order to create useful clinical data repositories. 

5.3. Journal and congress contributions 
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