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Abstract

Removing the condition of symmetry in the notion of a fuzzy
(pseudo)metric in Kramosil and Michalek’s sense, we obtain the notion
of a fuzzy quasi-(pseudo-)metric. Then for each fuzzy quasi-pseudo-
metric on a set X we construct a fuzzy quasi-pseudo-metric on the
collection of all nonempty subsets of X, called the Hausdorff fuzzy
quasi-pseudo-metric. We investigate several properties of this struc-
ture and present several illustrative examples as well as an application
to the domain of words. The notion of Hausdorff fuzzy quasi-pseudo-
metric when quasi-(pseudo-)metric fuzziness is considered in the sense
of George and Veeramani is also discussed.

Key words: The Hausdorff fuzzy quasi-pseudo-metric, complete,
precompact, preorder, the domain of words.

1 Introduction

It is well known that the Hausdorff distance has an undoubted importance
not only in general topology but also in other areas of Mathematics and Com-
puter Science, such as convex analysis and optimization [6, 31, 37], dynami-
cal systems [11, 34, 47, 61], mathematical morphology [56], fractals [3, 12],
image processing [22, 30, 55, 63], programming language and semantics [4, 5],
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and FEDER, grant MTM2006-14925-C02-01.

1



computational biology [21, 57], etc. In [13], Egbert extended the classical
construction of the Hausdorff distance of a metric space to Menger spaces.
Later on, Tardiff [59] (see also [52, 54]), generalized Egbert’s construction
to probabilistic metric spaces, obtaining in this way a suitable notion of a
Hausdorff probabilistic distance. Since fuzzy metric spaces, in the sense of
Kramosil and Michalek, are closely related to Menger spaces [23], one can ea-
sily define, from Egbert-Tardiff’s construction, a Hausdorff fuzzy distance for
a given fuzzy metric space. In connection with these constructions, a notion
of Hausdorff fuzzy metric for fuzzy metric spaces in the sense of George and
Veeramani [17, 18] was discussed in [40].

On the other hand, it is well known that several structures of asymmetric
topology like quasi-uniformities and (fuzzy) quasi-metrics, constitute efficient
tools to formulate and solve problems in hyperspaces, function spaces, topo-
logical algebra, asymmetric functional analysis, point-free geometry, com-
plexity of algorithms, theoretical computer science, etc. (see, for instance,
Chapters 11 and 12 of [25], Section 3 of [26], and also [1, 2, 10, 16, 19, 27,
32, 41, 42, 43, 46, 49, 53, 62, etc] for recent contributions).

In this paper we introduce and study notions of Hausdorff fuzzy quasi-
metric (in the senses of Kramosil and Michalek, and George and Veeramani,
respectively) that generalize to the asymmetric setting the corresponding
notions of Hausdorff fuzzy metric. In this way, we partially reconcile the
theory of fuzzy metric hyperpsaces with the theory of asymmetric topology.
Furthermore, we apply our approach to the domain of words, a paradigmatic
example of a space that naturally appear in the theory of computation.

The paper is organized as follows. In Section 2 we present the basic
notions and results which will need later on. In Section 3 we construct and
discuss a notion of Hausdorff fuzzy quasi-metric, based on the notion of fuzzy
(quasi-)metric of Kramosil and Michalek. In Section 4 we shall show that
this new concept has several nice properties of completeness, precompactness
and compactness. In Section 5 we consider a notion of Hausdorff fuzzy quasi-
metric, based on the notion of fuzzy (quasi-)metric in the sense of George
and Veeramani. In Section 6 we apply the theory developed in the preceding
sections to the domain of words and we point out some advantages of the use
of fuzzy quasi-metrics instead of classical metrics and quasi-metrics. Finally,
we present our conclusions.
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2 Basic notions and preliminary results

In the sequel the letters R, R+ and N will denote the set of real numbers,
the set of nonnegative real numbers and the set of positive integer numbers,
respectively.

Our basic references for quasi-metric spaces and quasi-uniform spaces are
[15] and [25], and for general topology it is [14].

Let us recall that a quasi-uniformity on a set X is a filter U on X × X
such that:

(i) for each U ∈ U , ∆ ⊆ U, where ∆ = {(x, x) : x ∈ X};
(ii) for each U ∈ U there is V ∈ U such that V 2 ⊆ U, where V 2 =

{(x, y) ∈ X × X : there is z ∈ X with (x, z) ∈ V and (z, y) ∈ V }.
By a quasi-uniform space we mean a pair (X,U) such that X is a nonempty

set and U is a quasi-uniformity on X.
Each quasi-uniformity U on X generates a topology τU on X such that a

neighborhood base for each point x ∈ X is given by {U(x) : U ∈ U}, where
U(x) = {y ∈ X : (x, y) ∈ U}.

Given a quasi-uniformity U on X, then the filter U−1 defined on X×X by
U−1 = {U−1 : U ∈ U} is also a quasi-uniformity on X, called the conjugate
of U , and the filter Us = U ∨ U−1 is a uniformity on X. (As usual, U−1 =
{(x, y) ∈ X × X : (y, x) ∈ U}.)

An extended quasi-pseudo-metric on a set X is a function d : X × X →
[0, +∞] such that for all x, y, z ∈ X :

(i) d(x, x) = 0;
(ii) d(x, y) ≤ d(x, z) + d(z, y).
Following the modern terminology (see, for instance, [25, Chapter 11]),

an extended quasi-metric on X is an extended quasi-pseudo-metric d on X
which satisfies the condition:

(i’) d(x, y) = d(y, x) = 0 ⇔ x = y.
An extended quasi-(pseudo-)metric d on X such that d(x, y) < +∞ for

allx, y ∈ X, is said to be a quasi-(pseudo-)metric on X.
By a quasi-(pseudo-)metric space we mean a pair (X, d) such that X is a

nonempty set and d is a quasi-(pseudo-)metric on X.
The following is an easy but paradigmatic example of a quasi-metric

space.

Example 1. Let ℓ be the function defined on R × R by ℓ(x, y) =
max{x − y, 0}. Then ℓ is a quasi-metric on R such that ℓs is the Euclidean
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metric on R.

Each extended quasi-pseudo-metric d on X generates a topology τd onX
which has as a base the family of open balls {Bd(x, ε) : x ∈ X, ε > 0}, where
Bd(x, ε) = {y ∈ X : d(x, y) < ε} for all x ∈ X and ε > 0. Observe that if d
is an extended quasi-metric on X, then τd is a T0 topology on X.

A topological space (X, τ) is said to be quasi-(pseudo-)metrizable if there
is a quasi-(pseudo-)metric d on X such that τ = τd.

Given an extended quasi-(pseudo-)metric d on X, then the function d−1

defined on X × X by d−1(x, y) = d(y, x), is also an extended quasi-(pseudo-
)metric on X, called the conjugate of d, and the function ds defined on X×X
by ds(x, y) = max{d(x, y), d−1(x, y)} is an extended (pseudo-)metric on X.
Of course, d−1 and ds are a quasi-(pseudo-)metric and a (pseudo-)metric,
respectively, whenever d is a quasi-(pseudo-)metric on X.

A subset A of a quasi-(pseudo-)metric space (X, d) is called bounded if
A is bounded in the (pseudo-)metric space (X, ds).

Each (extended) quasi-pseudo-metric d on X induces a quasi-uniformity
Ud on X which has as a base the countable family

{{(x, y) ∈ X × X : d(x, y) < 2−n} : n ∈ N}.

In connection with this fact we have the following useful result which can
be found, for instance, in [15, Theorem 1.5].

Proposition 1. Let (X,U) be a quasi-uniform space. Then, there exists
a quasi-pseudo-metric d on X such that Ud = U if and only if U has a coun-
table base.

If d is an extended quasi-pseudo-metric on a set X, then the relation ≤d

on X given by x ≤d y ⇔ d(x, y) = 0, is a preorder on X (i.e., ≤d is reflexive
and transitive).

It is clear that d is an extended quasi-metric on a set X if and only if
≤d is a (partial) order on X (i.e., the preorder ≤d is antisymmetric, which
means that x ≤d y and y ≤d x, implies x = y).

In this case, ≤d is called the specialization order.
Note that in Example 1 the specialization order coincides with the usual

order on R.
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Remark 1. The natural connection between asymmetric distances and
order, described above, provides some advantages in certain settings, if one
works with quasi-metrics instead of metrics. Thus, in modeling a computatio-
nal process on a collection X of elements (for example, chains of information,
words of an alphabet in a programming language, complexity functions in
analysis of algorithms, etc.) we can define a preorder ≤ on X given by x ≤ y
if and only if the element y contains all the information provided by the
element x, and then it is possible, in many cases, to construct a suitable
(extended) quasi-pseudo-metric d on X such that the information provided
by ≤ is transmitted in this way to the quasi-pseudo-metric space (X, d) (see,
for instance, [33, 50]).

Next we recall the construction of the Hausdorff (extended) quasi-metric
of a given quasi-metric space.

If (X, τ) is a topological space, we denote by P0(X), C0(X) and K0(X),
the collection of all nonempty subsets of X, the collection of all nonempty
closed subsets of X and the collection of all nonempty compact subsets of
X, and if A is a subset of X we denote by A

τ
the closure of A with respect

to τ.
If (X, d) is a quasi-pseudo-metric space, we define

C∩(X) = {A
τd ∩ A

τ
d−1

: A ∈ P0(X)}.

Remark 2. The following inclusions are obvious: C0(X) ⊆ C∩(X) ⊆
P0(X). Moreover, if (X, d) is a metric space, then K0(X) ⊆ C0(X) and
C0(X) = C∩(X). It is well known (see Example 2 below) that the situation is
quite different for quasi-metric spaces).

Now, for each A, B ∈ P0(X) let

H−
d (A, B) = sup

a∈A

d(a, B), H+
d (A, B) = sup

b∈B

d(A, b),

and
Hd(A, B) = max{H−

d (A, B), H+
d (A, B)}.

Then H−
d , H+

d and Hd are extended quasi-pseudo-metrics on P0(X) (see
[7, 28, 38, 39, etc]). Moreover Hd is an extended quasi-metric on C∩(X) (com-
pare [28, Lemma 2]), and it is a quasi-metric on the set of all bounded subsets
of X that are in C∩(X). In this case we say that Hd is the Hausdorff quasi-
metric of d. Note that if (X, d) is a metric space, then Hd is the extended

5



Hausdorff metric of d (on C0(X)).

Example 2. Let X = {a, b, c} and let d be the quasi-metric on X given
by d(b, a) = d(c, b) = d(c, a) = 1, and d(x, y) = 0 otherwise. Let F = {a, c}.
Then F

τd ∩ F
τ
d−1

= X, because d(b, c) = d(a, b) = 0. Therefore F /∈ C∩(X),
and hence K0(X) * C∩(X).

We conclude this section by recalling the concepts and results on fuzzy
quasi-metric spaces which we will need in the rest of the paper. They are
taken from [20] (see also [8]). Moreover, we shall observe that the attrac-
tive relationship between quasi-metrics and order, recalled in Remark 1, is
preserved in this framework.

According to [52], a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a conti-
nuous t-norm if ∗ satisfies the following conditions: (i) ∗ is associative and
commutative; (ii) ∗ is continuous; (iii) a ∗ 1 = a for every a ∈ [0, 1]; (iv)
a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1].

It is well known and easy to see that for each continuous t-norm ∗ one
has ∗ ≤ ∧, where ∧ is the continuous t-norm given by a ∧ b = min{a, b} for
all a, b ∈ [0, 1].

By a KM-fuzzy quasi-pseudo-metric on a set X we mean a pair (M, ∗)
such that ∗ is a continuous t-norm and M is a fuzzy set in X ×X × [0, +∞)
such that for all x, y, z ∈ X :

(i) M(x, y, 0) = 0;
(ii) M(x, x, t) = 1 for all t > 0;
(iii) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for all t, s ≥ 0;
(iv) M(x, y, ) : [0, +∞) → [0, 1] is left continuous.
A KM-fuzzy quasi-metric on X is a KM-fuzzy quasi-pseudo-metric (M, ∗)

onX which satisfies the following condition: (ii’) x = y if and only if
M(x, y, t) = M(y, x, t) = 1 for all t > 0.

A KM-fuzzy (pseudo-)metric on X is a KM-fuzzy quasi-(pseudo-)metric
(M, ∗) on X such that for each x, y ∈ X : (v) M(x, y, t) = M(y, x, t) for all
t > 0.

A KM-fuzzy quasi-(pseudo-)metric space is a triple (X, M, ∗) such that
X is a (nonempty) set and (M, ∗) is a KM-fuzzy quasi-(pseudo-)metric on
X. The notion of a KM-fuzzy (pseudo-)metric space is defined in the obvious
manner. Note that the KM-fuzzy metric spaces are exactly the fuzzy metric
spaces in the sense of Kramosil and Michalek [23].

Each KM-fuzzy quasi-pseudo-metric (M, ∗) on X generates a topology
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τM onX which has as a base the family of open balls {BM(x, ε, t) : x ∈ X,
ε ∈ (0, 1), t > 0}, where BM(x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε} for all
x ∈ X, ε ∈ (0, 1) and t > 0. Observe that if (M, ∗) is a KM-fuzzy quasi-metric
on X, then τM is a T0 topology on X.

It is obvious from the definition of τM that a sequence (xn)n in a KM-
fuzzy quasi-pseudo-metric space (X, M, ∗) converges to a point x ∈ X with
respect to τM if and only if limn M(x, xn, t) = 1 for all t > 0.

If (M, ∗) is a KM-fuzzy quasi-(pseudo-)metric on a set X, then (M−1, ∗)
is also a KM-fuzzy quasi-(pseudo-)metric on X, where M−1 is the fuzzy set
in X × X × [0, +∞) defined by M−1(x, y, t) = M(y, x, t). Moreover, if we
denote by M i the fuzzy set in X × X × [0, +∞) given by M i(x, y, t) =
min{M(x, y, t), M−1(x, y, t)}, then (M i, ∗) is, clearly, a KM-fuzzy (pseudo-
)metric on X.

It is well known [20, Proposition 1] that if (X, M, ∗) is a KM-fuzzy quasi-
pseudo-metric space, then, for each x, y ∈ X the function M(x, y, ) is non-
decreasing.

In the rest of the paper, KM-fuzzy quasi-(pseudo-)metrics and KM-fuzzy
quasi-(pseudo-)metric spaces will be simply called fuzzy quasi-(pseudo-)metrics
and fuzzy quasi-(pseudo-)metric spaces, respectively.

Remark 3. Notice that if (M, ∗) is a fuzzy quasi-pseudo-metric on a set
X, then the relation ≤M on X given by

x ≤M y ⇐⇒ M(x, y, t) = 1 for some t > 0,

is a preorder on X.
Of course, the relation ≤M,t on X given by

x ≤M,t y ⇐⇒ M(x, y, t) = 1 for all t > 0,

is also a preorder on X. Moreover ≤M,t is a (partial) order on X if and only
if (M, ∗) is a fuzzy quasi-metric on X.

Example 3 (compare [20, Example 2.16]). Let d be a (n extended)
quasi-(pseudo-)metric on a set X and let Md be the function defined on
X × X × [0, +∞) by M(x, y, 0) = 0 and

Md(x, y, t) =
t

t + d(x, y)
.
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for all t > 0. Then, for each continuous t-norm ∗, (X, Md, ∗) is a fuzzy quasi-
(pseudo-)metric space called the standard fuzzy quasi-(pseudo-)metric space
and (Md, ∗) is the standard fuzzy quasi-(pseudo-)metric of (X, d). Further-
more, it is easy to check that (Md)

−1 = Md−1 and (Md)
i = Mds , and that

the topology τd, generated by d, coincides with the topology τMd
generated

by (Md, ∗).

We say that a topological space (X, τ) admits a compatible fuzzy quasi-
(pseudo-)metric if there is a fuzzy quasi-(pseudo-)metric (M, ∗) on X such
that τ = τM .

It follows from Example 3 that every quasi-(pseudo-)metrizable topologi-
cal space admits a compatible fuzzy quasi-(pseudo-)metric.

Conversely, we have:

Proposition 2 [20, 44]. Let (X, M, ∗) be a fuzzy quasi-pseudo-metric
space. Then {Un : n ∈ N} is a base for a quasi-uniformity UM on X such
that τUM

= τM , where Un = {(x, y) ∈ X × X : M(x, y, 1/n) > 1 − 1/n} for
all n ∈ N. Moreover the conjugate quasi-uniformity (UM)−1 coincides with
UM−1 and τ(UM )−1 = τM−1 .

From Propositions 1 and 2 we deduce the following:

Corollary. Let (X, M, ∗) be a fuzzy quasi-(pseudo-)metric space. Then
there is a quasi-(pseudo-)metric d on X such that Ud = UM .

3 Construction of the Hausdorff fuzzy quasi-

metric

We start this section by recalling the construction of the Hausdorff fuzzy
metric of a fuzzy metric space (X, M, ∗). The construction is a simple adap-
tation to the fuzzy setting of the definition of the Hausdorff probabilistic
metric of a probabilistic metric space [13, 52, 54, 59].

Given x ∈ X, A ∈ P0(X) and t > 0, set M(x, A, t) = supa∈A M(x, a, t).
Now, for each A, B ∈ P0(X) let

H−
M(A, B, 0) = H+

M(A, B, 0) = 0,
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H−
M(A, B, t) = sup

0<s<t

inf
a∈A

M(a, B, s), H+
M(A, B, t) = sup

0<s<t

inf
b∈B

M(A, b, s),

for all t > 0, and

HM(A, B, t) = min{H−
M(A, B, t), H+

M(A, B, t)},

for all t ≥ 0.

Then H−
M , H+

M and HM are fuzzy pseudo-metrics on P0(X). Furthermore
HM is a fuzzy metric on C0(X), called the Hausdorff fuzzy metric of (X, M, ∗).

In the light of the above notions and of the construction of Liu and Li
[29, p. 67] of a “Hausdorff fuzzy metric” in their recent study of coincidence
point theorems for multivalued maps in complete fuzzy metric spaces, one
can attempt to define the Hausdorff fuzzy metric in a more simplified way,
as follows:

HM(A, B, t) = min{ inf
a∈A

M(a, B, t), inf
b∈B

M(A, b, t)},

for all A, B ∈ C0(X) and t > 0.
The following example shows that, for this alternative definition, HM is

not a fuzzy metric, in general.

Example 4. Let X = N ∪ {0}, and let d : X × X → R+ given by

d(x, y) = 2−(x∧y) − 2−(x∨y),

for all x, y ∈ X. It is clear that d is a metric on X. Then, the pair (M,∧) is
a fuzzy metric on X, where M(x, y, t) = 0 if d(x, y) ≥ t, and M(x, y, t) = 1
if d(x, y) < t.

Note also that τM is the discrete topology on X because for each x ∈ X
and ε ∈ (0, 1), we have BM (x, ε, 2−(x+1)) = {x}. Indeed, fix x ∈ X and let
y ∈ X with y 6= x. If y < x, we have

2−(x∧y) − 2−(x∨y) = 2−y − 2−x ≥ 2−(x−1) − 2−x = 2−x,

and if y > x, we have

2−(x∧y) − 2−(x∨y) = 2−x − 2−y ≥ 2−x − 2−(x+1) = 2−(x+1).

Therefore M(x, y, 2−(x+1)) = 0. Hence BM(x, ε, 2−(x+1)) = {x}, so τM is the
discrete topology on X.
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Finally, consider the elements A, B of C0(X), where A = N and B = {0}.
Note that M(x, 0, 1) = 1 for all x ∈ N, and that for each t ∈ (0, 1), there is
xt ∈ N such that 1 − 2−xt ≥ t, so M(xt, 0, t) = 0. Hence

min{ inf
a∈A

M(a, B, 1), inf
b∈B

M(A, b, 1)} = min{ inf
x∈N

M(x, {0}, 1), M(N, 0, 1)} = 1,

and, for each t ∈ (0, 1),

min{ inf
a∈A

M(a, B, t), inf
b∈B

M(A, b, t)} = min{ inf
x∈N

M(x, {0}, t), M(N, 0, t)} = 0.

We conclude that HM(N, {0}, ) is not left continuous at t = 1, for the
alternative definition of HM suggested above, so it is not a fuzzy metric on
C0(X).

Next we shall construct the Hausdorff fuzzy quasi-metric of a fuzzy quasi-
metric space (X, M, ∗).

Let (X, M, ∗) be a fuzzy quasi-metric space. If A is a subset of X, the

sets A
τM

and A
τ
M−1

will be simply denoted by A
M

and A
M−1

, respectively.
The sets P0(X), C0(X), K0(X) and C∩(X) are defined in the obvious

manner, as in Section 1. In particular, we have

C∩(X) = {A
M

∩ A
M−1

: A ∈ P0(X)}.

Remark 4. It is straightforward to show (compare [41]) that if A ∈

P0(X), then A ∈ C∩(X) if and only if A = A
M

∩ A
M−1

.

As in the fuzzy metric case, given x ∈ X, A ∈ P0(X) and t > 0, put
M(x, A, t) = supa∈A M(x, a, t).

The following easy result will be useful later on.

Lemma 1. Let (X, M, ∗) be a fuzzy quasi-metric space. Then for each
x ∈ X and A ∈ P0(X), the following hold:

(1) M(x, A, s) ≤ M(x, A, t) whenever 0 ≤ s < t.

(2) x ∈ A
M

⇐⇒ M(x, A, t) = 1 for all t > 0.

Now, for a given fuzzy quasi-metric space (X, M, ∗) and for each A, B ∈
P0(X), define

H−
M(A, B, 0) = H+

M(A, B, 0) = 0,
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and

H−
M(A, B, t) = sup

0<s<t

inf
a∈A

M(a, B, s), H+
M(A, B, t) = sup

0<s<t

inf
b∈B

M(A, b, s),

for all t > 0. Then we obtain:

Lemma 2. For each A, B, C ∈ P0(X), the following hold:

(1a) A ⊆ B
M

⇐⇒ H−
M(A, B, t) = 1 for all t > 0.

(1b) B ⊆ A
M−1

⇐⇒ H+
M(A, B, t) = 1 for all t > 0.

(2a) H−
M(A, C, t + s) ≥ H−

M(A, B, t) ∗ H−
M(B, C, s) for all t, s ≥ 0.

(2b) H+
M(A, C, t + s) ≥ H+

M(A, B, t) ∗ H+
M(B, C, s) for all t, s ≥ 0.

(3a) H−
M(A, B, ) : [0, +∞) → [0, 1] is left continuous.

(3b) H+
M(A, B, ) : [0, +∞) → [0, 1] is left continuous.

Proof. (1a) Suppose that A ⊆ B
M

. Then for each a ∈ A and s > 0,
M(a, B, s) = 1 by Lemma 1 (2), so infa∈A M(a, B, s) = 1. Choose any t > 0.
Then

H−
M(A, B, t) = sup

0<s<t

inf
a∈A

M(a, B, s) = 1.

Conversely, choose t > 0. Then by hypothesis, there is a sequence (sk)k,
with sk ∈ (0, t) for all k ∈ N, such that

inf
a∈A

M(a, B, sk) > 1 − 1/k,

for all k ∈ N. So, by Lemma 1 (1),

inf
a∈A

M(a, B, t) ≥ inf
a∈A

M(a, B, sk) > 1 − 1/k,

for all k ∈ N. Consequently M(a, B, t) = 1 for all a ∈ A and t > 0. So, by

Lemma 1 (2), A ⊆ B
M

.
(1b) It follows similarly to the proof of (1a), so it is omitted.
(2a) Fix t, s ≥ 0. Since the inequality is obvious if t = 0 or s = 0, we

assume that t, s > 0. Let r ∈ (0, t), and r′ ∈ (0, s). Then, for each a ∈ A,
with M(a, B, r) > 0, and each ε ∈ (0, M(a, B, r)), there exists ba ∈ B such
that M(a, B, r) − ε ≤ M(a, ba, r). Hence

(M(a, B, r)−ε)∗ inf
b∈B

M(b, C, r′) ≤ M(a, ba, r)∗M(ba, C, r′) ≤ M(a, C, r+r′).
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So, by the continuity of ∗, it follows

M(a, B, r) ∗ inf
b∈B

M(b, C, r′) ≤ M(a, C, r + r′),

for each a ∈ A with M(a, B, r) > 0 (Note that the preceding inequality
obviously holds if M(a, B, r) = 0). Therefore

inf
a∈A

M(a, B, r) ∗ inf
b∈B

M(b, C, r′) ≤ inf
a∈A

M(a, C, r + r′).

Consequently, by definition of “ sup ” and by the continuity of ∗, it follows
from standard arguments that

sup
0<r<t

inf
a∈A

M(a, B, r) ∗ sup
0<r′<s

inf
b∈B

M(b, C, r′)

≤ sup
0<r<t,0<r′<s

inf
a∈A

M(a, C, r + r′).

Finally, since

sup
0<r<t,0<r′<s

inf
a∈A

M(a, C, r + r′) = sup
0<r′′<t+s

inf
a∈A

M(a, C, r′′),

we conclude that

H−
M(A, B, t) ∗ H−

M(B, C, s) ≤ H−
M(A, C, t + s).

(2b) It follows similarly to the proof of (2a), so it is omitted.
(3a) Let A, B ∈ P0(X), t > 0 and let (tk)k be a strictly increasing se-

quence in R+ such that tk → t.
Since for each k ∈ N, tk < t, it immediately follows from Lemma 1 (1),

that
H−

M(A, B, tk) ≤ H−
M(A, B, t),

for all k ∈ N.
Now take an arbitrary ε ∈ (0, 1). Then there is sε ∈ (0, t) such that

H−
M(A, B, t) < ε + inf

a∈A
M(a, B, sε).

Let k0 ∈ N such that sε < tk − 1/k for all k ≥ k0. Then M(a, B, sε) ≤
M(a, B, tk − 1/k) for all a ∈ A and k ≥ k0, so

H−
M(A, B, t) < ε + inf

a∈A
M(a, B, tk −

1

k
),
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for all k ≥ k0. Therefore

H−
M(A, B, t) < ε + sup

0<s<tk

inf
a∈A

M(a, B, s),

for all k ≥ k0. We have proved that

H−
M(A, B, tk) ≤ H−

M(A, B, t) < ε + H−
M(A, B, tk),

for all k ≥ k0, and, consequently, H−
M(A, B, ) is left continuous on [0, +∞).

(3b) It follows similarly to the proof of (3a), so it is omitted.�

Now we define a fuzzy set HM on P0(X) × P0(X) × [0, +∞), by

HM(A, B, t) = min{H−
M(A, B, t), H+

M (A, B, t)},

for all A, B ∈ P0(X) and t ≥ 0.
From the above lemma we obtain the following result.

Theorem 1. For a fuzzy quasi-pseudo-metric space (X, M, ∗) the fo-
llowing hold:

(1) (H−
M , ∗), (H+

M , ∗) and (HM , ∗) are fuzzy quasi-pseudo-metrics on P0(X).
(2) If (X, M, ∗) is a fuzzy quasi-metric space, then (HM , ∗) is a fuzzy

quasi-metric on C∩(X).

Proof. (1) From Lemma 2 (1a), (2a) and (3a), it follows that (H−
M , ∗) is

a fuzzy quasi-pseudo-metric on P0(X). Moreover, from Lemma 2 (1b), (2b)
and (3b), it follows that (H+

M , ∗) is a fuzzy quasi-pseudo-metric on P0(X).
From these facts and the definition of HM it immediately follows that (HM , ∗)
is also a fuzzy quasi-pseudo-metric on P0(X).

(2) Since, by (1), (HM , ∗) is a fuzzy quasi-pseudo-metric on C∩(X), we
only need to show that for A, B ∈ C∩(X), we have A = B whenever HM(A, B, t) =
HM(B, A, t) = 1 for all t > 0.

Indeed, suppose that HM(A, B, t) = HM(B, A, t) = 1 for all t > 0. Then,

by Lemma 2 (1a), A ⊆ B
M

and B ⊆ A
M

, and by Lemma 2 (1b), B ⊆ A
M−1

and A ⊆ B
M−1

. Hence A ⊆ B
M

∩ B
M−1

= B, and B ⊆ A
M

∩ A
M−1

= A, so
A = B. We conclude that (HM , ∗) is a fuzzy quasi-metric on C∩(X).�
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The fuzzy quasi-pseudo-metrics (H−
M , ∗), (H+

M , ∗) and (HM , ∗) of Theorem
1 are called the lower Hausdorff fuzzy quasi-pseudo-metric, the upper Haus-
dorff quasi-pseudo-metric and the Hausdorff quasi-pseudo-metric, of (M, ∗)
on P0(X), respectively. Similarly, (HM , ∗) is called the Hausdorff fuzzy quasi-
metric of (M, ∗) on C∩(X).

Example 5. Let (X, d) be a quasi-(pseudo-)metric space. Then HMd
=

MHd
on P0(X), i.e., the Hausdorff fuzzy quasi-pseudo-metric of the standard

fuzzy quasi-(pseudo-)metric (Md, ∗) coincides with the standard fuzzy quasi-
pseudo-metric of the Hausdorff quasi-pseudo-metric of d on P0(X).

Indeed, first note that MHd
= min{MH−

d

, MH+

d

}.

Now, given A, B ∈ P0(X) and s > 0, an easy computation shows (com-
pare [60, Result 2.6] or [40, Proposition 3]) that

Md(a, B, s) =
s

s + d(a, B)
,

and then
inf
a∈A

Md(a, B, s) =
s

s + supa∈A d(a, B)
.

Hence, for each t > 0,

H−
Md

(A, B, t) = sup
0<s<t

s

s + supa∈A d(a, B)
=

t

t + H−
d (A, B)

= MH−

d

(A, B, t).

Similarly, we obtain that

H+
Md

(A, B, t) = MH+

d

(A, B, t),

and consequently

HMd
(A, B, t) = min{MH−

d

(A, B, t), MH+

d

(A, B, t)} = MHd
(A, B, t).

We conclude that HMd
= MHd

on P0(X).

4 Some properties of the Hausdorff fuzzy quasi-

metric

In this section we study properties of completeness, precompactness and
compactness of the Hausdorff fuzzy quasi-metric.
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In order to help to the reader we first recall some pertinent concepts and
results.

Let (X,U) be a quasi-uniform space. For each U ∈ U put

H−
U = {(A, B) ∈ P0(X) × P0(X) : A ⊆ U−1(B)}

and
H+

U = {(A, B) ∈ P0(X) ×P0(X) : B ⊆ U(A)}.

Then {H−
U : U ∈ U} is a base for a quasi-uniformity H−

U on P0(X) and
{H+

U : U ∈ U} is a base for a quasi-uniformity H+
U on P0(X) [7, 28]. The

quasi-uniformity HU = H−
U ∨H+

U is said to be the Hausdorff quasi-uniformity
of U on P0(X).

The following result was obtained by Berthiaume [7].

Theorem 2. Let (X, d) be a quasi-pseudo-metric space. Then UH−

d

=

H−
Ud

, UH+

d

= H+
Ud

and UHd
= HUd

on P0(X).

In our next result we present the analogue to this theorem for fuzzy quasi-
pseudo-metric spaces. Furthermore, and similarly to the fuzzy metric setting
(see [40, Theorem 2]), it will be the key to deduce in a direct way several
properties of fuzzy quasi-pseudo-metric spaces from the corresponding well-
known properties for quasi-pseudo-metric and quasi-uniform spaces.

Theorem 3. Let (X, M, ∗) be a fuzzy quasi-pseudo-metric space. Then
UH−

M

= H−
UM

, UH+

M

= H+
UM

and UHM
= HUM

on P0(X).

Proof. Let n ∈ N. If A, B ∈ P0(X) verify A ⊆ U−1
n+1(B), then for each

a ∈ A there is ba ∈ B such that M(a, ba, 1/(n + 1)) > 1 − 1/(n + 1). Hence,
for each s ∈ (1/(n + 1), 1/n), we have

M(a, B, s) ≥ M(a, ba, s) ≥ M(a, ba, 1/(n + 1)) > 1 − 1/(n + 1),

so
inf
a∈A

M(a, B, s) ≥ 1 − 1/(n + 1) > 1 − 1/n,

and consequently
H−

M(A, B, 1/n) > 1 − 1/n.

Thus, we have shown that H−
UM

⊆ UH−

M

on P0(X).
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On the other hand, if H−
M(A, B, 1/n) > 1−1/n, then there is s ∈ (0, 1/n)

such that M(a, B, s) > 1 − 1/n for all a ∈ A, and hence A ⊆ U−1
n (B).

Consequently UH−

M

⊆ H−
UM

on P0(X).

Similarly we prove that UH+

M

= H+
UM

on P0(X). Hence UHM
= HUM

on

P0(X).�

In the sequel we discuss the completeness of the Hausdorff fuzzy quasi-
pseudo-metric. We shall show that, in this context, right K-sequential com-
pleteness provides a satisfactory notion of (fuzzy) quasi-metric completeness.
It is interesting to recall that right K-sequential completeness constitutes a
suitable notion of quasi-metric completeness in the realm of spaces of func-
tions and hyperspaces, respectively (see [25, Chapter 9]).

Following [36], a sequence (xn)n in an extended quasi-pseudo-metric space
(X, d) is said to be right K-Cauchy if for each ε > 0 there is n0 ∈ N such
that d(xm, xn) < ε whenever n0 ≤ n ≤ m.

(X, d) is called right K-sequentially complete if every right K-Cauchy
sequence is convergent with respect to τd [36].

In the fuzzy setting we propose the following notions.

Definition 1. A sequence (xn)n in a fuzzy quasi-pseudo-metric space
(X, M, ∗) is called right K-Cauchy if for each t > 0 and each ε ∈ (0, 1) there
is n0 ∈ N such that M(xm, xn, t) > 1 − ε whenever n0 ≤ n ≤ m.

Definition 2. A fuzzy quasi-pseudo-metric space (X, M, ∗) is called right
K-sequentially complete if every right K-Cauchy sequence is convergent with
respect to τM .

Probabilistic quasi-pseudo-metric versions of the above concepts may be
found in [8, p. 120].

The proof of the next result follows immediately from Proposition 2 and
its Corollary, so it is omitted.

Proposition 3. Let (X, M, ∗) be a fuzzy quasi-pseudo-metric space and
let d be a (n extended) quasi-pseudo-metric on X such that Ud = UM . Then:

(1) A sequence in X is right K-Cauchy in (X, M, ∗) if and only if it is
right K-Cauchy in (X, d).

(2) (X, M, ∗) is right K-sequentially complete if and only if (X, d) is right
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K-sequentially complete.

Künzi and Ryser proved in [28] the following result (see also [48]).

Theorem 4. Let (X, d) be quasi-pseudo-metric space. Then (P0(X), Hd)
is right K-sequentially complete if and only if (X, d) is right K-sequentially
complete.

The next result provides the fuzzy counterpart of the preceding theorem.

Theorem 5. Let (X, M, ∗) be a fuzzy quasi-pseudo-metric space. Then
(P0(X), HM , ∗) is right K-sequentially complete if and only if (X, M, ∗) is
right K-sequentially complete.

Proof. Let d be a quasi-pseudo-metric d on X such that Ud = UM . Then
HUd

= HUM
; so, by Theorems 2 and 3, UHd

= UHM
. It then follows from

Proposition 3 (2) that (P0(X), HM , ∗) is right K-sequentially complete if and
only if (P0(X), Hd) is right K-sequentially complete. Now the conclusion
follows from Theorem 4 and Proposition 3 (2).�

It is interesting to obtain a version of Theorem 5 for C∩(X), because in
this case HM is a fuzzy quasi-metric. Such a version is established in the
next result.

Corollary. Let (X, M, ∗) be a fuzzy quasi-metric space. Then (C∩(X), HM , ∗)
is right K-sequentially complete if and only if (X, M, ∗) is right K-sequentially
complete.

Proof. Suppose that (C∩(X), HM , ∗) is right K-sequentially complete.

Let (xn)n be a right K-Cauchy sequence in (X, M, ∗). Since xn = {xn}
M

∩

{xn}
M−1

for all n ∈ N, it follows that ({xn})n is a right K-Cauchy sequence
in (C∩(X), HM , ∗), so it converges to some C ∈ C∩(X) with respect to τHM

.
Then, it is immediate to check that each c ∈ C is a cluster point of the
sequence (xn)n with respect to τM . Since (xn)n is right K-Cauchy we deduce
that it converges to each c ∈ C with respect to τM . Therefore (X, M, ∗) is
right K-sequentially complete.

Conversely, let (An)n be a right K-Cauchy sequence in (C∩(X), HM , ∗).
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By Theorem 5, (An)n converges to some C ∈ P0(X) with respect to τHM
. We

shall show that (An)n converges to C
M

with respect to τHM
. First note that

(An)n converges to C
M

with respect to τH+

M

because C ⊆ C
M

. Now choose

x ∈ C
M

and U ∈ UM . Then there exist c ∈ C and n0 ∈ N such that c ∈ U(x)
and C ⊆ U−1(An) for all n ≥ n0. Hence x ∈ U−2(An) for all n ≥ n0. Thus

C
M

⊆ U−2(An) for all n ≥ n0, so (An)n converges to C
M

with respect to τH−

M

.

Since C
M

∈ C∩(X) we conclude that (C∩(X), HM , ∗) is right K-sequentially
complete.�

We finish this section by analyzing precompactness, total boundedness
and compactness of the Hausdorff fuzzy quasi-metric.

Let us recall that a quasi-uniform space (X,U) is precompact [15, Chapter
3] provided that for each U ∈ U there is a finite subset A of X such that
X =

⋃

a∈A U(a).
A quasi-uniform space (X,U) is totally bounded provided that the uni-

form space (X,Us) is totally bounded [15, Chapter 3].
It is well known that each totally bounded quasi-uniform space is pre-

compact and that, contrarily to the uniform case, there exist precompact
quasi-uniform spaces that are not totally bounded [15, Chapter 3].

In the fuzzy case, we have the following concepts (compare [44]):
A fuzzy quasi-pseudo-metric space (X, M, ∗) is precompact (respectively,

totally bounded) provided that the quasi-uniform space (X,UM ) is precom-
pact (respectively, totally bounded).

Theorem 6 [28]. Let (X,U) be a quasi-uniform space. Then:
(1) (P0(X), HU) is precompact if and only if (X,U) is precompact.
(2) (P0(X), HU) is totally bounded if and only if (X,U) is totally bounded.
(3) (P0(X), (HU)s) is compact if and only if (X,Us) is compact.

Related to the statement (3) of the above theorem, it is given in [28,
Example 1] an example of a compact quasi-uniform space (X,U) such that
(P0(X), HU) is not compact.

In the fuzzy setting we have the following:

Theorem 7. Let (X, M, ∗) be a fuzzy quasi-pseudo-metric space. Then:
(1) (P0(X), HM , ∗) is precompact if and only if (X, M, ∗) is precompact.

18



(2) (P0(X), HM , ∗) is totally bounded if and only if (X, M, ∗) is totally
bounded.

(3) (P0(X), (HM)i) is compact if and only if (X, M i, ∗) is compact.

Proof. We only show the statement (1), because (2) and (3) follow simi-
larly. Indeed, by Theorem 6 (1) we have that (P0(X), HUM

, ∗) is precompact
if and only if (X,UM) is precompact. Since, by Theorem 3, UHM

= HUM
on

P0(X), we deduce that (P0(X), HM , ∗) is precompact if and only if (X, M, ∗)
is precompact.�

5 The Hausdorff GV-fuzzy quasi-metric

Following [20], by a GV-fuzzy quasi-pseudo-metric on a set X we mean a
pair (M, ∗) such that ∗ is a continuous t-norm and M is a fuzzy set in
X × X × (0, +∞) such that for all x, y, z ∈ X, t, s > 0 :

(i) M(x, y, t) > 0;
(ii) M(x, x, t) = 1;
(iii) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s);
(iv) M(x, y, ) : (0, +∞) → (0, 1] is continuous.
A GV-fuzzy quasi-metric on X is a GV-fuzzy quasi-pseudo-metric (M, ∗)

onX which satisfies the following condition: (ii’) x = y ⇔ M(x, y, t) =
M(y, x, t) = 1 for some t > 0.

A GV-fuzzy (pseudo-)metric on X is a GV-fuzzy quasi-(pseudo-)metric
(M, ∗) on X such that for each x, y ∈ X : (v) M(x, y, t) = M(y, x, t) for all
t > 0.

The notion of a GV-fuzzy quasi-(pseudo-)metric space is defined in the
obvious manner. Note that the GV-fuzzy metric spaces are exactly the fuzzy
metric spaces in the sense of George and Veeramani [17].

If (M, ∗) is a GV-fuzzy quasi-(pseudo-)metric on X, then the fuzzy sets
in X × X × (0, +∞), M−1 and M i given by M−1(x, y, t) = M(y, x, t) and
M i(x, y, t) = min{M(x, y, t), M−1(x, y, t)}, are, as in the KM-case, a GV-
fuzzy quasi-(pseudo-)metric and a GV-fuzzy (pseudo-)metric on X, respecti-
vely.

Obviously, each GV-fuzzy quasi-(pseudo-)metric (M, ∗) can be considered
as a KM-fuzzy quasi-(pseudo-)metric by defining M(x, y, 0) = 0 for all x, y ∈
X. Hence, each GV-fuzzy quasi-pseudo-metric space generates a topology τM

defined as in the KM-case.
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Therefore, if (X, M, ∗) is a GV-fuzzy quasi-pseudo-metric space, then
(H−

M , ∗), (H+
M , ∗) and (HM , ∗) are fuzzy quasi-pseudo-metrics on P0(X), and

(HM , ∗) is a fuzzy quasi-metric on C∩(X) whenever (X, M, ∗) is a GV-fuzzy
quasi-metric space.

The next example, given in [40], shows that, however, (HM , ∗) is not a
GV-fuzzy quasi-metric on C∩(X) even in the case that (X, M, ∗) is a GV-
fuzzy metric space.

Example 6. Denote by ∗L the Lukasiewicz t-norm, i.e., a∗Lb = max{a+
b − 1, 0}, for all a, b ∈ [0, 1].

Now let (xn)n≥2 and (yn)n≥2 be two sequences of distinct points such that
A ∩ B = ∅, where A = {xn : n ≥ 2} and B = {yn : n ≥ 2}.

Put X = A ∪ B and define a fuzzy set M in X × X × (0, +∞) by:

M(xn, xm, t) = M(yn, ym, t) = 1 −

[

1

n ∧ m
−

1

n ∨ m

]

,

M(xn, ym, t) = M(ym, xn, t) =
1

n
∧

1

m
,

for all n, m ≥ 2.

Then (X, M, ∗L) is a GV-fuzzy metric space. Since τM is the discrete
topology on X, it follows that A, B ∈ C0(X). From the fact that for each
n ≥ 2 and each s > 0, M(xn, B, s) = M(A, yn, s) = 1/n, we deduce that
H−

M(A, B, t) = H+
M(A, B, t) = 0 and thus HM(A, B, t) = 0 for all t > 0.

Consequently (HM , ∗L) is not a GV-fuzzy (quasi-)metric on C0(X).

Despite the above example, it is shown in [40] that the formula given
immediately before of Example 4 in Section 3 provides a suitable Hausdorff
GV-fuzzy metric on K0(X) for any GV-fuzzy metric space (X, M, ∗). SE
PODRIA PONER LA FORMULA OTRA VEZ?

In the rest of this section we discuss the corresponding situation to GV-
fuzzy quasi-metric spaces.

We start this study with an example of a GV-fuzzy quasi-metric space
(X, M, ∗) whose induced topology is compact and metrizable, but for which
(HM , ∗) is not a GV-fuzzy quasi-pseudo-metric on K0(X).

Example 7. Let X = N ∪ {0} and let d be the quasi-metric on X given
by d(x, x) = 0 for all x ∈ X, d(0, n) = 1/n for all n ∈ N, and d(n, x) = n
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for all n ∈ N and x ∈ X\{n}. Clearly (X, d) is a quasi-metric space such
that τd is a compact and metrizable topology. Consider the standard fuzzy
quasi-metric (Md, ∗) of (X, d) as given in Example 3, and denote also by
(Md, ∗) its restriction to X ×X × (0, +∞). It is clear that this restriction is
a GV-fuzzy quasi-metric on X.

Now put A = X\{1} and B = {1}. Then A, B ∈ K0(X), and, by one of
the formulas obtained in Example 5, we have that

H−
Md

(A, B, t) =
t

t + H−
d (A, B)

,

for all t > 0. Therefore

H−
Md

(A, B, t) =
t

t + supa∈A d(a, {1})
= 0,

for all t > 0, so that HMd
(A, B, t) = 0 for all t > 0. We conclude that (HMd

, ∗)
is not a GV-fuzzy quasi-pseudo-metric on K0(X) ∩ C∩(X).

The next is an example of a GV-fuzzy quasi-metric space (X, M, ∗) for
which (HM , ∗) is not a GV-fuzzy quasi-pseudo-metric on KD(X), where
KD(X) denotes the collection of all nonempty subsets of X that are τM -
compact and τM−1-compact.

Example 8. Let X = N∪{0}∪{+∞} and let d be the function defined
on X × X by d(x, x) = 0 for all x ∈ X, d(0, +∞) = 1, d(0, n) = n for all
n ∈ N, d(x, 0) = 1 for all x ∈ X\{0}, d(x, y) = 0 whenever x ∈ N and x ≤ y,
and d(x, y) = y otherwise (we assume that ≤ is the usual order on X).

It is a routine to show that d is a quasi-metric on X. As in Example 7
let (Md, ∗) be the GV-fuzzy quasi-metric on X obtained by restricting the
standard fuzzy quasi-metric on (X, d) to X × X × (0, +∞).

Now observe that X ∈ KD(X). Indeed, since the only τMd
-open set diffe-

rent from X that contains 1 is N ∪ {+∞}, we obtain that X is τMd
-compact,

and since the only τM
d−1

-open set different from X that contains +∞ is
N ∪ {+∞}, it follows that X is τM

d−1
-compact.

Finally, put A = {0} and B = X. Then

H+
Md

(A, B, t) =
t

t + supb∈B d({0}, b)
=

t

t + supn∈N n
= 0,
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for all t > 0. So HMd
(A, B, t) = 0 for all t > 0. We conclude that (HMd

, ∗) is
not a GV-fuzzy quasi-pseudo-metric on KD(X).

The rest of the section is devoted to prove that for a GV-fuzzy quasi-
metric space (X, M, ∗), (HM , ∗) is a GV-fuzzy quasi-pseudo-metric on the
collection Ki

0 of all nonempty subsets of X that are compact in the GV-fuzzy
metric space (X, M i, ∗). In this way we extend the main result of [40] to the
fuzzy quasi-metric framework.

To this end, we first generalize several auxiliary results of [40, Section 2]
to GV-fuzzy quasi-metric spaces (although the main part of the proofs are
similar to the ones given in [40], we include such proofs in order to help to
the readers).

Proposition 4. Let (X, M, ∗) be a GV-fuzzy quasi-metric space. Then
M is a continuous function on X × X × (0, +∞) for the product topology
τM i × τM i × τE , where by τE we denote the Euclidean topology on (0, +∞) .

Proof. Let x, y ∈ X and t > 0, and let (x′
n, y′

n, t
′
n)n be a sequence in

X × X × (0, +∞) that converges to (x, y, t) with respect to τM i × τM i × τE .
Since (M(x′

n, y′
n, t

′
n))n is a sequence in (0, 1], there is a subsequence (xn, yn, tn)n

of (x′
n, y′

n, t′n)n such that the sequence (M(xn, yn, tn))n converges to an ele-
ment of [0, 1].

Fix δ > 0 such that δ < t/2. Then, there is n0 ∈ N such that |t − tn| < δ
for all n ≥ n0. Hence

M(xn, yn, tn) ≥ M(xn, x, δ/2) ∗ M(x, y, t − 2δ) ∗ M(y, yn, δ/2),

and

M(x, y, t + 2δ) ≥ M(x, xn, δ/2) ∗ M(xn, yn, tn) ∗ M(yn, y, δ/2),

for all n ≥ n0.
Since limn M i(x, xn, δ/2) = limn M i(y, yn, δ/2) = 1, we obtain, by taking

limits when n → ∞, that

lim
n

M(xn, yn, tn) ≥ 1 ∗ M(x, y, t − 2δ) ∗ 1 = M(x, y, t − 2δ),

and

M(x, y, t + 2δ) ≥ 1 ∗ lim
n

M(xn, yn, tn) ∗ 1 = lim
n

M(xn, yn, tn),
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respectively.
So, by continuity of the function t 7−→ M(x, y, t), we immediately de-

duce that M(x, y, t) = limn M(xn, yn, tn). Therefore M is continuous for
τM i × τM i × τE .�

Lemma 3. Let (X, M, ∗) be a GV-fuzzy quasi-metric space. Then, for
each a ∈ X, B ∈ Ki

0(X) and t > 0, there is b0 ∈ B such that

M(a, B, t) = M(a, b0, t).

Proof. Let a ∈ X, B ∈ Ki
0(X) and t > 0. By Proposition 4, the func-

tion y 7−→ M(a, y, t) is continuous on X for τM i . Thus, by compactness
of B, there exists b0 ∈ B such that supb∈B M(a, b, t) = M(a, b0, t), i.e.,
M(a, B, t) = M(a, b0, t).�

Lemma 4. Let (X, M, ∗) be a GV-fuzzy quasi-metric space. Then, for
each a ∈ X and B ∈ Ki

0(X) the function

t 7−→ M(a, B, t)

is continuous on (0, +∞).

Proof. Since M(a, B, t) = supb∈B M(a, b, t) and for each b ∈ B the func-
tion t 7−→ M(a, b, t) is continuous on (0, +∞), it follows that the function
t 7−→ M(a, B, t) is lower semicontinuous on (0, +∞).

We shall prove that t 7−→ M(a, B, t) is upper semicontinuous on (0, +∞).
To this end, let t > 0 and let (tn)n be a sequence in (0, +∞) that converges
to t. By Lemma 3, for each n ∈ N there is bn ∈ B such that M(a, B, tn) =
M(a, bn, tn). Since B ∈ Ki

0(X), there exists a subsequence (bnk
)k of (bn)n and

a point b0 ∈ B such that bnk
→ b0 in (X, M i, ∗). Hence limk M(a, bnk

, tnk
) =

M(a, b0, t), by Proposition 4, and thus

lim
k

M(a, B, tnk
) = M(a, b0, t) ≤ M(a, B, t).

Consequently, the function t 7−→ M(a, B, t) is upper semicontinuous on
(0, +∞). This concludes the proof.�

Lemma 5. Let (X, M, ∗) be a GV-fuzzy quasi-metric space. Then, for
each A ∈ Ki

0(X), B ∈ P0(X) and t > 0, there is a0 ∈ A such that

inf
a∈A

M(a, B, t) = M(a0, B, t).
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Proof. Put α = infa∈A M(a, B, t). Then, there is a sequence (an)n in A
such that α+1/n > M(an, B, t) for all n ∈ N. Since A ∈ Ki

0(X), there exists
a subsequence (ank

)k of (an)n and a point a0 ∈ A such that ank
→ a0 in

(X, M i, ∗).
Choose an arbitrary b ∈ B. By Proposition 4, limk M(ank

, b, t) = M(a0, b, t).
Since for each k ∈ N, α + 1/nk > M(ank

, b, t), it follows, taking limits when
k → ∞, that α ≥ M(a0, b, t). We conclude that α = M(a0, B, t).�

From Lemmas 3 and 5 we immediately deduce the following.

Corollary. Let (X, M, ∗) be a GV-fuzzy quasi-metric space and let A, B ∈
Ki

0(X) and t > 0. Then there exist a0 ∈ A and b0 ∈ B such that

inf
a∈A

M(a, B, t) = M(a0, b0, t).

Proposition 5. Let (X, M, ∗) be a GV-fuzzy quasi-metric space. Then,
for each A, B ∈ Ki

0(X) the function

t 7−→ inf
a∈A

M(a, B, t)

is continuous on (0, +∞).

Proof. By Lemma 4, the function t 7−→ M(a, B, t) is continuous on
(0, +∞). Hence, the function t 7−→ infa∈A M(a, B, t) is upper semicontinuous
on (0, +∞).

We shall prove that t 7−→ infa∈A M(a, B, t) is lower semicontinuous on
(0, +∞). To this end, let t > 0 and let (tn)n be a sequence in (0, +∞)
that converges to t. By Lemma 5, for each n ∈ N there is an ∈ A such
that M(an, B, tn) = infa∈A M(a, B, tn). Since A ∈ Ki

0(X), there exists a
subsequence (ank

)k of (an)n and a point a0 ∈ A such that ank
→ a0 in

(X, M i, ∗). Then, by Lemma 3, there is b0 ∈ B such that M(a0, b0, t) =
M(a0, B, t), and thus limk M(ank

, b0, tnk
) = M(a0, b0, t), by Proposition 4.

Therefore, given ε > 0 there exists k0 ∈ N such that for each k ≥ k0,
M(a0, b0, t) < ε + M(ank

, b0, tnk
). So

inf
a∈A

M(a, B, t) ≤ M(a0, b0, t) < ε + M(ank
, B, tnk

) = ε + inf
a∈A

M(a, B, tnk
),
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for all k ≥ k0. Consequently, the function t 7−→ infa∈A M(a, B, t) is lower
semicontinuous on (0, +∞). This concludes the proof.�

Remark 5. Note that Proposition 5 also shows that for A, B ∈ Ki
0(X)

the function t 7−→ infb∈B M(A, b, t) is continuous on (0, +∞).

Now let (X, M, ∗) be a GV-fuzzy quasi-metric space and let (HM , ∗) be
the Hausdorff fuzzy quasi-pseudo-metric on P0(X) constructed in Section 3.
In order to prove that (HM , ∗) is actually a GV-fuzzy quasi-pseudo-metric
on Ki

0(X), we first show that for each A, B ∈ Ki
0(X) and t > 0, we have

H−
M(A, B, t) = inf

a∈A
M(a, B, t).

Indeed, since

H−
M(A, B, t) = sup

0<s<t

inf
a∈A

M(a, B, s),

there exists an increasing sequence (sn)n convergent to t such that H−
M(A, B, t) =

limn infa∈A M(a, B, sn). So, by Proposition 5, H−
M(A, B, t) = infa∈A M(a, B, t).

Similarly, we obtain that

H+
M(A, B, t) = inf

b∈B
M(A, b, t).

Thus
HM(A, B, t) = min{ inf

a∈A
M(a, B, t), inf

b∈B
M(A, b, t)},

for all A, B ∈ Ki
0(X) and t > 0.

Since (M, ∗) is a GV-fuzzy quasi-metric, it follows from Lemma 5 that
H−

M(A, B, t) > 0 and H+
M(A, B, t) > 0, so HM(A, B, t) > 0 for all A, B ∈

Ki
0(X) and t > 0. Hence (HM , ∗) satisfies condition (i) of the definition of a

GV-fuzzy quasi-pseudo-metric.
It is also clear that HM(A, A, t) = 1 for all A ∈ Ki

0(X) and all t > 0.
Moreover, for each A, B, C ∈ Ki

0 and t, s ≥ 0, we have, by Lemma 2 (2a) and
(2b) that HM(A, C, t + s) ≥ HM(A, B, t) ∗ HM(B, C, s).

Finally, given A, B ∈ Ki
0(X), continuity of HM(A, B, ) : (0, +∞) → (0, 1]

is an immediate consequence of Proposition 5 and Remark 5.
Thus, we have shown the following

25



Theorem 8. Let (X, M, ∗) be a GV-fuzzy quasi-metric space. Then
(HM , ∗) is a GV-fuzzy quasi-pseudo-metric on Ki

0(X). Furthermore, we have

HM(A, B, t) = min{ inf
a∈A

M(a, B, t), inf
b∈B

M(A, b, t)},

for all A, B ∈ Ki
0(X) and t > 0.

6 A fuzzy approach to the domain of words

In this section we apply the results obtained in the preceding sections to
model a typical example of theoretical computer science from a fuzzy quasi-
metric point of view. This will be done with the help of the parameter t
which provides a useful additional ingredient to construct such models.

Let us recall that the domain of words Σ∞ ([24, 33, 35, 45, 51, 58, etc])
consists of all finite and infinite sequences (“words”) over a nonempty set
(“alphabet”) Σ, ordered by the so-called information order ⊑ on Σ∞ ([9,
Example 1.6]), i.e., x ⊑ y ⇔ x is a prefix of y, where we assume that the
empty sequence φ is an element of Σ∞. If x ⊑ y with x 6= y, we shall write
x ⊏ y.

For each x, y ∈ Σ∞ denote by x ⊓ y the longest common prefix of x and
y, and for each x ∈ Σ∞ denote by ℓ(x) the length of x. Thus ℓ(x) ∈ [1,∞]
whenever x 6= φ, and ℓ(φ) = 0.

In theory of computation the fact that x ⊑ y is interpreted as the element
y contains all the information provided by x, and thus the partially defined
objects (finite words) customary represent stages of a computational process
for which the totally defined objects (infinite words) contain exactly the
amount of information provided by the process.

Given a nonempty alphabet Σ, Smyth introduced in [58] a quasi-metric
d⊑ on Σ∞ given by d⊑(x, y) = 0 if x ⊑ y, and d(x, y) = 2−ℓ(x⊓y) otherwise
(see also [24, 42, 43, etc]).

This quasi-metric has the advantage that its specialization order coincides
with the order ⊑, and thus the quasi-metric space (Σ∞, d) preserves the
information provided by ⊑ (compare Remark 1). Moreover, the metric (d⊑)s

is given by (d⊑)s(x, y) = 0 if x = y, and (d⊑)s(x, y) = 2−ℓ(x⊓y) otherwise; so
that (d⊑)s is exactly the celebrated Baire metric on Σ∞.

However, the quasi-metric d⊑ is unable to give us information on the
degree of approximation to a word z from two different prefix x, y of z. For
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instance, if we consider the totally defined object π and the partially defined
ones x = 3.14 and y = 3.141, then it is clear that y contains more information
on π than x, but d⊑(x, π) = d⊑(y, π) = 0, so d⊑ is not sensitive to this amount
of information.

Motivated by this fact, we shall construct a fuzzy quasi-metric on Σ∞ that
preserves the advantages of d⊑ and that, in addition, permits us to measure,
with the help of the parameter t, the degree of approximation to a given
word of each one of its prefixes. Finally, we shall apply this construction to
measure, in some representative cases, (fuzzy) distances between elements of
P0(Σ

∞) via the Hausdorff fuzzy quasi-(pseudo-)metric.
Define a fuzzy set M in Σ∞ × Σ∞ × [0, +∞) by

M(x, y, 0) = 0 for all x, y ∈ Σ∞,
M(x, x, t) = 1 for all x ∈ Σ∞ and t > 0,
M(x, y, t) = 1 if x ⊏ y and t > 2−ℓ(x),
M(x, y, t) = 1 − 2−ℓ(x⊓y) otherwise.

We wish to show that (M,∧) is a fuzzy quasi-metric on Σ∞. To this end
we only prove that for each x, y, z ∈ Σ∞ and t, s ≥ 0, one has M(x, z, t+s) ≥
M(x, y, t) ∧ M(y, z, s), because the rest of conditions in the definition of a
fuzzy quasi-metric are obviously true.

Indeed, if M(x, z, t + s) = 1, the conclusion is obvious. Assume now that
M(x, z, t + s) = 1− 2−ℓ(x⊓z). We distinguish two cases: (a) x is a prefix of z;
(b) x is not a prefix of z. In case (a) we have M(x, z, t + s) = 1 − 2−ℓ(x) and
t + s ≤ 2−ℓ(x), and thus M(x, y, t) = 1 − 2−ℓ(x⊓y) because t ≤ 2−ℓ(x). Since
ℓ(x) ≥ ℓ(x ⊓ y), it follows that M(x, z, t + s) ≥ M(x, y, t). In case (b) we
have M(x, z, t + s) = 1 − 2−ℓ(x⊓z), and the conclusion follows immediately
from the well-known facts that for each x, y, z ∈ Σ∞, one has: (i) ℓ(x ⊓ z) ≥
min{ℓ(x ⊓ y), ℓ(y ⊓ z)}, and (ii) ℓ(x ⊓ z) = ℓ(y ⊓ z) whenever x is a prefix of
y but not a prefix of z.

We conclude that (M,∧) is a fuzzy quasi-metric on Σ∞.
Now, observe that if x, y are prefixes of z, with x 6= y, and one obtains for

some t0 > 0, M(x, z, t0) < 1 and M(y, z, t0) = 1, then 2−ℓ(y) < t0 ≤ 2−ℓ(x), so
that ℓ(x) ≤ ℓ(y), i.e., x ⊏ y; which shows that y is a better approximation
to z than x.

Then, for each z ∈ Σ∞\{φ}, and each x ⊏ z we can define the degree of
approximation of x to z, associated to (M,∧), as the number DA(x, z) = 1/tx
where tx = inf{t > 0 : M(x, z, t) = 1}. It is clear that DA(x, z) = 2ℓ(x).

In particular, for x = 3.14 and y = 3.141 as given above, one obtains

27



for each t ∈ (2−4, 2−3], M(x, π, t) < 1 and M(y, π, t) = 1, which agrees
with the fact that y contains more information on π than x. Furthermore
DA(x, π) = 23 and DA(y, π) = 24, which provides reasonable (and desirable)
values on the degree of approximation of x and y to π, respectively.

Finally, we apply this approach to compute the distance between some
interesting subsets of P0(Σ

∞) via the (lower) Hausdorff fuzzy quasi-pseudo-
metric of (Σ∞, M,∧).

Let z ∈ Σ∞ such that ℓ(z) = ∞ and let x be a prefix of z different from
z, i.e., x ⊏ z. Put x→ = {y ∈ Σ∞ : x ⊑ y ⊏ z}. Since z ∈ x→

M ∩ x→
M−1

, it
follows from Lemma 2 (1a) that for each t > 0,

H−
M({z}, x→, t) = 1.

Furthermore, it is easy to see that

H−
M(x→, {z}, t) = 1 ⇐⇒ t > 2−ℓ(x).

Therefore (compare Remark 3), one has {z} ≤H−

M

x→ and x→ ≤H−

M

{z}.
The last relation is not a surprise because it can be computationally

interpreted as that z contains at least the same amount of information of z
than x→. However, the first relation seems certainly interesting because it
can be computationally interpreted as that x→ contains at least the same
amount of information of z than z, which is true because actually x→ has
exactly the same amount of information of z than z.

Now let x ⊏ y ⊏ z . Then

H−
M(y→, x→, t) = 1,

for all t > 0, by Lemma 2 (1a). Moreover

H−
M(x→, y→, t) = 1 ⇐⇒ t > 2−ℓ(x),

so y→ ≤H−

M

x→ and x→ ≤H−

M

y→, as we could expect, because x→ and
y→ contain the same amount of information of z. Thus, the preorder ≤H−

M

provides a better computational interpretation than the preorder ≤H−

M
,t on

P0(Σ
∞).
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7 Conclusion

We have established connections between the theory of Hausdorff fuzzy dis-
tances and the theory of asymmetric topology by means of fuzzy quasi-
metrics. We have obtained several properties of Hausdorff fuzzy quasi-metric
spaces and we have exploited the information given by the parameter t > 0
to model the domain of words by means of our approach; some advantages
of our model are discussed.
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