CONTENTS

1 **INTRODUCTION** 1
 1.1 Motivation 1
 1.2 The successful trilogy 11
 1.3 Some remarks on the approach to discover novelties 14
 1.4 Road map 19
 1.4.1 Problem statement and formalization 19
 1.4.2 Proposed algorithmic solution 22
 1.4.3 Experimentation and results 23
 1.4.4 Conclusions and future work 24

1 **Problem Statement and Formalization** 25

2 **SOME APPLICATION DOMAINS** 27
 2.1 Text segmentation 28
 2.2 Part of speech tagging 29
 2.3 Text chunking 29
 2.4 (Monotone) Automatic translation 30
 2.5 Spoken language understanding 32
 2.6 Ambiguous keyboards, predictive text 33
 2.7 Handwritten text recognition 37
 2.8 Speech 41
 2.9 Summary and some conclusions 49
 2.9.1 Underlying representation 50
 2.9.2 Preprocessing 52
 2.9.3 Ambiguous front-ends and the pipeline problem 52

3 **SOME PROBLEM TYPES RELATED TO SEQUENCES** 57
 3.1 Some problem types 58
 3.1.1 Sequence classification 59
 3.1.2 Segment Classification 60
 3.1.3 Joint classification 61
 3.1.4 Segmentation and over-segmentation 62
 3.1.5 Recognition 64
 3.1.6 Parsing 64
 3.1.7 Language modeling 65
 3.1.8 Prediction/Forecasting 65
 3.1.9 Translation 65
 3.1.10 Alignment 66
 3.1.11 KWS, indexing, querying by example 69
 3.1.12 Unsupervised term discovery 72
 3.1.13 Filtering/Denoising and Smoothing 73
 3.1.14 Summarization 73
 3.1.15 Joint Segmentation and Classification 74
 3.2 Some extensions 80
 3.2.1 Several input sequences 80
 3.2.2 Interactive systems 82
3.3 Limitations, how to face them, new proposal 87
3.4 Questionnaire when faced with a new problem 91
3.5 Analysis and evaluation measures 93
 3.5.1 Quality assessment 96
 3.5.2 Performance 99
 3.5.3 Interaction 100
 3.5.4 Other measures 102
3.6 Summary and some conclusions 102

4 Models 105
 4.1 Some preliminary ML concepts 106
 4.1.1 (Probabilistic) graphical models 115
 4.2 Two stage generative model 130
 4.2.1 Hierarchy for the second stage 133
 4.2.2 Limitations, extensions and generalizations 137
 4.3 Classical problems of two stage generative models 141
 4.3.1 Probability of observation 142
 4.3.2 Decoding 144
 4.3.3 Model estimation 145
 4.4 Some alternative models 146
 4.4.1 Relationship with Dynamic Graphical Models 146
 4.4.2 Fixed dimension feature segments 150
 4.4.3 Estimation of frame-wise segment posteriors 155
 4.4.4 Graph transformer networks 160
 4.4.5 Some non-probabilistic frameworks 163
 4.5 Summary and some conclusions 165

5 Recognition, decoding, parsing, translation 167
 5.1 Introduction 167
 5.2 Recognition, parsing, decoding 170
 5.3 Weighted languages and semirings 172
 5.4 Some formalisms 177
 5.4.1 Formal/generative grammars 177
 5.4.2 Finite state automata and transducers 184
 5.4.3 Recurrent transition networks 187
 5.5 Deriving the composition of a regular and a CF model 194
 5.5.1 State-pair transducer composition 195
 5.5.2 Extension to null-transitions 200
 5.5.3 Extension to model reference transitions 209
 5.5.4 Transformation to homogeneous epsilon form 221
 5.6 Review of parsing approaches, decoders and algorithms 226
 5.7 From composition to recognition/decoding 233
 5.7.1 Acyclic inputs 234
 5.7.2 Semiring specific optimizations 236
 5.8 Summary and some conclusions 236

6 Sequence models 239
 6.1 Probabilistic decompositions 242
 6.1.1 Chain rule, clustering histories 243
 6.1.2 Whole sentence LMs 244
 6.1.3 Combining spans of the sequence 245
 6.2 Assessment measures for LMs 246
6.3 Lexical units 249
- **6.3.1 Open vs closed lexicons 250**
- **6.3.2 Most common types of lexical unit 250**
- **6.3.3 Categories 253**
- **6.3.4 Lexicon representation 254**

6.4 LM combination 257

6.5 Dynamic capabilities 259

6.6 Common LM types 261
- **6.6.1 N-gram models 261**
- **6.6.2 Weighted finite automata 265**
- **6.6.3 Recurrent NN LMs 266**
- **6.6.4 Other LM types 267**

6.7 On semantics 268

6.8 Dealing with OOV words 269

6.9 LM Wrappers 271
- **6.9.1 Based on transducer composition 271**
- **6.9.2 Changing lexical units 273**
- **6.9.3 Partial/imperfect transcription 274**

6.10 Some LM decoding features 275
- **6.10.1 Pruning, bounds, sub-lexicons, look-ahead and scales 276**
- **6.10.2 LM histories, long-span LMs 278**

6.11 Heterogeneous lattice-based LM 280

6.12 Summary and some conclusions 282

7 Segment Models 285

7.1 Introduction 285

7.2 Overcoming the limitations of HMMs 288
- **7.2.1 Piecewise stationary 289**
- **7.2.2 Frame independence assumption 290**
- **7.2.3 Markov modeling of intra-segmental regions 292**
- **7.2.4 Weak duration modeling of HMMs 293**

7.3 Implicit vs explicit duration 293
- **7.3.1 Implicit duration models (and topologies) 294**
- **7.3.2 Explicit duration models 299**

7.4 Frame sequence emission 300
- **7.4.1 Intermediate levels of description 301**
- **7.4.2 Trajectories, state-space and templates 303**

7.5 Frame emission 304
- **7.5.1 From discrete features 304**
- **7.5.2 From continuous features 305**
- **7.5.3 Estimation from frame posteriors 307**
- **7.5.4 A general scheme of frame emission 309**

7.6 Context dependency 312

7.7 Allowing discriminative models 314

7.8 Some steps towards a general scheme of Segment Models 315

7.9 Summary and some conclusions 317
Proposed Algorithmic Solutions

8 **Architecture** 321

8.1 Dataflow architecture 324
8.2 DAG serialization protocol 326
8.3 Overview of dataflow components 331
8.3.1 Generic dataflow components 331
8.3.2 Domain specific components 332
8.4 Recognizer examples 334
8.4.1 One pass 334
8.4.2 Decoupled and semi-decoupled architectures 334
8.4.3 Semi-decoupled with feedback 337
8.4.4 Multipass recognizer 337
8.4.5 One-stage dag recognizer 339
8.4.6 Multimodal recognizer 339
8.4.7 Interactive assisted recognition 339
8.5 Summary and some conclusions 341

9 **Language Model Interfaces and Representations** 343

9.1 Language Model Interface 344
9.1.1 n-gram interface 345
9.1.2 Automaton interface 345
9.1.3 RTN interface 353
9.1.4 Heterogeneous lattice LM interface 355
9.2 Count based n-gram implementations 355
9.3 Automata representation 360
9.3.1 Proposed “fan-out based” representation 361
9.3.2 Memory mapping 363
9.3.3 Proposed RTN representation 364
9.4 n-gram history manager 367
9.5 Neural Network LM 369
9.5.1 Fast evaluation with skipping NN LMs 370
9.5.2 Normalization constant estimation 373
9.5.3 NN LMs specialized for small vocabulary 376
9.5.4 “LM look-ahead” NN LMs 378
9.6 Assisted transcription representation 380
9.7 Summary and some conclusions 382

10 **Segment and Lexicon Estimators** 385

10.1 Introduction 386
10.2 Segment Estimator Interface 388
10.2.1 Incremental computation 389
10.2.2 Persistent and ephemeral operations 390
10.2.3 LM vs time conditioned decoders and Token Passing 394
10.2.4 Relationship with across-word context dependency 397
10.2.5 Relationship with pruning 400
10.3 Classical Viterbi implementations 400
10.3.1 Array swapping 402
10.3.2 Hash swapping 403
10.3.3 Reverse topological traversal 404
10.4 Dealing with null transitions and edition operations 405
III Experimentation and results 523

13 LM experimentation 525
13.1 Some brief empirical support to our automata representation 525
13.2 Fall back skipping NN LMs 530
 13.2.1 Emulating lower order n-gram NNLMs 530
 13.2.2 Models in a machine translation system 533
13.3 NN LM softmax estimation with auxiliary LMs 535
13.4 Summary and some conclusions 536

14 HTR preprocessing 539
14.1 Image cleaning 541
14.2 Tracking reference lines 544
 14.2.1 Extraction and classification of “interesting points” 549
 14.2.2 Active learning of classes of “interesting points” 550
14.3 Slope removal 551
14.4 Slant removal 553
 14.4.1 Non-uniform slant removal 556
14.5 Size normalization 558
 14.5.1 Vertical/Weight normalization 559
 14.5.2 Width normalization 560
14.6 Feature extraction 563
 14.6.1 Avoiding the feature extraction process 566
14.7 External word over-segmentation 566
14.8 Online preprocessing 569
 14.8.1 Online preprocessing stages 569
 14.8.2 Adapting the proposed offline preprocessing 571
 14.8.3 Feature Extraction 571
 14.8.4 External word over-segmentation 573
14.9 Summary and some conclusions 573

15 HTR experimentation 577
15.1 HTR with HMM/ANNs and count-based n-grams 579
 15.1.1 Experimental setting (corpora, dictionary and LM) 579
 15.1.2 Baseline experiments with HMM/GMMs 582
 15.1.3 Experiments with HMM/ANNs 584
 15.1.4 Analysis of results 588
15.2 HTR with HMM/ANN models and connectionist LMs 592
15.3 HTR by using CNNs for preprocessing 597
15.4 Lexicon-free recognition 599
15.5 Combining HMM/ANNs with holistic ANN 604
15.6 Some (isolated word) bimodal experiments 609
15.7 Summary, conclusions and future work 611
IV Conclusions and future work 615

16 CONCLUSIONS AND FUTURE WORK 617
 16.1 Brief overview highlighting our contributions 619
 16.1.1 Relating the first part 620
 16.1.2 Relating the second part 622
 16.1.3 Relating the third part 626
 16.2 Some conclusions 627
 16.2.1 Some expected critiques 629
 16.2.2 Some final thoughts 630
 16.3 Future Work 632
 16.3.1 Related to decoding 632
 16.3.2 Related to language modeling 634
 16.3.3 Related to handwriting 635
 16.4 Publications 636
 16.4.1 Contributions derived from this thesis 636
 16.4.2 Collaborations with other authors 638
 16.4.3 Other publications 640

V Appendix 643

A CORPORÀ 645
 A.1 Text 645
 A.1.1 Lancaster Olso Bergen (LOB) 645
 A.1.2 One Billion Word Benchmark 646
 A.2 Handwriting 646
 A.2.1 IAMdb 647
 A.2.2 IAM-OnDB 647
 A.2.3 biMod-IAM-PRHLT 649
 A.2.4 RIMES 649

BIBLIOGRAPHY 653