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Fuster, Adrián Bresó, Javier Juan, Alfredo Navarro, Alfonso Pérez, Javier Vicente,
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Abstract

Nowadays, biomedical research and decision making depend to a great extent on the
data stored in information systems. As a consequence, a lack of data quality (DQ)
may have significant effects in the interpretation of data, which may lead to suboptimal
decisions, or hinder the derived research processes and outcomes.

Generally, DQ is assessed by means of evaluating DQ dimensions for fundamental
problems such as incomplete, inconsistent or incorrect data. However, the success-
ful development of Big Data and large-scale biomedical repositories, based on multi-
institutional, cross-border, data-sharing infrastructures is requiring new approaches for
a broad and efficient DQ assessment.

This thesis aims to the research and development of methods for assessing two DQ
problems of special importance in large-scale multi-site repositories acquired during
long periods of time: (1) the variability of data probability distributions among differ-
ent data sources or sites—multi-source variability—and (2) the variability of data prob-
ability distributions over time—temporal variability. This variability may be caused by
differences in data acquisition methods, protocols or health care policies; systematic
or random errors during data input and management; geographic and demographic
differences in populations; or even falsified data. This variability, if unmanaged, may
complicate data analyses, bias the results, or weaken the generalization of hypothesis
or models based on the data.

To date, multi-source and temporal variability issues have received little attention
as DQ problems nor, to our knowledge, count with adequate assessment methods. This
thesis contributes with methods to measure, detect and characterize variability. The
methods have been specially designed to overcome the problems that classical statis-
tical approaches may have when dealing with large-scale biomedical data, namely to
multi-type, multivariate, multi-modal data, and not affected by large sample sizes such
as in Big Data environments. To this end, we have defined an Information Theory and
Geometry probabilistic framework supporting the methods. It is based on the infer-
ence of non-parametric statistical manifolds from normalized probabilistic distances
between distributions among data sources and over time. Based on this probabilistic
framework, a number of contributions have been generated.

For the multi-source variability assessment we have designed two metrics: (1) the
Global Probabilistic Deviation (GPD), which measures the degree of global variability
among the distributions of multiple sources—as an estimator equivalent to the standard
deviation among distributions; and (2) the Source Probabilistic Outlyingness (SPO),
which measures the dissimilarity of the distribution of a single data source to a global
latent average. These metrics are based on the construction of a simplex geometrical
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Abstract

figure (the maximum-dimensional statistical manifold) using the distances among data
sources. Additionally, we defined Multi-Source Variability (MSV) plot, an exploratory
visualization based on that simplex which permits detecting grouping patterns among
data sources.

The temporal variability method provides two main tools: (1) the Information
Geometric Temporal (IGT) plot, an exploratory visualization of the temporal evolution
of data distributions based on the projection of the statistical manifold of relationships
among temporal batches; and (2) the Probability Distribution Function Statistical
Process Control (PDF-SPC), an algorithm for the monitoring and automatic change
detection in data distributions. Additionally, we can monitor the multi-source methods
over time.

The methods have been applied to real case studies in biomedical repositories, in-
cluding: the Public Health Mortality and Cancer Registries of the Region of Valencia,
Spain; the UCI Heart Disease dataset; the United States NHDS dataset; a Spanish
Breast Cancer dataset; and an In-Vitro Fertilization dataset. A detailed description of
the multi-source and temporal variability findings in the Mortality Registry case study
is provided, including: a partitioning of the repository into two probabilistically sepa-
rated temporal subgroups following a change in the Spanish National Death Certificate
in 2009, punctual temporal anomalies due to a punctual increment in the number of
missing data, along with outlying and clustered health departments due to differences
in populations or in practices.

The systematic application of the methods to the case studies has contributed to the
development of a software toolbox, which includes the GPD, SPO, MSV plot, IGT plot,
PDF-SPC, other basic DQ tools, and the automated generation of DQ reports. Finally,
we defined the theoretical basis of a general framework for the evaluation of biomedical
DQ, which have been used in three applications: in a process for the construction of
quality assured infant feeding repositories, for the contextualization of data for their
reuse in Clinical Decision Support Systems using an HL7-CDA wrapper; and in an
on-line service for the DQ evaluation and rating of biomedical data repositories.

The results of this thesis have been published in eight scientific contributions, in-
cluding top-ranked journals and conferences in the areas of Statistics and Probability,
Information Systems, Data Mining, Medical Informatics and Biomedical Engineering.
One of the journal publications was selected by the IMIA as one of the best publica-
tions in 2013 in the subfield of Health Information Systems. Additionally, the results
of this thesis have contributed to several research projects, and have facilitated the
initial steps towards the industrialization of the developed methods and approaches
for the audit and control of biomedical DQ.
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Resumen

Actualmente, la investigación y toma de decisiones en entornos biomédicos dependen
en gran medida de los datos almacenados en los sistemas de información. En con-
secuencia, una falta de calidad en los datos (CD) puede afectar significativamente a
la interpretación de los mismos, lo cual puede dar lugar a decisiones sub-óptimas o
dificultar los procesos y resultados de las investigaciones derivadas.

Generalmente, la CD es evaluada mediante diversas métricas de las denominadas
dimensiones de calidad sobre problemas fundamentales como datos incompletos, in-
consistentes o incorrectos. Sin embargo, los actuales desarrollos sobre repositorios de
datos biomédicos masivos (Big Data), basados en infraestructuras de compartición de
datos multi-institucionales o transfronterizas, requieren nuevas aproximaciones para
una evaluación eficiente y desde perspectivas generales de la CD.

Esta tesis tiene como propósito la investigación y desarrollo de métodos para evaluar
dos problemas especialmente importantes en repositorios multi-sitio masivos adquiri-
dos durante largos periodos de tiempo: (1) la variabilidad de las distribuciones de
probabilidad de los datos entre diferentes fuentes o sitios—variabilidad multi-fuente—
y (2) la variabilidad de las distribuciones de probabilidad de los datos a lo largo del
tiempo—variabilidad temporal. Esta variabilidad puede estar causada por diferencias
en los métodos de adquisición de datos, protocolos o poĺıticas de atención sanitaria;
a errores sistemáticos o aleatorios durante la entrada o gestión de datos; diferencias
geográficas o demográficas en las poblaciones; o incluso por falsificaciones en los datos.
Si esta variabilidad no es gestionada, puede complicar el análisis de los datos, sesgar los
resultados, o minimizar la generalización de modelos o hipótesis basadas en los datos.

Hasta la fecha, la variabilidad multi-fuente y temporal han recibido poca atención
como problemas de CD, y hasta donde sabemos no cuentan con métodos adecuados
para su evaluación. Esta tesis aporta métodos para detectar, medir y caracterizar
dicha variabilidad, los cuales han sido especialmente diseñados para superar los prob-
lemas que las aproximaciones estad́ısticas clásicas pueden tener con datos biomédicos
multi-tipo, multivariantes y multi-modales, y sin ser afectados por tamaños muestrales
grandes en entornos Big Data. Para ello, hemos definido un marco probabiĺıstico
común basado en Teoŕıa y Geometŕıa de la Información que da soporte a los métodos
desarrollados. Este marco está basado en la inferencia de variedades de Riemann
no-paramétricas a partir de distancias probabiĺısticas normalizadas entre las distribu-
ciones de varias fuentes de datos o a lo largo del tiempo. Basadas en dicho marco
probabiĺıstico se han aportado las siguientes contribuciones.

Para la evaluación de la variabilidad multi-fuente se han definido dos métricas y un
gráfico para visualización: (1) la Global Probabilistic Deviation (GPD), la cual mide
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Resumen

el grado de variabilidad global entre las distribuciones de las diferentes fuentes—como
un estimador equivalente a la desviación estándar entre distribuciones; y (2) la Source
Probabilistic Outlyingness (SPO), la cual mide la disimilaridad entre la distribución
de una fuente de datos dada y la distribución de una fuente promedio o global latente
definida. Estas métricas están basadas en la construcción de un simplex geométrico (la
variedad de máxima dimensionalidad) mediante las distancias entre fuentes. Adicional-
mente, se ha definido el Multi-Source Variability (MSV) plot, para una visualización
exploratoria basada en tal simplex, que permite detectar patrones de agrupamiento o
desagrupamiento entre fuentes.

Para la variabilidad temporal el método desarrollado proporciona dos herramientas
principales: (1) el Information Geometric Temporal (IGT) plot, para una visualización
exploratoria de la evolución temporal de las distribuciones de datos, basada en la
proyección de la variedad estad́ıstica de las relaciones entre lotes temporales; y (2) el
Probability Distribution Function Statistical Process Control (PDF-SPC), un algoritmo
para la monitorización y detección automática de cambios en las distribuciones de
datos. Adicionalmente, este método permite monitorizar la variabilidad multi-fuente
a lo largo del tiempo.

Los métodos han sido aplicados en casos de estudio reales en repositorios biomédicos,
incluyendo: el Registro de Salud Pública de Mortalidad y el de Cáncer de la Comunidad
Valenciana, España; el conjunto de datos de enfermedades del corazón del repositorio
UCI; el conjunto de datos NHDS de los Estados Unidos; un conjunto de datos español
de Cáncer de Mama; y un conjunto de datos de Fecundación In-Vitro. En particular
esta tesis incluye una descripción detallada de los hallazgos de variabilidad multi-fuente
y temporal del Registro de Mortalidad, incluyendo: una partición del repositorio en
dos subgrupos temporales probabiĺısticamente separados siguiendo un cambio en el
Certificado Médico de Defunción en 2009, anomaĺıas temporales puntuales debidas a
incrementos puntuales en el número de datos perdidos, aśı como departamentos de
salud anómalos y agrupados debido a diferencias en poblaciones y en las prácticas.

La aplicación sistemática de los métodos a los casos de estudio ha contribuido
al desarrollo de un conjunto de herramientas software, el cual incluye los métodos
GPD, SPO, MSV plot, IGT plot, PDF-SPC, otras herramientas básicas de CD, y la
generación automática de informes de CD. Finalmente, se ha definido la base teórica
de un marco general de CD biomédicos, el cual ha sido utilizado en tres aplicaciones:
en el proceso de construcción de repositorios de calidad asegurada para la alimentación
del lactante, en la contextualización de datos para el reuso en Sistemas de Ayuda a
la Decisión Médica usando un wrapper HL7-CDA, y en un servicio on-line para la
evaluación y clasificación de la CD de repositorios biomédicos.

Los resultados de esta tesis han sido publicados en ocho contribuciones cient́ıficas
(revistas indexadas y art́ıculos en congresos), en las áreas de Estad́ıstica y Proba-
bilidad, Sistemas de Información, Mineŕıa de Datos, Informática Médica e Ingenieŕıa
Biomédica. Una publicación fue seleccionada por la IMIA como una de las mejores
publicaciones en 2013 en Sistemas de Información de Salud. Los resultados de esta
tesis han contribuido en varios proyectos de investigación, y han facilitado los primeros
pasos hacia la industrialización de los métodos y tecnoloǵıas desarrolladas para la au-
ditoŕıa y control de la CD biomédica.
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Resum

Actualment, la investigació i presa de decisions en entorns biomèdics depenen en gran
mesura de les dades emmagatzemades en els sistemes d’informació. En conseqüència,
una manca en la qualitat de les dades (QD) pot afectar significativament a la seua in-
terpretació, la qual cosa pot donar lloc a decisions sub-òptimes o dificultar els processos
i resultats de les investigacions derivades.

Generalment, la QD és avaluada mitjançant la mesura de dimensions de qualitat
sobre problemes fonamentals com dades incompletes, inconsistents o incorrectes. No
obstant això, els actuals desenvolupaments sobre repositoris de dades biomèdiques mas-
sius (Big Data) basats en infraestructures de compartició de dades multi-institucionals
o transfrontereres, requereixen noves aproximacions per a una avaluació eficient i des
de perspectives generals de la QD.

Aquesta tesi té com a propòsit la investigació i desenvolupament de mètodes per
avaluar dos problemes especialment importants en repositoris multi-lloc, massius i
adquirits durant llargs peŕıodes de temps: (1) la variabilitat de les distribucions de
probabilitat de les dades entre diferents fonts o llocs—variabilitat multi-font—i (2)
la variabilitat de les distribucions de probabilitat de les dades al llarg del temps—
variabilitat temporal. Aquesta variabilitat pot estar causada per diferències en els
mètodes d’adquisició de dades, protocols o poĺıtiques d’atenció sanitària; a errors sis-
temàtics o aleatoris durant l’entrada o gestió de dades; diferències geogràfiques o de-
mogràfiques en les poblacions; o fins i tot per falsificacions en les dades. Si aquesta
variabilitat no és gestionada, pot complicar l’anàlisi de les dades, esbiaixar els resultats,
o minimitzar la generalització de models o hipòtesis basades en les dades.

Fins a la data, la variabilitat multi-font i temporal han rebut poca atenció com prob-
lemes de QD, i fins on sabem no compten amb mètodes adequats per a la seva avaluació.
Aquesta tesi aporta mètodes per detectar, mesurar i caracteritzar aquesta variabilitat.
Aquests mètodes han estat especialment dissenyats per superar els problemes que les
aproximacions estad́ıstiques clàssiques poden tenir amb dades biomèdiques multi-tipus,
multivariants i multi-modals, i per a no ser afectats per mides mostrals grans en en-
torns Big Data. Per a això, hem definit un marc probabiĺıstic comú basat en Teoria
i Geometria de la Informació que dóna suport als mètodes desenvolupats. Aquest
marc està basat en la inferència de varietats de Riemann no-paramètriques a partir
de distàncies probabiĺıstiques normalitzades entre les distribucions de diverses fonts de
dades o al llarg del temps.

Basades en aquest marc probabiĺıstic s’han aportat les següents contribucions:
Per a l’avaluació de la variabilitat multi-font s’han definit dos mètriques i un gràfic

per a visualització: (1) la Global Probabilistic Deviation (GPD), la qual mesura el grau
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Resum

de variabilitat global entre les distribucions de les diferents fonts—com un estimador
equivalent a la desviació estàndard entre distribucions; i (2) la Source Probabilistic
Outlyingness (SPO), la qual mesura la dissimilaritat entre la distribució d’una font
de dades donada i la distribució d’una font mitjana o global latent definida. Aque-
stes mètriques estan basades en la construcció d’un simplex geomètric (la varietat de
màxima dimensionalitat) mitjançant les distàncies entre fonts. Addicionalment, s’ha
definit el Multi-Source Variability (MSV) plot, per a una visualització exploratòria
basada en tal simplex, que permet detectar patrons d’agrupament o desagrupament
entre fonts.

Per a la variabilitat temporal el mètode desenvolupat proporciona dues eines princi-
pals: (1) l’Information Geometric Temporal (IGT) plot, per a una visualització explo-
ratòria de l’evolució temporal de les distribucions de dades, basada en la projecció de la
varietat estad́ıstica de les relacions entre lots temporals; i (2) el Probability Distribu-
tion Function Statistical Process Control (PDF-SPC), un algoritme per al monitoratge
i detecció automàtica de canvis en les distribucions de dades. Addicionalment, aquest
mètode permet monitoritzar la variabilitat multi-font al llarg del temps.

Els mètodes han estat aplicats en casos d’estudi reals en repositoris biomèdics,
incloent: el Registre de Salut Pública de Mortalitat i el de Càncer de la Comunitat
Valenciana, Espanya; el conjunt de dades de malalties del cor del repositori UCI; el
conjunt de dades NHDS dels Estats Units; un conjunt de dades espanyol de Càncer de
Mama; i un conjunt de dades de Fecundació In-Vitro. En particular la tesi inclou una
descripció detallada de les troballes de variabilitat multi-font i temporal del Registre
de Mortalitat, incloent: una partició del repositori en dos subgrups temporals prob-
abiĺısticament separats seguint un canvi en el Certificat Mèdic de Defunció el 2009,
anomalies temporals puntuals degudes a increments puntuals en el nombre de dades
perdudes, aix́ı com departaments de salut anòmals i agrupats a causa de diferències
en poblacions i en les pràctiques.

L’aplicació sistemàtica dels mètodes als casos d’estudi ha contribüıt al desenvolupa-
ment d’un conjunt d’eines programari, el qual inclou els mètodes GPD, SPO, MSV plot,
IGT plot, PDF-SPC, altres eines bàsiques de QD, i la generació automàtica d’informes
de QD. Finalment, s’ha definit la base teòrica d’un marc general de QD biomèdiques,
el qual ha estat utilitzat en tres aplicacions: en el procés de construcció de repositoris
de qualitat assegurada per l’alimentació del lactant, a la contextualització de dades per
a la reutilització en Sistemes d’Ajuda a la Decisió Mèdica usant un wrapper HL7-CDA,
i en un servei on-line per a l’avaluació i classificació de la QD de repositoris biomèdics.

Els resultats d’aquesta tesi han estat publicats en vuit contribucions cient́ıfiques (en
publicacions en revistes indexades i en articles en congressos), en les àrees d’Estad́ıstica
i Probabilitat, Sistemes d’Informació, Mineria de Dades, Informàtica Mèdica i En-
ginyeria Biomèdica. Una de les publicacions va ser seleccionada per la IMIA com
una de les millors publicacions en 2013 en la sub-àrea de Sistemes d’Informació de
Salut. Addicionalment, els resultats d’aquesta tesi han contribüıt en diversos pro-
jectes d’investigació, i han facilitat les primeres passes cap a la industrialització dels
mètodes i aproximacions desenvolupades per l’auditoria i control de la QD biomèdica.
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Glossary

Mathematical notation

x Random variable

p(x) Probability (density/mass) function of a variable X

p(x, y) Joint probability function of two random variables X and Y

Θ Vector of parameters for a probability function

p(x|Θ) Probability function of a variable X conditioned to a vector of parameters Θ

D(P ||Q) Dissimilarity between probability distributions P = p(x) and Q = q(x)

Dz(X,Y ) Dissimilarity between elements X and Y under the metric conditions of z

d(X,Y ) Distance between elements Y and Y

M Riemannian manifold

x Column vector x

xT Transpose of x

Ep(x) Expected value of probability distribution p(x)

RD D-dimensional space of real numbers

N Space of natural numbers

∂x
∂t Partial derivative of variable x with respect to variable t

∇ Nabla operator

‖ · ‖ Euclidean norm

∆D D-dimensional simplex geometric figure

d1R(D) Maximum possible distance between any vertex and the centroid in a D-dimensional
regular simplex with edge length of 1

dmax(D) Maximum possible distance between any vertex and the centroid in a D-dimensional
irregular simplex

Ω Symbol for Global Probabilistic Deviation

O Symbol for Source Probabilistic Outlyingness

{·} Set of elements

ix



Glossary

Acronyms

ANOVA Analysis of Variance

BHFI Baby-friendly Hospital Initiative

BMI Body Mass Index

CRRV Cancer Registry of the Region of Valencia

CDF Cumulative Density Function

CDSS Clinical Decision Support System

CONSORT Consolidated Standard of Reporting Trials

CSV Comma-Separated Values

DQ Data Quality

EHR Electronic Health Record

EM Expectation Maximization

EMD Earth Mover’s Distance

FDA Functional Data Analysis

FIM Fisher Information Matrix

GPD Global Probabilistic Deviation

GUI Graphical User Interface

HIS Health Information System

HL7-CDA Health Level 7 Clinical Document Architecture

ICD International Classification of Diseases

IBIME Biomedical Informatics Group

ID Identifier

IF Impact Factor

IGT Information Geometric Temporal

IMIA International Medical Informatics Association

ITACA Institute of Information and Communication Technologies

IVF In-Vitro Fertilization

JCR Journal Citation Reports

JF Jeffrey Divergence

JS Jensen-Shannon Divergence

x



JSD Jensen-Shannon Distance

KDE Kernel Density Estimation

KL Kullback-Leibler Divergence

MDS Multidimensional Scaling

MLE Maximum-Likelihood Estimation

MR Magnetic Resonance

MRRV Mortality Registry of the Region of Valencia

MRS Magnetic Resonance Spectroscopy

MSV Multi-Source Variability

NHDS National Hospital Discharge Survey

OLAP On-Line Analytical Processing

PCA Principal Component Analysis

PDF Probability Distribution Function

PDF-SPC Probabilistic Statistical Process Control

SNOMED-CT Systematized Nomenclature of Medicine - Clinical Terms

SPC Statistical Process Control

SPO Source Probabilistic Outlyingness

SV Single Voxel

TDQM Total Data Quality Management

TQM Total Quality Management

UCI University of California, Irvine

UPV Universitat Politècnica de València

US United States

WHO World Health Organization

XML eXtensible Markup Language
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Chapter 1

Introduction

This chapter presents the outline of the thesis. Its main motivations are introduced in
first place. These lead to the definition of the thesis research questions and objectives,
described in second place. Third, the contributions derived from the research carried
out in this thesis are described. Next the projects and partners which have established
the work context of this thesis are compiled. Finally, an outline of the thesis structure
is provided.

1.1 Motivation

The Biomedical Informatics Group (IBIME) of the Institute of Information and Com-
munication Technologies (ITACA) of the Universitat Politècnica de València (UPV)
was established in 1999 as an interdisciplinary research group committed to biomedical
informatics. Since then, IBIME has participated in many research activities aimed to
the knowledge discovery and modelling from biomedical data.

The author of this thesis joined IBIME in 2006 with a University grant while
completing his Master studies. The author initially focused to investigate and develop
new Clinical Decision Support Systems (CDSSs) for brain tumour diagnosis, in the
framework of the European research projects eTumour and HealthAgents. Further
research until the development of this thesis was focused to improve CDSSs machine
learning technologies as well as evaluate their effectiveness on real clinical uses.

Given the experience gained by IBIME and the author during those years, a turn-
ing point was achieved. Most CDSSs research in IBIME was aimed to systems which
knowledge is acquired from empirical, data mining analyses of biomedical data repos-
itories. In such a way, a common issue was found which hindered these investigations.
Such an issue consisted in Data Quality (DQ) problems.

Of course, the data quality problem was not exclusive to IBIME’s research. At the
time of a successful establishment of Electronic Health Records (EHRs), the devel-
opment of biomedical data sharing technologies and predictive analytics were moving
medical informatics to the Big Data era. As a consequence, in the coming age of data-
driven, precision medicine, the problematic of DQ for data reuse was becoming more
evident, which was reflected in the most relevant international medical informatics
journals and conferences.
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Chapter 1. Introduction

However, most data quality assessment approaches seemed to give little attention
to two problems which will gain importance as larger multi-source repositories are
established. These problems are (1) the variability of data probability distributions
among multiple sources and (2) the variability of data probability distributions through
time. Both problems were already faced in our investigations, and were supported
by most recent machine learning research. However, few solutions existed for their
assessment as part of DQ procedures, nor were suitable to common characteristics of
biomedical data, namely multiple types of variables, with multiple distribution modes,
and in a multi-variate setting. In addition, newer solutions should be adapted to Big
Data environments, providing scalable methods suitable to large sample sizes.

The aforementioned problems established the main motivations of this thesis, and
led to the following research questions and aims.

1.2 Research questions and objectives

A successful data reuse depends in great measure on the quality of its data. Inde-
pendently of the objective of the data reuse, such as deriving hypotheses or building
statistical models, when using a set of biomedical data which has been acquired from
distinct sources and/or through a significant period of time, two problems may arise.
First, the probability distributions of data may not be concordant among the multi-
ple sources. In some situations, this may be due to expected population differences,
however, in others it may be related to unexpected differences or biases in the original
samples or in the data acquisition processes—e.g., different protocols for patient data
acquisition at the different hospitals. And second, the probability distributions of data
may not be concordant through the time period data were acquired. Similarly, this
may be due to changes in the processes generating data—e.g., a normative change of
protocol—or in the original sources of information—e.g, an environmental change.

When multi-source variability and temporal variability are not considered for data
reuse they may lead to different problems, such as suboptimal data analytics processes,
biased or ungeneralizable research results or even inaccurate strategic and healthcare
decisions. This thesis was conceived with the purpose of help addressing these prob-
lems, and facilitate the data reuse from valid a reliable information. As a consequence,
the next research questions arised:

RQ1 To what extent current data quality methods consider the problems of variability
of data distributions among multiple sources and through time?

RQ2 Can we provide a metric measurement of the probabilistic variability of data
among multiple sources?

RQ3 Can we detect, measure and characterize changes in the probability distributions
of biomedical data through time?

RQ4 Will multi-source and temporal variability assessment methods be robust to data
with multiple types of variables, multi-modal, multi-variate data and independent
to sample size in Big Data environments?

2
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RQ5 Can multi-source and temporal variability assessment methods be part of general
data quality assessment procedures for biomedical data?

The research work carried out in this thesis tries to answer these questions, while
aiming to define and build empirically driven and validated solutions to address the
problems of multi-source and temporal variability in a data quality assessment context.
To this end, the next objectives were defined:

O1 Review the state-of-the-art about data quality assessment methods, with a spe-
cial focus on solutions for assessing and measuring the multi-source and temporal
variability.

O2 Evaluate the feasibility of statistical and information theoretic methods as as-
sessment methods and metrics for multi-source and temporal variability.

O3 Design and build a method for the assessment of multi-source variability of
biomedical data, specially focusing to provide a robust metric of probabilistic
variability.

O4 Design and build a method for the assessment of temporal variability of biomed-
ical data, which facilitates detecting, measuring and characterizing changes.

O5 Validate the methods to be built both on simulated benchmarks and on real
biomedical data.

O6 Define the foundations of a framework for the generic assessment of biomedi-
cal data quality, which considers the systematic assessment of multi-source and
temporal variability dimensions.

The aforementioned objectives are put in common into the final aim of this thesis:
to improve the effectiveness and efficiency of the reuse of biomedical data by means of a
reliable information about their quality. Although it is difficult to provide a global level
of measurement for such an aim, it can be decomposed by the accomplishment of the
thesis objectives, which are supported by the resultant thesis scientific contributions
described next.

1.3 Thesis contributions

This thesis has led to different scientific contributions and technological results. The
contributions originated from this thesis work are listed next according to their type.
Additionally, the last point of the section provides a brief summary of the author’s
previous contributions which established the background knowledge and motivation
for this thesis.
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Chapter 1. Introduction

1.3.1 Main contributions

The main contributions of this thesis are summarized as follows:

C1 - Comparative study of probability distribution distances
This contribution consists in a comparative review of statistical and Information-
Theoretic methods for measuring distances between probability distributions.
The comparison describes the capabilities of different methods to deal with multi-
modal, multi-type and multivariate data, whether they can be bounded, and
shows comparison charts of their normalized response on different simulated dis-
tribution dissimilarities. This work was published in the conference contribution
P2 (Sáez et al, 2013b), and helped to define the scientific basis for the methods
in contributions C2 and C3.

C2 - Methods for multi-source variability assessment
Two metrics are proposed. The first is the Global Probabilistic Devia-
tion (GPD)—C2.1—, which provides a bounded degree of the global multi-
source variability, as an estimator of the probabilistic standard deviation among
the different sources. The second is the Source Probabilistic Outlying-
ness (SPO)—C2.2—, which provides a bounded degree of the dissimilarity
of each source to a latent central Probability Distribution Function (PDF). The
metrics are based on the projection of a simplex geometrical structure constructed
from the pairwise probabilistic distance among the sources, represented by the
vertices. Besides, the simplex centroid represents a latent central PDF, avoid-
ing the need of a gold standard reference dataset. Additionally, the 2D (or
3D) simplicial projection of the simplex can be used as a visualization method of
the multi-source variability, namely the the Multi-Source Variability (MSV)
plot—C2.3—, which permits exploring any outlying or grouping behaviour of
sources. These methods were published in the journal contribution P3 (Sáez
et al, 2014b), and compiled in the software contribution S1.

C3 - Methods for temporal variability assessment
A set of automatic and exploratory methods for assessing the variability of
biomedical data through time are proposed. The first is the Information Ge-
ometric Temporal (IGT) plot—C3.1—, a method to analyse the tempo-
ral behaviour of data which permits detecting, measuring and characterizing
temporal changes in distributions. It relies on a non-parametric information-
geometric statistical manifold, which points represent the PDF of consecutive
time batches laid out maintaining the probabilistic distance to each other. Two
overlapping points would indicate exact PDFs, while a normed distance of 1
between them would indicate completely disjoint PDFs. IGT plots help discov-
ering data temporal trends, conceptually-related time periods, abrupt changes
and punctual anomalies. The second is the Probabilistic Statistical Process
Control (PDF-SPC)—C3.2—, a non-parametric statistical process control
for monitoring changes in data distributions through time. Warning and Out-of-
Control states are reached according to statistical thresholds (e.g., based on the
three-sigma rule) on the Beta distribution of accumulated PDF distances to a
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moving reference distribution. Out-of-control states confirm new data concepts
and re-establish the reference distribution. Finally, the combined use of temporal
and multi-source methods provides an information geometric temporal monitor-
ing of multiple sources—C3.3. These methods were published in the journal
contribution P4 (Sáez et al, 2015), and provided in the software contribution S1.

C4 - Data Quality Assessment reports on real case studies
A set of DQ Assessment reports have been provided for the real case studies on
which the methods of this thesis have been validated. These include the Spatio-
Temporal Data Quality Assessment of the Mortality Registry of the Comunitat
Valenciana—C4.1—; Spatio-Temporal Data Quality Assessment of the Cancer
Registry of the Comunitat Valenciana—C4.2—; Data Quality and Preparation
Report for a Sentinel Node Biopsy predictive model in Breast Cancer—C4.3—;
and Data Quality and Preparation Report for a Twin-Pregnancy Risk Prediction
Model with Oocyte Donation—C4.4. The results of the contribution C4.1 have
been accepted in the journal contribution P5 (Sáez et al, 2016).

C5 - Multi-source and temporal variability software
The data quality methods designed and validated in this thesis for multi-source
and temporal variability have been compiled into a software to facilitate its sys-
tematic use and as a preparation for a further industrialization. This set of
tools include the multi-source and temporal methods, but also other methods
were developed to assess missing data, outlier-based inconsistencies and variable
predictive value. Additionally, an automatic report generation system was built
which automatically constructs a LaTeX-based document with the corresponding
data quality results and figures. The software was registered in the technologi-
cal offer of the Universitat Politècnica de València, as shown in contribution S1.
Additionally, the proposal of a systematic use of this software was applied to
the case study in contribution C4.1, being as well under review in the journal
contribution P5 (Sáez et al, 2016).

C6 - Proposal of a generic Data Quality Assessment framework
Supported by the knowledge about DQ acquired during the development of the
thesis, we proposed the definition of a theoretical framework for biomedical DQ
assessment—C6.1. This framework is based on the definition of nine DQ di-
mensions aiming to cover the most important dimensions to our opinion, while
including the new multi-source and temporal methods and dimensions. Dimen-
sions can be measured in different axes of the dataset, namely through registries,
attributes, single-values, full dataset, multi-source and through time. With this
contribution we aimed to provide insights into further research in other DQ
dimensions alone or in combination with the multi-source and temporal vari-
ability problems, towards the application and industrialization of a general DQ
framework. Therefore, during the development of this thesis the contents of this
framework were used in three applications: (1) to establish the theoretical basis
of a process for the construction of quality assured infant feeding repositories—
C6.2—, (2) in the contextualization of data for its reuse in rule-based CDSS
using an HL7-CDA wrapper—C6.3—, and to establish the measurements of
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DQ features in an on-line service for the evaluation and rating of biomedical
data repositories—C6.4. The original ideas of this framework were published
in the conference contribution P1. The contribution C6.2 has been published
in publications P8 (Garćıa de León Chocano et al, 2015) and P9 (Garćıa de
León Chocano et al, 2016). The contribution C6.3 was published in publication
P6 (Sáez et al, 2013a) and is provided in the software contribution S2. Finally,
the contribution C6.4 is currently in industrialization in a joint partnership of
the IBIME research group and the spin-off of the UPV Veratech for Health S.L.,
provided in the software contribution S3.

The ideas developed during this thesis permitted obtaining funds from the National
Government towards the industrialization of the general DQ framework, including the
methods for multi-source and temporal variability assessment developed in this thesis,
and to perform the necessary additional research for completing our approach. Hence,
in addition to the scientific and technological contributions, this thesis has directly led
to the creation of job positions and new research projects.

1.3.2 Scientific publications

The contributions of this thesis have led to six journal publications, two conference
papers and one book chapter. The journal publications describe the methods for
multi-source and temporal variability—P3 and P4—, the application to the Mortality
Registry—P5—, the application of the DQ framework for the data contextualization
for data reuse by CDSSs—P6—, and the application of the DQ framework to the ex-
traction of quality assured perinatal repositories—P8 and P9. The journals on which
this thesis has contributed are top-ranked in the areas of Information Systems, Statis-
tics and Probability, Data Mining and Medical Informatics, according to the Impact
Factor (IF) of the Journal Citation Reports (JCR) by Thomson Reuters.

Regarding to the conference papers, the first stands as a position paper resulted
after the initial state-of-the-art review—P1— establishing some general concepts for
DQ assessment, and the second disseminated the results of the comparative study of
probability distribution distances—P2. The two conferences are relevant international
scientific conferences on Medical Informatics and Biomedical Engineering.

Finally, the work in the Public Health Mortality and Cancer Registries resulted in
an invitation to write two chapter sections related to Data Quality in a guideline for the
governance of Public Health patient registries by the PARENT European Project—P7.

The publications of this thesis are listed as follows:

P1 - Carlos Sáez, Juan Mart́ınez-Miranda, Montserrat Robles and Juan M Garćıa-Gómez.
’Organizing data quality assessment of shifting biomedical data’. Studies in Health
Technology and Informatics, Proceedings of the 24th Medical Informatics in Europe
Conference (MIE2012); 180:721-725. Pisa, Italy. August 2012 (Sáez et al, 2012b).

P2 - Carlos Sáez, Montserrat Robles and Juan M Garćıa-Gómez. ’Comparative study of
probability distribution distances to define a metric for the stability of multi-source
biomedical research data’. Proceedings of the 35th annual international conference of
the IEEE Engineering in medicine and biology society (EMBC), 3226–3229. Osaka,
Japan. July 2013 (Sáez et al, 2013b).
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P3 - Carlos Sáez, Montserrat Robles and Juan M Garćıa-Gómez. ’Stability metrics for
multi-source biomedical data based on simplicial projections from probability distribu-
tion distances’. Statistical Methods in Medical Research. Published Online First in
August 2014 (Sáez et al, 2014b).

IF: 4.472 (JCR 2014): 1/122 Statistics and Probability (Q1), 1/24 Medical informatics
(Q1), 3/89 Health Care Sciences and Services (Q1), 5/56 Mathematical and Compu-
tational Biology (Q1)

P4 - Carlos Sáez, Pedro Pereira Rodrigues, João Gama, Montserrat Robles and Juan M
Garćıa-Gómez. ’Probabilistic change detection and visualization methods for the as-
sessment of temporal stability in biomedical data quality’. Data Mining and Knowledge
Discovery. 29(4):950–75. July 2015 (Sáez et al, 2015).

IF: 1.987 (JCR 2014): 25/139 Computer Science, Information Systems (Q1), 41/123
Computer Science, Artificial Intelligence (Q2)

P5 - Carlos Sáez, Oscar Zurriaga, Jordi Pérez-Panadés, Inma Melchor, Montserrat Robles
and Juan M Garćıa-Gómez. ’Applying probabilistic temporal and multi-site data quality
control methods to a public health mortality registry in Spain: A systematic approach
to quality control of repositories’. Accepted in the Journal of the American Medical
Informatics Association (Sáez et al, 2016).

IF: 3.504 (JCR 2014): 2/24 Medical Informatics (Q1), 6/89 Health Care Sciences and
Services (Q1), 8/139 Computer Science, Information Systems (Q1), 9/102 Computer
Science, Interdisciplinary Applications (Q1)

P6 - Carlos Sáez, Adrián Bresó, Javier Vicente, Montserrat Robles and Juan M Garćıa-
Gómez. ’An HL7-CDA wrapper to facilitate the semantic interoperability to rule-based
clinical decision support systems’. Computer Methods and Programs in Biomedicine.
109(3):239-249. March 2013 (Sáez et al, 2013a).

Selected as ‘Best of medical informatics papers published in 2013, sub-field of Health
Information Systems’ by the International Medical Informatics Association (IMIA), in
the IMIA Yearbook 2014 (Toubiana and Cuggia, 2014).

IF: 1.093 (JCR 2013): 32/102 Computer Science, Theory and Methods (Q2), 16/24
Medical informatics (Q3), 54/76 Engineering, Biomedical (Q3), 68/102 Computer Sci-
ence, Interdisciplinary Applications (Q3)

P7 - Óscar Zurriaga, Carmen López Briones, Miguel A. Mart́ınez-Beneito, Clara Cavero-
Carbonell, Rubén Amorós, Juan M. Signes, Alberto Amador, Carlos Sáez, Montserrat
Robles, Juan M. Garćıa-Gómez, Carmen Navarro-Sánchez, Maŕıa J. Sánchez-Pérez,
Joan L. Vives-Corrons, Maŕıa M. Mañú, Laura Olaya. ’Methodological guidelines and
recommendations for efficient and rational governance of patient registries. Chapter 8:
Running a Registry’. National Institute of Public Health, Trubarjeva 2, 1000 Ljubljana,
Slovenia. ISBN:978-961-6911-75-7(pdf) (Zurriaga et al, 2015).

P8 - Ricardo Garćıa de León Chocano, Carlos Sáez, Verónica Muñoz-Soler, Ricardo Garćıa
de León González and Juan M Garćıa-Gómez. ’Construction of quality-assured infant
feeding process of care data repositories: definition and design (Part 1)’. Computers
in Biology and Medicine. 67:95-103. December 2015 (Garćıa de León Chocano et al,
2015).
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IF: 1.240 (JCR 2014): 49/85 Biology (Q3), 64/102 Computer Science, Interdisci-
plinary Applications (Q3), 52/76 Engineering, Biomedical (Q3), 35/56 Mathematical
and Computational Biology (Q3)

P9 - Ricardo Garćıa de León Chocano, Verónica Muñoz-Soler, Carlos Sáez, Ricardo Garćıa
de León González and Juan M Garćıa-Gómez. ’Construction of quality-assured infant
feeding process of care data repositories: construction of the perinatal repository (Part
2)’. Accepted in Computers in Biology and Medicine. (Garćıa de León Chocano et al,
2016).

1.3.3 Software

The research carried out in this thesis has led to three software developments. First,
the methods for multi-source and temporal variability DQ assessment developed in
this thesis were compiled in a software toolbox, registered in the software registry
of the UPV as part of the University technological offer. Second, the proposed DQ
framework was considered in a software to assure the ‘contextualization’ of patient
data for its reuse in rule-based CDSSs. And third, the methods for multi-source and
temporal variability assessment and the proposed DQ framework have been included in
the design of an industrial application by a partnership formed by the IBIME research
group and the company VeraTech for Health S.L., a technological start-up formed by
some members of IBIME (including the author and advisers) and spin-off of the UPV.

S1 - Carlos Sáez, Juan M Garćıa-Gómez, Montserrat Robles and Miguel Esparza. ’R-
16880-2014 - Evaluación y rating de la calidad de repositorios de datos biomédicos
(DQV)’. CARTA Registry of the Universitat Politècnica de València.

S2 - Carlos Sáez, Adrián Bresó, Javier Vicente, Montserrat Robles and Juan M Garćıa-
Gómez. ’HL7-CDA Wrapper for the contextualization of biomedical data for reuse in
rule-based CDSSs’.

S3 - IBIME (UPV) and VeraTech for Health S.L. ’Qualize: Quality evaluation and rating
of biomedical data repositories’. Funded by the Spanish Ministry of Economy and
Competitiveness (Retos-Colaboración 2013 programme, RTC-2014-1530-1, 2013-2016)

1.3.4 Other contributions

The background knowledge and motivation for this thesis not only arised from the
state-of-the-art requirements, but also from own experience of the author and advisors
in reusing biomedical data for CDSSs. Such work was done in the framework of several
European and National projects, described in the next section, and several scientific
and technological contributions were originated from it.

The first group of contributions relate to the research in CDSSs for brain tumour di-
agnosis carried out within the European projects eTUMOUR and HealthAgents, which
culminated in the generic machine learning-based CDSS CURIAM and its specializa-
tion for brain tumour diagnosis based on Magnetic Resonance Spectroscopy (MRS)
data CURIAM BT (registered in the UPV software registry nos. R13391-2009 and
R13392-2009). Hence, the author work in such research and development originated

8
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two conference contributions (Sáez et al, 2008, 2009) and one journal publication (Sáez
et al, 2011) as main author, and collaborated and co-authored four conference papers
(Garćıa–Gómez et al, 2007; Croitoru et al, 2007; Xiao et al, 2007, 2008), two journal
publications (Hu et al, 2011; Fuster-Garcia et al, 2011), one book chapter (Lluch-Ariet
et al, 2007), and several Deliverables of the European projects. The generic capa-
bilities of the CDSS CURIAM led, in addition to its brain tumour specialization, to
other specific CDSSs for soft tissue tumours and post-partum depression (Sáez et al,
2008), as well as to a paediatric specific CURIAM BT version (Vicente et al, 2012).
Further, the author carried out a randomized pilot study and qualitative evaluation
of CURIAM BT in three hospitals in the Region of Valencia: Hospital Universitario
Dr. Peset, Hospital de La Ribera and Hospital Quirón Valencia, which originated one
conference (Sáez et al, 2012a) and one journal publication (Sáez et al, 2014a), and
led CURIAM BT to obtain the award ‘Best Technology and Research contribution’ in
2012 by the Spanish healthcare Editorial Company ‘SANITARIA 2000’. In addition,
the work by the author, advisors and colleagues regarding to magnetic resonance in
the network led by Dr. Luis Mart́ı-Bonmat́ı was awarded by the ‘Exemplary group in
science and academic life: PRO ACADEMIA PRIZE 2013’.

In parallel to that work, the author participated in other research and industrial
projects with the following contributions: an evaluation of the user acceptance of a new
Health Information System (HIS) in the Balearic Islands for the regional Government;
the development of automatic classification modules for a CDSS in ophthalmology;
and the data preparation, understanding and quality assessment for a twin-pregnancy
risk prediction model in oocyte donation programme, with a journal paper under
review. The author additionally participated in the European project HELP4MOOD,
contributing in the design and development of a Knowledge Extraction and Inference
engine for the management and care of patients with major depression, as well as
writing the corresponding Deliverable.

Finally, the author participated actively in a private project aiming to a knowledge-
based personal health system for the empowerment of outpatients with diabetes mel-
litus (Sáez et al, 2013a; Bresó et al, 2015). The requirements of a high-quality patient
data reuse for such a knowledge-based CDSS established the start point of this the-
sis, which approach based on patient and CDSS results standardization originated
the first journal contribution JC1, awarded by the International Medical Informatics
Association in 2014.

1.4 Projects and partners

From the thesis antecedents to the development of the thesis work, the author has
been actively involved in several European, National, private and University-funded
projects, collaborating with clinical, academic and private sector partners.

The projects mainly related with the development of this thesis are listed as follows:

DQV-AUTOPROJECT Servicio de evaluación y rating de la calidad de reposito-
rios de datos biomédicos. Funded by own IBIME funds - Universitat Politècnica de
València (2013-2014)

9
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Objectives: This project aims to an holistic data quality assessment based on the
definition of a data quality system by which institutions may evaluate and compare
the quality of their datasets.

Partners: IBIME-ITACA group of the Universitat Politècnica de Valencia (Va-
lencia, Spain)

DQV-MINECO Servicio de evaluación y rating de la calidad de repositorios de
datos biomédicos. Funded by the Spanish Ministry of Economy and Competitiveness
(Retos-Colaboración 2013 programme, RTC-2014-1530-1, 2013-2016). Objectives:
This project aims to define a data quality evaluation and rating service to assure
the data value aimed to its reuse in clinical, strategic and scientific decision making.
It will be based on two software services. The first will evaluate nine data quality
dimensions. The second will generate a data quality rating positioning the evaluated
datasets according to several reuse knowledge extraction purposes.

Partners: VeraTech for Health S.L. (Valencia, Spain) and IBIME-ITACA group
of the Universitat Politècnica de Valencia, (Spain)

DQV-SPATIO-TEMPORAL-Evaluation Servicio de evaluación de la estabili-
dad espacio temporal de repositorios de datos biomédicos. Funded by the Universitat
Politècnica de València (Prueba de Concepto 2015, SP20141432, 2014-2015).

Objectives: The objective of this project is to construct a proof of concept of a
spatio-temporal data quality assessment methodology. Concretely, the project aims to
access data repositories from reputed centres and generate data quality reports which
will reflect the data variability problems and the recommendations to improve their
data acquisition and reuse processes.

Partners: Dirección General de Salud Pública, Generalitat Valenciana (Valencia,
Spain) and IBIME-ITACA group of the Universitat Politècnica de Valencia (Valencia,
Spain)

The projects on which the author was actively involved in parallel the development
of this thesis, and previous to it establishing the thesis basis are listed as follows:

eTUMOUR Web accessible Magnetic Resonance (MR) decision support system for
brain tumour diagnosis and prognosis, incorporating in vivo and ex vivo genomic and
metabolomic data. Funded by the European Commission (VI Framework Program,
LSHC-CT-2004-503094, 2004-2009).

Objectives: (1) Development of a web-accessible CDSS that has a Graphical User
Interface (GUI) to display clinical, metabolomic and genetic brain tumor data. (2) To
provide an evidence-based clinical decision-making computer-human interface by using
statistical pattern recognition analysis of molecular images of brain tumours (using
MRS) and incorporating new criteria such as genetic based tumour classifications and
related clinical information.

10
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Partners: University of Valencia (Valencia, Spain), Universitat Autò-noma de
Barcelona (Barcelona, Spain), St George’s Hospital Medical School (London, UK), Uni-
versity Medical Center Nijmegen (Nijmegen, Netherlands), Stichting Katholieke Uni-
versiteit (Nijmegen, Netherlands), Université Joseph Fourier U594 (Grenoble, France),
MicroArt S.L. (Barcelona, Spain), Hospital San Joan de Deu (Esplugues de Llobregat,
Spain), Pharma Quality Europe, s.r.l. (Barcelona, Spain), Hyperphar Group SpA.
(Milan, Italy), Katholieke Universiteit Leuven (Leuven, Belgium), Siemens AG, Medi-
cal Solutions (Erlangen, Germany), SCITO, S.A (Grenoble, France), Deutsche Krebs-
forschungs zentrum Heidelberg (Heidelberg, Germany), Bruker Biospin SA. (Wissem-
bourg, France), Institute of Child Health - University of Birmingham (Birmingham,
United Kingdom), INSERM U318 (Grenoble, France), Fundación para la Lucha contra
Enfermedades Neurológicas de la Infancia (Buenos Aires, Argentina), Medical Univer-
sity Lodz (Lodz, Poland) and IBIME-ITACA group of the Universitat Politècnica de
Valencia (Valencia, Spain).

HEALTHAGENTS Agent-based distributed decision support system for brain tu-
mour diagnosis and prognosis. Funded by the European Commission (VI Framework
Program, IST-2004-27214, 2006-2009).

Objectives: To create a distributed datawarehouse with the world’s largest net-
work of interconnected databases of clinical, histological, and molecular phenotype
data of brain tumour patients, providing evidence-based clinical decision-making by
means of magnetic resonance and genetic based tumour classifications, and to develop
new methodologies to fulfill a dynamic clinical decision support system.

Partners: University of Valencia (Valencia, Spain), MicroArt S.L. (Barcelona,
Spain), Universitat Autònoma de Barcelona (Barcelona, Spain), Pharma Quality Eu-
rope, s.r.l. (Barcelona, Spain), Katholieke Universiteit Leuven (Leuven, Belgium),
University of Birmingham (Birmingham, UK), University of Edinburgh (Edinburg,
UK), University of Southampton (Southampton, UK) and IBIME-ITACA group of
the Universitat Politècnica de Valencia (Valencia, Spain)

RISCO Servicio remoto de atención sanitaria basado en la prevención, autonomı́a y
autocontrol de los pacientes. Funded by the Spanish Ministry of Science and Innovation
(INNPACTO 2011, 2011-2013)

Objectives: The objective of the consortium members is being introduced in the
international market of Remote Services for Healthcare and Wellbeing based on the
development and validation of a technological platform for a novel healthcare service
based in the prevention, autonomy and self-control of patients. Concretely, the plat-
form will be aimed to diabetes mellitus and cardiovascular diseases patients, develop-
ing novel solutions for patient telemonitoring, risk assessment, nutrition and physical
exercise planning, with a multichannel remote assistance specialized in Healthcare,
Nutrition, Physical Activity and Psychological Support.

Partners: Fagor Electrodomésticos (Mondragón, Spain), Universidad de Mon-
dragón (Mondragón, Spain), Isoco (Valencia, Spain), Ikerlan (Arrasate-Mondragón,
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Spain), Hospital Puerta del Hierro (Madrid, Spain), and IBIME-ITACA group of the
Universitat Politècnica de Valencia (Valencia, Spain)

FAGOR-DIABETES Development of a knowledge-based personal health system
for the empowerment of outpatients with diabetes mellitus. Funded by Fagor Elec-
trodomésticos Sdad. Coop. Ltda. (2011-2013)

Objectives: The objective of this project is developing a rule-based CDSS for
the healthcare and monitoring of outpatients with diabetes mellitus, aimed to provide
a personalized risk assessment based on patient biomedical data and habits related
with nutrition and physical activity. The CDSS will gather patient data based on
standardized model transformation from the original HIS, and will provide results in
a Graphical User Interface showing qualitative and quantitative results associated to
the obtained risk assessment.

Partners: Fagor Electrodomésticos (Mondragón, Spain), Universidad de Mon-
dragón (Mondragón, Spain), and IBIME-ITACA group of the Universitat Politècnica
de Valencia (Valencia, Spain)

IVI-TWIN-RISK-Prediction Development of a twin-pregnancy risk predictive model
in oocyte donation programme. Funded by the IVI S.L., and VeraTech for Health S.L.
(2009-2012)

Objectives: Aiming to reduce the number of multiple-pregnancy cases in an oocyte
donation programme, the objective of this project is to develop a predictive model for
the risk assessment of twin pregnancy, providing the probabilities for number of on-
going yolk sacs based on features of the embryo cohort as well as the donor and receipt
patients.

Partners: IVI Valencia S.L. (Valencia, Spain), VeraTech for Health S.L. (Valencia,
Spain), and IBIME-ITACA group of the Universitat Politèc-nica de Valencia (Valencia,
Spain)

The author was involved in additional projects not related with this thesis, including
the European project HELP4MOOD, aimed to the intelligent management of patients
with major depression; two projects for the development and clinical evaluation of
the CDSS CURIAM BT (one National, other funded by the University); a project for
the evaluation of the user acceptance of a new HIS in the Balearic Islands; and the
National project PRECOG, aimed to a multimedia-based CDSS for ophthalmology.

Additionally, the author performed an international research internship at the Cen-
ter for Research in Health Technologies and Information Systems (CINTESIS), at the
Faculty of Medicine in the University of Porto, Portugal, from 16th September 2013
to 18th December 2013. The research stay was conducted under the supervision of
Dr. Pedro Pereira Rodrigues. During the research stay, the author also made research
tasks in the Laboratory of Artificial Intelligence and Decision Support (LIAAD), at
the INESC-TEC Institute of the University of Porto, under the guidance of Dr. João
Gama.
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1.5. Thesis outline

1.5 Thesis outline

The structure of this thesis aims to reflect the different research stages carried out
through the development of the thesis. Hence, Chapter 1 has introduced the thesis
main motivations, research aims and objectives. Chapter 2 describes the thesis ra-
tionale, including the justification of the investigated data quality problems and the
required theoretical background. Chapter 3 presents the results of the comparative
study of probability distribution distances. Chapters 4 and 5 present the results of the
methods for multi-source and temporal variability assessment, respectively. Chapter 6
presents several applications of the developed methods to real case studies in biomed-
ical repositories, with a main focus on the Public Health Mortality Registry of the
Region of Valencia. Chapter 7 sets the developed methods in a general biomedical DQ
framework, introducing the first steps towards their reuse and industrialization. It is
divided in three parts. First, it describes a systematic approach and software for the
multi-source and temporal variability methods. Second, it describes the proposal of a
general DQ framework including the concepts investigated in this thesis. And third,
it compiles three applications that make use of that framework. Finally, Chapter 8
describes the concluding remarks and main recommendations arised from the results
of this thesis.

We note that Chapter 6 provides as its introductory notes a simplified summary
of the multi-source and temporal variability methods used in the case studies, being
supported by the illustrative examples of Appendix D.

Figure 1.1 illustrates an schematic outline of the thesis contributions showing the
relationships among the thesis chapters, contributions, publications, projects, stays
and the generated software.
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Chapter 2

Rationale

This chapter describes the thesis rationale divided in two sections. First, the DQ prob-
lematic is described, starting from the justification of the discipline, then focusing to
biomedical DQ approaches, and ending with the problems of multi-source and tem-
poral variability addressed in this thesis. Second, a general review of the theoretical
background recommended for the understanding of the methods developed in this the-
sis is provided. This review is intended to establish a common basis to complement
the descriptions of background and methods explained in the following chapters.

Parts of Section 2.1 were published in the conference paper by Sáez et al (2012b)
and the journal publication by Sáez et al (2016)—thesis contributions P1 and P5.

2.1 Biomedical data quality

The outcomes of biomedical research and healthcare practice depend on taking deci-
sions based on the available information (Cruz-Correia et al, 2010). The data behind
such information is registered by humans or devices based on observations of facts,
at any stage of the healthcare process, and under an environment or context. How-
ever, both humans and devices are far from perfect. As a result, errors, omissions, or
changes in protocols or practices, can occur during the data acquisition at any of these
healthcare process stages or under any context, leading to an unreliable healthcare
information caused by a lack of DQ.

Such lack of DQ is an important issue that leads into wrong decisions and subop-
timal processes. This is particularly important in the healthcare, where the reliability
of information may have direct consequences on the care process of the patients. In
primary data use (patient care), low DQ may lead physicians to a set of direct errors,
such as inappropriate or outmoded therapy, technical surgical error, inappropriate
medication, error in dose or use of medications; and indirect errors, such as failure to
take precautions, failure to use indicated tests, avoidable delay in diagnosis, failure to
act on results of tests or findings, and inadequate follow up of therapy (Aspden et al,
2004).

Additionally, an insufficient DQ may directly harm the results of studies that reuse
the data (Weiskopf and Weng, 2013), such as clinical trials or cohorts. Many of the DQ
problems related to the reuse of the clinical information are related to two main causes
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Chapter 2. Rationale

(Cruz-Correia et al, 2010): (1) the original Electronic Health Records (EHRs) are
designed for its main patient care purpose, without taking into account that further
reuse of data that may require different degrees of quality, and (2) those EHRs are
not designed envisaging the prevention of DQ problems. Hence, a DQ assessment is
important to be aware of such problems for a proper data reuse, improve the value of
data and lead to better decisions.

The problem of DQ has been studied for years, specially in the industrial domain,
based on the hypothesis that data can be considered a product manufactured by orga-
nizations (Madnick et al, 2009)—even though biomedical data in most cases represent
a patient’s status, data itself is produced by healthcare professionals as well as by
devices. Under this assumption, the Massachusetts Institute of Technology (MIT)
launched in 1992 the Total Data Quality Management (TDQM) program (Madnick
and Wang, 1992), based in the features of Total Quality Management (TQM) intro-
duced in early 1980’s for the management of quality in industry. Furthermore, many
other research and industrial DQ Assurance proposals have been related to the TQM
Six Sigma process improvement methodology (Wang, 1998; Röthlin, 2010; Sebastian-
Coleman, 2013). Concretely, the ‘DMAIC’ model can be used to improve the DQ
and their related processes, involving the following cycle of stages: Define, Measure,
Analyse, Improve and Control.

DQ Assurance protocols combine activities at different levels, from the design of
the information system, the user training in DQ, to a continuous DQ control. Defining
what to measure and how to do it is the basis for the DQ Assurance, being them the
initial steps to any DQ improvement. There is a general agreement about defining DQ
in terms of fitness for purpose (Karr et al, 2006; Madnick et al, 2009), and this can be
expressed by the so-called DQ dimensions.

2.1.1 Data quality dimensions

DQ assessment has mostly been defined according to DQ dimensions: attributes that
represent a single aspect or construct of DQ (Wang and Strong, 1996). Dimensions
can conform to data specifications or to user expectations (Wang and Strong, 1996;
Lee et al, 2002; Karr et al, 2006).

The work by Wang and Strong (1996) established a seminal work towards a concep-
tual framework for DQ assessment considering DQ dimensions. Based on an inductive
study from data users opinions, along with a deductive approach based on their expe-
rience, they summarized a set of 179 desired data attributes into 15 dimensions, and
classified into 4 main groups, and divided into four categories (table 2.1). Since then,
many other research studies have aimed to define, compile or suggest, a set of generic
DQ dimensions and methodologies for DQ assessment (Wang and Strong, 1996; Lee
et al, 2002; Pipino et al, 2002; Pierce, 2004; Oliveira et al, 2005; Karr et al, 2006;
Heinrich et al, 2007). We refer to the work by Batini et al (2009) for an extensive
review on methodologies for DQ assessment and their relation to dimensions. The
main conclusion of most authors is that, in general, there is little agreement about the
definition of dimensions and their meaning. However, it can be found that, despite the
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2.1. Biomedical data quality

differences, the proposed dimensions and solutions aim to address conceptually-similar
DQ features.

Regarding to the biomedical domain, quality of biomedical data has been studied
in routine EHRs (Cruz-Correia et al, 2010; Liaw et al, 2011), in data repositories for
study cohorts (Arts et al, 2002; Müller et al, 2003; Bray and Parkin, 2009; Kahn et al,
2012; Walker et al, 2014), and in the integration of heterogeneous sources (Choquet
et al, 2010; Cruz-Correia et al, 2010; Kahn et al, 2012).

Weiskopf and Weng (2013) and Liaw et al (2013) reviewed DQ assessment meth-
ods and dimensions specially focused to the biomedical domain. Based on an iterative
inductive approach, Weiskopf and Weng (2013) performed a systematic review of 95 ar-
ticles, from which 27 unique terms describing dimensions were obtained. From these,
they empirically derived five high-level dimensions: completeness, correctness, con-
cordance, plausibility and currency (Table 2.2). Besides, Liaw et al (2013) used an
ontological approach, from which a similar set of five high-level dimensions—among
others— was identified as well, including: completeness, accuracy, correctness, consis-
tency and timeliness (Table 2.3). Comparing these two approaches, we observe that
both definitions of completeness are compatible. Besides, the definitions of currency
and timeliness are compatible among each other as well. Regarding to the other di-
mensions we observe that, although their definitions seem to be unmatched, in overall
the same concepts are covered.

Given that quality is generally associated to fitness for purpose, both Weiskopf
and Weng (2013) and Liaw et al (2013) started from little consensus in what and how
dimensions are. However, they ended up with a coherent set of high-level dimensions,
encouraging further research on discussing these dimensions and establishing proper
methodologies for biomedical DQ assessment.

2.1.2 Multi-source and temporal variability

This thesis focuses in the assessment of two problems which, to our opinion, have re-
ceived insufficient attention as DQ problems, and which the state of the art lacks of
appropriate assessment methods: 1) the variability of data distributions among differ-
ent data sources (e.g., sites or practitioners) and 2) the variability of data distributions
through time.

The problem of variability among data sources is generally related to semantic or
integration aspects (Knatterud, 2002; Sayer and Goodridge, 2007; Kahn et al, 2012;
Walker et al, 2014). However, semantic interoperability does not ensure that variability
issues that keep reflected in data probability distributions are properly managed, such
as variability in clinical protocols, data acquisition methods or healthcare policies,
geographic and demographic differences in populations (Galea et al, 2005), systematic
errors, personal or global biases, or even falsified data (Knatterud et al, 1998)—a set
of examples in the literature are provided in section 4.2.1).

The multi-source probabilistic variability could be classified as an intrinsic or con-
textual DQ dimension of multi-site repositories, according to the categories by Wang
and Strong (1996), but seems not to fit in any of the dimensions proposed by the same
authors. We may fit the multi-source variability to some degree within the descriptions
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Chapter 2. Rationale

Table 2.1: Definitions of DQ dimensions by Wang and Strong (1996)

Category Dimension Attributes

Intrinsic
Data have quality in
their own right

Believability Data are believable

Accuracy Data are certified error-free, accurate, correct,
flawless, reliable, errors can be easily identified, the
integreity of the data, precise

Objectivity Unbiased, objective

Reputation Reputation of the data source, reputation of the
data

Contextual
Data quality must
be considered
within the context
of the task at hand

Value-added Data give you a competitive edge, data add value
to your operations

Relevancy Applicable, relevant, interesting, usable

Timeliness Age of data

Completeness Breadth, depth, and scope of information con-
tained in the data

Appropriate
amount of data

The amount of data

Representational
Data are presented
in an intelligible and
clear manner

Interpretability Data are interpretable

Ease of understand-
ing

Easily understood, clear, readable

Representational
consistency

Data are continuosly presented in same format,
consistently represented, consistently formatted,
data are compatible with previous data

Concise representa-
tion

Well-presented, concise, compactly represented,
well-organized, aesthetically pleasing, form of pre-
sentation, well-formatted, format of the data

Accessibility
Data is accessible
and secure

Accessibility Accesible, retrievable, speed of access, available,
up-to-date

Access security Data cannot be accessed by competitors, data are
of a proprietary nature, access to data can be re-
stricted, secure
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Table 2.2: Definitions of DQ dimensions by Weiskopf and Weng (2013)—95 articles examined

Dimension Description

Completeness Is a truth about a patient present in the EHR?

Correctness Is an element that is present in the EHR true?

Concordance Is there agreement between elements in the EHR, or between the EHR and another
data source?

Plausibility Does an element in the EHR makes sense in light of other knowledge about what
element is measuring?

Currency Is an element in the EHR a relevant representation of the patient state at a given
point in time?

Table 2.3: Definition of DQ dimensions by Liaw et al (2013)—61 articles examined

Dimension Descriptions

Completeness The extent to which information is not missing and is of sufficient breadth and
depth for the task at hand. The ability of an information system to represent every
meaningful state of the represented real world system. Degree to which information
is sufficient to depict every possible state of the task. All values for a variable are
recorded. Availability of defined minimum number of records/patient.

Correctness The free-of-error dimension. Credibility of source and user’s level of expertise.
Data values, format and types are valid and appropriate; an example is height is in
metres and within range for age. Recorded value is in conformity with actual value.
Data accuracy includes accuracy and completeness.

Accuracy Recorded value is in conformity with actual value.

Consistency Representation of data values is same in all cases. Includes values and physical
representation of data. The extent to which information is easy to manipulate and
apply to different tasks. The equivalence and process to achieve, equivalence of
information stored or used in applications, and systems. The extent of use of a
uniform data type and format (e.g. integer, string, date) with a uniform data label
(internal consistency) and codes/terms that can be mapped to a reference
terminology (external consistency).

Timeliness Data is not out of data; availability of output is on time. Extent to which
information is up to date for task. The delay between a change of the real-world
state and the resulting modification of the information system state.
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of concordance dimension by Weiskopf and Weng (2013) or within the consistency di-
mension by Liaw et al (2013). Nevertheless, most specific definitions for consistency
aim to whether individual data registries satisfy domain constraints, rules or plausible
relations (Cali et al, 2004; Karr et al, 2006).

The aforementioned issues for multi-source probabilistic variability, can appear as
well during the time period the data in a repository is being acquired, leading to the
second problem: the temporal variability. This is mainly due to the fact that when
data is collected for long periods of time, the processes that generate such data, nor
the inherent biological and social-behaviour, do not need to be stationary, leading to
changes in data distributions. As we will see in Chapter 5, we classify changes in
distributions in gradual, abrupt or recurrent, as well as define the concept of temporal
subgroups.

The probabilistic temporal variability could as well be classified as an intrinsic or
contextual DQ dimension. In this case, time is a factor which has been studied as part
of DQ in many works, generally leading to dimensions such as timeliness, currency or
volatility. However, these dimensions are generally related to whether individual data
registries are up-to-date compared to their real-world values, or what is this rate of
change. For a review of time-related DQ dimension definitions we refer to Table I of the
work by Heinrich et al (2009) and Table II of the work by Batini et al (2009). Hence,
considering a data reuse task in hand, we may consider that the aforementioned changes
in data distributions may to some degree affect to up-to-date data is, and therefore
relate our temporal variability to the timeliness dimension in the literature. Besides,
studies such as clinical trials or public health registries, consider it as concordance or
comparability dimensions through time (Svolba and Bauer, 1999; Bray and Parkin,
2009; Kahn et al, 2012).

Multi-source and temporal variability problems, if unmanaged, can result especially
harmful in large multi-site reuse repositories, where they can lead to inaccurate or un-
reproducible results (McMurry et al, 2013; Sáez et al, 2014b, 2015) or even to invalidate
them (Kahn et al, 2012). Multi-source variability, as mentioned, is generally related
to semantic or integration aspects. However, semantic interoperability does not assure
the management of the aforementioned variability problems. Unfortunately, these will
keep reflected in data probability distributions.

The reuse of data in multi-site repositories for population studies, clinical trials, or
data mining rests on the assumption that the data distributions are to some degree
concordant irrespective of the source of data or of the time over which the data have
been collected and therefore allows generalizable conclusions to be drawn from the
data. Differences in data distributions due to differences in data sources or due to
temporal changes, by making the above assumption questionable, may hinder the
reuse of repository data and may complicate data analyses, bias the results, or weaken
the generalizations based on the data.

Common methods of assessing multi-source variability consist of comparing statis-
tics of populations such as the mean (Bray and Parkin, 2009; Kahn et al, 2012) or
comparing the data to a reference dataset (Weiskopf and Weng, 2013). Besides, meth-
ods for assessing temporal variability, originally based on quality control of industrial
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2.2. Theoretical background

processes, include statistical monitoring used in clinical contexts like Shewart charts
(Shewhart and Deming, 1986) or, in laboratory systems, Levey–Jennings charts and
Westgard rules (Murray, 1999).

Most of these methods are based on classical statistical approaches, which face two
main problems. First, classical statistical tests may not be suitable for multi-type
data (e.g., numerical and categorical variables), multivariate data (several variables
that change simultaneously), and multi-modal data (distributions generated by more
than one component, e.g., data from several disease profiles)—the very characteristics
of biomedical data (Sáez et al, 2013b). Second, classical statistical methods may not
prove adequate for Big Data (Lin et al, 2013; Nuzzo, 2014; Halsey et al, 2015). Finally,
for data from multiple sources, a gold-standard reference dataset may not be available.

As a consequence of the aforementioned problems, it arised the need of investi-
gating proper methods which could simultaneously (1) assess the variability of data
distributions among sources and through time while (2) being robust to multi-type,
multivariate and multi-modal data, adequate to Big Data and not requiring a reference
dataset.

To this end, we first carried out a comparative study to select the proper robust
methods to compare probability distributions, which is described in Section 3. Based
on the outcomes of such study, we designed and constructed the data quality assessment
methods for multi-source and temporal variability, which are described in Sections 4
and 5.

2.2 Theoretical background

With the purpose of improving the assessment of data variability in large, multi-
site biomedical data repositories, and considering the aforementioned requirements, in
this thesis we have developed two sets of multi-source and temporal DQ assessment
methods. They are based on an Information-Theoretic and Geometric framework sup-
ported by the measurement of distances among data probability density/mass func-
tions (PDF). Therefore, with the purpose to facilitate the reading and understanding
of the following chapters, this section gives an overview to their required theoretical
background. The detailed description of these methods is described in the following
chapters (Chapters 3, 4 and 5)

2.2.1 Variables and probability distributions

An individual is the unitary entity subject of an study, which belongs to a population of
individuals of common features which criteria are defined according to the study. E.g.,
a patient is an individual of the population of all the possible patients. Individuals are
also known as subjects, instances, or cases, among others. A sample is a manageable
set of individuals representing the population of study, as it is generally difficult or not
possible to account for all the individuals of a population.
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Chapter 2. Rationale

Variables and types

A variable—or random variable—is a measurement or observation of an individual’s
feature, which can take different possible values. To represent such feature in a pop-
ulation, variables are defined as an alphabetic character, which for each individual
take their measured or observed value. Typically, variables are denoted by uppercase
letters, e.g., X , while their instantiations when their value is not presented, by the
corresponding lowercase, e.g., x. As an example, if the Body Mass Index (BMI) of
patients in a experiment are represented by X, the specific BMI of patient number i
could be xi = 22 (i is as well a variable representing the patient number).

Variables can be of different types. The type of a variable depends first on the
nature of the feature, but it can also be set according on how it is measured or observed.
Hence, when we can state that we measure quantitative variables, and we observe
qualitative variables. We should note that according to a purpose, an individual’s
feature could be defined as well as a quantitative or qualitative variable: e.g., given
a tumour mass we could measure its size in mm3 units, or classify this size into an
ordinal qualitative category among {small,medium, big}.

As a consequence, types of variables are mainly divided in those quantitative or
numerical and those qualitative or categorical. Numerical variables are mainly divided
in discrete and continuous. Numerical discrete are variables which can only be mea-
sured in the domain of natural numbers N, namely integers. Numerical continuous are
variables which can be measured in the domain of real numbers R, i.e., can have values
within two integers. On the other hand, categorical variables are mainly divided in
ordinal and non-ordinal. Categorical ordinal are variables on which there is an implicit
magnitude value among their possible values. In contrast, in categorical non-ordinal
such an order does not exist among their values.

The type of a variable has a great implication in how this variable is analysed in
research studies, mainly due to how the frequencies of appearance of their possible
values are interpreted at a population level, as described next.

Probability distributions

Probability distributions are mathematical functions which assign a probability of oc-
currence to the possible values a variable can take. Given a variable X, if x is value
and p the variable probability function, then:

p(X = x)→ [0, 1], (2.1)

where to simplify notation we can assume p(X = x) ≡ p(x).

Such functions, originally depend on the nature of the variable in a population.
Hence, several families and specific probability distribution functions exist, which can
be parametrized to be adapted to a specific sample. These are known as parametric
distributions. For a given probability function p, with Θ as its vector of parameters,
then:

p(x|Θ)→ [0, 1]. (2.2)
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We can classify distributions between continuous or discrete, mainly according to
the variable type.

Continuous distributions are those which domain are continuous variables, i.e.,
their number of possible values is infinite in a range [a, b] (e.g., [−∞,+∞]), and which
derivative through R is 1, being derivable through all the range (Equation 2.3). The
probability function p(x) of continuous variables is known as probability density func-
tion. ∫ b

a

p(x) dx = 1. (2.3)

In continuous distributions, the Cumulative Density Function (CDF) is a function
which given a probability value p obtains the value x, such that p is the probability
that a variable X takes a value less or equal than x:

CDF (x) = p(X ≤ x) =

∫ x

−∞
p(x) dx, (2.4)

with p ∈ [0, 1].

On the other hand, discrete distributions are those which domain are numerical
discrete or categorical variables. For numerical discrete, the number of possible values
can be countable infinite, e.g., the counts of an event. For categorical variables, the
number of possible values is a finite number of elements. In this case, the sum of
probabilities of all values sum 1 (Equation 2.5). The probability function of discrete
variables is known as probability mass function.∑

c∈C

p(X = c) = 1 (2.5)

The range [A,B] or set C of possible values in continuous and discrete distributions
is known as the distribution support.

From now, we will use probability distribution function (PDF) indistinctly for both
probability density functions and probability mass functions. Hence, different PDFs
exist for both continuous and discrete distributions, which can be used to better rep-
resent specific populations. Probably, the most used PDFs come from the exponential
family, which provide a canonical mathematical form based on which several continu-
ous and discrete PDFs can be expressed (Nielsen and Garcia, 2009). Among these we
find the Normal and Multinomial distributions, which are the basis for some methods
used in this thesis that will be described in this chapter.

The most used exponential family distribution is the Normal distribution, due to
its wide representation of real-world successes and to the central limit theorem. The
Normal distribution is a continuous distribution which support is defined in the range
of [−∞,+∞], which PDF is ruled by the vector parameter Θ = {µ, σ}, and is defined
as:

p(x|µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (2.6)
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The parameter µ defines the central tendency or expected value of the values of the
variable. The probability of observing values below or above such central tendency is
symmetric and decay exponentially according to the parameter σ.

Another useful distribution in the exponential family is the Multinomial distribu-
tion. The Multinomial distribution is a discrete distribution which models the proba-
bility of observing each of a set of k values after a number n of trials. The support of
the Multinomial distribution is defined by the number of times each of the k values is
observed, and it is ruled by the vector parameter Θ = {n; p1, p2, ..., pk}, where each pi
represents the prior probability of observing the value i in a single trial, with

∑k
i = 1.

Hence, the PDF of the Multinomial distribution is defined as:

p(x1, . . . , xk|n, p1, . . . , pk) =


n!

x1! · · · xk!
px1

1 · · · p
xk
k , when

∑k
i=1 xi = n,

0, otherwise.

(2.7)

The Multinomial distribution can be restricted to other useful distributions by
limiting the number of values k or trials n to 1. Hence, k = 1 leads to the Binomial
distribution, which models the probability of observing a number x of successes in a
twice-outcome experiment after n trials. Its PDF is ruled by the vector parameter
Θ = {n, p}, where n is the number of trials and p the prior probability of observing
one of the two outcomes, generally the positive one, and its PDF is defined as:

p(x|n, p) =

(
n

k

)
pk(1− p)n−k. (2.8)

Besides, limiting the number of trials to n = 1 leads to the Categorical distribution.
In this situation, Multinomial distribution is sometimes mentioned equivalently to
Categorical distribution, i.e., as the probability of observing one success from a set after
a single trial. The PDF of the Categorical distribution is ruled by the vector parameter
Θ = {p1, p2, ..., pk}, where each pi represents the prior probability of observing the
value i in the trial, with

∑k
i = 1, and its PDF is defined as:

p(x1, . . . , xk|p1, . . . , pk) =
k∏
i=1

pxii , (2.9)

where [x1, . . . , xk] is a binary vector where the element at the index of the category to
be tested is equal to 1 and the rest to 0.

The last distribution to be introduced is the Beta distribution, a continuous distri-
bution which support is defined in the range of [0, 1], and thus can be used to model
measurements ranged within those values (such as proportions or probability values).
The Beta distribution is ruled by the vector parameter Θ = {α, β}, with α > 0 and
β > 0, and related to the shape of the PDF. Hence, the PDF of tbe Beta distribution
is defined as:
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p(x) =


1

B(α, β)
xα−1(1− x)β−1 when 0 < x < 1,

0, otherwise,

(2.10)

where B(α, β) is the Beta function:

B(α, β) =

∫ 1

0

tα−1(1− t)β−1 dt. (2.11)

We have reviewed some parametric PDFs, as functions which map the domain of
possible values a variable can take to their probability of occurrence. The vector of
parameters Θ for each PDF is what permits adapting it to specific populations. Given
that, in general, it is not possible to measure or observe a whole population, it is
therefore not possible to know the true value of the population parameters Θ. As a
consequence, we can obtain an estimation Θ̂ of such parameters based on a sample
of the population. The most common method for estimating the parameters given a
PDF is using its classical Maximum-Likelihood Estimation (MLE) method. Generally
speaking, what MLE does is searching the parameters which generate with a higher
probability the measured sample, in other words, the parameters which maximize the
joint probability of all the sample individuals. The sample joint probability given n
individuals of a variable X, is defined as the likelihood function L:

L(X; Θ) =
n∏
i=1

p(xi|Θ), (2.12)

which to avoid numerical computation problems (due to the large product of values
near to 0) is generally expressed as the log-likelihood:

`(X; Θ) = logL(X; Θ) = log
∏
i

p(xi|Θ). (2.13)

Hence, the MLE can be defined as:

{Θ̂} ⊆ {arg max
θ∈Θ

`(X; Θ)}. (2.14)

We can observe that there can exist several solutions, depending on the PDF form.
Hence, given a specific PDF, the MLE of their vector parameter can be defined as
an analytical closed form obtained from the partial derivatives of each parameter or,
when this is not straightforward, obtained by means of other optimization methods.
As an example, the MLE of the parameters µ and σ of a Normal distribution are the
well-known equations for sample mean and sample variance:
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µ̂ =
1

n

n∑
i=1

xi (2.15)

σ̂ =

√√√√ 1

n

n∑
i=1

(xi − x)2, (2.16)

with n as the number individuals.

After reviewing several PDF a question arise: what specific PDF should be used for
a given variable in a population? It is straightforward that we can first choose between
continuous or discrete distributions according to the variable type. Then, for categor-
ical variables the problem of choosing a specific PDF is quite easy, and it comes from
the number of categories and trials of what is represented by the variable. However,
in general, in real-world experiments with numerical variables it cannot be known a
priori which is the inherent generating function of data, i.e., its PDF. Nevertheless,
some knowledge about the variable may help choosing one. For many experiments,
the Normal distribution is adequate when we expect a central tendency with a de-
gree of variance on the measurements. Besides, a patient survival time can accurately
modelled with a Gamma distribution. In such cases we talk about uni-modal vari-
ables: variables where there exist a single local maxima, or in other words, a single
cluster of measurements around the most repeated value (the statistical mode). This
situation is common when we measure a population with a very specific criteria, e.g,
in manufacturing industrial processes, where the product specification is the expected
value. However, it is uncommon to deal with these types of populations. In fact, in the
biomedical sciences the diversity of individuals, such as the patient conditions (e.g., a
sample of patients with distinct diagnostics), may entail different inherent generating
functions of individuals. In this situation, we talk about multi-modal variables, which
can be modelled by means of combining various PDFs, as described next.

Mixture distributions

Mixture distributions are used to model variables which individuals are generated
by several inherent functions, including multi-modal variables. Hence, the PDF of
a mixture distribution is defined as a weighted sum of several single PDFs, namely
mixture components:

p(x|{Θ1, . . . ,Θc}) =
c∑
i=1

wip(x|Θi), (2.17)

where {Θ1, . . . ,Θc} are the vector parameters for each component and wi the weight
for component i, with

∑c
i=1wi = 1 in order to maintain the range of the PDF as a

probability. When the number of components c is known, we talk about finite mixtures.
Mixture distributions are useful to model variables where a single PDF does not ac-

curately represent the variable value occurrences in a sample. Theoretically, a mixture
of Normal distributions may accurately represent most continuous variables. However,

26



2.2. Theoretical background

in practice the main problem is that there can be too many unknown parameters to
estimate: the number of components, their weights, and each of the components’ vec-
tor parameter. Fixing some of them based on any prior knowledge may simplify the
estimation, e.g., when measuring the voxel intensity in brain MR images, the number
of mixture components may be associated to the number of brain tissues.

Several methods can be used to estimate the unknown parameters in mixture dis-
tributions. Probably the most used is the Expectation Maximization (EM) algorithm
(Dempster et al, 1977), which given an initialization of parameters iteratively ap-
proaches to a proper solution by means of introducing unobserved latent variables.
Besides the known difficulties of selecting a proper initialization, the EM algorithm
can be limited in situations when there is not enough knowledge or, in general, not
possible to establish the values of some of the mixture parameters. Further, we may
also desire to make the fewest assumptions as possible about the underlying generat-
ing functions of data. To this end, and relaxing some of these difficulties of mixture
distributions, we may choose to use non-parametric distributions.

Non-parametric distributions

Non-parametric distributions are functions which provide PDFs for numerical vari-
ables without the need of assuming any parametric PDF model. Hence, they are
able to represent multiple modes or shapes not possible with other parametric fami-
lies. Non-parametric distributions can be estimated based on several methods, such as
normalized histograms and Kernel Density Estimation (KDE) methods.

Histograms are a widely used exploratory method to visualize how the individuals
of a variable are distributed. Concretely, histograms represent the absolute frequen-
cies of individual observations on different non-overlapping and equally-sized intervals
through the variable domain, named bins. Hence, given m observations of a variable
X, its histogram with n bins can be defined by a set of breaking points {bi, . . . , bn+1}
and a set of frequency points {fi, . . . , fn} where fi =

∑m
j=1[bi ≤ xj < bi+1] (using the

Iverson bracket).

Histograms can act as a non-parametric distribution by using relative frequencies
instead of absolute. This can be done by normalizing the counts on each bin by the total
number of individuals so that fi =

∑m
j=1[bi ≤ xj < bi+1]/m and, therefore:

∑n
i=1 fi = 1. A

property of normalized histograms is that they can be interpreted as a Multinomial
distribution with a number of trials n = 1, where bins—now with an implicit order—
represent the possible values observations can take. Hence, this can be used as a
method to discretize continuous data.

Normalized histograms are a simplistic method which facilitate some operations
on distributions, as we will see in further sections. However, its main disadvantage
may come from the selection of the proper number of bins to represent data without
missing information. That is, too few bins may cause missing information regarding to
the variable shape, while too many bins may lead to frequencies composed by very few
individuals, being poorly informative or overfitted. To alleviate such problem, several
methods exist to calculate the optimum number of bins for a given sample (Silverman,
1986; Guha et al, 2004; Shimazaki and Shinomoto, 2007).
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An alternative to histograms are KDE methods, also known as Parzen windows
(Parzen, 1962; Bowman and Azzalini, 1997), which can be considered a histogram
smoothing method. Given a sample of n individuals, its KDE estimation basically
consists in a mixture of n functions called kernels normalized by a smoothing parameter
h:

p(x) =
1

nh

n∑
i=1

K
(x− xi

h

)
, (2.18)

where K(·) is a kernel. Kernels are non-negative, 0-centered, continuous functions
which integrate up to 1, hence they can be interpreted as a symmetric PDF centered
at 0. In the KDE approach, as shown in Equation 2.18, kernels are centered at each
individuals’ value. Distinct kernel functions can be used, such as the standard Normal
PDF (Equation 2.6) with µ = 0 and σ = 1. Hence, when using the Normal ker-
nel, the KDE can be considered a finite mixture of Normal distributions where both
the number of components, and each component parameters are known, avoiding the
aforementioned estimation problems in the EM algorithm. The problem is therefore
reduced into choosing the appropriate smoothing parameter h, known as bandwidth.
Here, the selection of the proper bandwidth is equivalent to the selection of the number
of bins in histograms, with similar implications. Nevertheless, similar solutions exist
as well as methods for automatically choosing the optimum bandwidth (Silverman,
1986; Shimazaki and Shinomoto, 2010).

Figure 2.1 permits comparing the results of different histograms estimated using
the classic histogram and KDE-based methods, with different number of bins and
bandwiths.

Finally, we should mention that KDE models can be used in practice both as a
continuous probability mixture model or as a smoothed normalized histogram. In the
latter case, this comes from evaluating the KDE PDF at a set of consecutive equally-
spaced points, representing the histogram bins, where the information about the PDF
shape will converge as the number of bins increases.

Multivariate distributions

Up to now we have reviewed univariate PDFs, i.e., aimed to model a single variable
or feature of a population. Besides, when we have several variables in a population,
we may model them simultaneously as a multivariate PDF—bivariate in case of two
variables. For d variables X1, X2, . . . , Xd, their multivariate PDF can be defined as
their joint distributon:

p(x1, x2, . . . , xd). (2.19)

We first note an important difference between modelling several variables using their
joint distribution or using their independent distributions. Two or more variables can
be dependent among each other. That is, knowing that an individual has an specific
value for one variable, gives us a degree of information about the possible value of other
variable. E.g., if we know the height of a patient, we can have some insights about
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(c) Histogram, 8 bins, optimum
by Shimazaki and Shinomoto
(2007) method
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(e) KDE-based histogram,
bandwith = 0.1, 50 bins
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Figure 2.1: Results of different histograms estimated using the classic histogram and KDE-based
methods, with different number of bins and bandwith. All the histograms have been estimated
from the same sample of 100 individuals randomly generated from a bimodal Normal distribution
with parameters Θ = {µ1 = 5, σ1 = 2;µ2 = 10, σ2 = 1} and weights w = {w1 = 1/3, w2 = 2/3}.
Estimations with a small number of bins or a large bandwith (a, b) provide a bad representation
of the original PDF. Estimations with a large number of bins or a small bandwith provide a noisy
histogram, with 0-probability bins. However, automated methods provide better adjusted histograms.
We recall that in the KDE case, the shape of the histogram converges as the number of bins increases,
as the discrete probabilities are evaluated from a continuous PDF).

her weight. In other words, knowing the height of a patient focus the probability
of occurrence of her weight, compared than if nothing was known about the height.
Hence, knowing nothing about other variables is equivalent to modelling the variables
PDFs independently, while modelling their joint distributions permits modelling the
variable inter-dependence. It may happen that the several variables are completely
independent among each other, hence, their joint distribution will be equal to their
independent distribution:

p(x1, x2, . . . , xd) = p(x1)p(x2) . . . p(xd). (2.20)

Modelling the PDF of joint distributions is not straightforward for several reasons.
First, not all families of distributions can be modelled into a single multivariate PDF,
specially with mixed types of variables. Second, as the number of variables increase,
the domain of the variable and corresponding probabilistic space grows exponentially.

29



Chapter 2. Rationale

Third, such a large probabilistic space cause that data individuals lie out sparsely,
leading to unrepresented variable ranges from which no information can be taken, as
part of the known as curse of dimensionality problems.

Regarding to the first problem, the multivariate Normal distribution, a widely used
multivariate PDF model, can be used as an analytical PDF for several continuous
variables. Based on the Normal distribution, it assumes a central tendency for each
variable, represented by a vector parameter of means µ, and a covariance matrix
Σ. Such a covariance matrix models the independent variance of each variable in
its diagonal, while their pairwise covariance in their out-diagonal pairs, the latter
representing the aforementioned variable inter-dependence—note that covariances are
only pairwise, thus only bivariate dependence is modelled. Hence, given a multivariate
vector x = [x1, x2, . . . , xn], its multivariate Normal PDF is defined as:

p(x|µ,Σ) =
1√

(2π)k|Σ|
e(−

1
2

(x−µ)TΣ−1(x−µ)). (2.21)

Knowing that a mixture of Normal distributions, specially in its non-parametric
approach based on KDE, is able to accurately represent continuous variables indepen-
dently of their shape or true family, a KDE-based mixture of multivariate Normals can
result useful to model multivariate data problems.

Other simple solution for modelling multivariate data is based on multivariate his-
tograms. One advantage of this solution is that it permits modelling mixed type of dis-
tributions, i.e., continuous and categorical data simultaneously. Hence, the histogram
domain may contain ordered bins partitioning the continuous space of continuous vari-
ables, and bins without an implicit order for categorical data. In any case, this could
be modelled as well as a Multinomial distribution with n = 1 and k as the total number
of bins.

Data sparsity and dimensionality reduction

One of the main problems to the modelling of distributions is that when the num-
ber of individuals in the sample is reduced in comparison with the number of di-
mensions, causing that data points are sparsely distributed in the probabilistic space
configured by the dimensions of the problem. This problem is generally known as
the curse of dimensionality, and it is likely to occur when the probabilistic space is
not well represented by the available sample, with higher chances as the number of
variables increases, such as in the multivariate solutions mentioned above. Possible
consequences of estimating probability distributions in this situation, be parametric
or non-parametric, is that the resultant PDF will be with high changes too over-
fitted to the available sample, causing that new individuals truly generated from the
original population may appear anomalous to the estimated model. Similarly, in the
case of comparing different low-populated samples of the same population, for exam-
ple extracted at different moments, when similar estimations would be expected, the
measured differences may be very high, leading to biased results.

Data sparsity may impact the results of most data analytics tasks, including those
proposed in this thesis. Therefore, data analysts must be aware of this possibility
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and act in consequence. A general solution to this is reducing the probabilistic space,
where a first method is using only the adequate variables for the analysis in hand.
Although in some situations the domain of the problem helps in this task (e.g., based
on medical evidence), when this information is unknown, automatic feature extraction
and selection methods can be used instead (Guyon and Elisseeff, 2003).

Another important solution that can be alleviate to some degree the dimensionality
problem is using dimensionality reduction methods, which aim to condensate several
variables into a manageable transformed lower number of them, maintaining the high-
est possible of original information:

lim
m→n

p(x1, x2, . . . , xm) = p(x1, x2, . . . , xn),m < n. (2.22)

Hence, the resultant data of a dimensionality reduction method can be modelled
as well using any of the PDFs described above.

Dimensionality reduction can be performed based on several approaches, which
can be chosen according to the characteristics of the original data. This include linear
methods such as Principal Component Analysis (PCA) Pearson (1901), or non-linear
such as ISOMAP (Tenenbaum et al, 2000). We should mention that most dimensional-
ity reduction methods are aimed to numerical data where distances among individuals
can be computed. Hence, to apply a dimensionality reduction to categorical or mixed
variables these can be encoded into numerical or binary (Kuhn and Johnson, 2013),
or when using embedding-based methods (Cayton, 2005; Lee and Verleysen, 2007), we
can establish a distance function among each pair of categories.

Incremental estimation of distributions

The last point of this section is related to the special case when it is not efficient or
possible to estimate PDFs using all the sample individuals simultaneously. Suppose
that individuals are generated in a timely process, not necessarily at a fixed frequency,
and we need to maintain up-to-date a PDF during this time process. With the classical
estimation methods, we would need to process all individuals each time the PDF is
updated. However, we may not have sufficient computational resources to store all
this data in computer memory or make this computation efficiently to provide with
the estimated PDF at the time it is required, nor have available enough memory to
store all data. Besides, old individuals may not be available anymore, e.g., due to
data security/privacy reasons. Similarly, suppose a scenario where a global PDF is
to be estimated based on multiple data sources, but external access to their data is
restricted. In the aforementioned situations, we may require the use of incremental
methods to estimate PDFs.

Incremental estimation methods aim to update the parameters of PDFs by means
of adding a new individual or batch of individuals (Jantke, 1993; Cornuéjols, 2010;
Gama, 2010; Tortajada et al, 2011). As an example, given a set of samples indexed by
i, the parameters of a Normal distribution can be recursively updated by means of only
storing three quantities: the past sample size Ni−1, the sum of the past observed values
Xi−1 =

∑Ni−1

j=1 xj, the sum of the squares of the past observed values X 2
i−1 =

∑Ni−1

j=1 x2
j :
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µi =
Xi−1 + Xi
Ni−1 +Ni

, (2.23)

σi =

√
X 2
i−1 + X 2

i −
(Xi−1+Xi)2

Ni−1+Ni

Ni−1 +Ni − 1
, (2.24)

where Ni is the current batch sample size, Xi =
∑Ni

k=1 xk the sum of the observed

values in current batch, and X 2
i =

∑Ni
k=1 x

2
k the sum of the squares of the observed

values in current batch.

Regarding to the normalized histograms, the incremental estimation of their bin
relative frequencies is much more simple. Given a new sample indexed by i, the
histogram relative frequencies can be recursively updated by means of only storing the
past sample size Ni−1. Hence, for a bin j, its relative frequency will be updated as:

fj i =
Ni−1fj i−1 +

∑Ni
k=1[bj ≤ xk < bj+1]

Ni−1 +Ni

, (2.25)

where fj i−1 is the past bin relative frequency to be updated, Ni is the current batch

sample size, and
∑Ni

k=1[bj ≤ xk < bj+1] accounts the absolute frequency of observed
values for this bin in the current batch, delimited by the bin breaking points bj and
bj+1 (using the Iverson bracket).

Approaches for the incremental estimation of KDE-based distributions have also
been investigated (Han et al, 2004; Kim and Scott, 2012; Zhou et al, 2015). Never-
theless, when KDE is used as a smoothing histogram estimation, the aforementioned
incremental histogram estimation provide proper solutions as well.

Finally, we note that many other approaches exist to optimize the incremental
estimation of PDFs, such as using time windows or forgetting mechanisms. These will
be described in more detail in Chapter 5.

2.2.2 Comparing distributions

This thesis investigates methods for the assessment of multi-source and temporal prob-
abilistic variability aimed to the data quality control. Hence, an important aspect is
defining what probabilistic variability is and how it is measured.

With probabilistic variability we refer to any dissimilarities among the PDFs of
different data sources, or among the PDFs of temporal data batches. Hence, in order
to measure, or detect, differences among PDFs we must have the capability to com-
pare such PDFs or more concretely, to measure their differences. While this topic is
specially addressed in Chapter 3, where we perform a comparative study of methods
for measuring distances among PDFs, in this section we introduce some theoretical
background that will help as well throughout the rest of the thesis.
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Statistical tests

Probably the most widely used methods by researchers to assess for differences among
data samples (or their PDFs) are the corresponding families of statistical tests of hy-
pothesis. Statistical tests of hypothesis are methods aimed to evaluate the evidence
about an assumption about one or more populations. Hence, an hypothesis test gener-
ally starts from the definition of a null hypothesis, H0, which is to be disproved, being
generally the opposite about the assumption to be evaluated. Hence, as Ronald Fisher
proposed (Fisher, 1974), assuming that such a null hypothesis is true, the probabili-
ties about getting results at least as extreme as those observed are calculated in the
so-called p-value. Consequently, the lower the p-value, the greater possibilities that
the null-hypothesis was false.

Several families of statistical tests exist for different purposes. Nevertheless, we
are interested in tests for comparing the difference among two or more distributions,
which can be separated first in tests for numerical and categorical data, and those
for numerical among parametric and non-parametric. Hence, parametric tests are
aimed to numerical normally distributed data, while non-parametric tests make no
assumptions about the data distribution, and are generally based on individuals ranks
or CDF differences. In an attempt to provide a generic description of the theoretical
basis for these statistical tests, they basically rely on measuring a test statistic, a
numerical variable derived from the samples to be compared, which quantifies the
proximity to the null hypothesis, and follows a known distribution. As an example,
given two samples X(1) and X(2), the Two-Sample Kolmogorov-Smirnov test aims to
test whether two non-parametric samples come from the same distribution. Its test
statistic is defined as:

DKS(X(1), X(2)) = max|CDF (X(1))− CDF (X(2))|, (2.26)

which measures the maximum difference between the empirical cumulative distri-
bution functions—constructed from the continuous increments of the sorted sample
individuals—of both samples, where DKS follows the Kolmogorov-Distribution. A
measurement of D = 0 indicates that the two samples are equal, and thus come from
the same distribution. Hence, the test statistic DKS can be considered as a degree of
the dissimilarity between the distributions, where the test p-value is generally obtained
from reference tables based on DKS and the sample sizes (Conover, 1999).

Even today, the use and interpretation of statistical tests is controversial. Since
the beginning of statistical testing, some of its main founders including Ronald Fisher,
Harold Jeffreys, Jerzy Neyman and Egon Pearson, disagreed in the procedures and
interpretation of statistical tests (Berger, 2003; Nuzzo, 2014). While Fisher introduced
the p-values as a measure of evidence, Neyman and Pearson introduced the concepts
of statistical power, false positives and negatives, and alternative hypothesis, where
a critical value as a fixed threshold on a test statistic would lead to the acceptance
or rejection of the hypothesis. Besides, Jeffrey advocated for a Bayesian approach for
statistical testing.

Some authors affirm that today’s common statistical procedures are a hybrid system
of those initial frameworks (Goodman, 1999; Nuzzo, 2014). Additionally, an important

33



Chapter 2. Rationale

drawback about the interpretation of those tests, what is specially important in Big
Data, is the fact that the larger the sample sizes the easiest is to find statistical
differences (Lin et al, 2013), even if the effect size—the magnitude of difference in
the indicator of study—is not relevant in practice (Sullivan and Feinn, 2012). The
miss-use and miss-interpretation of p-values has also been discussed in the healthcare
research (Biau et al, 2008; Greenland, 2011; Greenland and Poole, 2013). We will not
go into further detail, but leave it here with the purpose to recall the importance of any
investigation on methods that could pose an alternative to these classical statistical
tests on which these may not be suitable or easily interpretable.

Information-theoretic distances

Suppose two probability distributions P = p(x) and Q = q(x). Information-theoretic
distances are functions which measure the distance or dissimilarity between two prob-
ability distributions as D(P ||Q). These, are mainly derived from Shannon’s entropy
theory (Shannon, 1948, 2001) and Csizar’s f -divergences (Csiszár, 1967; Csiszár, 1972),
as we describe next.

Suppose a variable X modelled by a PDF, p(x). If a specific value xk occurs with
p(xk) = 1, we can say that observing such a value gives no information. In contrast,
if several values of x occur with p(x) near to 0, their observations are giving us high
information. In other words, always observing the same value is not informative for
an observer, while observing different values it is. According to Shannon (1948), a
measure of information from an observation x of p(x) is given by the information
function f(x) = log(1/p(x)) = − log p(x). Hence, the expected (or mean) information
in X is:

H(X) = −E log p(x) = −
∑
x∈X

p(x) log p(x), (2.27)

where H(X) is known as the entropy of X, and can be defined as well as the degree
of uncertainty about the values the variable can take. Note that entropy is gener-
ally defined for discrete variables, although it can be similarly defined for continuous
variables as:

H(X) = −E log p(x) = −
∫
p(x) log p(x) dx. (2.28)

Hence, the situation of largest entropy would be that where all the possible values
take the same probability, while the situation of minimum entropy is that where all
the probability is given to a single possible value—with the convention of 0 log 0 = 0.

Derived from Shannon entropy, Kullback and Leibler (1951) defined the relative
entropy, or Kullback-Leibler divergence KL(P ||Q), as a measure of information ineffi-
ciency of assuming a distribution Q when a true distribution is P (Cover and Thomas,
1991), which is defined as:

KL(P ||Q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (2.29)
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Equation 2.29 can be seen as a discrete, non-parametric, Kullback-Leibler diver-
gence calculus, which sums through each possible value, or bin, in the common support
of distributions P and Q. Besides, the Kullback-Leibler divergence can be calculated
analytically for some parametric families of continuous distributions based on analyti-
cal forms for d-dimensional Gaussians (Equation 2.30) or approximations for mixtures
of Gaussians (Hershey and Olsen, 2007).

KL(P ||Q) =
tr
(
Σ−1
Q ΣP

)
+ (µQ − µP )>Σ−1

Q (µQ − µP )− d− loge

(
det(ΣP )
det(ΣQ)

)
2 loge(2)

(2.30)

Here, we must note that the Kullback-Leibler divergence is not a true distance, since
it is not symmetric nor satisfies the triangle inequality and thus does not accomplish
the conditions of a metric:

d(x, y) ≥ 0 (non-negativity), (2.31)

d(x, y) = 0 if and only if x = y (identity), (2.32)

d(x, y) = d(y, x) (symmetry), (2.33)

d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality). (2.34)

While this may not suppose any inconvenience according to the purpose, other
symmetric information-theoretic distances related to the Kullback-Leibler divergence
exist. In fact, the Kullback-Leibler divergence resulted as a special case of the f -
divergences, an extension of the aforementioned entropy functional to relative entropy
functionals (Morimoto, 1963; Ali and Silvey, 1966b; Csiszár, 1967; Csiszár, 1972),
which established a canonical form for further distribution divergences (Ullah, 1996;
Hero et al, 2001).

Therefore, as a first symmetric alternative to the Kullback-Leibler divergence we
can find the Jeffrey divergence (Jeffreys, 1973), as the sum of the two possible directions
of the Kullback-Leibler divergence:

JF (P ||Q) = KL(P ||Q) +KL(Q||P ). (2.35)

The Jeffrey divergence shares with the Kullback-Leibler divergence two properties
what may result undesired in some situations. The first is that they are unbounded,
and the second is that they are numerically unstable with 0-probability bins–tending
to infinity. In this regard, as a bounded, numerically stable true-metric information-
theoretic distances we remark the Hellinger (Hazewinkel, 1988) and Jensen-Shannon
(Lin, 1991) distances, which are at a small constant among each other (Jayram, 2009).

Concretely, the Jensen-Shannon distance JSD(P ||Q), square root of the Jensen-
Shannon divergence JS(P ||Q) (Endres and Schindelin, 2003; Österreicher and Vajda,
2003), can be directly derived from the Kullback-Leibler divergence as:

JSD(P ||Q) = JS(P ||Q)
1/2 =

(
1

2
KL(P ||M) +

1

2
KL(Q||M)

)1/2

, (2.36)
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where M = 1
2
(P +Q).

We recall that one of the most important practical advantages of using information-
theoretic distances for comparing distributions with respect to statistical tests is that
the former are distribution independent. They can be used as well for numerical and
categorical variables, in uni- or multi-variate settings, and considering the full shape
of the variable PDF. Hence they are able to accurately compare multi-modal distribu-
tions. These aspects are key for the objectives of this thesis, which accomplishment is
evaluated for several distribution comparison methods in Chapter 3.

For further reading on information-theoretic distances we refer to the works by
Ali and Silvey (1966a); Ullah (1996); Zhou and Chellappa (2006); Liese and Vajda
(2006); Basseville (2010); Cichocki et al (2011). Finally, we must mention other non-
probability based method for comparing distributions: the Earth Mover’s Distance
(EMD), a cost-based method that will be evaluated as well in Chapter 3.

2.2.3 Information geometry

Information geometry is a field which translates the concepts and properties of differ-
ential geometry into spaces of probability distributions (Amari and Nagaoka, 2007).
Concretely, such spaces of probability distributions are known as statistical manifolds,
which lie on a Riemannian space.

First we introduce the basic concepts of Riemannian manifolds. A (differentiable)
manifoldM can be defined as a space of points which can be connected by a continuous
differentiable curve through a coordinate system of D dimensions in RD, where there
exists a one-to-one mapping between a given coordinate in RD and a point in M.
Riemannian manifolds are those equipped with a—D-by-D—metric tensor g, which
facilitates calculating the distance between two points generalizing the Pythagorean
theorem to any space. To this end, each point in a Riemannian manifold is bundled
with a tangent space, where the inner product between two tangent vectors < u,v > is
parametrized by g, as < u,v >= uTgv. Based on this, Riemannian manifolds locally
acquire certain properties of affine Euclidean spaces, what permits the global calculus
in M of, e.g., lengths, areas, volumes or angles. Concretely, given a manifold M, we
can calculate the shortest distance between two points p and q—i.e., the geodesic—
as the minimum curve between those points in the manifold coordinate system γ(t)
applying the metric tensor g(γ):

DM(p,q) = min
γ(t)

∫ tq

tp

√(
∂γ(t)

∂t

)T
g(γ)

(
∂γ(t)

∂t

)
dt. (2.37)

The metric tensor g(γ) will be given as a DxD matrix, where each element gij
establishes the curvature between coordinates i and j. Note that in an Euclidean
space, the metric tensor will be the Kronecker Delta δ (a matrix where δij = 0 for
i 6= j and δij = 1 for i = j).

In summary, the calculus of a geodesic in M is guided by local velocity vectors at
each point’s tangent space, and each infinitesimal distance is given by applying the
metric tensor to calculate the inner product between those velocity vectors.
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Having described the basic concepts of Riemannian manifolds, we can continue to
information geometry. A statistical manifold is a Riemannian manifold which coordi-
nates are the parameters of a given parametric distribution function, and which metric
tensor is the Fisher Information Matrix (FIM) of such distribution. This metric tensor
is defined as the Fisher Information Metric. The FIM is a DxD positive semi-definite
symmetric matrix which, for a specific parametric PDF with vector parameter Θ of
size D, measure the information that a sample of a variable X contains with respect
to each co-parameter Θij. As an example, Equation A.6 shows the FIM of the univari-
ate Normal distribution, which being diagonal indicates that the MLE estimates of µ
and σ are independent—the derivation of the FIM from a distribution log-likelihood
function is described in Appendix A.

µ σ( )
µ 1

σ2 0

σ 0 1
(2σ4)

(2.38)

Hence, we can translate the concepts of differential geometry to statistical manifolds
of probability distributions by using the FIM as the manifold’s metric tensor g(Θ) to
calculate the geodesic between two distributions:

DM(P,Q) = min
Θ(t)

∫ tQ

tP

√(
∂Θ

∂t

)T
FIM

(
∂Θ

∂t

)
dt, (2.39)

where P = p(x) and Q = q(x), instances of PDFs with parameters ΘP and ΘQ (see
Figure 2.2). As an example, for the univariate Normal distribution case, an analytical
closed form to calculate the FIM-distance based on the distribution parameters solving
Equation 2.2.3 is proposed in the work by Costa et al (2005).

P

Q

ϴ
2

∂ϴ1

∂ϴ2 ∂t

ϴ
1

T

Figure 2.2: Representation of a statistical manifold of a distribution with two parameters Θ1 and Θ2

(e.g., Θ1 = µ and Θ2 = σ for the manifold of a Normal distribution). The geodesic distance between
distributions P and Q is calculated differentiating through the curve using the distribution metric
tensor guided by the local velocity vectors at tangent space T .

An interesting property of the FIM for information geometry is that it corresponds
to the Hessian of the Kullback-Leibler divergence. Hence, the Kullback-Leibler diver-
gence is locally equivalent to the distance based on differentiation through Θ using the
FIM:
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KL(Θ(t)||Θ(t) + ∆Θ) ≈

√(
∂Θ

∂t

)T
FIM

(
∂Θ

∂t

)
. (2.40)

Therefore, we can alternatively write Equation as:

DM(P,Q) ≈ min
Θ(t)

∫ tQ

tP

KL(Θ(t)||Θ(t) + ∆Θ) dt. (2.41)

This property opens the path to the use of the Kullback-Leibler divergence -based
f -divergences to approximate FIM-based distances in M, such as the JSD:

DM(P,Q) ≈ JSD(P ||Q). (2.42)

However, given the local equivalence, using these approximations involves a degree
of error in larger distances compared to FIM-distances. Nevertheless, this parameter-
independent approximation results specially useful when the specific parametrization
of the manifold is unknown, as described in the next point.

We note that information geometry has many other applications with parametric
families, such as those aimed to model estimation, that will not be discussed for being
out of the scope of this thesis. For further reading on Riemannian and information
geometry we refer to the and works and books by Petersen (2006); Amari (2001);
Csiszár and Shields (2004); Amari and Nagaoka (2007).

Non-parametric information geometry

In many situations the specific family of a set of distributions may be unknown or,
as mentioned in previous points, when dealing with multi-variate, multi-modal, and
multiple types of variables simultaneously, modelling distributions with specific PDF
families may be complicated, in favour of a non-parametric modelling. In these sit-
uations, the modelling of a statistical manifold M with a specific parametrization is
not directly applicable. How could we then define such a non-parametric statistical
manifold with unknown coordinates? A solution is described next.

A non-parametric statistical manifold M can be defined based on a set of non-
parametric probability distributions P = {P1, . . . , Pn} lied out in M such as Pi ∈M.
Then, although the parametrization of M is unknown, we know that there exists
a dissimilarity between any pair of distributions DM(Pi, Pj). Given that we do not
have a FIM, the geodesic distance using the FIM as the metric tensor is not possible.
Nevertheless, as introduced before, a good approximation for the geodesic distance is
given by the PDF f -divergences. Therefore, based on a specific f -divergence we can
measure the

(
n
2

)
pairwise distances among n PDFs in M, which we may represent in

a dissimilarity matrix n-by-n Y .
Based on Y we can define a (n + 1)-dimensional geometrical simplex ∆ (see Sec-

tion 4.3) with {P1, . . . , Pn} as vertices and the corresponding pairwise distances in Y
as edges—we define ∆ as the maximum-dimensional non-parametric statistical mani-
fold MD of dimension D = n + 1. However, given that Y is based on f -divergences,
which are not Euclidean, it is not assured that the simplex edges from Y will fit in
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the Euclidean space given by RD. To solve this problem, and with other advantages
we mention next, manifold learning algorithms can be used, mainly represented by
non-linear Multidimensional Scaling (MDS)-based methods (Torgerson, 1952; Tenen-
baum et al, 2000; Cayton, 2005; Borg and Groenen, 2010)—other manifold learning
methods include Locally Linear Embedding, ISOMAP (which makes use of MDS), or
even PCA as a linear approach. Manifold learning algorithms such as MDS aim to
find a D-dimensional Euclidean approximation of a possibly non-Euclidean, unknown-
dimensional space of data objects based on the dissimilarities among each pair of
objects—see next section for further information about MDS. As a consequence, MDS
not only permits estimating our statistical manifold at its simplicial maximum dimen-
sionality, but also can estimate proper 2-dimensional or 3-dimensional projections of
M which permit both its visualization and further efficient calculus in lower dimen-
sions. Further, even when the specific parametric family of PDFs is known, we can
apply MDS to translate MΘ into an Euclidean space or obtain a visualization.

As an example, Figure 2.3 shows the non-parametric statistical manifolds formed
by a set of Normal PDFs, where pairwise distances have been measured using either
the analytical closed form for Normal distributions by Costa et al (2005) and the
Jensen-Shannon distance. The 2D and 3D projections have been obtained using MDS
from the measured pairwise distances.

Having an Euclidean representation of the points representing distributions facili-
tates treating distributions as individuals where the features measured by their dimen-
sions conserve a great degree of information about the full distribution shape. This
facilitates in a great measure performing data analytics tasks such as classification or
clustering of data distributions.

Further discussion on non-parametric information geometry is shown in the follow-
ing section as well as in Chapters 4 and 5, where this methodology was applied as
the probabilistic framework for the multi-source and temporal variability assessment
methods. Concretely, in Chapter 4 an statistical manifold is obtained from the distri-
butions of multiple data sources to build multi-source variability metrics. In Chapter
5 we introduce temporal dynamics in the statistical manifold, what, to our knowledge
is the first attempt doing so. For further reading on non-parametric information ge-
ometry we refer to the works by Carter et al (2008) and Sun and Marchand-Maillet
(2014).

2.2.4 Multi-dimensional scaling

Given a dissimilarity matrix Y = (y11, . . . , ynn) among n points, the objective of MDS
is to obtain the set P = (p11, ...,pnc) of points in a Rc Euclidean space such that
c ≤ n−1. This is done by finding the best approximation of ‖pi−pj‖ ≈ f(yij), where
‖ · ‖ is the euclidean norm between points pi and pj, and f(yij) is a transformation of
the original dissimilarities (optimally f(yij) = yij). This approximation can be solved
by the minimization of the raw loss function:

min
P

∑
i<j

(f(yij)− ‖pi − pj‖)2, (2.43)
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Figure 2.3: Visualization of the non-parametric statistical manifolds formed by a set of 400 univariate
Normal PDFs. Pairwise distances have been measured using both the analytical closed form for
Normal distributions by Costa et al (2005) and the Jensen-Shannon distance (JSD). The 2D and
3D projections were obtained using MDS from the pairwise distances. The spheres in the plots
for statistical manifolds are coloured according to the color of their distributions in (a). In this
manner, it can be noted the non-linear relationship between the scalar changes in the parameters
and the distances between the corresponding distributions. Concretely, although with different mean
and fixed standard deviation neighbour distributions are approximately equidistant, fixing the mean
and changing the standard deviation makes that the larger the standard deviations the smaller the
dissimilarity among distributions (more probability density is shared). Note that the closed-form is
unbounded while the JSD is bounded between 0 and 1. Inspired by the work by Cranmer (2014).
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where generally a calibrated loss function such as the Kruskal’s Stress-1 (Kruskal,
1964) is used:

min
P

√∑
ij(f(yij)− ‖pi − pj‖)2∑

ij(‖pi − pj‖)2
. (2.44)

Modern MDS methods can be classified into metric and non-metric (Borg and
Groenen, 2010). In metric MDS the resultant inter-point distances are related to the
input dissimilarities by f(yij) as a continuous function, while in non-metric the objec-
tive is to preserve the rank order among the dissimilarities with f(yij) as a monotonic
transformation. Both methods compute iteratively the best approximation minimizing
the Stress functions, starting from an initial configuration of points. If such initial-
ization is obtained using classical scaling, based on eigendecompositions, the resultant
coordinates will likely be ordered monotonically by their significance with respect to
the approximation.

It is important to recall that the smaller the output dimensionality c is chosen,
the larger the transformation error, or stress, will be obtained. The special case of
c = n − 1 is known as full-dimensional scaling, and it provides a perfect embedding
when the input dissimilarities are Euclidean, leading to zero Stress. In addition, the
solution of full-dimensional scaling is a c-simplex, which can be found in a unique
global minima (De Leeuw, 1993).

As introduced in section 2.2.3, MDS is suitable for embedding the non-Euclidean
spaces of statistical manifolds into Euclidean ones. In information geometry we can use
the FIM-based distances—when known—or their integrated versions (e.g., the JSD) as
non-Euclidean metrics between probability distributions. As a consequence, given the
change of space and dimensionality by MDS the relationship between the original met-
ric and the embedded one is twofold. First, the change of space may be non-isometric,
i.e., it may imply a loss of precision, leading to a positive Stress. And second, the
change of space may be isometric, i.e., the original distances are preserved, leading
to a zero Stress. Concretely, the Whitney embedding theorem (Whitney, 1940) states
that any M -dimensional smooth manifold can be smoothly embedded into an R2M

Euclidean space preserving the neighbourhood, however it does not imply isometry.
Besides, Nash embedding theorem(Nash, 1956) guarantees that any Riemannian man-
ifold can be isometrically embedded into an Euclidean space, with some restrictions
on the number of dimensions. Hence, whether we get an isometric embedding or not
will depend on the number of dimensions c to which we transform, on the original
dimensionality of the statistical manifold, and on the number of points being mapped.

For example, the case of non-parametric information geometry, the original di-
mensionality of the statistical manifold is unknown.a Therefore, a sufficiently large
number of dimensions will probably lead to an isometric embedding. This may be the
case for the full-dimensional scaling mentioned above, when the number of points is as
well large. Besides, when the number of points being mapped is low, the topological
restrictions (e.g., neighbourhood) are less, therefore, the full-dimensional scaling may

aThe parametrization of the categorical or mixture distributions could be studied when using a
non-parametric estimation of distributions (Section 2.2.1).
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provide as well an isometric mapping (e.g., in all the embeddings carried out in Section
4.5, a zero Stress was obtained), or at least provide the closest possible embedding to
an isometric one.
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Chapter 3

Comparative study of probability
distribution distances to define a
metric for the variability of
multi-source biomedical data
repositories

Biomedical data repositories are often composed by data from multiple sources and
acquired during long periods of time. In some cases, data may present dissimilarities
among their probability density functions (PDF) due to different variability causes
among data sources or over time. This may hinder the data reuse when treating data as
a whole. Additionally, the overall quality of the data is diminished. With the purpose
of developing a generic and comparable metric to assess the variability of datasets
among sources and over time, this chapter studies the applicability and behaviour of
several PDF distances over shifts on different conditions (such as uni- and multivariate,
different types of variable, and multi-modality) which may appear in real biomedical
data. From the studied distances, we found information-theoretic based to be the most
practical distances for most conditions. We discuss the properties and usefulness of
each distance according to the possible requirements of a general variability metric.

The contents of this chapter were published in the conference paper by Sáez et al
(2013b)—thesis contribution P2.

3.1 Introduction

Research biobanks are often composed by data from multiple sources (different hospi-
tals, health services, physicians, etc) or acquired during a period of time. A common
research task consists in developing a hypothesis or model based in the whole set of
multi-source data. However, dissimilarities in the probability density function (PDF)
among the different subsets of data or over time may complicate such research, lead to
wrong hypothesis, or harm the further use of results on new data. In addition, detect-
ing such dissimilarities may be difficult due to the heterogeneous conditions present in
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biomedical research data: (1) variables of different types (categorical, ordinal or not;
and numerical, continuous or discrete), (2) data coming from uni-modal or multi-modal
distributions, and (3) univariate or multivariate data. We classify the presence of such
dissimilarities in PDFs as data quality problem related to the multi-source variability
of data.

Providing accurate information about the data variability may help data managers
and researchers to take decisions during the definition and development of research
studies, as well as to feedback data providers about their acquisition procedures. In
addition, a generic metric comparable among different studies, may provide a mea-
surement of the degree of variability of biomedical data repositories as a DQ metric.

In this chapter, we study the applicability and behaviour of several pairwise PDF
distances on a set of simulations of data shifts based on the aforementioned biomedical
data conditions. These pairwise distances provide information about the variability
between pairs of sources or time batches. Hence, this study is the first stage towards
the development of a global variability metric for any arbitrary number of sources or
time batches, where pairwise PDF distances will serve as baseline measurements. We
present the results of such comparative study as well as a discussion aimed to the next
research steps.

3.2 Background

Weiskopf and Weng (2013) reviewed several studies on biomedical DQ. Most of them
focused on measuring DQ dimensions of a data repository as a whole. The concept of
data source agreement was found aligned with the problem of multi-source variabil-
ity we are focusing. Besides, dataset shifts have also been related to DQ problems
(Cruz-Correia et al, 2010; Sáez et al, 2012b). Dataset shifts are dissimilarities in the
underlying distributions of data which can be originated through the course of time
or across multi-source factors. Our aim is to assign a distance to dataset shifts among
several sources of data and over time, as a measurement of the overall agreement in
data inherent concepts.

Most studies aim to detect dataset shifts in data streams, e.g. based on specific
statistical tests (Kifer et al, 2004) or distributional divergences (Dasu et al, 2009).
Some of these approaches can be suited to obtain dissimilarity measures among the
PDF of different data sources. Some works have also been published comparing PDF
dissimilarity measures (Liu et al, 2008; Budka et al, 2011), although aimed to image
retrieval. To the best of our knowledge, no similar comparisons have been carried out to
assess the variability among biomedical data distributions, envisaging the multi-source,
multivariate, multimodal and multi-type conditions, as well as the adequateness to a
global variability metric.
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3.3 Methods

3.3.1 Simulation

We evaluated the distances on a set of simulations to cover: (1) variable types, (2)
multi-modality, and (3) dimensionality. We focused on numerical and categorical data,
the most common post-processed research data, which facilitate the statistical analysis.
In each simulation, two random datasets, (a) and (b), were defined following the same
statistical distribution, where a null dissimilarity is expected. Then, we sequentially
increased their dissimilarity until a predefined maximum state, where a maximum
dissimilarity is expected. Distances were measured at each dissimilarity level.

We started evaluating the effect of shifts in different univariate variable types, cov-
ering (1) and (2). Simulation U1 consisted in a Normal N(µ, 1) continuous variable
(cont.v.) where dataset means µ(a) and µ(b) separated each other—e.g. due to an
acquisition device that becomes biased. U2: N(µ, 1) cont.v. where dataset b becomes

bi-modal as a mixture of two Normal PDFs defined as 1
2

∑
c=1,2N(µ

(b)
c , 1), which com-

ponent means µ
(b)
1 and µ

(b)
2 symmetrically separate from the original—e.g. due to

the appearance of a new pathological pattern. U3: Chi-squared χ2(k) cont.v. where
degrees of freedom k(b) separated from k(a) = 0—e.g. due to an increase in the occur-
rence of a biomarker. U4: Binomial B(1, p) ordinal categorical variable (cat.v.) where
p(a) = p(b) = 0.5 shifted to 0 and 1 respectively—e.g. due to variation in gender per-
centages in a diagnostic group. U5: Multinomial Mult3(1,p) non-ordinal cat.v. which
priors shifted from an equal to a maximum difference state—e.g. due to a variation in
the number of uses of treatments.

The multivariate simulations consisted in a combination of the previous variables,
completing then (1), (2), and (3). M1: bivariate N(µ, 1) cont.v. which means sep-
arated respectively. M2: bivariate N(µ1) cont.v. where dataset b becomes multi-
modal as a mixture which component means symmetrically separated from the orig-
inal. M3: two B(1, p) cat.v. where p

(a)
1 = p

(a)
2 = p

(b)
1 = p

(b)
2 = 0.5 shifted to

p
(a)
1 = p

(a)
2 = 1, p

(b)
1 = p

(b)
2 = 0. M4: a combination of a N(µ, 1) cont.v. with a

B(1, p) cat.v. combining the shifts of U1 and U4.

Figures 3.1 and 3.2 shows the initial and final states of the simulated distributions
for the univariate and multivariate experiments, respectively.

3.3.2 Estimation of probability densities

To ensure the applicability to any non-parametric continuous PDF, we estimated em-
pirical PDF histograms of the compared datasets using a Kernel-Density Estimation
smoothing method (Parzen, 1962; Bowman and Azzalini, 1997), with Gaussian kernels
and establishing the optimum bandwith based in the method by Shimazaki and Shi-
nomoto (2010). Additionally, to homogenize the support, we estimated the common
PDF from both datasets, and then, its bin centers were used as reference to interpolate
the PDF of the independent datasets.
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3.3.3 Studied distances

PDF distances measure how far two statistical distributions are in a metric space. As
shown in Equation 2.31, a distance metric must be (i) non-negative, (ii) zero only if
the two compared distributions are the same (identity), (iii) symmetric, and (iv) must
satisfy the triangle inequality. Divergences also provide a measure of dissimilarity,
however, do not require to be symmetric nor satisfy the triangle inequality. Distances
are then consistent with our purpose of a generic and comparable variability metric.

One type of studied distances included the statistics obtained in classical two-
sample statistical hypothesis tests, including the parametric Student’s t from t-test
and the non-parametric Kolmogorov-Smirnov test statistic, Kruskal-Wallis difference
in mean ranks and the obtained χ2 statistic from the Kruskal-Wallis test. We discarded
the χ2 test statistic for categorical data because it does not accomplish the identity
of indiscernibles condition of a metric. Despite these type of distances are conceived
for univariateb numerical data, we kept these tests for two reasons. First, we want to
compare their behaviour in univariate multi-modal data. And second, dimensional-
ity reduction of multivariate datasets may lead to a univariate sample making these
methods feasible. Other advantage is that these statistics can be directly associated
to p-values which permit significance tests on the differences.

We also studied information-theoretic based distances, which derive from Shanon’s
entropy theory (Cover and Thomas, 1991), including the Jeffrey divergence and the
square root of the Jensen-Shannon divergence, both symmetrized versions of the Kullback-
Leibler divergence, the second also smoothed. We also studied the Hellinger distance,
which can be defined as a metric version of the Bhattacharyya distance, commonly
used in Pattern Recognition. These distances belong to the family of f -divergences
(Ali and Silvey, 1966a; Csiszár, 1967), which measure the difference between PDFs.
The main advantage of these metrics to the aforementioned statistics is that they ap-
ply to any type of binned PDF. Jeffrey and Jensen-Shannon, nevertheless, cannot be
measured when any of the PDFs has 0-probability bins—e.g. a categorical value not
present in a source—, hence, in such cases an absolute discounting method (Ney et al,
1994) was used to smooth the estimated PDFs.

Finally, we studied the Earth Mover’s Distance metric (EMD, equivalent to the
Mallows or Wasserstein distance) (Rubner et al, 2000). EMD calculates the minimum
cost required to transform one PDF into the other, using a predefined cost matrix of
the probability mass flow between the bins in the support (ground distances). Origi-
nally conceived for image retrieval, EMD has also been used to measure dissimilarities
in multidimensional distributions (Applegate et al, 2011; Dasu and Loh, 2012). EMD
envisages inter-bin information, in contrast to information-theoretic distances which
make bin-by-bin comparisons, however, involves a higher computational cost. Addi-
tionally, EMD relaxes possible losses of information caused by binning, and permits
defining custom cost matrices. To adapt the multivariate experiments to EMD algo-
rithm, we embedded the two dimensions into one histogram using a normalized L1
ground distance matrix.

bBivariate Kolmogorov-Smirnov test approaches (Lopes et al, 2007) require further study since in
d-dimensions imply 2d − 1 possible orderings. MANOVA tests entail a linear combination of the two
or more normally-distributed dependent variables.
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3.4 Results

Figure 3.3 shows the results of the experiments. Each distance was normalized between
zero and one to facilitate the comparison. As expected, in all simulations the evaluated
distances behave monotonically increasing. In addition, all distances begin in 0, and
we can observe that while most converge in continuous tests, these are approximately
linear in discrete.

In experiment U1 non-parametric statistics behave similarly, converging around a
distance between means of 4σ. Information-theoretic distances behave similarly, except
Jeffrey divergence, which begins convex and converges when the tails of the PDFs leave
each other. The t-test statistic behaves linearly, since we are separating two Normal
PDFs with equal variance. The EMD resultant function also converges, but later.

In U2, t-test and Kruskal-wallis statistics were not able to capture the bi-modal
shifting—despite the dissimilarity, sample means were the same—resulting in zero.
The rest of distances behave equivalently to U1, capturing the bi-modality.

In U3, distances behave similarly to U1, but as it can be appreciated in t-test series,
PDF means did not vary linearly with the shift in degrees of freedom.

Categorical simulations U4 and U5 resulted in equivalent results in information-
theoretic and EMD distances. However, statistics distances were not applicable to
U5, since non-ordinal categorical. Thus, we only show the results of U4, where the
first are equivalent. Due to the linear shift in probability masses in these categorical
experiments—in contrast to when separating Normal PDFs—none of the distances
resulted convex. In addition, some captured this linear density shift resulting in linear
functions. Despite the smoothing, we can observe in the Jeffrey distance series the
tendency to infinite with smoothed 0-probability elements in the last iteration.

Results of multivariate experiments M1 and M2 are equivalent to their univariate
relative U1 and U2, with the exception that statistic tests were not applicable. Thus,
all distances converge, although EMD does later. Analogously, the results in Binomial
experiment M3 are equivalent to those in U4. We can appreciate, however, slight
differences in the results of mixed variable types experiment M4: while Jensen-Shannon
and Hellinger distances seem to average the results of its independent continuous and
categorical shifts, the EMD transformation cost seem to be slightly higher across the
central iterations due to the abrupt density flow through the categorical dimension—we
recall that EMD envisages inter-bin information.

3.5 Discussion

We come back to the studied conditions: (1) variable types, (2) multi-modality, and (3)
dimensionality. Biomedical data can be considered heterogeneous and multi-modal by
nature. Even univariate data may be formed by different ‘natural’ components, such as
a mixture of healthy and different components of unhealthy parameters, or ‘artificial’
components, such as differences in the quality of data among their generating sources.
Thus, an effective distance must be able to capture the dissimilarity in any of these
conditions.

Regarding to the evaluation of (1), only information-theoretic and EMD are suited
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to any type of variable—statistics are only to numerical. Additionally, EMD is the
only distance which permits setting specific costs to the difference between categories
in unordered categorical data. Regarding to (2), t-test and Kruskal-Wallis had prob-
lems detecting multi-modality (U2, M2), however, Kolmogorov-Smirnov, information-
theoretic and EMD were successful. Thus, despite the advantage of information-
theoretic and EMD in (1) (and as we will see next, in (3)), Kolmogorov-Smirnov
might still be used for obtaining a p-value on the difference in a continuous univariate
variable resultant from a possible dimensionality reduction on multi-type data. At
this point, information-theoretic and EMD distances seem the most practical for most
situations. From these, we may consider the issue with null-probability elements of
Jeffrey divergence a reason for discarding it. We can also observe that Jensen-Shannon
and Hellinger are within a small constant each other (Jayram, 2009). Additionally, as
we already mentioned, EMD is able to capture inter-bin information, and it is possi-
ble to define any cost between them, what may be useful in categorical data or when
grouping PDF signatures (Rubner et al, 2000).

Finally, regarding to the evaluation of (3), we already mentioned that statistics
distances were not suited to multivariate data. In contrast, information theoretic dis-
tances and EMD are theoretically suited to any number of dimensions. However, direct
estimation of PDFs in high-dimensional biobanks may be impractical due both to com-
putational requirements and sparsity in the probabilistic space. Hence, dimensionality
reduction methods may be applied to make feasible low-dimensional distances. For
instance, we could reduce the dataset into a lower-dimensional manifold. Additionally,
in massive-data environments, we could represent groups of similar cases based in PDF
signatures to facilitate the distance calculus.

On the other hand, results show that, in general, most distances have a convergence
limit. They converge when the volume of the joint density between the two PDFs is
minimized converging as well. However, EMD does later, what may suppose two
advantages. First, it behaves approximately linear until the saturation level of those
that converge first. And second, it can still express dissimilarity farther from this level.
Furthermore, a bounded PDF support, e.g. in categorical data or bounded continuous,
obviously entails a maximum limit in all the distances. Under these assumptions, we
may choose between using the Jensen-Shannon, Hellinger or EMD, depending on the
dissimilarity level at which we need the distance to converge. Table 3.1 summarizes
the findings.

To be generic, pairwise measurements should provide a dissimilarity level compa-
rable across different datasets, or even different domains—imagine we wish to provide
a variability mark in a DQ consulting. Jensen-Shannon, Hellinger, and Kolmogorov-
Smirnov distances are bounded by definition between zero and one, what applies here
(Kolmogorov-Smirnov, however, did not achieve its maximum value in the bimodal
experiment (U2)). On the other hand, we noticed that the normalization applied to
the EMD ground distance matrix, where a maximum cost of 1 is given when moving
density between extreme bins, makes comparable the resultant transformation cost.
This solution, however, requires predefining the possible support of all variables in
order to identify the maximum inter-bin costs—equivalent to establishing the bounds
of the probabilistic space.
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Feature T KW KS JF JSD EMD

Multivariate - - - Yes Yes Yes

Multi-Type - - - Yes Yes Yes

Multi-Modal - - Yes Yes Yes Yes

Bounded No No Yes No Yes Yes

Table 3.1: Ability of PDF distances or test statistics (columns) for dealing with specific features of
data (rows 1-3) and whether the distance is bounded (row 4). T: t-test statistic, KW: Kruskal-Wallis
statistic, KS: Kolmogorov-Smirnov statistic, JF: Jeffrey (Symmetric Kullback-Leibler divergence),
JSD: Jensen-Shannon−1/2, EMD: Earth Mover’s Distance. The ‘-’ means that the corresponding
distance is not designed for the corresponding feature.

We have not focused on other common types of biomedical data such as free text,
signals or images. In some research tasks, a specific preprocessing may be used to
obtain quantitative or qualitative measurements which will permit the use of the meth-
ods presented in this work. For instance, the Quantitative Magnetic Resonance (MR)
methodology (Wagnerova et al, 2012) is based on different quantitative parameters
from brain MR images or MR spectroscopy signals, which may be used to assess the
variability among radiology data sources, or among segmented brain tissues.

3.6 Conclusions

Providing information about the variability of biomedical research data among its
sources and over time may be of crucial importance. We have studied the behaviour
and application of pairwise PDF distances on simulations of multi-type, multi-modal
and multivariate conditions of biomedical data. The evaluated distances based on clas-
sical statistical tests are only suited to numerical univariate data, and have difficulties
in multi-modality. Information-theoretic distances and EMD can handle multivariate,
both continuous and discrete, and mixed types data. In general, all distances con-
verge when the joint probability mass between the compared PDFs converges to the
minimum.

Therefore, from the studied distances, only Jensen-Shannon and EMD satisfy both
the applicability to conditions of biomedical data and the bounding. The EMD permits
setting custom inter-bin costs, what allows bounding the metric, however, it requires
knowing a priori the bounds of the probability support of all the involved variables. In
contrast, the JSD bounds are approached based on the degree of overlapping between
the compared distributions (as the overlap decreases the distance tends to its upper
bound), defining the distance only by what is measured, avoiding external configu-
rations. As a consequence, and although both EMD and JSD could be suitable for
the purpose of a variability metric, the JSD was chosen for its direct foundations in
information-theory, what permits constructing over the theory of a probabilistic frame-
work, and for its generalization for comparability. These results establish the basis for
the next chapters towards multi-source and temporal variability metrics.
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Figure 3.1: Initial and final states of the probability distributions for the univariate experiments
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Figure 3.2: Initial and final states of the probability distributions for the multivariate experiments
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(c) U3: χ(0) vs. χ(k(b))
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(d) U4: B(p(a)) vs. B(p(b))
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(e) M1: Bivariate test of U1
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(f) M2: Bivariate test of U2

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

p(a)
1

=p(a)
2

=q(b)
1

=q(b)
2

N
or

m
al

iz
ed

 d
is

ta
nc

e

(g) M3: Bivariate test of U4
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(h) M4: Bivariate test of U1 and U4 mixed

JF JSD EMD HL KW-D KW-H T KS

Figure 3.3: Results of univariate, (a), (b), (c) and (d), and multivariate, (e), (f), (g) and (h) ex-
periments. JF: Jeffrey, JSD: Jensen-Shannon, EMD: Earth Mover’s Distance, HL: Hellinger, KW-
D: Kruskal-Wallis mean rank difference, KW-H: Kruskal-Wallis statistic, T: t-test statistic, KS:
Kolmogorov-Smirnov statistic.
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Chapter 4

Multi-source variability metrics for
biomedical data based on simplicial
projections from probability
distribution distances

Biomedical data may be composed of individuals generated from distinct, meaning-
ful sources. Due to possible contextual biases in the processes that generate data,
there may exist an undesirable and unexpected variability among the probability dis-
tribution functions of the source subsamples, which, when uncontrolled, may lead to
inaccurate or unreproducible research results. Classical statistical methods may have
difficulties to undercover such variabilities when dealing with multi-modal, multi-type,
multi-variate data. This chapter proposes two metrics for the analysis of variability
among multiple data sources, robust to the aforementioned conditions, and defined
in the context of data quality assessment. Specifically, a global probabilistic devia-
tion (GPD) and a source probabilistic outlyingness (SPO) metrics are proposed. The
first provides a bounded degree of the global multi-source variability, designed as an
estimator equivalent to the notion of normalized standard deviation of PDFs. The
second provides a bounded degree of the dissimilarity of each source to a latent cen-
tral distribution. The metrics are based on the projection of a simplex geometrical
structure which, based on the conclusions from Chapter 3, is constructed from the
Jensen-Shannon distances among the sources PDFs. The metrics have been evaluated
and demonstrated their correct behaviour on a simulated benchmark and with real
multi-source biomedical data using the UCI Heart Disease dataset.

The contents of this chapter were published in the journal publication by Sáez et al
(2014b)—thesis contribution P3. The developed methods are included in the software
contributions S1 and S3.

4.1 Introduction

Biomedical data may be generated from different sources. Multi-centre data reposito-
ries are a well-known example. Other examples include data generated from different
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users, or groups of data at different levels of granularity through a sensible hierarchy,
e.g., a geographical location. Hereafter multi-source data is defined as data comprising
individuals generated from distinct, meaningful, originating sources, belonging each
individual to a single, clearly identified, source.

Compiling data from multiple sources may ensure a good sample representation
from a broader and more representative population. In fact, obtaining a representative
and significant sample is usually the objective of multi-centre studies (McMurry et al,
2013).

However, due to possible contextual biases in the processes that generate data,
multi-source data may also entail an unexpected or undesired variability among its
sources, which can lead to contradictory or unreproducible results (McMurry et al,
2013). As a consequence, two situations may arise: (1) data consumers do not consider
such variability, leading their results to poor hypotheses, models, or wrong decisions;
(2) data consumers are aware about the possible variability but the complexity of
data either hinders such discovery or they do not have the proper discovery methods.
Regarding to (2), Sáez et al (2013b) showed that classical statistical tests may have
difficulties or be not suitable at all when dealing with specific data features, such as
in multivariate, multi-type and multi-modal data. In any of the cases, one could per-
fectly draw hypothesis or obtain acceptable models from data assuming that data is
stable among sources—i.e., modelling and evaluation made with data from all sources.
However, it may not be assured that these results will either maintain the same effec-
tiveness when used or evaluated at a single source or be generalisable at all to other
sources.

This variability among sources is in fact a variability among their data probability
distribution functions (PDFs)c. Ideally, biomedical research studies, such as clinical
trials or population studies, would expect PDFs to be stable among the different
sources in order to draw generalizable conclusions. However, if PDFs show variability
among the data sources, data fail to meet user expectations what, by definition (Wang
and Strong, 1996), results in a lack of data quality. The variability among sources has
been addressed by some authors in the biomedical data quality domain (Cruz-Correia
et al, 2010; Weiskopf and Weng, 2013). Nevertheless, it has mainly been related to
semantic, structural or element agreement among sources. In this work, the variability
among sources’ PDFs is studied as a multi-source variability data quality dimension.
Studying the variability among data sources may help data consumers understand
their data, detect problematic or biased sources, detect patterns among the sources or,
more generally, take better decisions in the research process.

In this work, a method for obtaining representative measurements of the data
source variability is presented. It contributes to the state-of-the art with two metrics
of a multi-source variability data quality dimension, designed as a descriptive statistical
method to assess multi-source variability, and being robust to the aforementioned fea-
tures where classical statistical tests may not be suitable. The first metric measures the
degree of global multi-source variability—i.e. global probabilistic deviation (GPD)—
and the second the degree of outlyingness of single sources—i.e., source probabilistic

cNote that semantic or structural consistence among data sources is not discussed here, which is
out of the scope of this thesis.
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outlyingness (SPO), being both designed to be comparable among different domains
or datasets. The calculus of metrics is based on the projection of a D-dimensional
simplex constructed from the pairwise PDF distances among sources. Additionally,
this method provides the basis for a source clustering and for the spatial visualization
of data source variability. The method is evaluated with simulated and real data using
the UCI Heart Disease dataset (Asuncion and Newman, 2007; Detrano et al, 1989).

The rest of the paper is organized as follows. Section 5.2 reviews different variability
problems found in biomedical studies, the statistical methods usually employed to
detect such variabilities, and settles the work in the context of data quality. Section 4.3
describes the simplex geometrical structure and some of their properties. Section 5.3
describes the multi-source variability methods presented in this work. The experiments
to evaluate the method and the results are described in Section 4.5. Finally, Sections
5.6 and 4.7 describe the discussion and conclusions of the work.

4.2 Background

4.2.1 Variability in biomedical data

The outcomes of biomedical research and healthcare practice depend on taking deci-
sions based on the available information (Cruz-Correia et al, 2010). The data behind
such information is registered by humans or devices based on observations of facts, at
any stage of the healthcare process, and under an environment or context. As a conse-
quence, the interpretation of such observations may be different according to different
contexts. In addition, latent contexts (e.g., the socio-economic profile of a geographical
location) can have a direct influence on the original facts, independent on its interpre-
tation. In other words, contextual biases in the processes that generate data may have
associated an undesired or unexpected variability among the data-generating sources.

Many examples in the literature can be used to illustrate these types of variabili-
ties. Markus et al (1997) found differences in the interpretation of a common dataset
of Doppler embolic signals among different centres, even using the same equipments.
Verwey et al (2009) and Mattsson et al (2010) found diagnostic variabilities among cen-
tres in several multi-centre studies evaluating the use of cerebrospinal fluid biomarkers
for Alzheimer’s disease. Verwey et al. recommended the standardization of procedures
and homogenization of assays to reduce such variability. Such reduction was proved by
Dargaud et al (2012) in the use of a thrombin generation test in clinical trials. However,
Pagani et al (2010) encountered that even using a common acquisition protocol, dif-
ferences were still found among centres in diffusion tensor magnetic resonance imaging
findings. On the other hand, as a single but relevant example of how the context can
cause such variations, Jarman et al (1999) showed that some hospital characteristics
have a direct interaction with the ratio of hospital death rates.

According to the type or purpose of the study, detecting and measuring multi-
source variabilities are generally addressed by means of classical statistical methods.
In clinical trials, the coefficient of variation or, its non-parametric equivalent, the quar-
tile coefficient of dispersion are generally used to measure variabilities among some
numerical indicators obtained from each source. These methods have some possible
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drawbacks. Summarizing in one scalar indicator the original distribution of what is
measured on each source may in some cases entail an information loss. Whilst the co-
efficient of variation may be affected by the scale or type of the analysed variable (e.g.,
a mean near 0 on a non-ratio scale), the quartile coefficient of dispersion may miss
additional information about the shape of variable PDF. One advantage of the quar-
tile coefficient of dispersion is that is unit-free, and so is comparable among different
problems.

Classical statistical tests used to contrast differences among two or more univari-
ate data samples include One-way Analysis of Variance (ANOVA) for Gaussian data,
Kruskal-Wallis test for non-Gaussian data, and χ2 test for categorical. These tests are
not designed to deal with multivariate or multi-type data. In addition, both the two-
sample equivalent of One-way ANOVA, the Student’s t-test, and the Kruskal-Wallis
test have problems with multi-modal data, as shown in the previous section (Sáez
et al, 2013b). Though, it is also expected in ANOVA, which is suited to unimodal and
homoscedastic Gaussian data.

Another method to test differences on samples composed by numerical and categori-
cal data is the N-way ANOVA. It evaluates the effect of multiple factors, the categorical
variables, on a dependent numerical variable. Hence, it is not suited to measure the
variability in the joint distributions of numerical and categorical variables.

Finally, the Multivariate ANOVA (MANOVA) test is suited when having more than
one dependent variable. Analogous to One-way ANOVA, variables must be numerical,
Gaussian and homoscedastic. While MANOVA may be useful under these assumptions,
the contrast is made on linear combinations of the variables, where such a collinearity
may not exist among these.

The multi-source variability metrics developed in this work are based on information-
theoretic methods to measure PDF distances. As an alternative to classical statistical
tests, information-theoretic methods are able provide more information about the vari-
ability between data distributions where the assumptions of the classical tests are not
met (see Section 4.2.3).

The method presented in this work does not intend to replace the aforementioned
tests for their specific use scenarios. Its purpose is to provide a metric for the variability
among different sources of data and the degree of outlyingness of single sources, being
(1) suitable to multivariate, multi-type and multi-modal data, and (2) bounded and
therefore comparable among different problems. Additionally, it intends to (3) pose
an alternative to the classical statistical tests for those cases where the aforementioned
conditions of data hinder or impede their use.

4.2.2 Data source variability in the context of Data Quality

The variability among sources has been addressed by several authors as a data quality
problem from different perspectives. Cruz-Correia et al (2010) reviewed different issues
associated to data integration and sharing among different health information systems
or organizations. They found structural and semantic interoperability as the major
problems. Weiskopf and Weng (2013) carried out a systematic review on the methods
and dimensions of data quality assessment in the context of reuse of electronic health
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records (EHRs) for research. From a set of 95 articles they derived five high-level
dimensions and seven assessment methods. From these, the concordance dimension,
and the data source agreement and distribution comparison methods can be related
to our problem. They defined concordance as Is there agreement between elements
in the EHR, or between the EHR and another data source?. Hence, concordance can
refer to the agreement among observations of a patient EHR, agreement among the
same observation of a patient on different information systems, or agreement among
a set of EHRs with respect to a gold standard with the same information. Whilst
the last two are related to the variability among sources, only the last is related to
the problem of comparing data probability distributions. Though, they identified the
method of comparison with a gold-standard distribution as a method to assess the
concordance dimension. However, any of the articles comprising the systematic review
neither intend to provide a variability metric among a set of sources nor put attention
on the heterogeneous features of biomedical data.

4.2.3 Dissimilarities between biomedical data distributions

Biomedical data usually show heterogeneous conditions. Concretely, biomedical data
are generally 1) multivariate (i.e., data have more than one variable), 2) multi-type (i.e.,
simultaneously continuous, discrete ordinal and non-ordinal variables), and 3) multi-
modal (i.e., data distributions are generated by more than one mode). In Chapter 3,
we studied the behaviour of different PDF dissimilarity metrics envisaging these data
features. The results of such study are summarized in Table 3.1.

The results showed that the aforementioned data features may complicate the appli-
cation of classical statistical or data analysis methods for the assessment of differences
among data samples. Specifically, the results confirmed that classical statistical tests
may have difficulties on multi-modal data, or may not be not suitable at all on multi-
variate or multi-type data. Information-theoretic distances, including the Jeffrey and
Jensen-Shannon distances, and the Earth Mover’s Distance resulted the most suit-
able distances to all conditions. Information-theoretic are distances which derive from
the Shannon’s entropy theory, while EMD derives from the digital imaging field as a
measure to calculate the minimum cost of transforming one histogram into another.

Regarding to the information-theoretic distances, when the probability mass in
any region of the support in any of the compared distributions tends to zero, the
Jeffrey distance (symmetrized version of Kullback-Leibler divergence) tends to infinite.
In contrast, the Jensen-Shannon distance (JSD) is a metric bounded between zero
and one, and it was smoothly convergent to one on that situation. In fact, such
bounds facilitate the distance comparison on different problems. As a consequence,
and although both EMD and JSD could be suitable for the purpose of the multi-source
variability method, the JSD was chosen for its direct foundations in information-theory
and for its generalization for comparability.
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4.3 Simplices and properties

Generally speaking, a simplex is the generalization of a triangle to D dimensions,
D ∈ N. A D-simplex, ∆D, is composed by v1, ..., vn : n = D + 1 vertices, which form
the convex hull of the simplest polytope in RD. Simplices can be regular or irregular.
Some properties of these that will be required in the development of the variability
metrics are described next.

A simplex is regular when the distances among their vertices are equal. Conse-
quently, the length of the segment formed from the centroid of the simplex to each
vertex is also equal. The angle γ between any pair of these segments depends on the
number of dimensions and is (Parks and Wills, 2002):

γ(D) = arccos(− 1/D) (4.1)

The simplex when all the distances between its vertices are one will be defined
further on as 1-regular (1R) simplex. In any D, any pair of vertices and the centroid
of the simplex form a triangle. Thus, according to the law of sines, the distance
d(v,O) = d1R(D) between any vertex and the centroid on 1-regular simplices in D
dimensions is defined as:

d1R(D) =
1

2 sin(γ(D)/2)
, (4.2)

where d1R(1) = 1/2 as a continuity convention in D = 1 (two vertices). See Section B.1
for details.

On the other hand, a simplex is irregular when at least one of its vertices is at
a different distance from the centroid with respect to the others. Consequently, the
distances between vertices do not have to be equal. In that case, if it is defined as
a simplicial space upper-bounded by a 1-regular simplex—i.e., the simplicial space
containing all the possible simplices where the maximum distance among vertices is
one—, the distance of any vertex to the centroid of the irregular simplex will be
bounded by:

dmax(D) = 1− 1

D + 1
, (4.3)

which is larger than d1R(D) for the same D. See Section B.2 for details.

4.4 Methods

The multi-source variability method provides two metrics of the data source variability:
1) the global probabilistic deviation (GPD—Ω), and 2) the source probabilistic outly-
ingness (SPO—O). The GPD measures the degree of global multi-source variability.
The SPO of a single source is understood as a measure of the distance of its PDF to a
latent central distribution of all the sources. These metrics are obtained based on the
simplex where each vertex represents a data source, and its edge lengths the pairwise
PDF distance between the data of the sources represented by the adjacent vertices.
A multi-source variability plot for the visualization of the data source variability can
be derived as a by-product of the process. Figure 4.1 shows the procedure to obtain
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these outcomes. In the rest of the section, the different steps of the procedure are de-
scribed. The procedure input is a multi-source dataset X = (X1, ..., XS), where Xs is
the sub-sample of data corresponding to source s and S is the total number of sources.

X

{Ω, Ο}

Figure 4.1: Steps of the method to obtain the multi-source variability metrics: global probabilistic
deviation (GPD—Ω), and source probabilistic outlyingness (SPO—O). Each step is described in its
corresponding subsection in Section 5.3.

4.4.1 Estimation of PDF densities

The objective of this step is to obtain the set P of representative PDFs of the data of
each data source as P = (P1, ..., PS), Ps : p(Xs). Depending on the characteristics of
the data or the problem, different preprocessing or density estimation methods may
be chosen. In low dimensional problems, histograms or, a smoothing method for the
numerical case, Kernel Density Estimations (see Section 2.2.1) may be used. In higher
dimensional problems data can be embedded into a lower-dimensional representation
using dimensionality reduction methods such as Principal Component Analysis (PCA)
or non-linear manifold embeddings, such as ISOMAP (Tenenbaum et al, 2000). As a
consequence, the estimation of the probability distribution functions becomes easier,
being as much of the original information conserved. Depending on the layout of data it
is important to choose between linear and non-linear dimensionality reduction methods,
as linear methods (such as PCA) may fail on projecting non-linear continuities of data
points on the original higher-dimensional space. In addition, in the mixed multi-
type case, i.e. when numerical and non-ordinal categorical variables coexist, a special
density estimation may be required when histograms become noisy or sparse. In that
case, a solution may be obtained using non-linear dimensionality reduction methods
which allow defining a distance metric among the values of categorical data (e.g., using
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ISOMAP). In any case, this stage of the method is flexible to the use of different density
estimation methods, thus, the selection of the proper density estimation method is out
of the scope of this work.

The output of this step is the set P of PDFs with:

P = (P1, ..., PS), Ps : p(Xs) (4.4)

4.4.2 Calculus of pairwise PDF distances

In this step the pairwise PDF distances among all sources are calculated. These dis-
tances correspond to the magnitude of the edges of the simplex under construction.
Hence, being S the number of sources, the number of distances to be calculated and,
therefore, the number of edges of the simplex, corresponds to the binomial coefficient(
S
2

)
= S!

2!(S−2)!
.

As discussed in Section 4.2.3, and according to the results of chapter 3, the pairwise
PDF distance d(Ps, Ps′) between PDFs Ps and Ps′ will be calculated based on the
Jensen-Shannon distance:

d(Ps, Ps′) = JSD(Ps||Ps′), (4.5)

where JSD(Ps||Ps′) is the Jensen-Shannon distance in Equation 2.36, which defined
in the [0, 1] interval when using the base 2 logarithm to calculate the Kullback-Leibler
divergence (Equation 2.29).

The discrete Kullback-Leibler divergence in Equation 2.29 allows computing the
non-parametric Jensen-Shannon divergence on D-dimensional histograms by comput-
ing for each bin in the common support the corresponding discrete Kullback-Leibler
summations. However, the Jensen-Shannon divergence can also be calculated analyti-
cally based on the parametric, analytical forms of the Kullback-Leibler divergence (see
Section 2.2.2).

The output of this step is the S-by-S symmetric dissimilarity matrix Y :

Y = (Y11, ..., YSS), Yss′ : d(Ps, Ps′) (4.6)

4.4.3 Euclidean embedding using multidimensional scaling

The Information Geometry field states that probability distributions lie on a Rieman-
nian manifold which inner product is given by the Fisher information metric cor-
responding to a specific family of distributions (Amari and Nagaoka, 2007). The
geodesic distance between the points representing probability distributions in such
a statistical manifold can be approximated by means of PDF distances, such as the
Jensen-Shannon. In this work, only the distances among a set of distributions are
known. They are not restricted to a specific family, hence, it can be considered that
they lie on a statistical manifold of unknown configuration (i.e., inner product and thus
dimensionality). To the purpose of this work, a simplex must be constructed from such
probabilistic distances in a RD space. To this end, MDS is used, which calculates an
Euclidean embedding of a inter-point dissimilarity matrix—see Section 2.2.4.
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Hence, given the dissimilarity matrix Y = (Y11, ..., YSS), MDS will obtain the V =
(V11, ..., VSD) coordinates for the S sources’ PDFs in a RD Euclidean space.

To the purpose of the multi-source variability metrics, the PDF dissimilarities
should be approximated as better as possible, while maintaining the [0, 1]-bounds.
Full-dimensional scaling provides a perfect embedding when the input dissimilarities
are Euclidean, however, this is not ensured for all types of dissimilarities, such as the
Jensen-Shannon distance. However, as mentioned in Section 2.2.4, Riemannian man-
ifolds can be isometrically embedded into an Euclidean space for a sufficient number
of dimensions. In this case, were as using full-dimensional scaling, which provides
the maximum dimensional embedding, facilitating the isometric change of space. In
fact, in all the embeddings carried out for the evaluation of this work (Section 4.5),
a zero Stress was obtained. As a consequence, we can conclude that maintaining the
[0, 1]-bounds cannot be considered an issue in this work.

The output of this step is the S-by-D coordinates matrix V :

V = (V11, ..., VSD), (4.7)

where Vsd is the dth significant coordinate of source s.

4.4.4 PDF simplex building

Each of the points obtained in the previous step represents a source PDF, and the
euclidean distances among them keep the corresponding pairwise PDF distance. These
S points and the

(
S
2

)
edges represent the vertices and edges of a D-dimensional simplex.

This simplex and its centroid stand as the basis of the proposed method.
Given that the pairwise PDF distances are upper limited by one, the distances

between vertices are so. It makes the corresponding simplicial projection meeting the
next properties:

Property 1 For a specific number of sources S = D+ 1, whatever the PDF distances
among them, the maximum possible simplicial projection (i.e., when the distances of
all vertices to the centroid are maximum) is a D-dimensional 1R simplex.

Property 2 In the case of a D-dimensional 1R simplex, the maximum distance be-
tween any vertex and the simplex centroid is d1R(D) (Equation 4.2).

Property 3 In the general D-dimensional case (irregular simplices) the maximum dis-
tance between any vertex and the simplex centroid will be bounded by dmax(D) (Equation
4.3).

Properties 1 and 2 establish the theoretical maximum inter-source dissimilarity
state, thus defining an upper bound of global multi-source variability. It is straightfor-
ward that the lower bound occurs when all distributions are equal and thus all points
are the same. On the other hand, in Property 3, dmax(D) establishes the limit for the
cases where d(Ps, P

′
s) = 0 : s, s′ ∈ {1, ..., S− 1} and d(Ps, PS) = 1 (the distance among

all the sources except one is 0, and the distances between this one and the formers are
1).
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The output of this step is the D-dimensional simplex ∆D:

∆D = (V,C), (4.8)

where V correspond to the coordinates of the vertices and and C to the simplex
centroid (Equation 4.9), both defined in RD.

C =
N∑
s=1

Vs
N
, (4.9)

4.4.5 Calculus of metrics

The purpose of this step is to calculate the GPD and the SPO metrics based on the
simplex obtained in the previous step. This simplex represents a projection of the
sources’ PDFs keeping the dissimilarities among them. As a consequence, it can be
affirmed that the simplex centroid may represent a latent central point with respect
to all PDFs, and two definitions can be derived:

Definition 1 The centroid C of ∆D represents a latent central tendency of the original
measured population.

Definition 2 The distance of a vertex Vs to the centroid C, d(Vs, C), represents the
deviation of a data source with respect to the central tendency of the population.

As a consequence, the closer the PDFs vertices are to the centroid, the more stable
the dataset is, while the larger the more unstable. The resultant simplex is bounded by
an 1R simplex, as described in the previous step. Additionally, the larger the distance
of a vertex from the centroid, the more outlying a source is with respect to the latent
central tendency. The variability metrics proposed on this work are based on such
definitions.

Global probabilistic deviation

The standard deviation is a measure of the variability of a sample with respect to its
central tendency. If the sources’ PDFs are considered as individuals of a population
and the centroid as its central tendency, the notion of standard deviation can be
directly applied to obtain a measure of the variability of the PDFs. In fact, as the
PDF points are embedded in a RD Euclidean space where the triangle inequality holds,
their distances to the centroid can be considered as PDF distances to a latent central
distribution. Hence, the derived standard deviation among S PDFs can be defined as:

Std(P1, ..., Ps) =

∑S
s=1 d(Vs, C)

S
, (4.10)

where d(Vs, C) is the Euclidean distance between the vertex Vs and the centroid C.
Note that as distances are always positive, the resultant deviation is given in the
original units.
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However, despite the pairwise PDF distances are [0, 1]-bounded independently of
the number of dimensions D, the distances between each vertex and the centroid are
neither defined in the same space for different D nor [0, 1]-bounded. It causes the
standard deviation measurement of Equation 4.10 neither to be comparable when the
number of sources S (and therefore D) is different, nor [0, 1]-bounded. This situation
would not permit the deviation to be comparable among different domains. Using
Property 2 of Section 4.4.4, the solution comes by normalizing the standard deviation
by the maximum deviation on D dimensions given the upper multi-source variability
bound, i.e. d1R(D). In fact, that upper bound distance is the upper bound of the
standard deviation on D, with Std(P1, ..., Ps) → d1R(D) in irregular simplices, and
Std(P1, ..., Ps) = d1R(D) in the case of 1R simplices. That makes the measurement
comparable and upper bounded to one, and leads to the definition of the GPD metric:

Definition 3 The global probabilistic deviation metric Ω among a set of datasets X =
(X1, ..., XS) is defined as:

Ω(X1, ..., XS) =
Std(P1, ..., Ps)

d1R(D)
(4.11)

Source probabilistic outlyingness

The distance d(Vs, C) gives a degree of how far a source is from the central tendency of
the population (Definition 2). However, as well as in the GPD metric, that distance is
defined in different spaces according to D, thus making the distance neither comparable
nor [0, 1]-bounded. Analogously to the GPD metric, a normalization factor is required.
In this case it is the distance between a single vertex and the centroid what must be
normalized. Hence, using Property 3, the normalization factor is given by dmax(D),
leading to the definition of the outlyingness metric:

Definition 4 The source probabilistic outlyingness metric O of a dataset Xs with re-
spect to the central tendency among the datasets X1, ..., XS is defined as:

O(Xs) =
d(Vs, C)

dmax(D)
(4.12)

4.4.6 Multi-source variability (MSV) plot

Although the objective of this work is to provide metrics for the data multi-source
variability, it must be mentioned that this method also provides the means to visualize
the variability or interdependences among data sources. In fact, the visualization of
complex scientific datasets using aggregated data is of special research interest (Wong
et al, 2000).

Concretely, the simplex coordinates calculated by MDS serve as a D-dimensional
visualization of the multi-source variability, where the dth coordinate is the dst im-
portant in terms of conserving the real distance. Due to the obvious restriction that
visualizations can be provided up to three dimensions, the most accurate visualization
is obtained taking the first two or three simplex coordinates. In the next sections some
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examples of a basic MSV plot are provided. Next, in Chapter 6 an improved MSV
plot is provided, where each data source is presented as a circle which radius is made
proportional to the number of cases in that data source, and the color of each circle
indicates the SPO of the source.

4.5 Evaluation

The variability metrics presented in this work have been first evaluated for scalability
on different simulated conditions. Second, real multi-source biomedical data have
been used with the purpose of completing the evaluation on real data variables and
compare results with other classical statistical methods. In this section the evaluation
experiments and their results are presented.

4.5.1 Evaluation of scalability

In this evaluation the GPD (Ω) and the SPO (O) metrics were tested for scalability
against variations in the number of sources, variables, and distributional dissimilarities.
The GPD and SPO were measured and plotted at each iteration. Using the Jensen-
Shannon distance in combination with non-parametric PDF estimations, the variability
metrics are constructed to be robust against different variable types and multi-modality
as shown in Chapter 3. As a consequence, to simplify the interpretation of these
experiments unimodal Gaussian variables and analytical parametric Jensen-Shannon
distances were used. We recall that the analytical measurement of distances between
the Gaussian variables is made based on their parameters, therefore, the experiments
did not require generating random data individuals.

Different number of sources

New data sources were iteratively added at the same pairwise distance with respect to
the previous sources. This leads to regular simplicial projections, thus, the SPO is the
same for all sources at each iteration. Measurements were taken for different source
pairwise distances. Results are shown in Figure 4.2.

The GPD metric keeps stable as the number of sources increases. This stability is a
consequence of the normalization of the metric by d1R(D). This normalization leads to
an additional interesting property of the GPD metric, by which in the case all pairwise
distances are the same the metric is equivalent to that distance. Additionally, in the
case all sources are at the maximum pairwise distance, i.e., one, the GPD is bounded
to one as well.

On the other hand, the outlyingness metric shows a non-linear negative tendency
which converges in all pairwise distances. As the number of sources at the same
pairwise distance increases, the distance of vertices to the centroid does so until con-
vergence. However, according to Property 3, in the case that pairwise distances are
not the same among all sources, i.e. an irregular simplex, an independent source may
be at a larger distance from the centroid than in the regular maximum case. Such
irregular maximum corresponds to the normalization factor for outlyigness. Hence, as
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Figure 4.2: Results on different number of sources. Measurements were taken for different inter-source
pairwise PDF distances, given by d(Ps, Ps′). The GPD keeps stable as the number of sources increases
(a), while the SPO converges as the number of sources increases (b).

an expected property of the metric, when a source is at a large distance to a group
of sources which are close among each other, the former will be more likely an outlier
when the number of sources in the latter group increases.

Different number of variables

Given two multivariate Gaussian sources their number of variables is increased. The
means of the first variable are at a fixed distance between the two sources, while the rest
of the variables are equal (covariance matrices were diagonal with Σij = 1). Hence, the
purpose is to evaluate whether the variability caused by the first variable is maintained
as new variables are included. Measurements were taken for different mean distances.
Results are shown in Figure 4.3, where, as in the case of two sources the GPD and
SPO are equivalent, only one plot series is shown representing both.

Results show the scalability of the metrics with the number of variables, as metrics
keep stable as the number of variables increases. Hence, given a dissimilarity in a
variable subspace, both GPD and SPO will theoretically be stable independently of
the size of the full variable space.

Irregular source dissimilarities

In the general case differences among data sources will be irregular. That is, some
sources may be close to each other, while others may show a higher outlyingness due,
e.g., to sample biases. In this test this situation was evaluated. Using three bivariate
Gaussian data sources with equal and diagonal covariance matrices, their means were
iteratively and irregularly separated starting from an equal state until a convergence
of the variability metrics. Concretely, sources 1 and 2 were smoothly separated from
each other while source 3 equally separated from both with a larger velocity, expecting
a larger outlyingness on it. Results are shown in Figure 4.4.
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(a) Compared distributions in a intermediate
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Figure 4.4: Results on a iterative irregular inter-source separation.

Figure 4.4(b) shows the variability metrics obtained during the iterative source
separation, where figure 4.4(a) illustrates the PDFs in an intermediate state of the
evaluation. It can be observed that as sources separate each other, the GPD does so
until convergence, as well as the SPO metric of each source. Regarding to the source
outlyingness, P1 and P2 are always at the same distance to the simplex centroid, hence
showing the same outlyingness. However, as P3 is separated at a larger velocity it
gets to large distance to the centroid which, once P1 and P2 have also achieved a
larger probabilistic pairwise distance, is reduced. This is due to the repositioning of
the simplex centroid, related to the increase of the edge length between P1 and P2,
associated to their bounded PDF distance.
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4.5.2 Evaluation on real data (UCI Heart Disease)

The UCI Heart Disease (Asuncion and Newman, 2007; Detrano et al, 1989) is a pub-
licly available multi-source dataset concerning heart disease diagnosis. It contains 76
variables acquired at four different healthcare locations namely the Cleveland Clinic
Foundation, OH; the Hungarian Institute of Cardiology, Budapest; the University Hos-
pital, Zurich, Switzerland; and the V.A. Medical Center, Long Beach, CA.

Only 14 of the variables are actually used in research studies, seven numerical and
seven categorical. To facilitate the evaluation of this work, data has been cleansed
to remove missing data while keeping the maximum possible number of non-missing
variables and individuals. This process is described in Table 4.1. Although in general
only the Cleveland sub-dataset is used in research experiments due to its higher quality
and number of individuals, in these experiments all datasets have been used with the
purpose to assess the variability among all the sources.

Original (14 variables) Cleansed (11 variables)

Source Individuals
Total missing

values
Individuals

Total missing
values

Cleveland 303 6 303 0

Hungarian 294 782 261 0

Switzerland 123 284 45 0

VA 200 699 129 0

All 920 1771 738 0

Table 4.1: Data cleansing of the UCI Heart Disease dataset carried out in this work

The variability metrics have been evaluated on this dataset as follows. First they
have been univariately measured, in both numerical and categorical variables, com-
paring the results with classical statistical univariate tests. Second, they have been
measured for each combination of variables, containing pairs of numerical, categorical
and mixing types. Finally, the variability metrics have been measured using all the
variables.

For this evaluation, the discrete Jensen-Shannon distance (Equations 2.36 and 2.29)
was used as the reference PDF distance. In the case of numerical variables, their corre-
sponding discrete PDFs were obtained from their KDE estimations using MATLAB©

(Ihler, A. and Mandel, M., 2003). Gaussian kernels and automatic bandwidth selection
(Silverman, 1986) were used.

Univariate evaluation

For each variable, the GPD and SPO metrics were measured. Additionally, depending
on whether the variable was numerical or categorical the classical ANOVA and χ2
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tests were performed reporting the corresponding p-values. Note that in the numerical
case the ANOVA makes the assumption that variables are unimodal Gaussians, what
may not be true. Results are shown in Table 4.2, which have been ordered by their
GPD. Additionally, Figures 4.6, 4.7 and 4.8 show the probability distributions and 2D
simplicial projections of the different variables.

p-value SPO (O)

Variable GPD (Ω) ANOVA χ2 Cleveland Hungarian Switzerland V.A.

trestbps .1156 .3001 - .0908 .0733 .1174 .0959

fbs .1550 - 3e-10 .0219 .1364 .1048 .2431

exang .2228 - 8e-13 .1768 .1871 .1609 .2031

sex .2299 - 2e-10 .2201 .1549 .1562 .2195

cp .2827 - 1e-16 .1895 .3016 .2563 .1759

age .3054 6e-37 - .0863 .4426 .1433 .3252

thalach .3642 5e-37 - .3897 .2019 .3497 .2480

restecg .3709 - 2e-56 .4847 .2725 .1668 .2874

oldpeak .4635 4e-10 - .3377 .3912 .3924 .3925

num .6302 2e-38 - .4491 .6203 .5528 .4360

chol .6737 2e-92 - .4030 .3915 .9706 .4353

Table 4.2: Results of univariate evaluation on the UCI Heart Disease dataset. The variability and
outlyigness measurements (columns) are shown for each variable (rows). Variables are sorted by the
their GPD metric. The ANOVA or χ2 p-value is shown according to whether the variable is numerical
or categorical.

It can be observed that the GPD metric and the p-values of statistical tests are
in general inversely proportional (Spearman correlation of −.7182, combining ANOVA
and χ2 p-values), i.e. the larger the GPD measurement the more significant the dif-
ferences are found by the tests. This reinforces the consistence of the metric, which in
addition shows its independence with respect to the type of variable. However, such
correlation must be interpreted with caution. First, the behaviour of p-values do not
need to be linear, and depends on the number of individuals or outliers (see Figure 4.5
for further details). As an example, the trestbps variable, shows a large p-value. As
it can be observed (Figure 4.6(a)), its PDFs are quite similar except an outlier in the
V.A. sample. Removing such outlying individual largely reduces the p-value to .1272,
while the GPD and the V.A. SPO are only reduced to .1062 and .0739, respectively.
On the other hand, statistical tests may not be accurate on multi-modal distribu-
tions, where the variability metrics are robust. Such problem can be observed in the
oldpeak variable 4.8(a)), where ANOVA provides a p-value larger than its numerical
predecessors.

The results also show how outlying sources can be identified by the SPO metric.
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Figure 4.5: Comparison of the behaviour of the ANOVA p-value and the GPD (Ω) with different
number of individuals. Two simulated Gaussian distributions with equal standard deviation were
incrementally separated, where n random points were generated in each case. Probability density
functions for GPD were estimated using KDE.

First, in the age variable, the respectively younger and older patients of Hungarian
and V.A. datasets have their effect on their SPO metrics (Figure 4.7(b)). Regarding
to the chol (serum cholesterol) variable, the Switzerland dataset showed an extreme
outlyingness, probably caused by a wrong codification of the missing values: while in
the Heart Disease dataset missing values are coded with −9, these seem to be coded
with 0 (Figure 4.8(c)). In the thalach (maximum heart rate achieved) variable the
projection shows the dissimilarity found among all sources (Figure 4.7(c)). Finally,
the num variable corresponds to the heart disease diagnosis, and is the dependent
variable for the data mining purposes of the dataset (note that studies with the Heart
Disease dataset generally group positive values into a single positive class). However,
it can be observed that there are large differences among the datasets. Specifically, the
Hungarian dataset do not have patients with a value larger than 1, and Switzerland
has very few healthy patients (0 value) in comparison with the others (Figure 4.8(b)).

69



Chapter 4. Multi-source variability metrics for biomedical data

−50 0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

trestbps

p(
x)

 

cleveland
hungarian
switzerland
va

−0.5 0 0.5

−0.5

0

0.5

cleveland
hungarian

switzerland

va

(a) Resting blood pressure (in mmHg)—restecg

0 1
0

0.2

0.4

0.6

0.8

1

fbs

p(
x)

 

cleveland
hungarian
switzerland
va

−0.5 0 0.5

−0.5

0

0.5

cleveland

hungarian
switzerland

va

(b) Fasting blood sugar > 120 mg/dl (0 = false; 1 = true)—fbs

0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

exang

p(
x)

 

cleveland
hungarian
switzerland
va

−0.5 0 0.5

−0.5

0

0.5

cleveland
hungarian

switzerland
va

(c) Exercise induced angina (0 = no; 1 = yes)—exang

0 1
0

0.2

0.4

0.6

0.8

1

sex

p(
x)

 

cleveland
hungarian
switzerland
va

−0.5 0 0.5

−0.5

0

0.5

cleveland
hungarianswitzerland

va

(d) Sex (0 = female; 1 = male)—sex

Figure 4.6: Univariate probability distributions and 2-simplex variability plots for variables trestbps,
fbs, exang and sex. The 2-dimensional sphere represents the upper variability bound where all the
pairwise dissimilarities would be maximum.
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Figure 4.7: Univariate probability distributions and 2-simplex variability plots for variables cp, age,
thalach and restecg. The 2-dimensional sphere represents the upper variability bound where all the
pairwise dissimilarities would be maximum.
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Figure 4.8: Univariate probability distributions and 2-simplex variability plots for variables oldpeak,
num and chol. The 2-dimensional sphere represents the upper variability bound where all the pairwise
dissimilarities would be maximum.
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Bivariate evaluation

Results of bivariate evaluation are shown in Table 4.3. As described in 4.5.1, a low
number of individuals makes histograms or density estimations to be more noisy due
to data sparsity, thus, the low number of individuals on the evaluated dataset makes
the GPD metric to tend being slightly higher in this bivariate test. However, these
measurements are comparable among them, which permits discovering interactions
of pair of variables (concretely of their joint probability) with respect to the data
source. It can be observed that the large univariate variability of chol is reflected in
all of its joint GPDs. On the other hand, the combinations including the dependent
variable,num in this case, should take special attention by researchers as variability
may indicate possible conflicts when developing predictive models based on the multiple
datasets.

Variables sex cp trestbps chol fbs restecg thalach exang oldpeak num

age .4123 .4515 .3516 .7562 .3416 .4992 .4917 .3999 .4006 .5469

sex - .3622 .2871 .7084 .2939 .4392 .4163 .2995 .5197 .6456

cp - - .3687 .7160 .3550 .4939 .4703 .3344 .5568 .6714

trestbps - - - .6893 .2125 .4194 .3988 .2683 .2927 .4945

chol - - - - .7005 .8357 .7367 .7065 .7080 .7797

fbs - - - - - .4138 .4198 .2947 .5042 .5928

restecg - - - - - - .5287 .4420 .5950 .7063

thalach - - - - - - - .4022 .4580 .5789

exang - - - - - - - - .4919 .6277

oldpeak - - - - - - - - - .5512

Table 4.3: Results of bivariate evaluation on the UCI Heart Disease dataset. Each cell shows the
GPD (Ω) of the joint probability of the variables in the corresponding row and column.

Multivariate evaluation

The variability metrics were measured using all the available variables to assess the
general variability of the complete dataset. To illustrate this example the PCA di-
mensionality reduction method with dummy coding of categorical variables was used.
PCA was applied to the full dataset containing data from the four sources. The first
three components were used for the analysis. Figure 4.9(a) shows dataset projection
on these three first components, where the source of each individual is identified. It
can be observed that there is a clear dissimilarity on the distributions of each source.
The variability metrics were calculated on these distributions. Figure 4.9(b) shows a
2-dimensional simplicial projection of the 3-simplex obtained with the method, which
yielded the variability metrics shown in Table 4.4. The observed dissimilarity among
the sources is reflected on the metrics. The 2-dimensional sphere in Figure 4.9(b)
represents the upper variability bound defined by the 1R-simplex where all the pair-
wise dissimilarities are maximum—in such situation all points would be located in the
sphere. Thus, the obtained simplex and metrics reflect a large variability among all
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sources, without a clear cluster of data sources defining an approximate centroid of the
problem. The most outlying source corresponds to the Switzerland sub-dataset. That
may be due to the data quality problems present in the dataset, such as the apparently
wrong codification of missing values, the low number of individuals after the cleansing
procedure, as well as the difference in the target variable.
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(a) The UCI Heart Disease dataset on its three first PCA
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Figure 4.9: Visualizations of multivariate variability on the UCI Heart Disease dataset.

SPO (O)

Variable GPD (Ω) Cleveland Hungarian Switzerland V.A.

Three first PCA
components

.5840 .4753 .4647 .5195 .4477

Table 4.4: Results of multivariate evaluation on the UCI Heart Disease dataset

4.6 Discussion

4.6.1 Significance

The common methods to assess the variability of multi-source biomedical data are gen-
erally suited to univariate measurements, and most take parametric or homoscedastic-
ity assumptions on them. The evaluation results of the variability metrics developed
in this work show that these metrics are a robust alternative to classical methods on
multi-type, multi-modal and multivariate data, or a complementary tool when classical
assumptions are met.
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The GPD metric theoretically aims to increase as the global pairwise dissimilarity
among the PDFs of data sources increases. That was validated by the evaluation
results. Thus, the purpose to measure the degree of variability of multi-source data is
accomplished. This is analogous to classical methods, but with the advantage of being
suited to multi-type, multi-modal and multivariate data. Additionally, it has been
shown that the GPD keeps stable as the sample size decreases in comparison with the
p-values of classical statistical methods such as ANOVA Figure 4.5.

The SPO metric provides additional information about the outlyigness of each data
source with respect to a latent central tendency of all the sources’ distributions. To
our knowledge such information is not provided by any classical test. On numeri-
cal data, ANOVA provides the sum-of-squares measurement as a measurement of the
variability between groups. That is conceptually equivalent to the intermediate PDF
dissimilarity matrix obtained during multi-source variability calculus. The PDF dis-
similarity matrix, however, is bounded and suited to the aforementioned features of
data distributions.

Regarding to data quality, Weiskopf and Weng (2013) identified some methods to
measure the concordance of datasets based on comparisons with gold standard equiv-
alent repositories. The variability metrics permit measuring such degree of dataset
concordance without requiring an additional gold standard dataset. Hence, the GPD
metric provides the degree of concordance among datasets, while the SPO metric pro-
vides the degree of concordance of specific datasets with respect to a latent reference
to all the datasets. Hence, the GPD and SPO can be defined as a composite measure-
ment method of a multi-source variability data quality dimension. The multi-source
variability can therefore be assessed under data quality assurance protocols.

One of the most practical use cases where the proposed methods can be used is
the initial data understanding and data preparation stages of multi-source biobanks
based research. It includes data mining or clinical trials. The GPD metric can be
used to find global dissimilarities among data sources’ PDFs. Large values could be
caused by a low overall probabilistic concordance, or by outlying specific sources, due
to possible centre or user biases. Such source outlyingness would be measured by the
SPO metric. Researchers could decide to remove anomalous sources from their study
or take the appropriate decisions to correct possible biases. As an example, in the
development of predictive models outlying sources may reduce the global effectiveness
and generalisation of models. Researchers may even consider detected variabilities as
an outcome of their studies. In addition, the multi-source variability plot may help
to visually identify patterns among a large number of sources, with the possibility
to use the intermediate PDF dissimilarity matrix as the input of subgroup discovery
algorithms such as hierarchical clustering.

4.6.2 Limitations

Using the multi-source variability metrics may require some attention under some
situations, as well as in most actual data mining methods. Results showed that metrics
are scalable to the number of variables. This is true according to the theoretical
definition of metrics. However, in practice, the curse of dimensionality may affect to the

75



Chapter 4. Multi-source variability metrics for biomedical data

metrics. Hence, as the number of variables increases, the probabilistic space becomes
sparser. Specifically, the sparsity of a low number of data points—i.e., individuals—
across the probabilistic space may cause the PDF estimations to be inaccurate—e.g.,
sparse, unsmoothed or ‘peaky’ PDFs—, leading to anomalous PDF distances. Such a
variance of PDF distance estimators related to dimensionality has been discussed in
other studies (Carvalho et al, 2013).

Nevertheless, as in most data mining tasks, the curse of dimensionality can be
relaxed using proper dimensionality reduction methods or selecting a subset of ap-
propriate study variables. In this work, PCA was used in the multivariate evaluation
experiment. However, other non-linear methods or methods with a more intelligent
treatment of categorical variables may be more suitable with multi-modal or categori-
cal data. E.g., if distances among categories can be specified, the ISOMAP algorithm
could be used to generate a dimensionality reduced manifold conserving distances be-
tween data points.

On the other hand, even when no dimensionality reduction is required, the PDF
estimation method may also imply some variance on the PDF distances and, thus, to
the variability metrics. The estimation of categorical histograms is straightforward.
However, numerical data can be estimated using both histograms or other smooth-
ing methods such as KDE, which may require tuning specific parameters such as the
bin size (in the case of histograms) or kernel bandwith (in the case of KDE). As a
consequence, an inadequate parametrization may lead to inaccurate PDFs. With the
purpose to accurately estimate PDFs, parameters can be selected manually, where
the optimum values are selected by a user, or automatically, using different methods
to select them (Silverman, 1986; Shimazaki and Shinomoto, 2007). In this work, the
KDE bandwidth was selected using the latter approach, simulating a totally automatic
multi-source variability assessment. The automatic method provided reliable estima-
tions. However, the use of other method or some manual adjustments on the kernel
bandwidths may have provided slightly different results. Nevertheless, in the proposed
method to obtain the variability metrics, the PDF estimation step is flexible to the
use of different estimation methods suited to specific purposes or based on semantic
knowledge about the problem.

Other aspect avoided in this work but which may be present on real multi-source
biomedical data is the patient overlap. Weber (2013) showed that the patient over-
lap among different sources may limit the effectiveness of tools oriented to multi-site
datasets. Thus, if it is to happen, it should be considered before applying any method.
However, if the number of individuals is sufficiently high in comparison with those
overlapping patients, that problem may be of little significance.

4.6.3 Future work

Some of the classical methods, such as ANOVA or χ2 tests, have associated p-values
indicating the statistical significance on the difference between the univariate mea-
surements. They allow taking decisions based on the rejection of a null hypothesis.
The variability metrics do not currently provide such a p-value, hence, its interpre-
tation aimed to decision making may require further understanding. The GPD can
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be considered a estimator equivalent to the notion of normalized standard deviation
of PDFs. As a descriptive estimator, further work can be carried out to characterize
its measurements on different contexts and problems. First, the GPD behaviour can
be characterized according to different changes on different types of distributions, as
described in Chapter 3. Second, the GPD outcomes can be associated to evaluation
indicators of different target problems combining multi-source data. As an example,
it may help understanding which GPD thresholds are sufficient to maintain accept-
able error bounds in predictive modelling combining multi-centre data. Also related to
the characterization of the method, we will study the relationship between the latent
central distribution provided the simplex centroid with a näıve global distribution ob-
tained by pooling the data from all the multiple sources. This will suppose a helpful
exercise to evaluate the improvements of the SPO metric respect to the distance to
that näıve distribution, given that the latter will be weighted by each source sample
sizes, in addition to be less informative (as the individual source features are averaged)
than the centroid-latent one. Regarding to the SPO, as shown in Figure 4.2 (b), the
metric appears to be convex with respect to the number of sources for a fixed distance
among them, a property that can be proved in future work. On the other hand, it is
also left for future work studying the possibility to provide confidence intervals on the
variability metrics.

Nowadays many biomedical studies still count with low sample sizes, what may lead
to the aforementioned limitations, specially in high dimensions. Hence, further work
should be carried out with the purpose to characterize this effect to obtain possible
calibrations or error bounds for the metrics. Additionally, such work may be combined
with the study of the proper dimensionality reduction methods suited to the analysed
data.

It may also be noted that as the Jensen-Shannon distance was used in this work
as PDF distance for its symmetry, smoothness and bounds, that distance is at a small
constant to the Hellinger distance (Jayram, 2009; Sáez et al, 2013b). Hence, each
of them may be used interchangeably for the proposed metrics. Further studies may
identify specific features for their selection.

Other interesting capabilities of the method emerge as future work aimed to the
data preparation procedures. The method can be used to assess the variability of
other data quality features such as missing data. The GPD and SPO metrics represent
additional features of the dataset which may improve the development of models or
hypotheses on multi-source data. In an environment with a large number of sources,
such a large set of hospitals in a country, or a large number of users in a hospital,
the simplicial projection can be used to obtain a clustering of these sources, as well as
to provide 2D or 3D visualizations of the source dissimilarities. Hence, further visual
analytics methods for data source multi-source variability will be studied to provide
more informative visualizations (e.g., considering sample sizes or other source features)
and interactive control panels. Finally, measuring the variability metrics through a set
of temporal batches can provide a temporal monitoring of the inter-source variability
as well as help to detect and monitor source biases.

Further discussions can be made deriving the application of the developed variabil-
ity metrics to other purposes. Data source variability, as studied in this work, can
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be classified as a representation learning problem. Representation learning (Bengio
et al, 2013) aims to find latent prior knowledge, namely ‘priors’, about data to facili-
tate the data understanding and model development on data mining problems. Hence,
the GPD or SPO metrics may be used to represent such a prior knowledge of data.
For instance, in a multi-source dataset each source outlyingness can be included as
an additional variable to compensate possible dissimilarities on sources when devel-
oping data models. Similarly, the metalearning field of study (Brazdil, 2009) aims to
find metaknowledge about models or data to guide the search of the most appropriate
model for a specific problem. Thus, the variability metrics could be used to character-
ize particular datasets, where their effectiveness as a metaknowledge feature to choose
apropriate models could be studied.

Finally, the use of the SPO as a metric to track outlyingness in temporal batches
of data could also be studied. However, although it could indeed measure the degree
of difference of a temporal batch with respect to others, the approach would miss
the temporal relationship among those time batches—each would be treated as an
independent data distribution, while they are not—, where other methods such as
those proposed in the next Chapter, or a further adaptation of the SPO, would be
more adequate.

4.7 Conclusions

When multi-source data samples are expected to represent the same, or a similar pop-
ulation, variabilities among the sources’ PDFs may hinder any data exploitation or
research processes with such data. This work constructs metrics for assessing such vari-
abilities. As an objective, the metrics should be robust to multi-type, multi-modal and
multi-dimensional data as well as bounded and comparable among domains. The here
developed method based on simplicial projections from PDF distances have demon-
strated capabilities to accomplish these hypothesis, providing metrics for measuring
the global probabilistic deviation of data, the source probabilistic outlyingness of each
data source, and a interpretable variability plot visualization of the inter-source vari-
ability. The metrics can be used as a complementary or alternative method to classical
univariate statistical tests, with the advantages of being independent to the type of
variable, dealing with multi-modal distributions, and providing additional visualiza-
tions. Additionally, the GPD metric, Ω, stands as an estimator equivalent to the notion
of the normalized standard deviation of a set of PDFs, a concept that may be used in
several different purposes.

In practice, the multi-source variability metrics can be used as part of data qual-
ity assurance protocols or audit processes. The GPD and SPO metrics conform a
multi-source variability data quality dimension to assess the multi-source probabilistic
concordance of data, and without the need of a gold standard reference dataset. Hence,
the variability metrics may help assuring the quality of—increasingly larger—biobanks-
based research studies involved with multi-center, multi-machine or multi-user data.
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Chapter 5

Probabilistic change detection and
visualization methods for the
assessment of temporal variability
of data repositories

Knowledge discovery from biomedical data can be applied to on-line, data-stream anal-
yses, or to retrospective, timestamped, off-line datasets. In both cases, variability in
the processes that generate data or in their quality features through time may hinder
either the knowledge discovery process or the generalization of past knowledge. This
chapter establishes the temporal variability as a data quality dimension and proposes
new methods for its assessment based on a probabilistic framework. Concretely, meth-
ods are proposed for (1) monitoring changes, and (2) characterizing changes, trends
and detecting temporal subgroups. First, a probabilistic change detection algorithm
is proposed based on the Statistical Process Control of the posterior Beta distribution
of the Jensen-Shannon distance, with a memoryless forgetting mechanism. This algo-
rithm (PDF-SPC) classifies the degree of current change in three states: In-Control,
Warning, and Out-of-Control. Second, a novel method is proposed to visualize and
characterize the temporal changes of data based on the projection of a non-parametric
information geometric statistical manifold of time windows. This projection facilitates
the exploration of temporal trends using the proposed IGT plot and, by means of
unsupervised learning methods, discovering conceptually-related temporal subgroups.
Methods are evaluated using real and simulated data based on the United States (US)
National Hospital Discharge Survey (NHDS) dataset.

The contents of this chapter were published in the journal publication by Sáez et al
(2015)—thesis contribution P4. The developed methods are included in the software
contributions S1 and S3.

5.1 Introduction

Knowledge discovery on biomedical data is generally performed over healthcare repos-
itories or research biobanks. Either when the research repositories are generated from
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routine clinical data or when they are specifically designed for a research purpose,
it is well accepted that the efficiency of the research processes and the reliability on
their information and results are improved if the repository has been assessed for data
quality (Cruz-Correia et al, 2010; Weiskopf and Weng, 2013).

The data quality research has gained attention since the work by Wang and Strong
(1996). Following their approach, many studies have been developed to define what
characteristics of data are related to its quality, generally known as data quality dimen-
sions. Additionally, the increasing establishment of electronic health records (EHR)
and the increase of available data is wide-spreading the necessity of biomedical data
quality assessment procedures for maintaining high-quality, curated biomedical infor-
mation repositories (Weiskopf and Weng, 2013).

Time is a factor that has been studied in relation to the biomedical data quality
in some works. Recently, Weiskopf and Weng (2013) performed a systematic review
on methods and dimensions of biomedical data quality assessment. From a resultant
pool of 95 articles, only four were related to the currency of data. According to these
studies, currency refers to the degree of how up-to-date the measurements of a patient
are, and it is measured based on temporal thresholds. However, Cruz-Correia et al
(2010) and Sáez et al (2012b) introduced that another aspect of data quality is related
to the fact that when data is collected for long periods of time, the processes that
generate such data do not need to be stationary. This may be due to several reasons,
such as changes in clinical protocols, environmental or seasonal effects, changes in
the clinical staff, or changes in software or clinical devices. Thus, the non-stationary
biological and social behaviour, as the source of biomedical data, may lead to different
types of changes in data probability distribution functions (PDFs), namely gradual,
abrupt or recurrent. These changes may also lead to partitions of data into subgroups
of conceptually and probabilistically-related time periods, namely temporal subgroups.
Therefore, if it is assumed that the data generating processes are stable through time,
undesired and unexpected data changes may lead data to fail meeting users—i.e., data
analysts—expectations, thus being considered as a lack of data quality.

This work proposes new methods for the assessment of temporal changes in biomed-
ical data PDFs which can be used as a framework under a temporal variability data
quality dimension. This is related to assessing the changes causing non-stationarity
of data time series (Brockwell and Davis, 2009). Hence, methods are proposed to (1)
monitor changes, and (2) characterize changes, trends and detect temporal subgroups.
In addition, due to the heterogeneous characteristics of biomedical data (Sáez et al,
2013b), methods must be robust to different variable types, as well as to multivariate,
multi-modal data. Furthermore, in order to improve the scalability of the methods,
their outcomes should be provided as comparable among different domains, hence re-
quiring bounded metrics. As a consequence, a probabilistic framework is established
to support the proposed methods, comprising (1) a non-parametric synopsis of PDFs,
using an incremental, memoryless non-forgetting approach (Rodrigues et al, 2010),
and (2) a PDF distance measurement based on information-theoretic probabilistic dis-
tances (Csiszár, 1967; Lin, 1991), concretely in the Jensen-Shannon distance (Endres
and Schindelin, 2003).

The first proposed method is a probabilistic change detection algorithm to mon-
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itor changes in non-parametric PDFs through time. It is based on the concepts of
the Statistical Process Control (SPC) by Gama et al (2004), originally designed for
drift detection in the performance of machine learning models. The new algorithm
(PDF-SPC) is based on the monitoring of the incrementally estimated posterior Beta
distribution of the Jensen-Shannon PDF distance, classifying the degree of current
change in three states: In-Control, Warning, and Out-of-Control.

The second proposed method is a novel approach to visualize and characterize
the temporal changes of data based on the projection of a latent, non-parametric
information-geometric statistical manifold (Amari and Nagaoka, 2007) of time win-
dows. Concretely, a dissimilarity matrix is obtained from the PDF distances among the
different time windows, where multi-dimensional scaling is used afterwards to project
the temporal statistical manifold (or a dimensionally reduced version). Hence, being
the PDFs of time windows projected in a geometric space, this permits visualizing and
characterizing the temporal changes that occur in data, as well as to apply unsuper-
vised learning methods, such as clustering, to obtain conceptually-related subgroups
of temporal windows.

The interpretation of the results provided by the proposed methods is facilitated by
visual methods, namely PDF-SPC control charts and information-geometric temporal
plots (IGT plots) of the statistical manifolds. Also, dendrograms and dissimilarity
heat maps can be used as complementary visualizations. Additionally, as a by-product
of the probabilistic framework, the continuous estimation of PDFs leads to probability
mass temporal maps which, similarly to spectrograms, help understanding the temporal
changes of probability distributions.

The rest of the chapter is organized as follows. Section 5.2 describes the re-
quired background. Section 5.3 describes the probabilistic framework and the two pro-
posed methods. Section 5.4 describes the National Hospital Discharge Survey (NHDS)
dataset used in the evaluation. Section 5.5 describes the evaluation and its results.
Section 5.6 discusses the study, and compares it with state-of-the-art related work.
Finally, Section 5.7 provides the conclusions of the chapter.

5.2 Background

Biomedical data are generally gathered in two ways for its analysis: on-line and off-
line. The classical method for accessing research data is as an off-line dataset, e.g., a
comma-separated values file or a small relational data base. However, the continuous
increase on the amounts of available clinical data is changing the tendency to on-
line methods, where data is analysed through the continuous observation of batches,
generally aiming to optimise processing and storage resources (Gama and Gaber, 2007;
Rodrigues and Correia, 2013). On the other hand, when the purpose is to monitor
biomedical indicators in real time, the on-line analysis is straightforward. This work
aims to apply to both scenarios, thus, providing users feedback about changes on their
off-line dataset or during on-line processes.

This section describes some previous theoretical background which is required for
the new methods proposed in this work. Concretely, this background is divided in two

81



Chapter 5. Probabilistic change detection and visualization methods

main topics: the probabilistic framework to compare biomedical data distributions and
the change detection methods.

5.2.1 Probabilistic distances on biomedical data distributions

Biomedical data show heterogeneous conditions. They are generally based on multi-
modal distributions—i.e., various inherent generative functions, such as a mixture
of affected and unaffected patients. Studies may be uni- or multivariate, and may
be composed of different types of variables—i.e., continuous, discrete ordinal and non
ordinal, or mixed. Under these conditions, comparing different data samples or batches
through time based on classical statistics may not be enough representative, or even
not valid. Additionally, in order to measure the magnitude of changes it is interesting
to provide a metric for such comparisons which, ideally, should be bounded to facilitate
its comparability on different domains.

In Chapter 3 we studied the behaviour of different PDF dissimilarity metrics with
respect to these conditions. The results of such study are summarized in Table 3.1. The
results showed that the aforementioned data features may complicate the application
of classical statistical or data analysis methods for the assessment of differences among
data samples. Specifically, the results confirmed that classical statistical tests may
have difficulties on multi-modal data, or may not be suitable at all on multivariate
or multi-type data. Information-theoretic distances, including the Jeffrey and Jensen-
Shannon distances, and the EMD resulted the most suitable distances to all conditions.
Information-theoretic are distances which derive from the Shannon’s entropy theory,
while EMD derives from the digital imaging field as the optimal minimum cost of
transforming one histogram into another. Then, information-theoretic distances permit
constructing over the theory of a probabilistic framework.

Focusing on the information-theoretic distances, the Jeffrey distance is a sym-
metrized, metric version of the Kullback-Leibler divergence. However, it is not bounded
and, as we showed in Chapter 3, when the probability mass in any region of the support
in any of the compared PDFs tends to zero, the metric tends to infinite. In contrast,
the Jensen-Shannon distance (JSD), square root of the Jensen-Shannon divergence, is
a metric bounded between zero and one, and it was smoothly convergent to one on
that situation. As a consequence, in this work the JSD was selected as the distance
between PDFs.

5.2.2 Change detection

Change detection methods have been widely studied in data streams, specially when
data are generated as a continuous flow and limited processing or storage resources
are available (Gama, 2010). Change detection aim at identifying changes on sufficient
statistics of the sample measured through time (Basseville and Nikiforov, 1993; Gama
and Gaber, 2007). The selection of the change detection method and the corresponding
sufficient statistic depend on the purpose, and generally follow two approaches: (1)
monitoring data distributions, such as the evolution of the average; or (2) monitoring
the evolution of performance indicators, such as the fitness of data mining models or
patterns (Klinkenberg and Renz, 1998).
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Changes can be classified according to their causes and to their behaviour, e.g.,
their rate of change. Regarding to the causes, changes can occur due to modifications
in the context of data acquisition, e.g., changes in clinical protocols. On the other hand,
related to their behaviour, changes may be characterized as 1) gradual, 2) abrupt and
3) recurrent. In the literature, gradual changes are also known as concept drifts, while
abrupt as concept shift. Abrupt changes do not necessarily imply changes with a large
magnitude. In fact, the early Warning of small changes may be of crucial importance to
prevent larger problems caused by the accumulation of such small changes (Basseville
and Nikiforov, 1993). The proper change detection methods will depend on these
requirements.

In this study, the focus is to detect and characterize changes in the PDF of data.
This is usually based on monitoring temporal windows of the current PDF with respect
to a reference window. This involves three related aspects: (1) the type of window
scheme, (2) the synopsis of the windowed data into a sufficient statistic, and (3) the
change detection method on the sufficient statistic.

Time windows: Time windows schemes define the characteristics of the temporal
period which data is synopsed—i.e., aggregated—to be monitored. The simplest ap-
proach is to use sliding windows of fixed size (Mitchell et al, 1994; Gama and Gaber,
2007). Thus, for a window size of w observations, when the individual i is observed, the
i−w is forgotten. This approach is useful on sensor data, which are expected to arrive
in a continuous stream. However, biomedical data do not necessarily have a constant
flow, e.g., the number of patient discharges presents large variations during the day,
among the days of the week, or have a seasonal effect. This, in addition to the social
organization of time, may lead to an inaccurate statistical sampling. Hence, a solution
comes by using sliding windows within temporal semantic landmarks (Gehrke et al,
2001), i.e., aggregating daily, weekly, or monthly data, independently of the number
of individuals within each semantic block. These approaches use a catastrophic-forget,
i.e., the outside-window information is ignored. However, as concepts may evolve
smoothly, old data may still be important (Gama et al, 2004). In tilted windows,
current information is an aggregation at increasing levels of granularity from past to
current data (Han et al, 2012). Thus, old data are still used but latter examples are
given more importance. Other approach to synopse data without forgetting is using
weighted sliding windows. Hence, each observation is weighted according to its age,
getting older data less weight. Due to the fact that the amount of memory is limited,
specially in ubiquitous streams scenarios, weighted sliding windows weight data indi-
viduals within a window. Thus, there is still a minor outside-window forgetting. In
order to overcome this issue, Rodrigues et al (2010) proposed the incremental memo-
ryless fading windows. It uses all previous data in an incremental manner, i.e., only
the last observation is maintained in memory, approximating weighted windows within
specific error bounds.

Synopsis: Synopsis methods aim to aggregate or summarize data within a window
as the basis for the sufficient statistic to be monitored for changes. Simplest methods
may just calculate the window central tendency—e.g., a weighted average according
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to weighted windows schemes—and dispersion. In scenarios where the Gaussian be-
haviour is not the default, other methods such as histograms or wavelets (Chakrabarti
et al, 2001) may result more suitable. Thus, frequency histograms or wavelet coeffi-
cients are calculated on the window data as a compact aggregation of its information.
The synopsed sufficient statistic of a current window i can be calculated, as previously
mentioned, according to weighted past information. Hence, memoryless fading win-
dows provide α-fading sufficient statistics considering all previous data points. The
general form of an α-fading statistic Υα(i) over a sequence of observations {υi} is

Υα(i) =

{
υ1, i = 1,

υi + α ·Υα(i− 1), i > 1,
(5.1)

with 0 < α < 1. Hence, Υα(i) is the α-fading statistic obtained from the synopsis of
data in the landmarked window i.

Detection: Change detection methods have been proposed depending on the type
and purpose of the analysed data (Sebastião and Gama, 2009). The Page-Hinkley Test
(Mouss et al, 2004) is one of the most referred when the monitored data is assumed
to show a Gaussian behaviour—e.g., in industrial processes. Data streams do not nec-
essarily need to follow a Gaussian distribution. To deal with this, Kifer et al (2004)
proposed a non-parametric change detection method based on a relaxation of the total
variation distance between PDFs. This is important when change detection is to be
applied not to a single data stream, but to a non-parametric probability distribution,
and it is specially a challenge when monitoring multivariate sets of data with multiple
types of variables simultaneously. On the other hand, with foundations on the Statis-
tical Quality Control by Shewhart and Deming (1939), Gama et al (2004) proposed a
Statistical Process Control method to detect changes in the performance indicators of
machine learning models—i.e., the classification error-rate. Their SPC defines three
possible states for the process: In-Control, Warning and Out-of-Control. The state is
selected according to the confidence interval of the current error-rate to be generated
from the original distribution. Thus, an Out-of-Control state is associated to a concept
drift, leading to the re-learn of a new classification model with the observations since
the last Warning state—as a meaningful reference of the beginning of the new concept.

5.3 Proposed methods

This section describes the proposed methods for the assessment of the temporal vari-
ability DQ dimension. The proposed methods are based on a common probabilistic
framework defined by the measurement of the distance between the PDF of different
temporal windows. This framework is described first in this section. Then, the new
methods for change monitoring and for the characterization and subgroup discovery
are described.
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5.3.1 Probabilistic framework

The framework defines the methods to (1) estimate the PDF of the data within a
window, and (2) measure the PDF distance between two windows.

In terms of change detection, the method to estimate the window PDF can be
defined according to a time window scheme and synopsis method. A prior consideration
is that the social organization of time is reflected in temporal biomedical data. Thus,
depending on the hour, weekday, week, month or year there will always be an implicit
biased behaviour. As a consequence, the use of such a temporal landmarked windows
(with a granularity according to the characteristics of the study) is recommended for
a proper sampling. Hence, sufficient statistics will aggregate the data within such
windows.

On the other hand, in Section 5.2.2 it was defined that the flow at which biomedical
data is generated is not generally constant—i.e., the number of individuals per time
period. This may depend on the aforementioned social organization, but also on other
contextual factors. Therefore, the data samples in different landmarked windows may
not be enough representative, and may lead to inaccurate sufficient statistics. In order
to overcome that issue, the landmarked windows are combined with a memoryless
fading windows scheme. The initial landmarked window and the fading window are
used in different tasks. While the former contains the data points which are synopsed
to obtain the sufficient statistic, the later contains the set of sufficient statistics which
are gradually weighted. In addition to the computational advantages of memoryless
fading windows, as an approximation to weighted windows they contribute to the
non-forgetting of past data, which is important for the tracking of gradual changes.

A requirement for the temporal variability methods is that they must be robust
to the heterogeneous conditions of biomedical data. Hence, synopsis methods should
capture such information for further analyses. With such a purpose, histograms stand
as a proper method as they can be obtained for continuous, discrete, and even for
mixed types problems, as well to multivariate data.

On discrete variables, histograms may exactly correspond to their PDF, where each
bin contains the probability mass associated to a value on the distribution support.
However, on continuous distributions histograms must be defined according to a set
of non-overlapping intervals, leading to a discrete number of bins approximating the
original continuous PDF. Different techniques exist to obtain the proper number of bins
on continuous data (Guha et al, 2004; Shimazaki and Shinomoto, 2010). Additionally,
when the problem is purely continuous, KDE methods (Parzen, 1962; Bowman and
Azzalini, 1997) can be used to obtain a generative and smoothed PDF.

As a consequence, each window PDF, further on Pi, will be approximated as an
α-fading averaged histogram where the probability mass of each bin is

Hb,α(i) =
Sb,α(i)

Nb,α(i)
, (5.2)

where, following Equation 5.1, Sb,α(i) is the α-fading sum of the raw probability mass
of bin b at window i, defined as
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Sb,α(i) =

{
pb(1), i = 1,

pb(i) + α · Sb,α(i− 1), i > 1,
(5.3)

where pb(i) is the probability mass of bin b at window i. Besides, Nb,α(i) is the
corresponding α-fading increment (i.e., the α-fading account of averaged bins), and
is defined as

Nb,α(i) =

{
1, i = 1,

1 + α ·Nb,α(i− 1), i > 1.
(5.4)

The memoryless approximation of the α-fading averaged histogram is not error free
in comparison to a weighted approximation. It is proved that the error can be bound
within a confidence interval of ±2εR setting α = ε

1
w , where R = 1 is the variable

range—as a probability mass—, and w corresponds to the window size to approximate
(Rodrigues et al, 2010).

On the other hand, the framework establishes a method for the measurement of
the distance between the PDFs of two windows. Such method should be 1) robust to
multivariate, multi-type and multi-modal data, 2) bounded and 3) smoothly convergent
with near-0 probability bins. As discussed in Section 5.2.1, and according to the results
of Chapter 3, a method that fulfils these properties is the Jensen-Shannon distance.
Hence, the distance between the PDFs of two windows, Pi and Pj is

d(Pi, Pj) = JSD(Pi||Pj), (5.5)

where JSD(Pi||Pj), is the Jensen-Shannon distance in equation 2.36. The used Jensen-
Shannon distance is based on the Kullback-Leibler divergence (Equation 2.29) which,
considering the histogram approximation of the PDFs, will be calculated as:

KL(P ||Q) =
∑
b

log2

(
Pb
Qb

)
Pb, (5.6)

where Pb and Qb are the approximated probability mass at bin b. We recall that using
the base 2 logarithm to calculate the Kullback-Leibler divergence, the Jensen-Shannon
distance is bounded between zero and one.

5.3.2 Change monitoring

With the purpose of monitoring changes as part of the temporal variability data quality
assessment, a new change detection algorithm is proposed. The degree of change
between the PDFs of two time windows is given by their Jensen-Shannon distance. The
JSD is [0, 1]-bounded and always positive. Thus, in a stable process, i.e., where the
data distribution under study only varies over time within some small noise, monitoring
the JSD between the PDFs of the current window and a reference past window will
provide a stable signal close to zero. Then, the objective would be monitoring a
sufficient statistic associated to the data variability, i.e, a sufficient statistic of the
distribution of the Jensen-Shannon distances. The proposed change detection and
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monitoring method is based on the concepts of SPC by Gama et al (2004)—originally
aimed to monitoring the error rate of predictive models—to monitor the data variability
based on the Beta distribution of the JSD.

Suppose a sequence of PDF estimations {Pi}. Using the first element as a reference,
Pref = P1, the JSD of further elements P2, ..., Pi with respect to the former provides
a sequence of distances {di}. In a stable process, d will approximately be distributed
around a central tendency measure close to 0 associated to a latent noise. More strictly,
as the JSD is [0, 1]-bounded, d can be defined by a Beta random variable. Hence, in a
stable process, after a transitory state, the mean value µ of the Beta(α, β) distribution
B given by {di} will remain stable. Additionally, an upper confidence interval uz

for B is given by the inverse cumulative distribution function iCDF (.5 + z/2), with
0 < z < 1—e.g., for an upper confidence interval at 95% then z = .95.

The proposed PDF-SPC method manages three registers during the monitoring,
uz1min, uz2min and uz3min, with z1 < z2 < z3. For each new distance di, which updates the
Beta distribution B, if the new uz1i is lower than uz1min, the three registers are updated
based on Bi. Hence, the values of z1, z2 and z3 depend on the desired confidence
levels. In this work, we have established those confidence levels based on the three-
sigma rule, therefore, the upper confidence intervals are set to u.68

min, u.95
min and u.997

min.
This decision is based on widely adopted confidence intervals in statistical methods,
however, the selection of confidence levels may be adapted to specific domains of use,
or even calibrated according to a desired response.

Given a new distance di, three possible states are defined for the process:

� In-Control: while uz1i < uz2min. The monitored PDF is temporary stable.

� Warning: while uz1i ≥ uz2min ∧ u
z1
i < uz3min. The monitored PDF is changing but

without reaching an action level. Its causes may be noise or a gradual change.
Hence, an effective change should be confirmed based on further data.

� Out-of-Control: whenever uz1i ≥ uz3min. The current PDF has reached a signifi-
cantly higher distance from the past reference. The current Bi is different from
the reference with a probability of z3.

Reaching the Out-of-Control state means that a new concept is established. As
a consequence, in order to continue the change monitoring, the PDF-SPC algorithm
(Algorithm 1) will replace the reference PDF with the current concept. Hence, if the
Out-of-Control state is reached after Pj is observed, then Pref = Pj.

As well as the estimation of PDFs is based on a α-fading incremental approach,
with the purpose to avoid storing in memory all the observations of di, the distribution
B is updated using an incremental approach. Hence, the estimation of the parameters
of B, α̂ and β̂ is based on the Maximum Likelihood Estimation (Hahn and Shapiro,
1968) where the initialization of the parameters (Equations 5.7 and 5.8) was modified
to use a recursive estimation of the sample geometric mean, Ĝ (Equation 5.9).

α̂ = 1
2

+
Ĝ(di)

2(1− Ĝ(di)− Ĝ(1− di))
(5.7)
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β̂ = 1
2

+
Ĝ(1− di)

2(1− Ĝ(di)− Ĝ(1− di))
(5.8)

Ĝ(xi) =

((
Ĝ(xi−1)

)i−1

xi

)1/i

(5.9)

input: Pref , current reference PDF
Sequence of PDFs: {Pi}
begin

Let Pi be the current PDF
Let di = JSD(Pi||Pref )
Let B be a Beta(α, β) distribution
Re-estimate B with di
if uz1i < uz1min then

uz1min = uz1i
uz2min = uz2i
uz3min = uz3i

end
if uz1i < uz2min then

// In-Control
Warning?← False

else
if uz1i < uz3min then

// Warning Zone
if NOTWarning? then

Warning?← True
else

nothing
end

else
// Out-of-Control
Pref = Pi
Warning?← False
Re-start B, uz1min, uz2min, uz3min

end

end

end
Algorithm 1: The PDF-SPC change monitoring algorithm

The PDF-SPC permits identifying timestamps related to concept changes, i.e.,
whenever Warning and Out-of-Control states are reached. As a possible initial indi-
cator of further larger changes (Basseville and Nikiforov, 1993), that information is
specially useful to rapidly react to, or even to predict, changes. On the other hand,
Widmer and Kubat (1996) suggested that two concepts may coexist before a change is
achieved. The Warning state is fired when there is a suspect for a change, which may
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be confirmed once there is enough evidence by the Out-of-Control state. Hence, the
temporal distance between a Warning an Out-of-Control states may be an indicator
of such period of coexistence of concepts and, thus, of the rate of change. However,
other descriptive information to characterize the behaviour of changes may be missed,
e.g., whether concepts can be grouped into meaningful, possibly recurrent, groups. A
promising novel method to deal with this problems is described next.

5.3.3 Characterization and temporal subgroup discovery

With the purpose to characterize the behaviour of changes and facilitate the discovery
of temporal subgroups, a novel method is proposed. As the PDF-SPC monitors the
degree of changes, this new method aims to describe them, facilitating their charac-
terization, e.g., into gradual, abrupt or recurrent, and analysing the evolution of data
inherent concepts.

According to the probabilistic framework, each time window can be seen as an
individual characterized by its PDF estimation. The Information Geometry field states
that probability distributions lie on a Riemannian manifold whose inner product is
defined by the Fisher Information Metric of a specific family of probability distributions
(Amari and Nagaoka, 2007). The geodesic distances between the points associated to
PDFs are approximated by their PDF divergences, such as the Jensen-Shannon. Hence,
the JSDs among each pair of PDFs can be used to approximate a non-parametric—i.e.,
family-independent—statistical manifold where the temporal PDF estimations lie and,
as a consequence, allow the discovery of related trends and subgroups. In addition, due
to the JSD bounds, the maximum possible distance among any pair of PDF points is
one. That means that the approximated statistical manifold is bounded by a hyper-ball
of diameter one. Hence, the studied PDFs will lie on space comparable among different
problems, as it will be known that: 1) equal PDFs will co-locate and 2) completely
separable PDFs will be located at the hyper-ball surface—i.e., at a distance of one.

Suppose a sequence of PDF estimations {Pi}, with 1 < i < n. The
(
n
2

)
pairwise dis-

tances d(Pi, Pj) define a n-by-n symmetric dissimilarity matrix Y = (y11, ..., ynn), yij :
d(Pi, Pj). Hence, Y can be used as the input of a compatibled clustering method, such
as a complete linkage hierarchical clustering, which will provide a set of groups Gk,
each related to a data inherent temporal concept.

The approximated statistical manifold provides information about the layout of
PDFs in such a latent space, e.g., to discover conceptual subgroups. However, much
more information can be taken considering that there is an implicit temporal order
among such PDF points. While the distances among subgroups indicate the concept
dissimilarity, the layout of the temporal order among their points provides informa-
tion about how concepts evolved through time. Hence, a temporal continuity through
the points of a subgroup, e.g., along the vector defining its largest variance, is an
indicator of a gradual change. On the other hand, a temporal alternation among dif-
ferent subgroups every certain time period may be an indicator of recurrent abrupt

dNote that Jensen-Shannon distances are not euclidean, hence, compatible clustering methods or
euclidean transformations should be used.
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changes among probabilistically distinguished concepts. Similarly, a temporal fluctua-
tion through a direction within a subgroup, e.g., along one of its variance vectors, may
be an indicator of a recurrent gradual change among closer, probabilistically-contiguous
concepts.

Hence, in order to permit such analysis it is needed to translate the dissimilarity
matrix Y into a set of points in a geometric space. Considering that the distances in
Y are not euclidean, the use of the MDS method is suitable to obtain an embedding
of the PDFs into a euclidean space—see Section 2.2.4.

Hence, given the dissimilarity matrix Y , MDS will obtain the set P = (p11, ...,pnc)
of points for the n PDFs in a Rc euclidean space such that c = n− 1.

Therefore, based on the calculus of a dissimilarity matrix among the PDFs of time
windows or batches, and a dimensionally reduced MDS projection into 2 or 3 dimen-
sions, we facilitate the processing of such information in an Information Geometric
Temporal (IGT) plot. The IGT plot stands as a powerful visual analytics tool to ex-
plore, characterize and understand changes from a probabilistic perspective. The IGT
plot then consists in a temporal statistical manifold, which PDFs are lied out as points
which can be labelled e.g. with their temporal index (as shown in this chapter) or with
a formatted date (what will be shown in the following chapters). Illustrative examples
of such visualization are shown in the next section.

5.4 Data

This section describes the data used to evaluate the proposed methods and proposes
a visualization method for monitoring PDFs.

The data used in the evaluation is the publicly available NHDS dataset (NHDS,
2014). Using only adult patients (age > 18), the dataset contains 2,509,113 hospi-
tal discharge records of approximately 1% of the US hospitals from 2000 to 2009.
The minimum date granularity is the discharge month. Hence, the following exper-
iments are based on a monthly basis aggregate landmarked windows, with a total
of 120 months (the time windows will be referred further on as their month index).
The NHDS dataset contains several demographic, diagnosis and discharge status in-
formation. However, for the purpose of this evaluation the age and sex variables are
sufficiently representative, as it is shown next.

With the purpose to illustrate the examples a probability mass temporal map vi-
sualization is proposed, which results as a novel visual method for the monitoring of
biomedical variables. It is based on the idea of dense pixel visualizations (Keim, 2000),
where the range of possible values are associated to a coloured pixel according to a
user-specified colormap. That method has already been used to visualize sensor mon-
itorings (Rodrigues and Gama, 2010). In this case, the method is adapted to visualize
the evolution of PDF estimations, where the domain axis identifies the temporal win-
dow and the range corresponds to the probability bins. Hence, each row of the map
can be seen as a signal of the probability mass evolution for a given support value. In
principle, the method is suitable to variables where there is an order in the variable
support, i.e. as numerical data or discrete ordered. However, it may also be useful to
visualize the joint probability of ordered and non ordered variables, using the latter to
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divide the range axis of the map on repeated supports of the former.
Figures 6.12(a) and 6.12(b) show probability mass temporal maps of the age vari-

able (given in years). As a univariate numerical variable, PDFs at each window are
estimated based on KDE to obtain an smoother histogram. In Figure 6.12(a), an
outside-window forgetting window scheme is used. In Figure 6.12(b), the memoryless
fading window scheme is used (an error of ε = 0.05 was used with a smoothing win-
dow of 12 months). It can be seen that the non-forgetting approach of fading windows
leads to a smoother temporal estimation, which may avoid undesirable noise caused by
non-representative windows. Note that the Gaussian-kernel estimation of KDE causes
that some probability mass from the lower tails of continuous Gaussian kernels is given
to the bins under 18 years.
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(a) Probability mass temporal map of variable
age with non-weighted outside-window forget
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(b) Probability mass temporal map of variable
age with memoryless fading windows
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(c) Temporal evolution of the probability of vari-
able sex (F: female, M: male)
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(d) Temporal evolution of the joint probability
of variables age and sex (the 2-dimensional joint
distribution was vectorized partitioning by sex as:
0-100 for female age, 101-200 for male age)

Figure 5.1: Visualizations for the monitoring of the NHDS variables

It can be observed that the age variable shows a multimodal behaviour which
contains several temporal artefacts of special interest for evaluating change monitoring
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methods. First, there is an abrupt change in month 97. That change is documented
(NHDS, 2010) as a change in the codification of the variable, where ages 91 and
over were recoded to 90. Second, a gradual shift is observed as mid-age patients
(age ≈ 55) get more probability mass through time. This has associated a decrease
in the mass of younger and older patients. This change may be related to a long-
term contextual change—e.g., socio-economic change or due to changes in the sampled
hospitals/population—possibly associated to the increase in life expectancy in the US
(National Research Council, 2011; Arias, 2014). Finally, a recurrent change is observed
in young (age ≈ 30) patients with a periodicity of 12 months. That change is associated
to the increase of births in the summer period, possibly due to the live births seasonality
documented for the US (Cesario, 2002) and other countries (Wellings et al, 1999). Such
effect can be observed in the marginal map for female patients (see Figure C.1).

On the other hand, Figure 5.1(c) shows the temporal evolution of the probability
masses of the sex variable. There is a minor gradual change in the probabilities of male
and female patients, due to the increase in the males/females ratio in the US during
the period of study (Howden and Meyer, 2011).

Finally, Figure 5.1(d) shows the evolution of the joint probability of age and sex.
In this case, while including a discrete non-ordered variable—namely categorical—,
it is not possible to directly apply KDE. Hence the raw synopsed histogram is used
instead. In addition, to facilitate the visualization, the 2-dimensional histogram was
vectorized partitioning by the sex variable, hence the upper half of the map identifies
the evolution of age in females, and the lower in males. As a raw, non-KDE smoothed
histogram, it can be observed that, first, ages below 18 do not get mass (as only adult
patients were included), and second, the aforementioned change in month 97 makes
the age of 90 get the highest mass (as it includes any older patients). That large
difference in probability masses causes that lower values get close colors in the map.
In this case, the visualization can be improved applying a logarithm function with a
tuning parameter to the array of PDFs to visualize, log(P + z), which assigns larger
values of the colormap to the intermediate masses.

Hence, the combination of the age and sex variables in the evaluation study accom-
plishes the three heterogeneous characteristics of biomedical data to which methods
must be robust: age is clearly multimodal, each is of different type, and changes can
be studied on their joint—i.e., multivariate—distribution.

5.5 Evaluation

In this section the proposed methods are evaluated with the real changes present in the
NHDS data described in previous section, as well as with simulated changes applied
on it.

5.5.1 Change monitoring

The PDF-SPC algorithm was applied first to a continuous univariate problem based on
the age variable with the purpose to evaluate its behaviour with respect to the present
changes. Second, it was evaluated on the sex variable, categorical, where a small
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gradual drift occurs. Then, it was evaluated on the multivariate and mixed-types
problem based on the joint probability of age and sex. Finally, a simulated abrupt
shift was introduced in the latter problem as a change in the joint probability of age
and sex but not in their respective univariate estimates, with the purpose to evaluate
the behaviour of the SPC algorithm on that multivariate change. The confidence levels
were set to z1 = .68, z2 = .95 and z3 = .997.

Figure 5.2 shows the results of these four evaluations. The age variable monitoring,
Figure 5.2(a), shows that the three types of changes are detected. First, after the
transitory state there is a continuous increase in the PDF distance with respect to the
reference window, associated to the gradual movement of mass to the mid-age range.
This leads to a Warning state in month 46. Second, the abrupt change in month 97
was clearly detected. Third, the recurrent change on age ≈ 30 is captured as a periodic
change in the probabilistic distance to the reference, however, the selected confidence
levels avoid firing any change from them.

The sex variable monitoring, Figure 5.2(b), shows the gradual switch as an increase
in the monitored distances. However, as expected the magnitude of the change is much
lower—note that the Jensen-Shannon distance is [0, 1]-bounded, hence magnitudes are
comparable. The recurrent change which was easily observed in the age variable is
detected in this case as well. Given the 12-month periodicity, the phase displacement
with respect to the age monitoring may just be due to the selected reference window.

The monitoring of the joint probability of age and sex, Figure 5.2(c), also captures
a gradual change as the mean distance also increases. However, maybe due to the sum
of changes in both variables causes the change to be detected before. Hence, a change
is fired after month 43. Additionally, the codification change in age is also detected,
although a couple of iterations later.

In the last experiment, a multivariate change was introduced in month 20, main-
taining the new concept until the end. Thus, the sex of n patients was switched, where
n corresponds to the minimum amount of patients from any of the two sexes at each
time window—males in all cases. Whilst the change is not detected univariately, the
multivariate monitoring clearly detects the change in month 20.

5.5.2 Characterization and temporal subgroup discovery

The proposed methods for change characterization and temporal subgroup discovery
were applied to two of the previous scenarios: in the age variable monitoring and in
the monitoring of joint age and sex variables with simulated change. It is expected
that characterizations and subgroups are related to the concept changes detected by
the SPC method.

Figure 5.3(a) shows the 2-dimensional IGT plot associated to the statistical man-
ifold where the temporal PDFs estimated from variable age lie. Each PDF is repre-
sented as the index corresponding to its temporal window—i.e., the month—, allowing
temporal changes to be characterized. It can be observed that there are two well dif-
ferentiated groups which, looking at their indices, correspond to the concepts before
and after the codification change in month 97. Looking at the first subgroup, there is a
linear temporal continuity through its larger variance (Arrow A). That continuity is a
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(c) {Age, Sex}
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(d) {Age, Sex} with forced joint change

Figure 5.2: Control charts of the PDF-SPC evaluations. Vertical dotted lines indicate the entering
into a Warning state. Vertical continuous lines indicate a change detection as an Out-of-Control state.

clear indicator of the gradual change moving probability mass to the mid-age patients.
For the visual representation, a colormap has been used to assign cooler and warmer
colors to winter and summer months, respectively. Hence, it can be observed that
the second variance component of the first subgroup (Arrow B) is associated to the
mentioned 12-month periodic change. In addition, the same change direction is shown
in the second subgroup.

The apparent subgroups were confirmed with a complete linkage hierarchical clus-
tering based on the PDFs dissimilarity matrix. Figure 5.3(b) shows a heat map of the
symmetric PDFs dissimilarity matrix, where the color temperature represent a larger
probabilistic distance between the PDFs Px and Py. The differences among the two
main groups can be observed, as well as a recurrent distance increase with a 12-month
periodicity. Figure 5.3(c) shows the dendrogram obtained from the clustering method,
which confirms such temporal groups.

On the other hand, Figure 5.4(a) shows the IGT plot of the second scenario. In
this case, it can be observed that there are three well differentiated groups. Looking
at the indices, the first and second subgroups are separated by the forced multivariate
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change in month 20, while the second and third by the univariate change in age. In
addition, there are transitory PDFs between the groups, which may be due to the
smoothing produced by the fading windows approach. Figures 5.4(b) and 5.4(c), as
in the previous example, confirm the discovered temporal subgroups. In this scenario,
the 12-month recurrent change is hindered by the magnitude of the other changes,
however, it can slightly be observed in the variance directions of the subgroups (note
the separability among the seasonal colors) as well as in the dissimilarity matrix heat
map. However, the change detected in month 62 does not establish a subgroup change.
Nevertheless, it represents the resultant change from an accumulated gradual change
on both variables whose magnitude, as it can be observed in Figure 5.2(d), is lower.
The equivalent results for the age+sex scenario without the forced change are shown
in Figure C.4.

5.6 Discussion

This section highlights the significant points of this work, discusses it with related
work and the limitations of the proposed methods and, finally, suggests future lines of
work.

5.6.1 Significance

First, the PDF-SPC algorithm has shown to accurately detect the changes present in
the evaluated data according to their evidences (Section 5.4). The resultant monitoring
charts provide information about the magnitude and type of changes, showing the
current probabilistic distance with respect to the reference concept. Based on the
Jensen-Shannon distance, the magnitude of changes is [0 − 1]-bounded and hence
comparable among different problems, e.g., the magnitude of changes in sex (Figure
5.2(b)) is probabilistically an average of half the magnitude in age (Figure 5.2(a)).
Additionally, based on an incremental approach, the method is suitable to on-line
analyses with a reduced storage and computational cost.

Second, the methods for change characterization and temporal subgroup discovery
based on information geometry have shown to detect temporal subgroups present on
the evaluated data, as well as to help characterizing the type of changes based on the
temporal tendencies of the data points associated to the PDFs of time windows. To the
knowledge of the authors, this is the first study of non-parametric change detection
and characterization based on information-geometric statistical manifolds, with the
potential to be an important step forward. To date, most change detection methods
provide information about the magnitude of changes, their classification according to
the rate of change, which regions in the variables of study show a major contribution
to changes, or even aim to their prediction. However, the temporal projection of a
non-parametric information-geometric statistical manifold constructed from consecu-
tive time-windows permits describing and analysing the behaviour of changes, as the
evolution of a probabilistic concept through such manifold. In this study, the method
has been used on one hand to construct the IGT plots, as a novel visualization tool for
the exploration of temporal changes in data PDF. In other hand, the obtained PDF
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points have been used for unsupervised learning purposes with the purpose to find
temporal subgroups. However, these are only the first steps of many further research
possibilities which still remain opened based on this approach.

Analysing the two proposed methods together, the evaluation results have demon-
strated the consistency between the PDF-SPC change monitoring algorithm and the
information-geometric based methods for the characterization and subgroup discovery,
since the change levels and detections in the PDF-SPC monitoring are associated to
the obtained temporal characterization and subgroups, including the three types of
changes: gradual, abrupt and recurrent. In addition, both methods result suitable to
the heterogeneous biomedical data conditions posed as requirements. The use of the
probabilistic distances approach permits measuring changes in multi-modal distribu-
tions, as previously demonstrated by (Sáez et al, 2013b). This, in combination with
synopsing data into histograms, allows the analysis of uni and multivariate continuous,
discrete ordinal and non-ordinal, as well as mixed distributions. In addition, methods
have shown to be robust to detect changes on multivariate variable interactions.

As a consequence, the proposed methods have shown to be useful tools for data
quality assessment focusing in the temporal variability dimension. This work has
focused to the change monitoring and characterization on data distributions. The
same concepts and methods can be applied to monitor other data quality features,
such as monitoring the degree of missing, inconsistent, or incorrect data. These could
be used to audit the quality of multi-centric or multi-user data gathering for research
repositories, clinical trials, or claims data. Concretely, the latter are known to be far
from perfect (Solberg et al, 2006), where these processes may be of special interest.
Hence, the proposed methods can be used as exploratory data quality assessment
solutions. Furthermore, as based on probabilistic metrics, they might also be used
with quantitative decision making purposes. However further research is required to
define these criteria.

5.6.2 Comparison with related work

Basic statistical methods, similarly to Shewhart control charts, have been used in the
medical monitoring. E.g., laboratory systems have well established temporal quality
controls based on the Levey-Jennings charts and Westgard rules (Westgard and Barry,
2010). Thus, a batch is considered Out-of-Control using basic statistics based on
reference chemical reactives. On the other hand, other studies have used more complex
change detection methods. Rodrigues et al (2011) proposed a method to improve the
monitoring of cardiotocography signals using the memoryless fading window approach.
Sebastião et al (2013) applied a Page-Hinkley change detection test combined with a
time-weighted mechanism for the monitoring of depht anaesthesya signals. Similarly
to the PDF-SPC, these studies focus to the monitoring of data itself, based on quality
control references or in physiological signals.

On the other hand, Stiglic and Kokol (2011) proposed a method to facilitate the
interpretation of changes in the performance of clinical diagnosis classification models
by means of a bivariate analysis of class labels. Using the NHDS dataset, they found a
change in the performance of models to predict chronic kidney disease by the end of year
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2005. Their visual method provided the insights to confirm that the change was due
to change in the ICD9-CM (International Classification of Diseases, Ninth Revision,
Clinical Modification) title and description of concepts D403 and D404, related to the
investigated disease. Additionally, a decrease in the performance measures was found
by the start of year 2008. Interestingly, that change is correlated in time with the
change in the codification of age found in this work.

In the generic change detection domain this is not the first study using non-
parametric PDF distance measures for detecting changes. In their useful approach,
Kifer et al (2004) proposed a relaxed total variation distance among PDFs for change
detection. They discarded using information-theoretic distances claiming discrete dis-
tributions were needed. However, based on the Kullback-Leibler divergence they can
be used on purely continuous and, as demonstrated in this work, even in mixed-types
multi-variate distributions. Dasu et al (2009) and Sebastião et al (2010) did use the
Kullback-Leibler divergence in their respective studies. However, the Kullback-Leibler
neither satisfies the properties of a metric nor is bounded, as required in this study.

The higher dimensionality is a challenge for change detection methods. Several so-
lutions have been proposed in the general change detection domain. Aggarwal (2003)
proposed a method based in a physical model to measure the velocity of changes in
probability masses of continuous data using KDE. To deal with higher dimensional-
ity and facilitate the understanding on changes, he proposed picking sub-projections
in which the greatest amount of change has occurred. Hrovat et al (2014) applied a
strategy to detect relevant subgroups on which to make the analysis, with the purpose
to detect temporal trends on biomedical data. Papadimitriou et al (2005) presented
a method capable to find the key trends in a numerical multivariate time series. The
method internally used principal component analysis (PCA), which may not result ef-
fective with multi-modal distributions nor reducing dimensionality including categori-
cal data, both aspects generally present in biomedical data. The previously mentioned
approach by Dasu et al (2009) measures changes between two PDFs embedded into
a reduced structure using an extension of kd-trees. Thus, a distance metric needs to
be defined between data points, what may be complicated when non-ordinal data is
present. It can be deduced, hence, that dealing with non-ordinal discrete data may
represent another challenge. This work deals with these problems using the synopsis
on non-parametric discrete histograms.

Other approach for change detection suited to multi-modal distributions consists on
monitoring cluster evolutions. Spiliopoulou et al (2006) presented the MONIC frame-
work based on that idea, where different types of cluster changes are characterized.
It is important to distinguish between such approaches and the temporal clustering
presented in this work. Whilst the former clusters data within time windows, in this
work what is clustered are the time windows.

5.6.3 Limitations

In high dimensions, the histogram synopsis method involves by default a larger proba-
bilistic space. Hence, data points may become sparse, leading to ineffective distribution
comparisons, such as larger PDF distances. Due to the heterogeneous conditions of
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biomedical data, the application of non-linear dimensionality reduction methods, such
as ISOMAP (Tenenbaum et al, 2000), or solutions as exposed in related work may
alleviate such problem. Evaluations on high-dimensional simulated changes may help
studying these.

On the other hand, on continuous data, KDE provides smoother PDF estima-
tions than raw histogram estimations. Although the fading window approach already
smooths the obtained PDFs using past data, KDE improves the smoothing within the
current window. However, sometimes using data models instead of raw data may hide
other relevant information present at lower levels of probabilistic magnitude. An in-
teresting example arises from the evaluated data. The histogram estimation of the age
variable is shown in Figure 5.1(d) splitted by sex. It can be observed that in both sexes
(separately in Figure C.1 and Figure C.2) there is a straight temporal gap beginning
approximately at the age of 47, and continuing in a yearly basis. Considering that the
NHDS represents the population of the United States, and that the first sample corre-
sponds to year 2000, it is concluded that these population gap correspond to patients
born around 1943, where the social effects of World War II reduced the birth rates. On
the other hand, the use of methods to select the proper number of bins in histogram
may be useful to overcome some of these issues, however, the proper number of bins
may also vary through time, what may require further study to make compatible the
on-line probability distance measurements as the support is changed.

Finally, we must recall that the IGT plot and PDF-SPC may not provide all the
information related to the detection of heteroscedastic data, in contrast to the distri-
bution heatmaps. Estimating distributions over time in a non-parametric approach,
such as in this work, may facilitate detecting heteroscedastic behaviours. This is
well observed in the distribution heatmaps, such as in Figure 5.1. However, the IGT
plot and PDF-SPC represent the degree of difference among the temporal batches
where, although the differences in heteroscedasticity will be captured, the source of
heteroscedasticity is not shown (although it was not the purpose). Nevertheless, once
the sources of heteroscedasticity are known, one could apply separate temporal vari-
ability analysis for each of them, or even apply a combined use of multi-source and
temporal variability methods, such as proposed next in Section 6.1.2.

5.6.4 Future work

It has been observed in the examples that a recurrent change is related to a 12-month
periodic seasonal effect. During the experiments developed in this work, it was observed
that applying a simple non-weighted sliding window scheme with a window size of 12
months completely removed such effect on the resultant monthly PDF estimations (see
Figure C.3). That effect may result useful for the detection of gradual changes, since
higher frequent, recurrent changes which may hinder the former are removed. However,
the long-term smoothing may cause abrupt changes not to be accurately detected.
Hence, two interesting future work topics arise. First, automatically detecting the
period of recurrent changes, e.g., based on signal processing methods. Second, using
ensemble change detection models combining different window schemes focused to
specific types of changes.
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The study of proper dimensionality reduction methods for effectively measuring
PDF distances on high dimensions is also an important future work. This can be
complemented with methods to select appropriate variable or sample subgroups on
which to make the analysis. In addition, the maintenance and compatibility through
time of these methods to reduce the problem complexity can be studied.

Regarding to the temporal characterization and subgroup discovery methods, it
is open as further work their improvement based on incremental approaches. Hence,
incremental clustering (Rodrigues et al, 2008) and MDS (Brandes and Pich, 2007)
methods could be used with such a purpose. On the other hand, the use of comple-
mentary methods to optimise the efficiency of the projections, such as Self-Organizing
maps (Kohonen, 1982), may be studied.

Another interesting future work is to apply functional data analysis methods (Ram-
say and Silverman, 2005) to model the probabilistic temporal evolution of data on
the information-geometric statistical manifold. They may provide smoothed tendency
curves on which to characterize and measure changes.

Finally, the combination of the temporal variability methods presented in this work
with metrics for the probabilistic multi-source variability among multiple sources of
biomedical data (Sáez et al, 2014b), will lead to a future study aiming to a probabilistic
spatio-temporal data quality assessment.

5.7 Conclusion

The probabilistic methods presented in this work have demonstrated their feasibility
for the change detection, characterization and subgroup discovery of temporal biomed-
ical data. The changes present in the evaluated and simulated NHDS datasets have
been successfully detected, in addition, with a probabilistic interpretation, as provided
by the proposed PDF-SPC and information-geometric projection methods. Further
studies will be made to confirm the generalisation of the methods.

As part of a data quality assessment, the proposed methods can facilitate the data
understanding and lead to better decisions when developing knowledge discovery stud-
ies, either on-line or off-line, based on these data. Used as an exploratory framework,
they permit visualizing the temporal variability of large healthcare databases in an
interpretable and rapidly manner. In addition, methods are built to be comparable
among different domains, hence, they may be used as part of a biomedical data qual-
ity auditory process. This is an important subject, as poor levels of data quality may
have direct consequences on patient care (Aspden et al, 2004) as well as in the biomed-
ical research processes (Weiskopf and Weng, 2013; Sáez et al, 2014b). This work has
demonstrated that data stream and change detection methods can be successfully ap-
plied in the biomedical data context, thus, further studies can still be made to analyse
the impact that a temporal variability assessment can provide to real, in-production
healthcare repositories.

Finally, this work has contributed to the generic change detection field of study in
two aspects. First, the extension of the widely accepted SPC method to the monitoring
of changes in non-parametric PDFs based on information-theoretic distances. And
second, the novel change characterization method based on information geometry. It
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is important to emphasize the contribution to the state-of-the-art of this method. In
this work, it has demonstrated possibilities which have not received proper attention
in the literature yet, such as discovering temporal subgroups or characterizing the
direction and length of changes through the series of time-windows in the statistical
manifold. However, a lot of new possibilities are opened, standing as the first step of
a promising line of research in change detection.
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(a) 2D Information Geometric Temporal plot (IGT plot) of the statistical manifold of variable
age, obtained with MDS from the probabilistic dissimilarity matrix. Points are represented by
the index of the time window (months). Cooler and warmer colors are assigned to winter and
summer months, respectively. Arrow A shows a temporal trend representing the gradual change.
Arrow B represents the 12-month recurrent change. Finally, Arrow C represents the abrupt change
separating the two temporal subgroups.
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Figure 5.3: Change characterization and temporal subgroup discovery on the age variable. Change
characterizations are shown by temporal trends on the projection. Two subgroups are clearly observed
in the approximated statistical manifold (a) and dissimilarity matrix (b), which were confirmed with
a complete linkage hierarchical clustering (c).
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(a) 2D Information Geometric Temporal (IGT) plot of the statistical manifold of variables age+sex
with forced change at month 20 (obtained with MDS from the probabilistic dissimilarity matrix).
Points are represented by the index of the time window (months). Cooler and warmer colors are
assigned to winter and summer months, respectively.
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(b) Dissimilarity matrix heat map
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(c) Dendrogram for temporal subgroups

Figure 5.4: Change characterization and temporal subgroup discovery on the joint age and sex vari-
ables with forced change at month 20. Change characterizations are shown by temporal trends on the
projection. Three subgroups are clearly observed in the approximated statistical manifold (a) and
dissimilarity matrix (b), which were confirmed with a complete linkage hierarchical clustering (c).
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Chapter 6

Applications to case studies

This chapter describes the application of the multi-source and temporal variability
methods developed in this thesis to several case studies. The main case is the Public
Health Mortality Registry of the Region of Valencia, Spain. This is a large multi-
source dataset, which served as the validation benchmark on which both multi-source
and temporal variability methods were systematically applied. Other case studies in
this thesis include the Public Health Cancer Registry of the Region of Valencia, a
National Breast Cancer multi-source dataset and an In-Vitro Fertilization dataset.
Several variability findings obtained by the methods and their causes are described in
this chapter. These results validate the use and usefulness of the methods as part of
DQ assessment procedures in real scenarios.

The introductory notes of this chapter and the Mortality Registry case study are
accepted in scientific publication by Sáez et al (2016)—thesis contribution P5.

6.1 Introductory notes

6.1.1 Summary of the applied methods

The methods used in the present chapter fall into two groups, namely those for as-
sessing multi-source variability (which development is described in Chapter 4) and
those for assessing temporal variability (which development is described in Chapter
5). Both methods are based on the comparison of probability distributions of the vari-
ables among different sources (e.g., sites) or over different time periods (e.g., months).
In concrete terms, the comparisons are made by calculating the information-theoretic
probabilistic distances (Section 2.2.2) between pairs of distributions. These compar-
isons offer a robust alternative to classical statistical tests, where there may not be
appropriate (see Chapter 3).

The assumption made in the application of the methods is that in a repository
with low variability, differences among distributions would be small whereas different
or anomalous data distributions would mean higher variability. To facilitate the com-
parability among studies, the maximum distance is limited to one in all the methods.
This indicates that when a distance between two distributions is one, the two distribu-
tions do not share common values. It is worth mentioning that probabilistic distances
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can be applied either to measure differences either in numerical data, such as ages, or
categorical data, such as coded values, in a multivariate setting and are independent
of sample size.

Data distributions in a repository are a representation of reality, which is measured
or observed and then registered in an information system. Any change in the original
real-world information or in data acquisition and processing—including changes due to
other systematic DQ problems, such as missing data—will have a much greater chance
of being reflected in the data probability distributions: the metrics and visualizations
proposed in this thesis, being probability based, are thus likely to capture most of
these changes.

Appendix D provides basic, illustrative examples of the methods to assess both
multi-source and temporal variability and complement the descriptions given below.

Multi-source variability

The multi-source variability method (Chapter 4) involves constructing a geometric fig-
ure (referred to as a multi-source variability simplex), the points of which represent
data sources and the lines that join the points (the lengths of the lines) represent
the measured distances between the distributions of the data sources. For example,
a triangle represents three data sources. Generalizing to any number of data sources,
the adequate geometric figure is a simplex, the generalization of a triangle to multiple
dimensions. The centroid of the simplex represents the hidden average of the distri-
butions of sources in the repository. Based on this simplex, we get to the next two
metrics and exploratory visualization.

Source Probabilistic Outlyingness (SPO) metric: This metric measures the
dissimilarity of the distribution of a single data source to the global average, which
serves to highlight anomalous data behavior. From the multi-source variability simplex,
we calculate the SPO of each source based on the distance between the point that
represents a given source and the simplex centroid.

Global Probabilistic Deviation (GPD) metric: This metric shows the degree
of global variability among the distributions of sources in a repository, as an estimator
equivalent to the standard deviation among distributions. It is calculated based on
the mean of the distances between each point that represents a source and the simplex
centroid. Both the GPD and SPO metrics are bounded by zero and one. Further,
using the simplex centroid as a reference hidden average distribution avoids the need
for a reference gold-standard data set.

Multi-Source Variability (MSV) plot: This is a visualization of multi-source
variability representing the simplex figure as a two-dimensional (2D) plot with its
two axes representing its two most relevant dimensions, which we named D1-simplex
and D2-simplex. In the visualization, data sources are shown as circles in which the
distance between two circles represents the distance between their probability distribu-
tions. As a consequence, data sources with similar distributions are grouped together,
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whereas those with different or anomalous distributions are positioned far away. As
an alternative visualization to that shown in Chapter 4, the radius of a given circle
is made proportional to the number of cases in the data source and the color of each
circle indicates the SPO of the source.

Temporal variability

The temporal variability method (Chapter 5) involves comparing the distributions
through different batches of data in the repository, each batch representing a user-
specified interval (weeks, months, years, etc.).

Information Geometric Temporal (IGT) plot: This provides an exploratory
visualization of the temporal evolution of data. The idea behind it is similar to that
for the MSV plot. The temporal batches are laid out as a 2D plot while conserving
the dissimilarities among their distributions: based on the positions of the temporal
batches, we can appreciate the evolution of the distributions in the repository over
time. Thus, the IGT plot helps in uncovering temporal trends in the data (as a
continuous flow of points), abrupt changes (as an abrupt break in the flow of points),
recurrent changes (as a recursive flow through specific areas), conceptually related time
periods (as grouped points), and punctual anomalies (as isolated outlying points). To
facilitate the interpretation, temporal batches are labeled to show their date, given
suitable colors (warm colors for summer and cool colors for winter, for example), and
supported by a smoothed timeline path.

Probability Distribution Function Statistical Process Control (PDF-SPC)
algorithm: This provides an automated statistical process control (SPC) for mon-
itoring changes in data distributions, similar to classical SPC methods. In classical
SPC methods, a numerical parameter under control is monitored and kept within some
limits; for example, the results of reactivity controls in laboratory systems are period-
ically tested to check whether they are within the acceptable limits of error (Westgard
and Barry, 2010). Similarly, the purpose of PDF-SPC is to monitor the variability
of data distributions through consecutive temporal batches. This is done by moni-
toring an upper confidence interval (e.g., one standard deviation) of the accumulated
distances of temporal batches to a reference distribution (initially the first batch).
According to the magnitude of the current confidence interval, the degree of change
of the repository is classified into three states: in-control (distributions are stable),
warning (distributions are changing), and out-of-control (recent distributions are sig-
nificantly dissimilar to the reference, leading to an unstable state). Warning states can
be false alarms if the distances get closer to the reference once again, thus going back
to the in-control state. However, when an out-of-control state is reached, a significant
change is confirmed and the reference distribution is set to the current. The results of
the PDF-SPC algorithm are made visible in a control chart, which plots the current
distance to the reference, the mean of the accumulated distances, and the upper confi-
dence interval being monitored and indicates the warning and out-of-control states as
broken or continuous vertical lines, respectively.
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Temporal heat maps: As a support to the temporal variability methods, we pro-
posed the use of temporal heat maps for absolute (counts) or relative (probability
distributions) frequencies. These are 2D plots where the X axis represents the time,
the Y axis represents a possible data value or range of values, and the color of the pixel
at a given (X,Y) position indicates the frequency at which value Y was observed on
date X. These heat maps facilitate a rapid and broad visualization of how the values
of a variable evolve over time.

6.1.2 Additional method combining multi-source and tempo-
ral variability

Additionally, for the case studies we developed a new method based on monitoring
multi-source variability over time. Similarly to the temporal variability methods, this
new method involves calculating the SPO and GPD metrics, or the MSV plot, through
continuous temporal batches and plotting their results.

SPO and GPD monitoring: The GPD and SPO are scalar metrics obtained from
a set of distributions, independently of the data acquisition times. As a consequence,
given a series of temporal batches, we can obtain for each the GPD and SPO metrics.
The resultant metrics will be comparable over time, and they can be translates to a
time plot for their monitoring.

MSV plot monitoring: With the purpose of monitoring the MSV plot through
temporal batches the first choice would be obtaining their corresponding simplices at
each iteration. However, we found that with that solution the resultant visualizations
were not smoothly transited, difficulting their comparability over time. The reasons
behind that problem are two. First, the MDS algorithm applied to calculate the
simplex provides the optimum projection only for the points received as input. And
second, the resultant projection is independent to rotation, then, infinite equivalent
variations of results are possible.

As a consequence, we opted for a solution which provided smoothed results. This
consisted in two steps. First, we used at each iteration as the input for MDS both
the current multi-source distributions and all the previous ones. In this manner, the
resultant simplex will obtain a simplex projecting all the sources for all temporal
batches. Next, the second step consists in dividing the projected points according
to their temporal batch, what leads to one simplex projection per batch. In this
approach, the MDS algorithm optimizes the dissimilarities among the distributions
of all the sources through all their temporal batches, hence, the coordinates of the
point corresponding to a specific source will be comparable to their inner dissimilarity
through time, leading to smoothed overall results for all sources.
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6.2 Mortality Registry of the Region of Valencia

6.2.1 Materials

The above methods were applied to the Public Health Mortality Registry of the Re-
gion of Valencia (MRRV), an autonomous region of Spain along the Mediterranean
coast. The repository comprises the records related to a total of 512 143 deaths that
occurred between 2000 and 2012 (inclusive), disaggregated by 24 health departments
(6.1) covering 542 cities and towns with a total of 4.7 million inhabitants on average,
representing 11% of the population of Spain. The repository includes the variables that
make up the Spanish National Medical Death Certificate, an official paper document
completed by a physician after the death of a person, according to the recommenda-
tions of the World Health Organization (WHO) (WHO, 2012). Any information that
may disclose the identity of the person was removed before the analysis.

The studied variables include demographic information, the groups of sequential
causes leading to death (multiple causes), and the basic cause of death (Table 6.2).
Multiple causes include initial, intermediate, immediate and contributive causes. For
each group, up to three values are entered depending on the number of causes. Further
on, empty values up to the three possibilities will be labeled as ‘not applicable (NA)´.
The basic cause of death is the official cause, which is the one taken into account
for national and international mortality statistics and generally coded afterwards by
specialist staff based on the multiple causes listed in the certificate.

According to the WHO recommendations, for facilitating statistical analysis and
comparison of this work to other international studies, the causes of death were re-
coded using the WHO International Classification of Diseases (ICD) version 10 Mor-
tality Condensed List (WHO, 2009), which condenses the full range of ICD three-
character categories into 103 manageable items. Because this list brings together
both the top-level ICD chapters and their subgroups of diseases, the chapter-level
classifications were discarded to avoid duplication and to facilitate proper statistical
distribution. Accordingly, a total of 92 unique causes of death (plus an additional cat-
egory, namely NA) were used in the present study (Section E.1, Appendix E). Deaths
that occurred outside the Region of Valencia during this period (totaling 6,816) were
excluded, leaving us finally with 505,327 entries. The Consolidated Standard of Re-
porting Trials (CONSORT) diagram of the study is shown in Figure 6.1. Additionally,
a map showing the 24 health departments and tables of sample sizes are included in
Appendix E.

6.2.2 Results

The results of applying the methods to the MRRV repository are shown below following
a discovery process that led to four types of findings.

Temporal anomalies

We first analyzed the temporal variability of the multivariate MRRV repository as
a whole using IGT plots. To simplify the analysis, all the variables, including both
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Table 6.1: List of Health Departments of the Region of Valencia (version 2010, as used in this study)

Short name Acronym Full name of Health Department Province

Vinaròs Vi Departamento de Salud de Vinaròs Castellón

Castellò C Departamento de Salud de Castellón Castellón

LaPlana LP Departamento de Salud de la Plana Castellón

Sagunt S Departamento de Salud de Sagunto Castellón - Valencia

CĺınicMir CM Departamento de Salud de Valencia - Cĺınico - Malvarrosa Valencia

ArnauLĺıria AL Departamento de Salud de Valencia - Arnau de Vilanova - Lĺıria Valencia

Manises M Departamento de Salud L’Horta Manises Valencia

Requena R Departamento de Salud de Requena Valencia

VGral VG Departamento de Salud de Valencia - Hospital General Valencia

Peset P Departamento de Salud de Valencia - Doctor Peset Valencia

LaRibera LR Departamento de Salud de la Ribera Valencia

Gand́ıa G Departamento de Salud de Gand́ıa Valencia

Dénia D Departamento de Salud de Dénia Alicante

XàtivaOnt XO Departamento de Salud de Xàtiva - Ontinyent Valencia

Alcoi Ac Departamento de Salud de Alcoy Alicante

MarinaB MB Departamento de Salud de la Marina Baixa Alicante

SantJoan SJ Departamento de Salud de Alicante - San Joan d’Alacant Alicante

Elda El Departamento de Salud de Elda Alicante

Elx E Departamento de Salud de Elche - Hospital General - Crevillent Alicante

AGral AG Departamento de Salud de Alicante - Hospital General Alicante

Orihuela O Departamento de Salud de Orihuela Alicante

Torrevieja T Departamento de Salud de Torrevieja Alicante

València V Valencia ciudad Valencia

Alacant A Alicante ciudad Alicante

numerical and categorical data, were combined using the principal component anal-
ysis (PCA) dimensionality reduction method. Figure 6.2 (a) shows the IGT plot for
2000–2012 giving the distributions of monthly temporal batches. The distributions
from January to March 2000 (arrows a, b, and c) are located at anomalous positions
with respect to the distributions for other months and according to the time flow.
This indicates anomalous behavior of the data for these three months. Drilling down
to specific variables, the anomaly was found in all multiple causes as well. The associ-
ated heat map of the temporal distribution of these variables helped in uncovering the
punctual increment on unfilled data for these months, reaching almost 100% in some
variables (e.g., see Section E.3, Appendix E).

To avoid a possible bias in the results pertaining to the year 2000, the first decision
in the procedure of assessing DQ was to exclude the entire year, given the difficulty in
recovering all the missing data.
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Table 6.2: Studied variables of the Public Health Mortality Registry of the Region of Valencia

Variable Description Type

Age Age in years at the time of death Numerical integer

Sex Sex of the person
Categorical
{Male, Female}

Basic cause Basic cause of death ICD-10 List 1 code

ImmediateCause[1,2,3] Disease or condition directly leading to death (one
to three options)

ICD-10 List 1 code

IntermediateCause[1,2,3] Morbid conditions, if any, giving rise to the above
cause (one to three options)

ICD-10 List 1 code

InitialCause[1,2,3] Disease or lesion that initiated the process that
eventually resulted in the death (one to three
options)

ICD-10 List 1 code

ContributiveCause[1,2,3] Other significant conditions contributing to the
death but not related to the disease or condition
that caused death (one to three options)

ICD-10 List 1 code

Health Department Health department the person was assigned to
(associated with the city of residence)

Discrete code

Initial data

n = 512 143

Deaths inside RV

n = 505 327

Excluded n = 6 816

• Deaths outside RV

Females

n = 241 153

Males

n = 264 174

Females

n = 224 173

Males

n = 245 183

2001-2012

n = 469 339

Excluded n = 35 971

• Year 2000

Figure 6.1: CONSORT flow diagram of the case study of the Mortality Registry of the Region of
Valencia (RV)
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Figure 6.2: IGT plots of the multivariate repository on monthly basis. Each point represents one
batch of the repository labeled with its date in ‘YYM’ format (YY: the last two digits of the year, M:
the month as given in the list of abbreviations at the end), and the distances among them represent the
dissimilarity in their distributions. a) The period 2000–2012, where the months January to March
2000 (arrows a, b, and c) are at anomalous positions according to the time flow. b) The period
2001–2012, after discarding the data for 2000. A gradual conceptual change is seen from the start
until 2009 (arrow d), at which point the change is abrupt (arrow e), splitting the repository into two
temporal subgroups. The cool (blues) and warm (yellows and reds) colors indicate winter and summer
months, respectively.

Temporal subgroups

Figure 6.2 (b) shows the IGT plot of the multivariate MRRV repository in 2001–2012.
The flow of points is continuous through the timeline (arrow d) until February 2009,
indicating a gradual change in their distributions. An abrupt change in March 2009
(arrow e) then splits the repository into two temporal subgroups, i.e., conceptually-
related time periods. Additionally, a yearly seasonal component can be observed,
especially in the latter subgroup, based on the color temperature of the months.

Figure 6.3 shows the PDF-SPC chart for 2001–2012. After a transient state (2001),
the change is gradual, corresponding to a gradual increase in the distribution distance
to the latest reference month, alerting two warning states around 2004 (broken vertical
lines) until the accumulated threshold is reached in 2008 leading to an out-of-control
state (solid vertical lines). The abrupt change in 2009 was detected by the method
and confirmed afterward.

Drilling down to specific variables, we found that the abrupt change in 2009 was
also present for most groups of the causes of death. For example, Figure 6.4 (a) shows
the IGT plot of IntermediateCause1, where the change is observed in March 2009, plus
an additional abrupt change in 2011, a gradual change, and a seasonal effect. The
temporal heat maps of the variables (Section E.3, Appendix E) uncovered a major
change in the number of specified causes in 2009. This situation is summarized in
Figure 6.5.

To check whether such an abrupt change was solely due to the number of specified
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Figure 6.3: PDF-SPC monitoring of the variability of the distribution of the entire repository on a
monthly basis. The chart plots the current distance to the reference d(Pi, Pref ), the mean accumulated
distance (mean(Bi)), and the upper confidence interval being monitored uz1i and indicates the warning
and out-of-control states as broken or continuous vertical lines, respectively. After a transient state
(2001), a gradual change is seen, alerting two warning states around 2004, until the threshold is
reached in 2008, leading to an out-of-control state, which re-establishes the reference distribution.
The abrupt change in 2009 is captured by the metric and confirmed afterward.

causes, we ignored the NA category in the distributions and focused on the 92 unique
codes in ICD-10 List 1. However, the change persisted for most of the variables even
after recomputing (Figure 6.4, (b)), indicating that the frequencies of causes of death
changed abruptly as well (although to a small extent). Figure 6.4 (c) shows the tem-
poral heat map of the distribution of IntermediateCause1 without the NA category.
Hence, in 2009, the frequencies of ‘hypertensive diseases´, ‘chronic lower respiratory
diseases´, and ‘diabetes mellitus´ increased whereas those of ‘symptoms, signs and
abnormal clinical and laboratory findings, not elsewhere classified´ decreased, among
others. However, in 2011, some of those frequencies were re-adjusted.

As a consequence, the separation of the repository into two temporal subgroups, up
to 2009 and from 2009 onward, gives the first hint that statistical analyses or models
that treat the entire span as one may not be concordant, given the abrupt differences in
their data distributions. Consequently, in some of the further steps, the two subgroups
were analyzed separately.

Departmental anomalies

We next assessed the variability among different health departments, starting with
anomalies, if any, in data from individual departments. Figure 6.6 (a) shows the
SPO monitoring of the multivariate MRRV repository on yearly basis for the period
2001–2012. The health department of Requena, in the western part of the region,
showed a large SPO, indicating an outlying distribution. Besides, the health depart-
ment of Torrevieja, in the southern part of the region, also increased its SPOs during
2005–2009.

Further scrutiny led to the splitting of the set of variables into two subgroups: one
classifying individual deaths by Age, Sex, BasicCause and other representing deaths
as registered in the Certificate due to multiple causes. The latter subgroup behaved
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Figure 6.4: IGT plots (a, b) and temporal heat map of distribution (c) of IntermediateCause1 for men
in 2001–2012 on monthly basis. Each point represents one batch of the records labeled with its date
in ‘YYM’ format (YY: last two digits of the year, M: the month as given in the list of abbreviations
at the end), and the distances among them represent the dissimilarity in their distributions. The IGT
plots were calculated considering (a) and discarding (b) unfilled values (NAs). The heat map shows
the evolution of the probability distribution for 21 most prevalent causes after discarding the NA
category. The three main temporal subgroups seen in both the IGT plots (split by months, namely
09M and 11J) are associated with the changes in the patterns of the frequencies of causes shown in
the heat map for 2009 and 2011.

the same way as the entire group, with a predominant SPO in Requena, followed by
Torrevieja and Orihuela. In contrast, in the former subgroup we found a predominant
SPO in the departments of Torrevieja and Valencia. Figure 6.6 (b) and (c) show the
MSV plots of the two subgroups in 2008, showing interdepartmental dissimilarities.

Drilling down to individual variables, we found Requena as outlier for Contributive-
Causes[1,2,3]. However, the anomaly disappeared after discarding the category NA.
We then analyzed the number of filled causes by the departments and found that Re-
quena was the department that had filled the maximum number of contributive causes
(Section E.5, Appendix E). We also found that Torrevieja was outlier for the age at
death, being the opposite of Requena (Section E.5, Appendix E).
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Figure 6.5: Number of filled causes by group of causes in the period 2001-2012 for both sexes. For each
case the Mortality Registry can contain from zero to three filled items by group of causes, according
to what was specified by the physician on each death. The figure shows the percentage of times each
number of causes was filled for each group in a monthly basis. Besides the evident differences among
groups, the main finding is the abrupt change in the number of specified causes in 2009, especially in
Intermediate, Initial and Contributive causes

Departmental subgroups

The existence of source subgroups, i.e., groups of sources with similar probability distri-
butions, was addressed next. The MSV plots uncovered a multi-site subgroup formed
by most departments in the province of Alicante, mainly found in ImmediateCause1,
IntermediateCause1 (Figure 6.7), and InitialCause1. Discarding the category NA, the
subgroup was not present in InitialCause1 ; however, it still was present in Immedi-
ateCause1 and IntermediateCause1. The subgroups were empirically confirmed using
clustering algorithms based on the dissimilarity matrix of interdepartmental distribu-
tion distances obtained from the method (Section E.6, Appendix E).

The change to the death certification in 2009 can be seen in Figure 6.7 as a global
change affecting all data points in the last batch (2009-2012), but not necessarily
equally.
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Figure 6.6: Monitoring of the departmental anomalies based on the distribution of all variables in
the repository during 2001-2012. We used SPO monitoring (a), variability among the distributions
of the health departments in 2008 based on multivariate combinations Age, Sex, BasicCause (b), and
multiple causes (c) with MSV plots. Circles represent the health departments (see the key to the
names at the end), their color represents the source SPO, and their size reflects the sample size.

Global concordance among Departments

Finally, we measured the GPD for the main groups of causes-of-death among all the
Health Departments in the Mortality Registry, dividing the period of study in three
batches of four years. The GPD was measured separately for females and males, and
considering and not considering the unfilled (NA) values. The latter was done with
the purpose to focus on the causes of death their selves, avoiding the effect that the
different number of unfilled causes among Departments may introduce.

The results are shown in Figure 6.8. The series show the evolution through time
of the GPD metric in the different groups of causes-of-death. We first note that
when not considering the unfilled (NA) values (right column) the variability among
Departments is reduced in all groups. This may indicate that either the causes-of-

114



6.2. Mortality Registry of the Region of Valencia

Figure 6.7: Variability of IntermediateCause1 among the distributions of the health departments over
time in batches of four years using MSV plot monitoring. Circles represent the health departments
(see the key to the names at the end), their color represents the source SPO, and their size reflects
the sample size. A subgroup formed by most departments in the province of Alicante is at upper
right part throughout. Besides, the change to the death certification in 2009 can be seen as a global
change affecting all data points in the last batch (2009-2012), but not necessarily equally.

death or the healthcare or death certifying practices are becoming more similar among
Departments. However, when considering unfilled data (left column), the variability
remains stable, or is increased or reduced, depending on the group. This indicates that
there exist differences among health Departments in the number of specified causes,
related to different certification practices respect to the unfilled causes.

6.2.3 Discussion

Table 6.3 summarizes the main findings and their causes—the result of applying multi-
source and temporal variability assessment methods to the MRRV repository. Such a
table may constitute a form of feedback for the management of DQ in repositories of
biomedical data. First, the table may serve as a reference to avoid any problem or bias
caused by multi-source or temporal variability in the data to be reused. Second, the
table serves as feedback for improving the processes of data acquisition and repository
maintenance and for preventing future problems related to DQ.

Probably the most important finding from this exercise is the abrupt change in 2009,
leading to abrupt variations in the number of specified causes and in the incidence of
some causes of death described above. This change coincides with the redesign of
the National Certificate of Death in 2009. The new certificate was intended to meet
the WHO recommendations to a greater extent while retaining the earlier structure
of the certificate as much as possible. Two modifications to the certificate probably
account for the abrupt change in 2009, namely (1) the use of a row of boxes, each to
be filled with one letter, instead of blank lines that allowed continuous writing, and (2)
renaming the field ‘Intermediate cause´ as ‘Antecedent cause´ and providing one more
line for the entry. The first modification may have reduced the chances of filling more
than one cause and encouraged filling at least one. The second modification probably
increased the frequency of cases in which two intermediate causes were entered but, at
the same time, limited the entries to only two causes—the option of entering a third
cause was never used (Figure 6.5). Additionally, the renaming caused some physicians
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Figure 6.8: Evolution of the Global Probabilistic Deviation (GPD) of BasicCause (BC), Immedi-
ateCause1 (IMMC1), IntermediateCause1 (INTC1), InitialCause1 (INIC1) and ContributiveCause1
(CC1)

to misunderstand ‘Antecedent cause´ as clinical antecedents; e.g., the renaming led
to the introduction of two prevalent chronic diseases such as hypertensive diseases
and diabetes mellitus as antecedent causes, whereas introducing them as contributive
causes of death would have been more appropriate. The Spanish National Statistics
Institute warned the national Public Health institutions about this problem in 2011.
To correct the situation, the term ‘Intermediate Cause´ was re-introduced. However,
as seen in the results for IntermediateCause1, the practice was not abandoned entirely.
Finally, the several changes in multiple causes in 2009 carried the problem to the
basic cause, which was coded based on the multiple causes. Despite being corrected
retrospectively, a small temporal change can still be observed for 2009 (Section 5.3.2,
Appendix E). The three versions of the certificates are shown in Appendix E.

Regarding to the detected gradual change, it was probably due to gradual changes
in the environment, well represented, e.g., by the increase in life expectancy. Section
E.5 in Appendix E shows the temporal heat maps of Age, where this change can be
seen.
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Regarding to the largest SPO found in Requena (Figure 6.7 (a)), this may reflect an
isolated practice in a small department composed of an older population. The increase
of SPOs in Torrevieja and Orihuela (Figure 6.7 (b)) may be due to the large number of
deaths of young men in Torrevieja. Torrevieja, along the southern coast of the region,
has large settlements of immigrants from Eastern Europe and Russia. Other studies
have noted the much greater incidence of cancer in Torrevieja and other places close
to it probably related to immigration (Zurriaga et al, 2008). Lastly, the dissimilarity
between Valencia and other departments, seen in the MSV plot, is mainly due to its
lowest proportion of deaths of men in Valencia. Besides, the subgroup of Departments
found in the Province of Alicante indicates a local variation of such departments both
in terms of the number of filled causes and the causes of death, which may reflect an
isolated practice in death certification (for example, we found that 27% of the records
were left unfilled with respect to InitialCause1 in the subgroup of the province of
Alicante whereas for the rest, the proportion was 12%).

Finally, despite the GPD metric gradually improved during the period of study
(Figure 6.8), for a proper reuse of the registry, users should consider the problems the
above-mentioned findings related to variability may cause.

The proposed methods may be adopted in controlling data variability in Public
Health research projects or multi-site data-sharing infrastructure. Ensuring DQ re-
quires specific areas of research and investment in public health (Bray and Parkin,
2009; Chen et al, 2014). For example, the WHO recommends conducting regular
checks to validate death certification in hospitals as well as investigating new technolo-
gies to understand large data sets (WHO, 2012), where the multi-source and temporal
methods presented here may prove particularly useful.

6.3 Other case studies

6.3.1 Cancer Registry of the Region of Valencia

Cancer registries are the source of information for national and international cancer
statistics as well as for epidemiological research and monitoring of healthcare cancer
policies. This case study consists in the application of the multi-source and temporal
variability assessment methods developed in this thesis to the Cancer Registry of the
Region of Valencia (CRRV), Spain. The CRRV is an Automated Cancer Registry,
i.e., patient registries are automatically included from the original samples sent from
the different Departments/Hospitals in the Region. This implies that an automated
parsing and tumour codification process is done. Hence, with quality control purposes,
in automated cancer registries some individual records are manually validated to ensure
their correctness with respect to their original cases (Bray and Parkin, 2009; Navarro
et al, 2013).

The objective of this case study was two-fold: first, to evaluate the use of the multi-
source and temporal variability methods in a real case study, and second, to evaluate
the effect that manual case validation could cause to data.
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Materials

The CRRV consists of the registered malignant neoplasms in the Region of Valencia
between years 2004 and 2013, consisting of a total of 224,267 registries, distributed
in 24 Health Departments. The studied variables include demographic data (sex,
age, place of birth, place of residence, province of residence, and health department),
generic and specific tumour groups, diagnostic base (origin of the diagnosis), validation
state (validation state for the registry), and additional disease information (whether
the tumour is metastatic, and vital state of the patient). Any information that may
disclose the identity of patients was anonymized.

Results

The main findings of this case study are listed as follows:

Finding 1. Partitioning into temporal subgroups: The IGT plot and PDF-
SPC of the dimensionally reduced registry showed a main abrupt change causing a
partition into two temporal subgroups divided around 2010 (Figure 6.9). Additionally,
the first of those temporal subgroups also shows minor temporal abrupt changes in
2005 and 2007. Figure 6.10 shows the PDF temporal heat map of the dimensionally
reduced registry, on which the changes mentioned above can be found, in addition to
the existence of two data clusters through the period of study. At univariate level
this change is found as well in the variables related to place of residence, province of
residence, health department, place of birth, diagnostic base and validation state.

Finding 2. Temporal changes in generic tumour group and specific tumour
group: On these variables the temporal variability methods showed several events
during the period of study, specially as slightly isolated temporal subgroups in 2007 and
2010. On these dates, changes in specific tumour incidences were found for ‘Primary
Unknown’ tumours, correlated with opposite changes in others such as ‘Lymphomas’
and ‘Myelomas’. These two variables are the main indicators of incidences of cancer,
hence, these changes must be managed carefully.

Finding 3. Recursive conceptual subgroup in validation state in 2007 and
2010: Two isolated conceptual subgroups were found at these dates with a similar
pattern with higher frequency of ‘Revised’ cases and less ‘Possible’.

Finding 4. Isolated subgroup of Departments ‘La Plana’, ’Vinarós’ and
’Castellón’ in the variables diagnostic base and tumour state during all
the period of study: On this variables, the temporal monitoring of multi-source
variability methods highlighted a large probabilistic separability of a subgroup formed
by these Departments respect to the rest on these variables.

Besides the listed findings, a gradual change is found underlying all the variables
what may be expected to some degree due to populational and practice changes. As
an example, in this study we can observe a slightly continuous increase in the age of
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Figure 6.9: IGT plot (a) and PDF-SPC chart (b) of the dimensionally reduced Cancer Registry of
the Region of Valencia (using the first PCA component). A gradual change through the period of
study, minor abrupt changes in 2005 and 2007, and a major in 2010 can be observed in the the IGT
plot, confirmed by the PDF-SPC, and justified by the data in the heat map in Figure 6.10.

patients, what may be due to the population ageing. Another clear gradual change is
found in the metastasis variable, associated to a gradual decrease of metastatic cases
found through the period of study. Additionally, we found abrupt decreases of the
number of registries in some Departments which remain until the end of the period
of study. This was mainly caused to the delay in compiling and sending the sample
of cases of the different Departments/Hospitals to the central Public Health Service
managing the Cancer Registry.

119



Chapter 6. Applications to case studies

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

Date

F
irs

t P
C

A
 c

om
po

ne
nt

−4

−3

−2

−1

0

1

2

3

P
robability

0.005

0.01

0.015

0.02

0.025

Figure 6.10: Probability distribution heat map (c) of the dimensionally reduced Cancer Registry of
the Region of Valencia (using the first PCA component). First, a gradual change through the period
of study is observed as a general displacement of the probability mass to the upper part. Next, in
2005 and 2007 minor abrupt shifts of probability masses are observed. Finally, in 2010 an abrupt
change is found, mainly observed as a displacement of the probability masses to above. Additionally,
the heat map suggests that two clusters of data exist through the period of study as two modes in
the dimensionally reduced variable. These are initially centred in 0.25 and 1.75, and affected by the
mentioned changes they end centred in 0 and −3.5.

Discussion

After reviewing the findings of this study with the members of the Public Health
Service of the Region of Valencia, we found that the four findings are likely related to
the effect of case validation.

Hence, we found that the Departments involved in Finding 4 are those which, with
a constant quality control, establish a gold-standard subset of the CRRV. Besides,
specific quality control actuations were performed in years 2005 and 2010, directly as-
sociated to Finding 3. Due to this case revisions, the specificity of the diagnosis tend
to increase, what is reflected in Finding 2, as the decrease of the automatically coded
as unknown tumours, and increase of specific groups. However, this imply that differ-
ences in tumour incidences through time may not be confident in non gold-standard
cross-sectional cancer registries. Figure 6.11 shows the effect that these specific case
validation actuations had in some generic tumour groups in the evaluated Cancer Reg-
istry. Finally, the multivariate contribution of all these findings, together with the
decrease of cases due to the delay of sample delivering, led to the temporal subgroups
of Finding 1.

The aforementioned effect may have two main consequences. First, time series
of automated cancer registries should be interpreted with caution, e.g., breast cancer
did not truly increased 1.5 points from 2009 to 2010. And second, automated cancer
registries may lead to biased hypotheses or statistical models if these artefacts are
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not considered. We also remark that specific screening programmes may have similar
consequences: increasing the incidence rates of the screened tumour groups.

We can conclude that an external validation with the applied multi-source and tem-
poral methods developed in this thesis may help detecting biases in the data sources of
automated cancer registries as well as help measuring the effect of different automated
codification procedures.
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Figure 6.11: Effect of case validation (bars) in the incidences of several cancer diagnostic groups
(series) in the Cancer Registry of the Region of Valencia (males and females).

6.3.2 Breast Cancer multi-source dataset

We applied part of the methods developed in this thesis to the data preparation for a
predictive model for metastatic affectation in non-sentinel axillary nodes based on the
biopsy molecular profile and the sentinel node status in breast cancer.

For this case study we applied the multi-source variability method. In addition, we
performed a basic DQ assessment, based on the complementary tools developed in this
thesis (see Chapter 7), which automatically generated a DQ report informing about
missing data, outliers, and the predictive value of the different variables.

Materials

A National Breast Cancer dataset was used, consisting of a sample of 479 cases, with
15 variables related to the biopsy molecular profile and the sentinel node status, dis-
tributed in five Spanish Hospitals.
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Results

The most relevant finding was a remarkable variability among the Hospitals regarding
to the number of biopsied sentinel nodes. This was found by the GPD metrics and
MSV plots (Figure 6.12). This finding showed that different protocols were used among
the involved Hospitals.
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Figure 6.12: Results of the multi-source variability assessment for the variable number of biopsed
nodes in the Breast Cancer dataset (hospital names are anonymized).

Discussion

The finding above may lead to possible drawbacks when building a common predictive
model using data from all the hospitals. Given to the fact that the target predictive
model should be based on the biopsy molecular profile and status, the number of
biopsied sentinel nodes would not be used as a independent variable. However, based
on the finding of the multi-source variability analysis, such variable was introduced as
a corrective factor—associated to the source Hospital—and the accuracy of the models
increased, as shown in the work by Bernet et al (2015).

6.3.3 In-vitro Fertilization dataset

The author participated in a project to develop a predictive model for the risk assess-
ment of twin pregnancy in an oocyte donation programme in a private IVF clinic. In
this project we followed a customized version of the CRISP-DM data mining method-
ology (Shearer, 2000), on which first stages data is analysed for their understanding
and next preparation for being mined. It is at these stages where we applied the initial
versions of the methods of this thesis towards a simultaneous data quality assessment
and understanding, facilitating the preparation of a quality assured dataset for the
model construction. Hence, we applied the initially developed complementary DQ
assessment tools, which automatically generated a DQ report.
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Materials

The dataset used in this case consisted of 13,386 In-Vitro Fertilization (IVF) cycles
acquired from 2007 to 2010, with a total of 55 variables including clinical and treatment
variables from the recipient and the donor, and a set of laboratory variables including
oocyte, sperm, and embryo features.

Results

The generated DQ report informed about variable distributions and types, missing
data, outliers, the predictive value of the different variables, facilitating the data prepa-
ration for the modelling stage. Besides, we provided the first approach of the temporal
variability analysis, using the PDF temporal heat maps described in chapter 5. Figure
6.13 shows a sample of the report.

Discussion

The generated DQ report was delivered to the IVF clinic as an official project de-
liverable. The variables and records which did not achieve a sufficient quality were
discarded for the modelling. The DQ procedure helped as well in the feature selection.
The final risk assessment model was based on two bayesian logistic regression models.
The first provides the probability of an ongoing pregnancy given that one embryo was
transferred. The second provides the probability of an ongoing twin pregnancy, given
that two embryos were transferred. The outcomes of the two models support the de-
cision of transferring one or two embryos. The model is currently under a prospective
validation in the IVF clinic, having reduced the twin-pregnancy rate in a 21% withoug
compromising the number of successful pregnancies.

6.4 Limitations

Due to the high number of possible combinations of variables in most case studies,
the efficiency of the approach may be improved through automated procedures or a
guided Graphical User Interface. Besides, although the methods permit quantitative
and qualitative descriptions of variability, it is the duty of the investigator to look for
external original causes of variability, based on the insights provided by these methods.

In the Mortality Registry case study we used the PCA dimensionality reduction
method because it was simple and enabled us to find the most relevant problems.
Although the methods permit analyzing multivariate joint distributions, aiming to
simplification and to the reduction of the probabilistic space, other non-linear methods
may be better suited to multi-type and multi-modal data. We also found that the
PDF-SPC algorithm may require a calibration of its thresholds in some situations to
better detect those changes detected by the IGT plot, instead of using the classical
three-sigma rule used in the present study. This may related to the latent changes in
the distributions due to environmental changes as well as to the width of the analysed
time periods, which limit the number of distribution distances accumulated for the
monitoring by the PDF-SPC algorithm.
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Chapter 6. Applications to case studies

Finally, throughout the case studies, we found that the interpretation of the results
of the multi-source and temporal variability methods in some occasions resulted com-
plicated to users. To alleviate this problem we posed an additional effort in facilitating
an intuitive description of the methods, as shown in the first section of this chapter,
and accompany them by the basic examples shown in Appendix D.

6.5 Conclusions

Since the initial evaluation of the first prototypes in the In-vitro Ferlization case study
until the validation of the final methods in the Mortality Registry, the methods have
shown an evolution being continuously improved during the development of this thesis.
The findings in these case studies show that the applied probabilistic methods may
result useful as a systematic and generalizable approach to detect and characterize
multi-site and temporal variability in multi-site data for their reuse.

Unexpected variability in data distributions among sites or over time can be con-
sidered a DQ problem, which may lead to inaccurate or irreproducible results, or
suboptimal decisions, when the data are reused. In the In-Vitro Fertilization case
study, the methods reduced the time of manually preparing data for their analysis. In
the Breast Cancer case study, the methods permitted discovering differences among
the involved data sources (hospitals), which may have leaded to a predictive model of
poor effectiveness for a global use. In the Cancer Registry, the methods quantitatively
confirmed the insights about the effect of manual case revision, in addition to providing
a report with a complete description of the variability of the dataset for their better
understanding. In the Mortality Registry, the methods mainly evidenced the problem
of the change of death certificate and its further amendment, which, being in our case
localized to the Region of Valencia, may be translated to National level. Besides, we
highlighted differences in the certificate filling practices through Health Departments,
what may have consequences in global statistics.

Given all the possible difficulties for a proper data reuse which variability among
sources or through time may entail, we suggest that, in addition to integration and
semantic aspects, the temporal and multi-site probabilistic variability of data should
be incorporated in systematic procedures of assessing DQ to help ensure that valid
conclusions are drawn when such data are reused. Additionally, DQ is requiring specific
areas of research and investment in Public Health (Bray and Parkin, 2009; Chen et al,
2014). For example, the WHO recommends conducting regular checks to validate
death certification in hospitals as well as investigating new technologies to understand
large data sets (WHO, 2012), where the multi-source and temporal methods presented
in this thesis may prove particularly useful.
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Chapter 6. Applications to case studies

Figure 6.13: Page of the DQ report generated for the IVF use case. The basic DQ results and temporal
heat map of a variable are shown (variable names and values are anonymized). The categorical variable
counts with 0,0963% of numerical values and an 11% of missing data. The most probable value is
‘A’, and values ‘432’ and ‘433’ are marked as possible outliers given their low frequency. Finally, an
abrupt change in the probabilities over time is observed in the temporal heat map.
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Chapter 7

Biomedical data quality framework

The previous chapters have described the scientific contributions carried out in this the-
sis. Any scientific work constitutes a step forward, in a minor or major degree, through
the global iterative scientific evolution, while contributing to the improvement of popu-
lation quality of life. And it is at specific points of these continuous scientific evolution
when the developed methods and technologies should be transferred to make them
applicable to real-world scenarios. This was a consideration taken since the beginning
of this thesis for two main reasons. First, for the sensible domain and implications
that the quality of data may have in the outcomes of research and healthcare. And
the second is a practical reason: given the complexity of the experiments to be carried
out, on massive data from several case studies, several variable and distribution types,
and with landmarked batch analyses, a software toolbox which eases the repetition
with different settings would improve the efficiency of the research and its translation
to practice.

This chapter is divided in three sections. First, the proposed systematic approach
and developed software for multi-source and temporal variability assessment is de-
scribed. Second, a definition of a theoretical basis for a general framework for the
evaluation of DQ in biomedical data is described. This framework includes the multi-
source and temporal variability DQ aspects. Finally, three applications of this theoret-
ical DQ framework are discussed: in a process for the construction of quality assured
infant feeding repositories, for the contextualization of data for their reuse in CDSS,
and in a on-line service for the evaluation and rating of biomedical data repositories.

The systematic approach described in this chapter was published in the journal
publication by Sáez et al (2016)—thesis contribution P5. Parts of the description
of the general DQ framework were published in the conference paper by Sáez et al
(2012b)—thesis contribution P1. The developed software toolbox corresponds to the
software contribution S1, and is registered in the technological offer of the UPV. The
derived application of the perinatal quality assured repositories is under review as two
publications in the Computer Methods and Programs in Biomedicine journal. The
derived application of the HL7-CDA wrapper for data contextualization in CDSSs was
published in the journal publication by Sáez et al (2013a), selected by the IMIA as
one of the best medical informatics papers published in 2013 in the subfield of Health
Information Systems—thesis publication P6 and software contribution S2. The derived
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Chapter 7. Biomedical data quality framework

appliation of the construction of quality assured perinatal repositories has been accepted
as journal publication by Garćıa de León Chocano et al (2015)—thesis publications P8
and P9. The derived application of Qualize corresponds to software contribution S3.

7.1 Multi-source and temporal variability

This section is divided in two parts. First, we describe the systematic approach for
the assessment of multi-source and temporal variability using the methods developed
in this thesis, which is proposed based on the experience of their application in the
case-studies. Second, we describe the software for DQ assessment developed in this
thesis, which stands as the software solution to be used in the proposed systematic
approach.

7.1.1 Systematic approach

The case studies presented in the previous chapter allowed the validation of the meth-
ods developed during this thesis research into real-world problems. For the case studies
on which we analysed the multi-source and temporal variability we counted with their
respective assessment metrics and visualizations, namely the GPD, SPO, MSV plot,
IGT plot, PDF-SPC and temporal heat maps. As a consequence, the discovered find-
ings were reached within a systematic use of these methods.

Based on the experiences of applying these methods in the case studies, we propose
a systematic approach to assess the multi-source and temporal variability in reposito-
ries of biomedical data (Figure 7.1). In a top-down approach, one starts by analyzing
the temporal or multi-site variability of the complete data set and then, based on the
results of the analysis and prior knowledge of the repository, drills down to specific
variables or groups of variables. The process can be cyclic, similar to an On-Line
Analytical Processing (OLAP) exploratory analysis, navigating through different lev-
els of granularity; for example, a temporal change found in the complete repository
could be caused by a sudden bias within a single site. Such an anomalous site may
require a specific temporal analysis, and excluding it may facilitate the discovery of
other patterns or sources of variability.

The proposed generalizable approach may be adopted in controlling data variability
in research projects or multi-site data-sharing infrastructure. Hence, this approach
can help discovering different findings related to the variability in data distributions
which may require different solutions for a proper data reuse. A selection of them is
described in Table 7.1, in which we attempt to provide a generic list of findings related
to multi-source or temporal variability in repositories of biomedical data along with
their possible causes, problems in reusing the data, and solutions.

The problems listed in Table 7.1 are associated with basic research uses of data, e.g.,
for empirical derivation of hypotheses or statistical models. The proposed solutions
vary with the sites or time affected and include fixing or excluding data or analyzing
distinct groups of sites or time periods separately. For example, for statistical model-
ing, an abrupt temporal change may reduce the model’s effectiveness when using the
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7.1. Multi-source and temporal variability

Figure 7.1: Proposed Systematic Approach to Assess the Temporal and Multi-Site Variability of
Repositories of Biomedical Data Using Probabilistic Data Quality Control Methods.

data for the entire period: if the change is due to an environmental change (e.g., a
change of protocol), and not to any error, separate models for periods before and after
the change would yield better results, and a model with a good further generalization
would be one giving more importance to latest data. Besides, a probabilistically iso-
lated site or group of sites may bias the results of a global analysis—as illustrated by
Garćıa-Gómez et al (2009) in the case of multi-site predictive models for brain tumor
diagnosis. Excluding biased sites would improve the global results and in the case
of multi-site subgroups, a good solution would be to analyze them separately. An
alternative solution which may reduce user involvement could be using incremental
learning approaches, which rank the data in terms of importance by their age (Gama
and Gaber, 2007) or provenance (Tortajada et al, 2011). Fixing problematic data may
also be considered when variability is associated with intrinsic problems with DQ such
as changes in the degree of data completeness or consistency. It is important to note
that variability among sites or with time does not imply an error but requires the lack
of concordance to be investigated. In fact, in some cases, variability may be inherent
in biomedical data because the data are affected by the environment, population, or
other external factors such as a programmed change in protocol. However, in other
cases, variability may be unexpected, e.g., that due to faulty acquisition processes or
biased actuations, which could include biased or faulty data input, system design, or
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Chapter 7. Biomedical data quality framework

variation in healthcare quality.

As an example to facilitate the identification of these generic findings as specific
findings, we have matched the generic findings in Table 7.1 with those found in the
Mortality Registry case study, as shown in Table 6.3.

7.1.2 Developed software toolbox

The development of the research and experimentation carried out in this thesis sup-
posed a technological challenge. Two were the main reasons. First, the proposed
methods were based on several complex methods for multiple objectives:

� estimating probability distributions,

� dealing with different types of uni and multi-variate variables,

� calculating PDF distances,

� estimating simplicial projections and statistical manifolds,

� incrementally estimating PDFs on temporal landmarks,

� smoothing temporal data,

� plotting results based on adequate visual analytics, and

� automatically generating reports.

And second, with the purpose to carry out the several experimentations and case
studies, the methods should be used in a systematic, configurable and replicable man-
ner, and if possible, with an efficient computational cost.

These challenges were considered since the beginning of the thesis development.
Step by step, a generic and systematic software toolbox (developed in MATLAB®) for
multi-source and temporal variability assessment was constructed. From its initial until
the latest versions, the framework was applied to different real case studies (Chapter 6).
In addition to the methods for multi-source and temporal variability, basic DQ profiling
methods for completeness, consistency and uniqueness dimensions were included to
facilitate the DQ assessment. This software toolbox can be used as the basis for an
industrialization of the multi-source and temporal variability assessment methods.

The developed software toolbox is divided in six main packages, described next and
summarized in Figure 7.2.

Probabilistic framework: Contains all the functions related to the probabilistic
framework for both multi-source and temporal variability. This includes classes for
representing and estimating PDFs for continuous and categorical data, using MATLAB
object polymorphism. While the histogram class is used to represent the PDF of a data
sample, which can be of different variable types, the class temporalHistogram contains
the several single histograms of the consecutive temporal batches (see ‘Supporting
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7.1. Multi-source and temporal variability

PDF classes’ in Figure 7.2). The PDFs are estimated from input data files based on
an incremental/streaming manner, what permits estimating the PDFs of Big Data files
which cannot be entirely loaded in the computer memory. In addition, the estimation
functions can be carried out under a parallel computing approach, what was tested in
the Distributed Computing Server of the ITACA Institute at UPV, which counts with
a distributed MATLAB server on seven rack computers with a total of 84 processor
cores, 168 threads and 64GB of memory. This package included additional tools such
as PDF distance calculations, date operation functions, and automatic variable type
inference.

Multi-source variability: Contains the methods for the multi-source variability
assessment (described in Chapter 4). Hence, it provides a function which receives a
set of PDFs from different sources and returns the GPD and SPO metrics and the
coordinates and centroid of the resultant simplicial projection. It also provides access
to this metrics using the data itself, with internal estimation of PDFs for continuous
or categorical data. Finally, it provides the corresponding functions for generating the
output visualizations, including the 2D and 3D MSV plots and simplices, phylogenetic
trees, and basic PDF histograms and densities comparisons for the multiple sources.

Temporal variability: Contains the methods for the temporal variability assess-
ment (described in chapter 5). Hence, it provides a method which takes a univariate
or multivarate dataset and, given a temporal landmark (e.g., days, weeks or months),
computes the statistical manifold for the IGT plot and performs the PDF-SPC mon-
itoring. It additionally includes PDF smoothing functions to be used in the previous
functions, which smooth temporal PDFs based on sliding windows, fading windows,
memory-less fading windows and temporal landmarks. Finally, it provides the corre-
sponding functions for generating the output visualizations, including the IGT plot,
PDF-SPC control chart, and absolute frequencies and PDF temporal heat maps.

Multi-source monitoring: Contains the methods for the monitoring over time of
the multi-source variability metrics and visualizations. Concretely, permits calculating
the GPDs, SPOs and simplices from multi-source data over a time period, as well as
plotting their results and generating a video of the evolution of data sources in the
simplicial probabilistic space.

Reporting: This package contains the required functions for the automatic report
generation facilitated by the framework. These functions take the results and output
figures of the previous modules and dynamically creates LaTeXe code which is then
compiled into a .pdf file—do not confuse with the Probability Distribution Function
acronym—file. Hence, it contains a global report function, supported by specific func-
tions for writing descriptive results, and those of multi-source, temporal and spatio-
temporal analysis.

eLaTeX document preparation system http://latex-project.org/ (accessed 2015-09-24)
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Basic DQ assessment: This package includes the initial methods developed for the
assessment of the basic DQ features of missing data, outliers, duplicates and simple
plots. This cannot be considered part of the multi-source and temporal variability
framework, as it does not make use of the common probabilistic framework or methods,
but their results can be as well printed in a basic DQ report.
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It is worth to mention one difficulty that was overcome in the streaming estimation
of the PDFs in temporal batches. First, the temporal analysis is made based on
analysing data through temporal batches at a given time period, such as weeks or
months. Therefore, in some case studies we found that, due to the frequency at which
cases were acquired, some time periods counted with no data filling specific ranges in
the variable support. As a consequence, some intermediate PDFs counted with bins
with a probability of 0, what impeded properly calculating PDF distances. This issue
was solved using static PDF smoothing mechanisms, such as absolute discounting for
categorical data (Ney et al, 1994), KDE for continuous, or the temporal smoothing
methods mentioned above. A more important problem occurred when no individuals
were observed in a PDF at a given period, leading to a probability which sums 0 what,
in fact, by definition is not possible. Consequently, as a convention we assumed that
any distance to 0-probability PDFs would be the maximum possible, what permitted
using normally the developed methods on these situations.

Finally, it is also worth to mention that most of the figures in this thesis showing
results of the multi-source and temporal variability were obtained using this framework.

7.2 Towards a general data quality framework

The quality of data is of great importance for a valid and reliable data reuse. As
described in Section 2.1, many studies aim to provide methods and dimensions to
assess the quality of biomedical data. However, depending on the type of data reuse,
what it is defined as quality may vary. Consequently, any guideline or framework
facilitating what and how to assess data quality, independent of the type of data reuse,
would help in the definition and establishment of data quality assurance protocols for
biomedical data reuse.

In this section we describe the aspects related to the definition of a theoretical
framework for the evaluation of DQ in biomedical data repositories. This framework is
based on the definition of nine DQ dimensions, including the multi-source and temporal
methods and dimensions, aiming to cover the most important aspects to our knowledge
in the literature. Dimensions can be measured in different axes of the dataset, namely
through registries, attributes, single-values, entire datasets, multi-source and through
time. Several examples for these measurement possibilities are discussed next.

The objective of this proposal is to provide insights into further research in other
DQ dimensions alone or in combination with the multi-source and temporal variability
problems, towards the application and industrialization of a general DQ framework.

7.2.1 Functionalities and outcomes

In Section 2.1 we reviewed the biomedical data quality state-of-the-art, and introduced
some of the origins of the general discipline. Recent published reviews (Batini et al,
2009; Weiskopf and Weng, 2013; Liaw et al, 2013) plus ours, found that there is little
agreement in the data quality methods and dimensions being addressed. Scientific
papers usually suggest either global data quality frameworks (Wang and Strong, 1996;
Jeusfeld et al, 1998; Lee et al, 2002; Pipino et al, 2002; Arts et al, 2002; Pierce, 2004;
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Oliveira et al, 2005; Karr et al, 2006; Choquet et al, 2010) with a selection of dimensions
and methods, or concrete solutions for specific data quality problems (Choi et al,
2008; Heinrich et al, 2009; Etcheverry et al, 2010; Weiskopf and Weng, 2013; Alpar
and Winkelsträter, 2014). On the other hand, commercial solutions for data quality
assessment usually provide general purpose data profiling methods or rule-based data
quality checks (Judah, Saul and Friedman, Ted, 2014). In our case, in contrast, we
aim to provide a closer focus to the assessment of biomedical data repositories.

The first step for defining the general expected features of our DQ assessment
framework was defining the system’s expected functionalities and outcomes. Table 7.2
classifies the expected functionalities, while table 7.3 classifies the expected outcomes
of the system. With these tables, we intend to facilitate deciding the objectives of
a DQ assessment system or protocol. We remark that the classified functionalities
and outcomes can be related among them, inter and intra-table. For instance, a DQ
monitoring system can check DQ alerts based on temporal analysis.

In this thesis we mainly focused to the assessment of biomedical data repositories at
the population level, i.e. based on the sample distributions. However, the data quality
assessment of a single case, as shown in the first row of Table 7.2, is important enough
to be considered since the first step towards reducing DQ problems is preventing issues
at the acquisition of data individuals.

Table 7.2: Defined functionalities for the DQ assessment of biomedical data

Functionality Description

Single case quality assessment DQ analysis for a single case in insert, update or retrieval
time

Data repositories quality assessment DQ analysis for a complete data repository, generally reuse
repositories for research or decision making

Continuous DQ monitoring A monitor of the DQ of streams or batches

Alerts about DQ The system triggers an alert based on predefined DQ rules

Selection of quality assured data The user wants to obtain a set of data that fulfils a set of
DQ requirements

DQ reports generation Obtain a DQ report based in a predefined or custom DQ
assessment query

Data integration Control and assure the DQ in the integration of data in a
centralized or federated database

7.2.2 Data

Next, we define the characteristics of data that may be used as input for a DQ as-
sessment analysis. These are divided into how data is accessed, and what types of
variables are analysed.
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7.2. Towards a general data quality framework

Table 7.3: Outcomes of DQ assessment for biomedical data

Classification Description

DQ metrics The measurements of DQ dimensions or functions of them

DQ visualizations Visualizations for the exploratory analysis and visual inspection of DQ
results

Set of high-quality data A set of data that fulfils some DQ requirements

Track of low DQ causes Hints for the possible causes of recurrent low DQ

Trends of DQ An analysis of trends of DQ

DQ report A document describing DQ the results of analysis and findings

Data access: Regarding to the data accesses, we classified two groups, as shown in
Table 7.4: off-line datasets and on-line (or streaming) data analysis. Table shows the
results of this classification. This classification is principally suited to the analysis of
sets of data or data repositories, not applicable for the single-case assessment. We also
classified how these data accesses may affect to the temporal DQ analysis.

Table 7.4: Types of data accesses and relation to the temporal DQ assessment

Data access
Temporal analysis
metadata

Temporal assessment
possible

Off-line (file dataset,
local database)

Non-timestamped 7

Timestamped 3

On-line (streams,
batch analysis)

Landmarked batches 3

Fixed frequency batch analysis 3

Regarding to the single-case assessment, the on-line equivalent would be using an
automatic DQ control validation at the time data is acquired. E.g., an automatic
alerting method may warn about possible inconsistent values being introduced, or
once a complete case is registered the system may check for missing important values,
multivariate inconsistencies, or whether the case is classified as an outlier. The off-
line equivalent would be applying single-case DQ analyses, as those just described,
case-by-case in a registry or focusing on a specific case.

Data types: Biomedical data can be seen as a set of registries composed by atomic
elements representing real-world entities, either patient observations or contextual in-
formation. Table 7.5 shows a proposal for the high-level data types that can be present
in a registry to be used in the DQ measurements—not to be confused with their prob-
abilistic variable types.

Registry identifiers may be the first source on which to search for duplicated reg-
istries. Besides, being registry identifiers generally unique, there may be not sensible
to analyse their distributions in other DQ assessments such as the multi-source and
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Table 7.5: High-level data types

Type of element Examples

Registry identifier Patient ID, protocol ID

Numerical observation Age, BMI, blood pressure

Categorical observation Gender, applied therapy, diagnosis

Complex observation Image, signal, free text

Contextual Clinical domain, data source, discharge date

temporal variability. The three types of observations: numerical, categorical and com-
plex, generally represent the patient status within the registry, and their DQ can be
analysed based on generic and domain-specific methods. Finally, data typed as con-
textual would represent the context at which the data in the registry was acquired,
including data sources and timestamps.

This classification might result simple, however, we believe it is a high level repre-
sentation for most situations, which resulted after a review of data types from those
proposed in the literature and in data mining software solutions, as shown in Table
7.6. Hence, registry identifiers are generally typeless or categorical variables. Numer-
ical and categorical observations are respectively numerical and categorical variables.
Complex observations may be represented as free text, structured data, graphs, or ma-
trices (e.g., a matrix of numerical). Finally, contextual elements may be of any type if
they intend to act as accompanying context information.

Note that numerical and categorical types will be those candidates for the analysis
by the multi-source and temporal methods developed in this thesis, and using the
PDFs as described in Section 2.2.1. Besides, contextual types may provide the required
source and temporal metadata. Also note that these are univariate types, except the
matrix/complex type, where multivariate may mix several of these.

7.2.3 Data quality dimensions

In Section 2.1.1 we reviewed the concept of DQ dimensions, as the attributes that
represent a single aspect or construct of DQ to be addressed. Despite the wide range
of approaches, a degree of agreement in high level concepts was observed, as shown
in the proposals of dimensions in Tables 2.1, 2.2 and 2.3. As mentioned, we found
an insufficient attention to the problems of data variability among sources or through
time, having those been addressed in this thesis.

Therefore, we aimed to define the requisites of a data quality assessment frame-
work which gave an special attention to variability problems, while maintained generic
enough to other dimensions. For the proposal of this DQ framework, we intended to
make a selection of DQ dimensions, aimed to biomedical domain, which take concepts
both from the literature review carried out in this thesis but also based on the experi-
ence of the authors in biomedical data analysis. Hence, our proposal of DQ dimensions
is shown in Table 7.7.
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Table 7.7: Proposal of DQ dimensions to be addressed in the framework

Dimension Definition

Completeness Degree to which relevant data is recorded

Consistency Degree to which data satisfies constraints and rules, including concordance of
units, or impossible values or combinations of values

Uniqueness Degree to which data contains replicated registries or information
representing the same entity

Correctness Degree of accuracy and precision where data is represented with respect to its
real-world state

Temporal stability
/ Timeliness

The degree of changes in the data probability distributions over time or,
according to the timeliness dimension in literature, whether registered data is
up-to-date

Multi-source stabil-
ity

Degree to which data probability distributions are concordant among
different sources

Contextualization Degree to which data is correctly/optimally annotated with the context in
with it was acquired

Predictive value Degree to which data contains proper information for specific decision making
purposes

Reliability Degree of reputation of the stakeholders and institutions involved in the data
acquisition

The completeness, consistency, correctness and uniqueness dimensions are generally
used in the DQ literature. Although sometimes the first three can overlap on their
definitions, or be contained within each other, we recommend making them orthogonal.
E.g., a patient observation is incomplete if it is not registered, inconsistent if it is outside
a range, or incorrect if, even consistent, it is unlikely to be true.

It can be noted that two of the dimensions refer to temporal and multi-source
stability. We must highlight that these two are related to the temporal and multi-
source variability approaches developed in this thesis. However, given that the rest of
dimensions are expressed in positive terms, we were forced to change ‘variability’ to
‘stability’ in turn. As an example, to measure the multi-source stability we inverted
the GPD metric in Equation 4.11 as 1−GPD.

These definitions of dimensions present some novelties. Timeliness has generally
been used for outdated data, but if data is viewed as an evolving stream, analysing its
temporal stability as a data stream problem (Sáez et al, 2015) is a novel DQ concept.
Similarly, the novel multi-source variability dimension aims to measure the probabilistic
concordance of data among different data sources such as hospitals, physicians, devices,
etc. (Sáez et al, 2014b). Besides, contextualization of data is associated to the semantic
normalization and annotation of EHRs, however it has not been defined as a measurable
DQ dimension yet. Annotated data permits not only understanding data, but also
interpreting its quality under different contexts, i.e. using context-specific DQ metrics.

With the selection of DQ dimensions in Table 7.7 we try to define the most impor-
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7.2. Towards a general data quality framework

tant aspects to be addressed to our opinion, which could cover the necessary aspects
for the DQ assessment for data reuse while being to some degree personalized on their
methods. Dimensions can conform to data specifications or to user expectations. In
both cases it is recommended defining an information quality specification (English,
2006), which may refer to aspects of data in their own right and to quality requirements
for specific contexts of use. Other authors classify them as contextual assessments
(Pipino et al, 2002; Shankaranarayanan and Cai, 2006) where different measurements
for a single dimension can exist in both groups. Hence, we propose that some of the
dimensions could be classified as generic (i.e. domain-independent, such as a degree of
the number of duplicated data) and some others as domain dependent (parametrized
given a scenario, such as measuring the predictive value for a specific decision support
task).

7.2.4 Axes

We define an axis as the target of the DQ analysis across the provided data struc-
ture. Assuming data is provided in tabular format, a registry is represented by a row
composed by the set of columns associated to the different variables. Hence, in our
proposal, similarly to the work by Oliveira et al (2005), DQ can be analysed on this
data table over the axes shown in Table 7.8.

For example, methods such as the proposed in this thesis, which aim to samples
of several individuals, would apply to attribute or dataset axes, while other meth-
ods for other DQ dimensions would analyse value o registry axes, e.g., analysing the
consistency among two values of a registry.

Table 7.8: Axes on which to measure the data quality

Axis Definition

Value The value of a single variable (single-case, univariate)

Registry A patient registry composed by several variables (single-case, multivariate)

Attribute The values of a variable of a sample of registries (univariate, sample)

Dataset The values of two or more attributes, until the complete dataset (multivariate, sample)

Time A comparative analysis of data through time at any of the value, registry, attribute or
dataset axes

Source A comparative analysis of data among sources at any of the value, registry, attribute or
dataset axes

Figure 7.3 represents the measurement axes over a tabular data representation. The
last two axes are related to the temporal and multi-source stability DQ dimensions,
which can be defined as ‘axeable’ dimensions. Hence, the other DQ dimensions can
also be measured through such temporal and spatial axes. This way, data could be seen
as a multi-way matrix. Then, if a DQ assessment procedure receives a tabular dataset
as described before, it could extract the temporal and multi-source axes from the
contextual elements identifying a data source or timestamp. Thus, the original dataset
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could provide either different subsets of data according to its source, or continuous
batches of registries according to a temporal window size.

Analysing any dimension in combination with time, leads to the concept of DQ
monitoring. Analogously, the combination with multi-source stability leads to DQ
source auditory. As a consequence, according to the temporal axis the different metrics
for each dimension can be monitored through time by means of metric series and quality
control charts. On the other hand, according to the spatial axis DQ metrics can study
differences among the DQ of different data sources, e.g., in an institutional quality of
healthcare auditory process.

Value 
Value 

Value 

Dataset 

Time / Sources 

Attribute

Registry

Figure 7.3: Illustration of the data axes at which DQ can be measured in the proposed model

7.2.5 Measurements of (dimension,axis) pairs

The proposed data quality framework offers a model for the definition of DQ metrics
based on DQ dimensions and data measurement axes. We propose that DQ dimensions
can be measured at the different axes as a (dimension,axis) pair. Each dimension-axis
pair can have associated generic or context-specific metrics.

As a consequence, metrics in a dimension can be defined differently according to
a target axis. E.g., (completeness,value) measures whether the value of an element is
recorded, (completeness,registry) can provide an account of missing data in the reg-
istry, (completeness,attribute) can measure the percentage of missing data throughout
the attribute, and (completeness,dataset) whether the dataset sufficiently represents a
target population. Additionally, individual DQ measurements of values, registries and
attributes can be aggregated to provide summarized DQ results for each axis of the
dataset, e.g., the percentage of missing data or inconsistent registries.

Table 7.9 shows a proposal for metrics on each dimension-axis pair. Metrics can
be defined to be generic or context-specific. Generic DQ metrics can be measured
directly from data without any prior knowledge neither of the domain on which it was
acquired nor its purpose. Context-specific metrics can only be measured based on the
knowledge associated to the context at which data was acquired or given a specific
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purpose for data. As an example, the generic (completeness,registry) can be a score
of the registry missing data, while a context can define which elements are mandatory
and which not in order to provide a weighted indicator of completeness.

7.2.6 Discussion

The purpose of the proposed framework is to serve as a reference for the construction of
DQ assessment frameworks, procedures or projects (Figure 7.4), with a core defined by
DQ measurements. Thus, the proposed measurements described in Table 7.9 serve as a
reference for defining custom metrics, either generic or context-specific. Next, possible
assessment methods for the DQ metrics are discussed for different DQ dimensions.

Figure 7.4: Different parts of the proposed DQ framework. Each part is related to the specific table
where the content is described.

Previously, the difference between generic and context-specific metric was exem-
plified with completeness metrics. Other relevant example that shows the versatility
of the framework is related to consistency. As defined by the framework, the consis-
tency dimension relies on constraints or rules, which can be domain-independent or
domain-specific. First, domain-independent DQ constraints or rules may be defined to
apply under any context, e.g., the age of an adult patient must not be negative, or it is
impossible for a male to be pregnant. On the other hand, DQ rules may be restricted
under specific clinical contexts, e.g., a pediatric department may define an upper age
limit above which data is considered inconsistent. Hence, whilst generic rules could
be compiled in a real-world knowledge repository to be used in all DQ consistency
analysis, context-specific DQ rules may be shared or adapted for the same or similar
domains. As defined, consistency can be versatile enough to define DQ rules to be
assessed within a single registry or within a population, e.g., to check the simultaneous
presence of some conditions within a familiar group.
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In the case of uniqueness, we leave to the user the possibility to use any duplicate
finding method (Elmagarmid et al, 2007), from simple unique patient ID finding, un-
til record linkage or entity resolution methods, e.g., to find matches of patients with
similar demographic data. It can be observed in the table that there is no metric spec-
ified for the (uniqueness,dataset) pair. Thus, according to the framework, obtaining
the set of replicated registries in a dataset will come as the aggregated measure of
(uniqueness,registry).

As previously stated, correctness aims to measure the accuracy and precision of
data respect to the real-world concept, and not whether it is valid, which is a matter
of consistency. Thus, different assessment methods can also be used to such purpose.
For value or registry axes, probabilistic models could provide the likelihood of a value
or a set of values to be true given a context or other values in the same registry (Hou
and Zhang, 1995; Hipp et al, 2001). In the case of attribute or dataset axes, the
likelihood of a population is assessed. In such case, it could be obtained based on a
reference gold standard distribution, a probabilistic estimation of the distribution, or
quality standards obtained from similar populations.

Regarding to temporal and multi-source stability, in a sense they may be considered
similar—except the possible definition of temporal stability about whether data is up
to date, see Section 2.1.2. In both cases they can be measured over data snapshots, in
the first one based on continuous temporal batches, and in the second one on multi-
source subsets of data. In this thesis we have proposed DQ assessment methods for
both cases based on information geometry and PDF distances.

Contextualization of data is an important dimension since it contributes under-
standing the meaning of data, not only to humans, but to computer systems such as
automated DQ procedures. If the context at which some data values were acquired
is not registered, a physician may miss relevant information for the patient care. Ad-
ditionally, the development of models or hypotheses may lack of relevant knowledge.
Analysing the contextualization of data may consist on checking whether context val-
ues associated to patient observations are registered. If data comes from standardized
EHRs the contextualization validation process may be even simplified (Maldonado
et al, 2012).

The predictive value is always associated to a data purpose. The reuse of clinical
routine data for research is currently a common situation when research information
repositories are not available. Then, when assessing the quality of a dataset aiming
to a specific research purpose, some of these data may present a limited value. Auto-
matically detecting such information may be the purpose of these metrics, e.g., based
on data and problem semantics, or measuring the information contained by data with
respect to a dependent target variable.

Finally, reliability is a dimension which could be defined or not to be measured from
data itself. Generally, the reputation associated to stakeholders comes from external
knowledge about them or their past results. However, properly contextualized datasets
may contain latent information about such stakeholders for estimating such reputation.
E.g., a function composed of DQ metrics obtained from a subset of data related to
specific hospitals or physicians may represent a degree of its reputation.
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Limitations

We complete the discussion in relation to the limitations of this proposal. The pro-
posed framework intends to assess the quality of biomedical data repositories for data
reuse. These types of repositories are generally presented in a format ready for its
exploitation, generally in a tabular, or Comma-Separated Values (CSV) format (what
includes Excel sheets). Indeed, we may also find repositories of structured clinical
documents, however, the tabular format is generally the most seen format for data
reuse. The proposed framework better fits tabular input data, but it can be as well
generalized, or even extended, to fit the DQ assessment of specific properties of struc-
tured documents (as we will see in Section 7.3.3). Nevertheless, methods to flatten
structured or relational databases into a purpose-specific table for the DQ analysis
might be carried out for their analysis.

Other point to remark is the adequateness or coverage of the proposed characteris-
tics of the framework. The proposed framework establishes a model for DQ assessment
which can be followed as-is or could be adapted and extended to specific needs. One
may use part of the framework, or use all of its parts. The same would apply to the
possible extensions. As an example, we mentioned that we focus on practical dimen-
sions to cover the necessary aspects for data reuse. One may miss specific definitions
for any of the proposed dimensions found in the literature, or even miss a complete
additional dimension. Hence, the proposed framework could be extended with new
definitions of dimensions, being compatible with the defined functionalities, outcomes,
variables and axes. Several derived applications of parts of the proposed framework
and extensions are described in the next section.

7.3 Derived applications

In this section we describe three DQ assessment applications which are established
in the proposed general DQ framework. The first application used the theoretical
framework of dimensions and axes for the construction of a data quality assured peri-
natal data repository (Section 7.3.1). The second application takes de definition of the
contextualization dimension and proposes a solution for its assurance on the registry
axis (single-case assessment) for the data reuse on CDSSs (Section 7.3.2). The third
application (Section 7.3.3) consists in the use of the DQ framework to establish the
measurements of DQ dimensions in an on-line service for the evaluation and rating of
biomedical data repositories.

7.3.1 Data quality assured perinatal repository

The Baby-friendly Hospital Initiative (BHFI) is an effort by the WHO and UNICEF
(2009) to implement practices that protect, promote and support breastfeeding. Hav-
ing materialized these guidelines, and under a specific research project, the Virgen del
Castillo Hospital in Yecla, Spain, decided to use the population data from the HIS for
monitoring the perinatal clinical activities matching the evidence of the BHFI.
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Taking this opportunity, the Virgen del Castillo Hospital decided to build a compu-
tational process to extract the data from the EHRs under a quality control mechanism,
towards the construction of a quality-assured perinatal repository for data reuse. This
reuse included the aforementioned monitoring and research activities.

Aiming to build a generic solution for the construction of infant feeding repositories
from birth until two years, independent of the primary EHRs, and based on a theo-
retical basis for its quality control, the DQ framework proposed in this chapter was
used.

Results

The developed data quality assurance process consists of 13 stages to ensure the harmo-
nization, standardisation, completion, de-duplication, and consistency of the dataset
content. The quality of the input and output data at each of these steps is con-
trolled according to eight of the DQ dimensions in Table 7.7: predictive value, correct-
ness, duplication, consistency, completeness, contextualization, temporal-stability and
spatial-stability, and measured across the axes in Table 7.8. Consequently, in addi-
tion to obtaining a quality assured repository at the end of the process, we obtain its
DQ meta-information, which allows monitoring the clinical processes under a TDQM
methodology.

The process was applied to obtain a quality assured repository from the original
EHRs of the Hospital. The initial dataset consisted of 2,048 registries and 223 at-
tributes with information from the perinatal period. The resultant quality assured
repository consisted of 1,925 registries and 73 attributes, discarding those elements
that are non-informative for the reuse, with redundant data or with non-recoverable
DQ problems (see Table 7.10).

To check the effect of the DQ correction procedures applied at each stage of the
process, the DQ was measured at the stage input and output data. Table 7.11 shows
a selection of these measurements, where a significant improvement in the DQ mea-
surements can be observed.

Table 7.10: Comparison of the number of elements between initial and quality-assured repository of
infant feeding of the Virgen del Castillo Hospital

Initial dataset
Quality-assured

repository

Registries 2,048 1,925

Attributes 223 73

Values
(observations)

433,308 107,529
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Table 7.11: Selection of data quality measurements when applying the developed data quality assur-
ance process to the infant-feeding dataset of the Virgen del Castillo Hospital

DQ problem Dimension
Affected
before procedure

Affected
after procedure

Non-informative attributes Predictive value 64% 0%

Births with miss-assigned forms Contextualization 8% 0%

Attributes with changes in support
(protocol changes)

Temporal stability 19% 0%

Out of range observations Consistency 0.003% 0%

Unlikely observations Correctness 0.001% 0%

Incomplete birth registries Completeness 6% 0%

Replicated observations Uniqueness 45% 0%

Observations with variability among their
replications

Correctness 1% 0%

Registries with inconsistencies among
attributes (multivariate)

Consistency 6% 3%

Discussion

This study emphasized the transparency provided by the DQ assessment in biomedical
research repositories and explored the applicability of the DQ framework proposed in
this thesis in real scenarios. Besides, this work enabled the construction of the first
quality-assured repository for the reuse of information on infant feeding in the perinatal
period for monitoring healthcare activities and research purposes.

7.3.2 Contextualization of data for their reuse in CDSSs reuse
using an HL7-CDA wrapper

Contextualization is one of the main DQ dimensions to be considered when sharing data
among multiple sources, since it helps ensuring common semantics of medical concepts
and data understanding. When reusing data for research, such as for data mining
and knowledge discovery, the contextualization of data provides researchers a better
understanding of the variables and the problem in hand, improving their outcomes. In
addition, when predictive or knowledge-base models are used in a CDSS along different
locations, it is of upmost importance that the CDSS can understand the semantics of
the EHRs to be used as input for the model. Hence, a proper contextualization of data
is key for such a purpose.

During the development of this thesis, we participated in a project aiming to de-
velop a knowledge-based personal health system for the empowerment of patients with
diabetes mellitus. The knowledge-base model was based on the American Diabetes
Association guidelines and it was integrated in a telemedicine system to be used as
a remote CDSS from several medical institutions. Hence, the CDSS required patient
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data related to nutrition habits and physical activities, and vital measurements ac-
quired at different moments. The CDSS was aimed to reuse the original data from the
different EHRs in order to calculate the patient recommendations and risk assessments.
As a consequence, for an input data of a minimum quality, data should be properly
contextualized identifying their semantics and contextual metadata. In addition, the
results of the CDSS should also be provided in some standardized and contextualized
format to be as well understood by the requesting institutions.

According to the objectives of the project, the DQ assessment was not aimed to
measure the data contextualization, but to assure it. Hence, we aimed to offer a first
step towards DQ assurance for the reuse of EHRs by CDSSs based on their contextu-
alization. The assurance of other single-case DQ dimensions such as completeness or
consistency was out of the scope of the project.

Results

The proposed solution to assure the data contextualization was based on standardized
input and output data for the CDSS conforming an Health Level 7 Clinical Document
Architecture (HL7-CDA) wrapper. HL7-CDA is a standard for the structure and
exchange of clinical documents (Dolin et al, 2006). HL7-CDA is approved by ANSI
and is currently one of the most widely accepted clinical documents standard. HL7-
CDA contains its own vocabulary which provide a first degree of semantics. However,
in most cases it must be completed with clinical terminologies in order to provide the
required contextualization for a particular scenario. The Systematized Nomenclature of
Medicine - Clinical Terms (SNOMED-CT) is currently one of the most extended clinical
terminologies worldwide. It contains uniquely coded and, in general, unambiguous
clinical concepts from most health care domains. Hence, we combined the use of HL7-
CDA with SNOMED-CT to provide data with a complete contextualization. According
to the recommendations by HL7, we defined the HL7-CDA restrictions in a HL7-CDA
Implementation Guide to formally describe the contents of the proposed HL7-CDA
documents.

Besides the required contextualization of data towards its reuse quality, we took
the opportunity to make a solution for facilitating its use and generalization on most
types of knowledge-based (or rule-based) CDSS. Hence, patient data and rule inference
results were mapped respectively to and from the CDSS by means of a binding method
based on an XML binding file. This way, we provided a non-invasive solution based just
on binding standardized data to the rule facts in the knowledge-base and vice-versa
by means of a specific knowledge binding and language files. The proposed binding
method permits describing the knowledge-base using human readable terms instead of
terminology codes, what facilitates the maintenance of the knowledge. Additionally,
being the results of the CDSS an independent standardized clinical document, they
can present clinical and legal validity.

Figure 7.5 shows the conceptual schema of the proposed approach. On the left
side of the figure we can see the input and output clinical documents wrapping the
CDSS. These correspond to HL7-CDA documents. An HL7-CDA implementation
guide is provided as the standard template for the output documents as well as a
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recommended template for the input documents. In the center of the figure we can see
the binding layer of the method. Its objectives are 1) reading the input CDA document
and transforming it into a set of input facts compatible with the inference engine and
2) obtaining the results of the inference rules and transforming them into the output
CDA document using the corresponding language terms for textual values. Finally, the
right side of the figure represents the inference engine containing its knowledge-base.

Figure 7.5: Conceptual schema of the proposed solution. Data flow between the three main compo-
nents and from external inputs is represented by arrows.

Figure 7.6 shows an example of the contextualized input data, including the clin-
ical concept ‘Standing height’. First, its semantic is assured being coded with its
SNOMED-CT code 2483330004. Second, towards its utilization for the recommenda-
tions by the CDSS, it is contextualized with metadata about its acquisition date using
the HL7-CDA ‘effectiveTime’ component. Note that the clinical concept is repeated
under ‘text’ and ‘entry’ elements. According to the HL7-CDA guidelines, the former
represent a narrative block, to be easily translated to human understanding, while the
second is aimed to the computer understanding, in our case by the CDSS.

Discussion

It can be to some degree acceptable that the data semantics and contextualization
levels may be different across different families of HIS or locations, since they should
not need to be interoperable outside the organization. For that reason, we initially
focused to the data contextualization. However, the fact of having applied other basic
DQ assessment, making data suitable for the data reuse by CDSSs could be an open
discussion: should a CDSS always validate the maximum aspects of DQ as possible?
should the CDSS assume that such validation was made at original HIS? For reliability
reasons, independently of whether DQ is originally assessed, a CDSS would benefit of
making its own data quality validation at data input. Basic checks of missing data
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Figure 7.6: Structure and contents of contextualized input data for the CDSS input as a HL7-CDA
document. The clinical concept ’Standing height’ is here the only input data.

and inconsistencies (be univariate or among various variables) would avoid unreliable
CDSS results. In addition, multi-source and temporal variability based checks such as
those developed in this thesis may assess whether a CDSS is suitable for the population
at which it is intended to be applied, e.g., monitoring the distributions of batches of
input data. Further, if the original distribution of the data used to infer the knowledge
of a CDSS is available, we could evaluate the outlyingness of single patient cases at
input time aiming to provide a degree of possible error of the CDSS result.

7.3.3 Qualize

Concerned with the problematic of data quality, a partnership formed by the UPV and
the company VeraTech for Health S.L., started a joint project towards the development
of an on-line service for the data quality evaluation and rating of biomedical data
repositories, known as Qualize.

Qualize was conceived from the investigation towards the general data quality
framework carried out as part of this thesis. Consequently, Qualize relies in the DQ
framework of dimensions and axis proposed in this chapter and includes, among oth-
ers, the methods for multi-source and temporal variability assessment developed in
this thesis.

Results

Qualize was designed to provide three main functionalities for the DQ assessment of
biomedical data repositories:
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1. Evaluate the DQ of repositories based on the DQ dimensions in Table 7.7, provid-
ing for each specialized metrics, visualizations, recommendations and generation
of DQ reports.

2. Rate the DQ of repositories, positioning them respect to other repositories, with
the purpose to encourage the excellence in the field of biomedical data quality.

3. Extract subsets of quality-assured data from repositories, towards the exploita-
tion of sets of valid and reliable data.

Threfore, the core of these functionalities are specific DQ methods associated to the
nine DQ dimensions proposed in our framework: multi-source stability, temporal sta-
bility, correctness, completeness, uniqueness, consistency, contextualization, predictive
value and reliability.

Qualize will count with diverse technologies. First, the multi-source and temporal
stability dimensions are being developed based on the analogous variability technolo-
gies developed in this thesis. Second, the dimensions of completeness and consistency
are being developed based on enriched data archetypes. Third, Qualize is being de-
signed to work with most types of biomedical data, such as plain text or CSV files,
health information standards such as ISO EN 13606f, HL7-CDA Release 2 (Dolin et al,
2006), and openEHRg. With respect to the other dimensions, their assessment meth-
ods are now under research, e.g., using information geometry approaches derived from
the multi-source variability methods.

Other supporting functionalities were also considered. First, the DQ assessment
can be fitted-for-purpose according to several functional domains for data including:
research, monitoring of indicators, quality of healthcare assistance, or healthcare poli-
cies. Second, due to the sensitivity of biomedical data, the data access will be guided
by privacy and data protection.

Finally, an special emphasis was put on providing the Qualize service with a user-
centered design. To this end, it provides a user-friendly and device-independent GUI,
with a clean and responsive design based on latest methodologies and technologies
such as Material Designh and AngularJS i. In addition, the DQ assessment results for
multi-souce and temporal variability will provide to the users with navigable versions
of the exploratory methods developed in this thesis. Figure 7.7 shows an example of
the GUI of the current prototype of Qualize.

Discussion

Qualize is an example of how the knowledge and technologies derived from the research
carried out in this thesis can be transferred for their exploitation and application to

fISO EN 13606-1:2008 http://www.iso.org/iso/catalogue_detail.htm?csnumber=
40784(accessed 2015-09-16)

gopenEHR Foundation http://openehr.org/ (accessed 2015-09-16)
hGoogle© Material Design http://www.google.com/design/spec/material-design/

(accessed 2015-09-03)
iAngularJS by Google© http://angularjs.org/ (accessed 2015-09-03)
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Chapter 7. Biomedical data quality framework

real problems. With the Qualize service, we intend to provide more value to the
healthcare system towards improving the value of their data repositories. Based on
the DQ assessment functionalities of the service, we expect to improve the validity
and reliability of biomedical data for its reuse in healthcare, strategic, managerial and
scientific decision making. The service additionally aims to help discovering which
software modules or stages in the clinical workflow are generating DQ problems, re-
duce the costs of data preparation previous their reuse, certifying the data quality of
repositories, and comparing the levels of DQ and the maturity of DQ processes among
repositories and institutions.
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Chapter 8

Concluding remarks and
recommendations

This chapter summarizes the main concluding remarks and recommendations derived
from this thesis. This finalizes the work carried out in this thesis, while provides the
insights for the continuity of scientific research and development directions based on
it.

Part of the provided recommendations were published in the book chapter by Zur-
riaga et al (2015)—thesis contribution P7.

8.1 Concluding remarks

The existence of large biomedical data repositories with an assured data quality is
becoming a reality thanks to the increasing number of open data, data-sharing in-
frastructures and data quality research. In this thesis we have mainly contributed
to the assessment of two data quality problems which are of special importance in
multi-source repositories acquired during long periods of time: the variability in data
distributions among sources and through time. To this end, we have defined and de-
veloped different methods for the assessment of multi-source and temporal variability
based on Information Theory and Geometry. The developed methods overcome com-
mon problems of classical methods on Big Data sets of multi-modal, multi-type and
multi-variate data.

This thesis have contributed to the scientific state-of-the-art in the fields of Med-
ical Informatics, Statistics and Probability, Information Systems, Data Mining and
Biomedical Engineering. This is evidenced with the publications derived from this
thesis in top-ranked journals and international conferences. In addition, the developed
methods have been compiled in a registered software package which facilitates its reuse
on further case studies as well as its industrialization.

The specific concluding remarks of this thesis are listed as follows.

CR1 Having reviewed the state-of-the-art in data quality methods (Section 2.1), we
found little attention to solutions for assessing and measuring the multi-source
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and temporal variability. Our own research and various systematic reviews car-
ried out in the literature confirmed that methods to address data quality are
heterogeneous. In general, the so-called dimensions provide definitions of what
aspects of data quality must be addressed, which vary according to the purpose.
Despite the differences in the literature, the underlying concepts of dimensions
are likely common. Among them, we found concepts related to the concordance
of data semantics with integration purposes, the concordance of data to reference
gold-standard data, the degree to which data is up-to-date for current purposes,
and the monitoring of indicators in classical quality control approaches. These
concepts can be to some degree related to the problem of variability of data
distributions among multiple sources or through time. However, the relation to
probability distributions is not usually studied, and we have not found any studies
that implicitly classify temporal and multi-site variability in probability distri-
butions as DQ dimensions nor those that propose a methodological approach to
deal with such variabilities as part of DQ assessment procedures.

We have explicitly classified multi-source and temporal variability in data distri-
butions as data quality problems, and recall the importance of their assessment
for a proper data reuse in large-scale multi-source biomedical data repositories.

This concluding remark responds to the research question RQ1, covers the objec-
tive O1 and was derived from the works in publications P1, P3, and P4.

CR2 Information-theoretic probability distribution distances are a robust basis for
building non-parametric, sample-size and variable-type independent methods for
comparing distributions. Classical statistical distribution comparisons are gen-
erally problem specific. Classical methods are suited to specific types of (gen-
erally univariate) variables, such as numerical normally-distributed data (e.g.,
ANOVA, or MANOVA, its multivariate alternative), non-parametric data (e.g.,
Kolmogorov-Smirnov test), or categorical data (e.g., Chi-square test). Besides,
not all the measured statistics satisfy the properties of a distance, and the results
of statistical tests of hypothesis are generally affected by large sample sizes.

Information-theoretic distances have been the basis for the methods developed in
this thesis, which have permitted making multi-source and temporal variability
methods suitable to Big Data sets of multi-modal, multi-type and multi-variate
data. Specifically, we selected the Jensen-Shannon distance (the Hellinger dis-
tance may have been used with similar properties) for satisfying the properties
of a distance, being directly computed from the Kullback-Leibler divergence,
and for being bounded between zero and one to make the developed methods
comparable.

This concluding remark responds to the research question RQ4, covers the objec-
tive O2, and was derived from the work in publication P2.

CR3 A method for the assessment of the multi-source variability of biomedical data
distributions has been developed providing (1) a metric for measuring the global
probabilistic variability among multiple-sources, the GPD, (2) a metric for mea-
suring the outlyingness of a data source with respect to the central tendency, the
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SPO, and (3) an exploratory visualization for the inter-source dissimilarity, the
multi-source variability simplex. The GPD stands as a metric equivalent to the
notion of a probabilistic standard deviation of a set of PDFs to their central ten-
dency. Therefore, as demonstrated in the metric evaluation and the case studies,
the GPD can be used as a DQ metric to control the degree of concordance among
the distributions of multiple sources. On the other hand, the SPO metric has
demonstrated to be a useful indicator to detect data sources with anomalous,
biased, or isolated data behaviour. The resultant exploratory visualization has
demonstrated in the case studies to be a effective tool to explore the inter-source
concordance among distributions, which permits rapidly detecting isolated data
behaviours in single data sources or detecting subgroups of data sources with
closer distributions.

This concluding remark responds to the research question RQ2, covers the objec-
tive O3, and was derived from the work in publication P3.

CR4 A method for the assessment of the temporal variability of biomedical data dis-
tributions has been developed providing (1) an visualization plot to explore the
temporal evolution and behaviour of distributions, the IGT plot, and (2) a sta-
tistical process control algorithm for quantitatively monitoring the variability of
data distributions through time, the PDF-SPC. The IGT plot projects in 2D
the non-parametric statistical manifold of the set of distributions extracted from
dividing the repository into temporal batches, with the advantage of knowing
the temporal connection among them. Hence, in the method evaluation and
in the case studies, the IGT-plot has demonstrated to capture different types of
differences in data distributions through time, namely gradual, abrupt and recur-
rent changes. On the other hand, the PDF-SPC has shown to be a quantitative
complementary method to the IGT plot, which permitted automatically firing
warning or out-of-control states according to the degree of temporal variability
of the data acquisition process.

This concluding remark responds to the research question RQ3, covers the objec-
tive O4, and was derived from the work in publication P4.

CR5 The multi-source and temporal variability methods developed in this thesis, as
well as their common probabilistic basis, have been evaluated and validated with
simulated benchmarks and real case studies. The selection of proper distances
for comparing distributions was evaluated by simulating different types of multi-
modal, multi-type and multi-variate distributions and possible changes between
them. The multi-source variability method was evaluated during its design us-
ing a simulated benchmark for the target features of the method and in a real
problem comparing the multiple sources of the UCI Heart Disease dataset. The
temporal variability method was evaluated during its design using two variables
of the real US NHDS dataset, and simulating temporal changes over them. Fi-
nally, both methods were additionally validated on the cases of study described
in Chapter 6 including an exhaustive evaluation in the Public Health Mortality
or the Region of Valencia, and other evaluations in the Cancer Registry of the Re-
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gion of Valencia, a National Breast Cancer dataset, and an In-Vitro Fertilization
dataset.

These evaluations have demonstrated the usefulness of the developed methods for
assessing and controlling the variability of data distributions among sources and
through time, first, in conditions at which classical statistical methods are not
suitable, second, providing novel quantitative and qualitative information to the
date not available with other methods, and, third, resulting in a generic approach
suitable for different types of datasets or biomedical data reuse problems.

This concluding remark responds to the research question RQ4, covers the objec-
tive O5, and was derived from the work in publications P2, P3, P4 and P5.

CR6 A software containing the methods and algorithms for multi-source and tem-
poral variability developed in this thesis has been developed and registered in
the technological offer of the UPV. This includes functions for obtaining the
GPD and SPO metrics, multi-source variability simplex visualization, IGT plots,
PDF-SPC and temporal heat maps. The functions are built to be generic, that
is, to be used on any type of non-parametric distribution, with different types
of variables, in a uni- or multivariate setting, and even mixing different types
of variables. Additionally, an algorithm for reading Big Data files in stream-
ing and using temporal landmarks to set temporal batches has been included,
which incrementally estimates the non-parametric probability distributions to be
analysed.

This software, provided as a MATLAB framework, establishes a novel suite of
DQ metrics and data profiling tools for the systematic management of multi-
source data-sharing infrastructures and multi-source research datasets, as well
as for the data understanding and preparation for data mining and knowledge
discovery tasks. A systematic approach for assessing the multi-source and tem-
poral variability has been proposed based on the experiences of the use of the
methods in the cases of study. Finally, we want to recall that the methods pro-
posed in this thesis could be used as well in traditional data analysis problems,
and complemented with other methods such as clustering algorithms to provide
more light on the relationships among data sources and time periods in their
statistical manifolds.

This concluding remark responds to the research question RQ5, covers the objec-
tive O6 and is related to the software contribution S1.

CR7 In addition to the development of the multi-source and temporal variability meth-
ods, we have aimed to establish the basis of a general framework for the evaluation
of DQ in biomedical data repositories. The objective of this task was to open
the path to further research about DQ dimensions and facilitate the industrial-
ization of their assessment methods. As a consequence, in this thesis we have
presented two of the outcomes towards such an objective. First, we developed
a method to ensure the proper contextualization of biomedical data as the in-
put and output of CDSS based on the standardization of data concepts using the
HL7-CDA clinical documents standard. Contextualization is one of the main DQ
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dimensions to be considered when sharing data among multiple sources, since it
helps ensuring a common semantics of medical concepts and data understand-
ing. Second, we have tried to define a common theoretical framework for DQ
assessment. It is based on the definition of nine DQ dimensions, aiming to cover
the most important dimensions to our opinion from the literature, which can be
measured in different axis of the dataset, namely through registries, attributes,
single-values, full dataset, multi-source and through time. Several examples for
these measurement possibilities were discussed.

This concluding remark responds to research question RQ5, covers the objective
O6 and is related to the software contributions S2 and S3.

8.2 Recommendations

The objectives of this thesis were motivated, first, by the background and recommen-
dations given from the years of experience of the IBIME research group, including the
author and advisors, in biomedical data analysis. And second, by the global neces-
sity of accessing valid and reliable biomedical data for its reuse in research or decision
making, as justified in the scientific state-of-the-art and Big Data tendencies.

As such, continuing with the research cycle, the developed methods and research
findings in this thesis can establish the starting point of further research branches
based on them, in addition to further technological developments. The following rec-
ommendations are suggested.

R1 Even when semantic and integration aspects are solved in large multi-site data
sharing infrastructures, probabilistic variability may still be present in data,
which may entail different data reuse problems. Unmanaged multi-site and tem-
poral variability may lead to inaccurate or unreproducible research results, or
suboptimal decisions. We suggest incorporating the assessment of data temporal
and multi-site probabilistic variability in systematic DQ procedures. In the case
of multi-site repositories we advocate for assessing their ‘probabilistic interop-
erability’ based on the GPD and SPO metrics, and the multi-source variability
simplex visualization.

R2 The GPD and SPO metrics can be used to provide a quantitative assessment of
the multi-source variability of biomedical data repositories, i.e., as data quality
metrics. The construction of a metric for the temporal variability dimension
can be studied as well based on the presented temporal variability methods.
Possible approaches may be either defining heuristics on the changes found in
the statistical manifold which originates the IGT plot, e.g., based on the number
of temporal subgroups, or based on the changes of state detected by the PDF-
SPC algorithm. Besides, it is important to study to which degree changes are
normal or expected, such as the gradual changes due to normal environmental
changes.

R3 In addition to act as DQ assessment methods, the GPD and SPO metrics can
be used as statistical methods for the assessment of differences among samples,
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with the advantage of being non-parametric, multi-variate, and variable type
and sample size independent. Concretely, the GPD can be interpreted (similarly
to the Jensen-Shannon distance) as the degree of the percentage of overlapping
among the analysed PDFs, i.e., GPD = 0 indicates exact distributions, while
GPD = 1 indicates completely disjoint (or separable) distributions. Therefore,
towards facilitating the interpretation of the GPD and SPO to further purposes,
a study for their characterization on several problems, relying on many examples
and comparing them with several classical statistical tests, should be carried
out. As an example, we are currently using the GPD as a metric to evaluate the
separability among the tissues of automatically segmented brain tumours based
on the distributions of different quantitative MRI attributes of the tissues.

R4 Other possible use for the multi-source variability method to be investigated is for
feature selection in classification and regression. In the case of classification, the
different classes to be predicted in the dependent variable could act as the source
for the GPD. Hence, the independent variables can be divided in sub-distributions
based on the class, and compute the GPD metric with them. Hence, the higher
the GPD the more separable the classes are with respect to the measured variable.
This can as well be extended to the multivariate case, what may be used as the
basis for the predictive value DQ dimension as defined in Chapter 7.

R5 The proposed method for temporal variability assessment based on Informa-
tion Geometry, the IGT-plot, has contributed to the state-of-the-art of change
detection and characterization, opening many possibilities for further research.
The first next step would be investigating the use of Functional Data Analysis
(Ramsay and Silverman, 2005) to model the probabilistic temporal evolution of
distributions through the statistical manifold. This could facilitate the charac-
terization of changes based on prototype curves, and to predict the future state
of parametric and non-parametric distributions based on a single curve param-
eter (e.g., to predict the future state of a mixture of distributions with unfixed
number of components and parameters).

R6 The multi-source and temporal variability methods, specially the temporal vari-
ability one, are based on the non-parametric Information Geometry of data dis-
tributions. Other possibilities of Information Geometry remain to be studied,
such as using exponential families to rely on a generic parametric model, what
may avoid the requirement of using non-parametric embedding techniques, or in-
vestigating the capabilities of other unbounded PDF distances. The Information
Geometry field is a recognised hard field of study, however, a deeper understand-
ing of it may open many further possibilities.

R7 One common limitation of many data mining, statistical and knowledge discovery
studies is how the dimensionality of data complicates the modelling capabilities,
widely known as the curse of dimensionality. In a similar way, an analogous prob-
lem to dimensionality is the main limitation found in the methods developed in
this thesis. This is related to the number of bins at which non-parametric distri-
bution histograms are estimated, mainly affecting the estimation of categorical
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data, but also when discretizing continuous or mixing types of variables. Hence,
the larger the number of bins, the wider the probabilistic space at which indi-
viduals can be positioned. This may specially affect when counting with small
sample sizes. Hence, it is expected a higher default noise (or a maximum en-
tropy) in models with a larger number of bins. As a consequence, measuring
bin-based non-parametric distances among these distributions generally leads to
default larger distances. The main drawback for this problem to the methods is
that the comparability among metrics and results is to some degree reduced when
the number of bins is different. Hence, improving the comparability capabilities
when using different number of bins is an important work to be studied.

R8 Other problem related to the analysis of multivariate data is that, when compar-
ing distributions, large differences in specific variables may marginalize smaller
but possibly important differences in multivariate interactions. Hence, as in
an univariate comparisons large differences in individual variables will be likely
found, when these variables have a real, although minor, interaction with other
variable, the former univariate change would likely get all the weight in the com-
parison. As a consequence, more focus should be put in multivariate interactions
to remove individual variable effects, e.g., using mutual information.

R9 In the technological aspect, the methods developed in this thesis could be in-
tegrated into a graphical user interface which facilitates their systematic use.
Concretely, users could obtain the metrics and visualizations dynamically navi-
gating through variables, data sources, and temporal periods of their datasets,
following the systematic approach proposed in Section 7.1.1. Additionally, the
system could be connected to a database for the automatic monitoring of vari-
ability, and the developed automatic reporting methods could be integrated into
such software. Further, in some situations Big Data sampling methods could be
used to optimize the efficiency of the analyses.

R10 The general framework for DQ assessment proposed in Chapter 7 opens the
possibility to define new DQ metrics and methods for the proposed dimensions
and axes. Such framework is currently being utilized as the base for an industrial
development aimed to the DQ evaluation and DQ rating system, being developed
in a joint action by the IBIME research group and the technological company
VeraTech for Health S.L.

R11 To ensure the highest levels of DQ and continuously improve data management
procedures (e.g., data acquisition or processing), organisational DQ assurance
protocols should be established by those organizations which store, process or
use biomedical data. DQ assurance protocols combine activities at different lev-
els, from the design of the information system, the user training in DQ, to a
continuous DQ control and data curation. These DQ activities can be man-
aged by means of standardized methodologies, for example, based on the Total
Quality Management process improvement methodology (Wang, 1998; Röthlin,
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2010; Sebastian-Coleman, 2013) or on the ISO-8000 standard.j The methods for
multi-source and temporal variability assessment developed in this thesis may
be used as part of those protocols for the continuous DQ control and multi-site
audit which, as demonstrated in this thesis, would be able to provide informa-
tion about the several DQ aspects reflected in data distributions. As part of a
cyclic methodology, the outcomes provided by the DQ control may allow defining
strategies to prevent and correct DQ problems from their acquisition, for exam-
ple when manually registering patient observations, until their reuse for research
or population studies. Finally, we remark that given the trends in large-scale
data-sharing projects, leading to open, Big Data repositories of biomedical data,
the importance of DQ assessment and assurance procedures will become even
higher, representing a success factor.

jISO/TS 8000-1:2011 Data Quality - Part 1: Overview http://www.iso.org/iso/
catalogue_detail.htm?csnumber=50798 (accessed 2015-09-17)
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Österreicher F, Vajda I (2003) A new class of metric divergences on probability spaces and its appli-
cability in statistics. Annals of the Institute of Statistical Mathematics 55(3):639–653

Stevens SS (1951) Mathematics, measurement, and psychophysics. Wiley

Stiglic G, Kokol P (2011) Interpretability of sudden concept drift in medical informatics domain. 2010
IEEE International Conference on Data Mining Workshops 0:609–613

Sullivan GM, Feinn R (2012) Using effect size—or why the P value is not enough. Journal of Graduate
Medical Education 4(3):279–282

Sun K, Marchand-Maillet S (2014) An information geometry of statistical manifold learning. In:
Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp 1–9

173



Bibliography

Svolba G, Bauer P (1999) Statistical quality control in clinical trials. Controlled clinical trials
20(6):519–530

Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimen-
sionality reduction. Science 290(5500):2319–2323

Torgerson W (1952) Multidimensional scaling: I. theory and method. Psychometrika 17(4):401–419

Tortajada S, Fuster-Garcia E, Vicente J, Wesseling P, Howe FA, Julià-Sapé M, Candiota AP, Monleón
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Appendix A

Fisher Information Matrix

Let p(x|Θ) be the probability density function of a variable x ∈ X, uniquely parametrized
by the vector parameter Θ of a given family of probability distributions.

The log-likelihood function of p is defined by

`(X; Θ) = logL(X; Θ) = log
∏
i

p(xi|Θ) (A.1)

which represents the degree of adjustment of the value of Θ w.r.t. the observed
data in X.

The partial derivative (or gradient) of ` w.r.t. Θ is known as the Fisher score or
simply score:

s(X; Θ) = ∇Θ`(X; Θ) =

(
∂

∂Θ1

`(X; Θ), ...,
∂

∂ΘN

`(X; Θ)

)
(A.2)

which measures the sensitivity of ` in a sample X to changes in the values of the
vector parameter Θ. Maximum Likelihood estimation attempts to estimate Θ̂ as the
true value of Θ by means of finding a score equal to 0 (usually in a L2 norm).

For a fixed Θj, for all the possible samples X, and under some regularity conditions,
the expected value of the score is 0:

E[∇Θ`(X; Θ)] = 0 (A.3)

On the other hand, a variance of the score var(s(X; Θj)) near to 0 means that
most of the samples in X contain little information about the true value of Θ. That
is, there are practically no regions in the space of X which adjust Θ. Consequently,
considering Θ̂ an unbiased estimator of Θ, its variance will also be large across X. On
the contrary, a large variance of the score means that there exist regions of X with
large information about Θ (with large values of the score which make the variance
increase), thus reducing the variance of its estimator Θ̂. Such variance of the score
is known as Fisher Information and, after some mathematical development assuming
(A.3), is defined as:

I(Θ) = E[(∇Θ`(X; Θ))2] (A.4)
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Appendix A. Fisher Information Matrix

The Fisher Information measures the amount of information about Θ that is present
in x. In addition, according to the Cramér-Rao inequality, which we will not discuss
here, the Fisher Information gives a lower bound to the variance of an unbiased esti-
mator Θ̂ from X.

When Θ = [Θ1,Θ2, ...,ΘN ]T , I is provided as an NxN symmetric matrix, known
as the Fisher Information Matrix (FIM), where

FIM(Θ)i,j = E
[
∂`(X; Θ)

∂Θi

∂`(X; Θ)

∂Θj

]
(A.5)

We should mention that two parameters Θi and Θj are orthogonal, that is their
MLE estimates can be calculated independently, when their joint component I(Θ)i,j
in the FIM is zero. As an example, the FIM of the Normal distribution:

µ σ( )
µ 1

σ2 0

σ 0 1
(2σ4)

(A.6)

indicates that the MLE estimates of µ and σ are independent. Additionally, their
respective estimation variances are given by the corresponding diagonal elements in
FIM−1 (Cramér-Rao inequality).

The FIM defines the metric tensor, known as Fisher Information Metric, used as
inner product in the Riemannian manifold in an N -dimensional parameter space, which
allows applying differential geometry calculus in such an probability space.
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Appendix B

Develoment of equations of simplex
properties

B.1 Development of Equation 4.2: d1R(D)

In any D-dimensional simplex ∆D, between any pair of its vertices and the centroid
a triangle is constituted. The three segments composing such triangle can be defined
as CVi, CVj and ViVj, where Vi and Vj correspond to two vertices of ∆D and C to its
centroid. The angle between segments CVi and CVj is defined as ∠ CVi CVj = γ.

Now, let ∆D be a 1-regular simplex, ∆D
1R, thus ‖ViVj‖ = 1. Hence, γ, ‖CVi‖ and

‖CVj‖ will depend on D, and the following definitions apply:

1. ‖CVi‖ = ‖CVj‖ = d1R(D)

2. γ(D) = arccos(− 1/D) (Parks and Wills, 2002)

Let the midpoint of ViVj be M . Hence, the median CM divides the triangle into
two equal right-angled triangles, with ‖MVi‖ = ‖MVj‖ = 1/2 and ∠ CM CVi =
∠ CM CVj = γ/2. Taking any of the two triangles, e.g., the one including the vertex
Vi, according to its trigonometric functions:

sin(γ/2) =
‖MVi‖
‖CVi‖

As a consequence, replacing and solving the equation leads to:

d1R(D) =
1

2 sin(γ(D)/2)

B.2 Development of Equation 4.3: dmax(D)

The centroid of any D-dimensional simplex, ∆D, is calculated as:

C =
N∑
i=1

Vi
N
,
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Appendix B. Develoment of equations of simplex properties

where Vi are the coordinates of vertex i and N = D + 1.
Let the distance between any two vertices ViVj ∈ [0, 1]. For a simplex ∆D, when

V1 = V2 = ... = VN−1, and ‖V1VN‖ = 1, the length of the segment VNC will be
maximum. Hence, corresponding to the distance of VN to centroid, ‖VNC‖ = dmax(D),
and depends on the number of dimensions. In that situation, the centroid is calculated
as:

C =
V1 · (N − 1) + VN

N

Let assume V1 = O. By the conditions above ‖VN‖ = 1. Hence,

C =
VN
N

C − VN =
VN
N
− C + C − VN Add (C − VN) to both sides

−(C − VN) = VN −
VN
N

Multiply by −1 both sides

dmax(D) = ‖VN‖ −
‖VN‖
N

dmax(D) = ‖ − (C − VN)‖

dmax(D) = 1− 1

N
‖VN‖ = 1

dmax(D) = 1− 1

D + 1
N = D + 1
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Figure C.1: Probability mass temporal maps of age on female patients from the NHDS dataset.
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Figure C.2: Probability mass temporal maps of age on male patients from the NHDS dataset.
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Figure C.3: Comparison of memoryless fading windows vs. sliding window with w = 12 approaches.
The sliding window approach removes the recurrent effect while missing short-term information and
delaying abrupt changes.
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Figure C.4: Change characterization and temporal subgroup discovery on the joint age and sex
variables.
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Appendix D

Basic examples of the variability
methods

D.1 Multi-source variability

This section describes an intuitive example which summarizes the multi-source vari-
ability method. The example is described for three data sources (e.g., three sites or
hospitals) where A, B and C represent the distributions of a variable under study on
these data sources. Then, we define A, B and C normally distributed, with different
parameters for mean (µ) and standard deviation (σ), and different sample sizes (n), as
shown in Figure D.1.

0 2 4 6 8 10 12 14 16 18
0

0.01

0.02

0.03

0.04

x

P
(x

)

 

A N(µ=5,σ=1) n=100
B N(µ=8,σ=1) n=300
C N(µ=8,σ=2) n=100

Figure D.1: Distributions of three simulated normally distributed variables representing three data
sources

We next calculate the distances among the three distributions, concretely, the
Jensen-Shannon distance.[1] We have then three distances, one for each pair of dis-
tributions. Based on these distances, we construct a geometric figure where points
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represent the distributions, and the distances among them are the previously calcu-
lated distances. In the case of three data sources, the geometric figure is a triangle, as
shown in Figure D.2. In the general case, the figure is a simplex, the generalization
of a triangle to multiple dimensions. In this simplex, the centroid represents a hidden
average of all the distributions, and the distance of each distribution to it represents
the Source Probabilistic Outlyingness (SPO) metric for each source.
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Figure D.2: Geometric figure constructed from the pairwise distances among the distributions A, B
and C. The vertices represent the distributions, the edges the distances among them, and the centroid
a hidden average distribution. The distances of the vertices to the centroid are proportional to the
SPO metric for each source

The Global Probabilistic Deviation (GPD) is provided as the normalized mean of
the distances of the vertices to the centroid. Then, it represents the standard deviation
of all the data sources to the global average.

Finally, based on the calculated simplex we provide the multi-source simplex vi-
sualization in Figure D.3. In this visualization, each circle is located at the position
of its associated data source in the previous simplex, then, the distances among them
represent the dissimilarity among their distributions. Additionally, the circle color
is associated to the source SPO metric, as the length to the hidden centroid in the
simplex. Besides, the circle size is associated to the sample size of each source.

As a final remark, we note that in the case of more than three data sources, the
corresponding simplex is a geometric figure represented in more than three dimensions
(concretely in D = N − 1 dimensions, where N is the number of data sources). As a
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Figure D.3: Multi-source simplex visualization of the example. Each circle represents a data source,
where the distances among them represent the distances among their distributions. The color indicates
the SPO of each source, and the circle size the source sample size

consequence, it cannot be visualized in its original dimensionality. Using dimensional-
ity reduction methods such as Multidimensional Scaling we can project such simplices
into the two or three most representative dimensions (usually those with a larger vari-
ance), as shown in the multi-source simplex visualization. Therefore, we sometimes
might note that the color of a circle shows a higher SPO than other data sources visu-
ally further than the former (respect to the centroid). This situation is normal when
the distribution of a data source sums a larger distance to the centroid in dimensions
further than the visualized; being such data source marginalized in the visualization
by the larger variance among the other data sources.

D.2 Temporal variability

This section describes an intuitive example summarizing the temporal variability meth-
ods. The example is based on a simulated repository acquired from January 2014 to
March 2015, which has been divided in 15 temporal batches, one per month. With the
purpose of the example, the probability distribution of the repository data, a univariate
normal distribution, has been varied through time in different manners (Figure D.4).
First, from January 2014 to September 2014 the distribution mean have linearly and
gradually moved. Second, in October 2014 the distribution mean have been abruptly
moved respect to the previous month, and then continues gradually moving until De-
cember 2014. Finally, from January 2015 to March 2015, the mean remains fixed but
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the standard deviation is increased.
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Figure D.4: Probality distributions of the 15 temporal batches, which temporal evolution can be
appreciated. At right of each plot, the distribution mean (µ) and standard deviation (σ) are shown.
For each plot, the dotted distribution shows the distribution of the immediately anterior temporal
batch. The color and batch identifier at right are those that will be used in the IGT plot

The probability distribution temporal heat map of the repository simulated in this
example is shown in Figure D.5. For each temporal batch (x axis) the heat map
indicates with a color temperature the probability that a specific value (y axis) is
observed. Basically, each column of this plot corresponds to the plot of the probability
distribution at its associated temporal batch, as shown in Figure D.4. This heat map
facilitates observing the changes in a single plot.

To construct the IGT plot we start by calculating the distances among the distri-
butions of the 15 batches, similarly to the multi-source variability method, using the
Jensen-Shannon distance. These distances can be organized in a matrix of 15 rows
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Figure D.5: Probability distribution temporal heatmap of the example

and 15 columns, where the value at a given index (i,j) represents the distance among
distributions of temporal batches i and j. Based on this matrix, we can project the dif-
ferent temporal batches in a 2D plot using methods such as Multidimensional Scaling.
Hence, temporal batches will be lied out as points in such a plot, and the distances
among them will conserve the dissimilarities among their distributions (concretely, the
dissimilarities shown in the plot are a 2D approximation of the original distances, in a
higher dimensionality).

Figure D.6 shows the IGT plot resultant from the 15 temporal batches of the
example. Hence, we can observe the gradual change from January 2014 (14J) to
September 2014 (14S). Note that given the linear change in the distribution mean
(increased by equal steps of 0.4 units, with a fixed standard deviation of 2, as seen in
Figure D.4), contiguous months are equally spaced. Next we observe the abrupt change
between September 2014 and October 2014 (14O), due to the abrupt change in the
distribution mean (which increased suddenly increased in 2.8 units, as seen in Figure
D.4). We next observe from October 2014 to December 2014 (14D) the same gradual
increase as before. Finally, we observe a change of direction starting in January 2015
(15J) where, fixing the mean (in 12.8 units), the standard deviation began linearly
increasing (in steps of 1 unit) until March 2015 (15M).

As shown, the IGT plot provides an exploratory visualization of the temporal be-
havior of data probability distributions. This can be supported with the quantita-
tive measurement provided by the Probability Distribution Statistical Process Control
(PDF-SPC) method. The PDF-SPC monitors an aggregated indicator of dissimilarity
of distributions to a reference state. Hence, given a reference state, initially the first
temporal batch, we measure the distance of consecutive distributions to that reference.
These distances are bounded between zero and one, therefore the set of consecutive dis-
tances can be modelled by a Beta distribution. The difference of an upper confidence
interval of the current Beta distribution to three reference confidence intervals (e.g.,
based on the three sigma rule) are used to classify the current degree of change in three
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Figure D.6: IGT plot for the temporal batches of the example. Points represent the temporal batches,
labelled with their dates in ‘YYM’ format, as the two latest digits of the year plus a single-character
acronym for month with: J: January, F: February, M: March, A: April, m: May, j: June, x: July, a:
August, S: September, O: October, N: November, D: December

states: in-control (distributions are stable), warning (distributions are changing), and
out-of-control (recent distributions reached a significant dissimilarity to the reference
leading to an unstable state). When an out-of-control state is reached, a significant
change is confirmed and the reference distribution is set to the current.

Figure D.7, shows the resultant PDF-SPC monitoring from the 15 temporal batches
of the example. After a transient state when the Beta distribution is stabilizing (and
thus firing the expected false-alarm out-of-control state in March 2014), the simulated
gradual change in distribution mean is detected as an increase of the monitored in-
dicators, until a threshold is achieved in June 2014 firing a warning state. Next, in
July 2014 a sufficiently large change is confirmed with an out-of-control state. Conse-
quently, references are reestablished. But, next, due to the simulated abrupt change
in October 2014, an out-of-control state is directly fired. Next, the following gradual
changes in mean and standard deviation are captured as increases in the monitored
indicators.
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Figure D.7: PDF-SPC monitoring of the stability of the distribution of the example. The chart plots
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Table E.1: WHO ICD-10 Mortality Condensed List 1, excluding chapters

Code Name Code Name

1-002 Cholera 1-050 Remainder of diseases of the blood and blood-forming
organs and certain disorders involving the immune
mechanism

1-003 Diarrhoea and gastroenteritis of presumed infectious origin 1-052 Diabetes mellitus

1-004 Other intestinal infectious diseases 1-053 Malnutrition

1-005 Respiratory tuberculosis 1-054 Remainder of endocrine, nutritional and metabolic diseases

1-006 Other tuberculosis 1-056 Mental and behavioural disorders due to pyschoactive
substance use

1-007 Plague 1-057 Remainder of mental and behavioural disorders

1-008 Tetanus 1-059 Meningitis

1-009 Diphtheria 1-060 Alzheimer’s disease

1-010 Whooping cough 1-061 Remainder of diseases of the nervous system

1-011 Meningococcal infection 1-062 Diseases of the eye and adnexa

1-012 Septicaemia 1-063 Diseases of the ear and mastoid process

1-013 Infections with a predominantly sexual mode of
transmission

1-065 Acute rheumatic fever and chronic rheumatic heart diseases

1-014 Acute poliomyelitis 1-066 Hypertensive diseases

1-015 Rabies 1-067 Ischaemic heart diseases

1-016 Yellow fever 1-068 Other heart diseases

1-017 Other arthropod-borne viral fevers and viral haemorrhagic
fevers

1-069 Cerebrovascular diseases

1-018 Measles 1-070 Atherosclerosis

1-019 Viral hepatitis 1-071 Remainder of diseases of the circulatory system

1-020 Human immunodeficiency virus [HIV] disease 1-073 Influenza

1-021 Malaria 1-074 Pneumonia

1-022 Leishmaniasis 1-075 Other acute lower respiratory infections

1-023 Trypanosomiasis 1-076 Chronic lower respiratory diseases

1-024 Schistosomiasis 1-077 Remainder of diseases of the respiratory system

1-025 Remainder of certain infectious and parasitic diseases 1-079 Gastric and duodenal ulcer

1-027 Malignant neoplasm of lip, oral cavity and pharynx 1-080 Diseases of the liver

1-028 Malignant neoplasm of oesophagus 1-081 Remainder of diseases of the digestive system

1-029 Malignant neoplasm of stomach 1-082 Diseases of the skin and subcutaneous tissue

1-030 Malignant neoplasm of colon, rectum and anus 1-083 Diseases of the musculoskeletal system and connective
tissue

1-031 Malignant neoplasm of liver and intrahepatic bile ducts 1-085 Glomerular and renal tubulo-interstitial diseases

1-032 Malignant neoplasm of pancreas 1-086 Remainder of diseases of the genitourinary system

1-033 Malignant neoplasm of larynx 1-088 Pregnancy with abortive outcome

1-034 Malignant neoplasm of trachea, bronchus and lung 1-089 Other direct obstetric deaths

1-035 Malignant melanoma of skin 1-090 Indirect obstetric deaths

1-036 Malignant neoplasm of breast 1-091 Remainder of pregnancy, childbirth and the puerperium

1-037 Malignant neoplasm of cervix uteri 1-092 Certain conditions originating in the perinatal period

1-038 Malignant neoplasm of other and unspecified parts of
uterus

1-093 Congenital malformations, deformations and chromosomal
abnormalities

1-039 Malignant neoplasm of ovary 1-094 Symptoms, signs and abnormal clinical and laboratory
findings, not elsewhere classified

1-040 Malignant neoplasm of prostate 1-096 Transport accidents

1-041 Malignant neoplasm of bladder 1-097 Falls

1-042 Malignant neoplasm of meninges, brain and other parts of
central nervous system

1-098 Accidental drowning and submersion

1-043 Non-Hodgkin’s lymphoma 1-099 Exposure to smoke, fire and flames

1-044 Multiple myeloma and malignant plasma cell neoplasms 1-100 Accidental poisoning by and exposure to noxious
substances

1-045 Leukaemias 1-101 Intentional self-harm

1-046 Remainder of malignant neoplasms 1-102 Assault

1-047 Remainder of neoplasms 1-103 All other external causes

1-049 Anaemias 1-901 SARS

194



E.2. Sample size tables

E.2 Sample size tables

195



Appendix E. Supplemental material for the Mortality case study

T
ab

le
E

.2:
S

am
p

le
sizes

b
y

H
ealth

D
ep

a
rtm

en
t

in
th

e
M

o
rta

lity
R

eg
istry

fo
r

b
o
th

fem
ales

an
d

m
ales

(n
u

m
b

er
of

d
eath

s)

Y
ea

r

D
epa

rtm
en

t
2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

T
O

T
A

L

A
G

ra
l

3
0
1

3
2
6

2
9
2

3
5
7

3
3
1

3
7
2

3
6
5

3
6
7

4
0
3

4
2
9

3
9
9

4
4
3

4
1
9

4
8
0
4

R
eq

u
en

a
5
7
4

5
6
0

5
5
8

5
9
7

5
5
3

5
6
3

5
4
2

5
5
9

5
8
2

5
4
0

5
8
5

5
6
5

5
4
0

7
3
1
8

S
a
n
tJ

o
a
n

4
8
5

5
3
3

5
4
6

6
4
0

5
9
0

6
1
4

5
9
5

6
1
5

5
9
8

5
6
5

6
4
8

6
4
4

6
6
3

7
7
3
6

C
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à
tiv

a
O

n
t

1
7
0
3

1
6
6
5

1
7
4
0

1
9
6
1

1
8
3
2

1
8
7
1

1
7
1
2

1
8
1
6

1
8
2
7

1
8
5
4

1
8
6
4

1
8
4
6

1
9
9
0

2
3
6
8
1

E
lx

1
7
9
7

1
7
9
0

1
8
3
0

1
9
6
1

1
9
3
2

1
9
1
4

1
9
7
8

2
0
0
3

2
0
2
5

2
1
3
6

2
1
4
7

2
0
8
0

2
2
7
2

2
5
8
6
5

A
rn

a
u

L
ĺıria

1
9
3
2

1
8
1
4

1
9
3
9

1
9
9
1

1
9
1
9

2
0
1
7

1
9
6
2

2
1
2
1

2
0
9
8

2
0
3
3

2
0
9
7

2
0
9
4

2
1
7
1

2
6
1
8
8

C
a
stelló
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1
1
0
4

1
1
0
6

1
0
7
4

1
1
4
3

1
0
7
2

1
1
9
8

1
1
4
0

1
1
3
5

1
0
5
2

1
1
8
8

1
0
5
7

1
0
9
4

1
1
5
2

1
4
5
1
5

L
a
R

ib
era

1
1
3
9

1
1
4
4

1
2
7
1

1
2
2
8

1
1
7
0

1
2
4
1

1
1
9
0

1
2
5
2

1
2
0
5

1
2
7
1

1
2
1
2

1
2
5
9

1
3
3
8

1
5
9
2
0

A
la

ca
n
t

1
2
1
2

1
2
6
7

1
2
4
7

1
3
2
5

1
2
5
5

1
2
6
8

1
2
3
8

1
3
0
2

1
3
2
0

1
3
1
2

1
2
9
4

1
3
3
3

1
3
4
9

1
6
7
2
2

V
a
lèn
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E.3. Temporal heat maps of intermediate cause 1 and 2

E.3 Temporal heat maps of intermediate cause 1

and 2

This section shows the probability distribution temporal heat maps of the variables
IntermediateCause1 (figure E.1) and IntermediateCause2 (figure E.2). Two main find-
ings can be observed in both figures. The first is the punctual increment of unfilled
data, labelled as NA, in January to March 2000, especially in February. The second is
the abrupt change in frequencies of several causes (specially the NA), in March 2009.
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Figure E.1: PDF temporal heat map of IntermediateCause1 for both sexes (see codes in Table E.1)
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Figure E.2: PDF temporal heat map of IntermediateCause2 for both sexes (see codes in Table E.1)

199



Appendix E. Supplemental material for the Mortality case study

E.4 Unfilled values in the Death Certificate by Health

Department

The heat maps in this section show the percentage of unfilled values by Health De-
partment for each possible cause. To avoid the differences caused by the change of
certificate in 2009, two heatmaps are shown with the data before (Figure E.3) and af-
ter (Figure E.4) such change. The Health Departments are sorted by the total number
of unfilled causes.
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Figure E.3: Percentage of unfilled values by Health Department before the change of Certificate of
Death (period 2000 - 2009 February)
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Figure E.4: Percentage of unfilled values by Health Department after the change of Certificate of
Death (period 2009 March - 2012)
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E.5. Multi-site variability of age of death

E.5 Multi-site variability of age of death

The figures in this section show the multi-source variability simplices of the Age of
death in males (Figure E.5) and females (Figure E.6) during all the period of study. The
most remarkable finding is the extreme outlyingness of the Department of Torrevieja
in both sexes. Torrevieja counts with a large number of deaths in young people, in
comparison with the rest. Additionally, in the case of males it can be appreciated that
it is opposite to Requena, one of the Departments with an elder population.

Figure E.5: Multi-site 2D simplices for Age in females during all the period of study

Figure E.6: Multi-site 2D simplices for Age in males during all the period of study
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Appendix E. Supplemental material for the Mortality case study

E.6 Dendrograms of initial cause 1 and intermedi-

ate cause 2

This section show the resultant dendrograms (concretely, phylogenetic trees) of the
clustering process applied to the Health Departments in the variables InitialCause1
(Figure E.7) and IntermediateCause1 (Figure E.8) in males. The clustering of multi-
source distributions can be performed based on the dissimilarity matrix of inter-source
probabilistic distances resultant of the temporal stability method.
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Figure E.7: Resultant dendrograms from clustering of InitialCause1 by Health Departments
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Figure E.8: Resultant dendrograms from clustering of IntermediateCause1 by Health Departments
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E.7. Spanish Certificates of Death in the period 2000-2012

E.7 Spanish Certificates of Death in the period 2000-

2012
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Figure E.9: Bolet́ın Estad́ıstico de Defunción (version 1999)
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E.7. Spanish Certificates of Death in the period 2000-2012

Figure E.10: Certificado médico de defunción (version 2009)
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Figure E.11: 3. Certificado médico de defunción (version 2009 - Fixed)
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E.8. Temporal variability of basic cause of death

E.8 Temporal variability of basic cause of death

This section shows the IGT plots and temporal heat maps of the basic cause of
death for males and females (BasicCause variable). The basic cause is the main in-
dicator of causes-of-death in Public Health studies. As a consequence, its quality is
generally controlled, and the abrupt changes due to the certificate change in 2009 were
retrospectively corrected. However, slight differences can still be found due to this
change: first, in the IGT plots as a slight break in the temporal flow in month 99, and
second, in the temporal heat maps as slight abrupt changes in the frequencies of some
causes in 2009.

Additionally, it is remarkable the strong seasonal effect in the basic cause of death,
observed in the IGT plots as the component associated to the color temperature (cold
and warm colors for winter and summer periods, respectively), and in the absolute
frequencies temporal heat maps as the periodic peaks of frequencies in causes-of-death.
This is mainly due to the seasonality of diseases, mainly winter-specific respiratory
diseases and summer heart diseases.
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Figure E.12: IGT plots of basic cause of death for both sexes

E.9 Temporal heatmaps of age at death

The figures in this section show the absolute and PDF temporal heat maps of the Age
of death for females (Figure E.15) and males (Figure E.16). The most remarkable
finding is a gradual change related to an increase in life expectancy. Additionally,
detailed effects in specific age ranges can be observed, such as a linear evolution of a
population gap coinciding with the lack of newborns during the Spanish War in 1938
or the increase of deaths in 2002 and 2005 due to flu.
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Figure E.13: Temporal heat maps of basic cause of death for females (see codes in Table E.1)
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Figure E.14: Temporal heat maps of basic cause of death for males (see codes in Table E.1)
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Figure E.15: Temporal heat maps of age at death for females
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Figure E.16: Temporal heat maps of age at death for males
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