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Abstract

In this thesis, the problem of multilingual spoken language understanding is addressed us-
ing graphs to model and combine the different knowledge sources that take part in the
understanding process. As a result of this work, a full multilingual spoken language under-
standing system has been developed, in which statistical models and graphs of linguistic
units are used. One key feature of this system is its ability to combine and process multiple

inputs provided by one or more sources such as speech recognizers or machine translators.

A graph-based monolingual spoken language understanding system was developed as a
starting point. The input to this system is a set of sentences that is provided by one
or more speech recognition systems. First, these sentences are combined by means of a
grammatical inference algorithm in order to build a graph of words. Next, the graph of
words is processed to construct a graph of concepts by using a dynamic programming
algorithm that identifies the lexical structures that represent the different concepts of the

task. Finally, the graph of concepts is used to build the best sequence of concepts.

The multilingual case happens when the user speaks a language different to the one natively
supported by the system. In this thesis, a test-on-source approach was followed. This
means that the input sentences are translated into the system’s language, and then they
are processed by the monolingual system. For this purpose, two speech translation systems
were developed. The output of these speech translation systems are graphs of words that

are then processed by the monolingual graph-based spoken language understanding system.

Both in the monolingual case and in the multilingual case, the experimental results show
that a combination of several inputs allows to improve the results obtained with a single
input. In fact, this approach outperforms the current state of the art in many cases when

several inputs are combined.
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Resumen

En esta tesis se aborda el problema de la comprensién multilingiie del habla utilizando
grafos para modelizar y combinar las diversas fuentes de conocimiento que intervienen en
el proceso. Como resultado se ha desarrollado un sistema completo de comprensiéon multil-
ingiie que utiliza modelos estadisticos y grafos de unidades lingiiisticas. El punto fuerte de
este sistema es su capacidad para combinar y procesar multiples entradas proporcionadas

por una o varias fuentes, como reconocedores de habla o traductores automaéticos.

Como punto de partida se desarrollé un sistema de comprensiéon multilingiie basado en
grafos. La entrada a este sistema es un conjunto de frases obtenido a partir de uno o varios
reconocedores de habla. En primer lugar, se aplica un algoritmo de inferencia gramatical
que combina estas frases y obtiene un grafo de palabras. A continuacion, se analiza el grafo
de palabras mediante un algoritmo de programacién dindmica que identifica las estructuras
léxicas correspondientes a los distintos conceptos de la tarea, de forma que se construye un
grafo de conceptos. Finalmente, se procesa el grafo de conceptos para encontrar la mejor

secuencia de conceptos.

El caso multilingiie ocurre cuando el usuario habla una lengua distinta a la original del
sistema. En este trabajo se ha utilizado una estrategia test-on-source, en la cual las frases
de entrada se traducen al lenguaje del sistema y éste las trata de forma monolingiie. Para
ello se han propuesto dos sistemas de traducciéon del habla cuya salida son grafos de palabras,

los cuales son procesados por el algoritmo de comprensiéon basado en grafos.

Tanto en la configuracién monolingiie como en la multilingiie los resultados muestran que
la combinacién de varias entradas permite mejorar los resultados obtenidos con una sola
entrada. De hecho, esta aproximaciéon consigue en muchos casos mejores resultados que el

actual estado del arte cuando se utiliza una combinacién de varias entradas.
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Resum

Aquesta tesi tracta el problema de la comprensié multilingiie de la parla utilitzant grafs
per a modelitzar i combinar les diverses fonts de coneixement que intervenen en el procés.
Com a resultat s’ha desenvolupat un sistema complet de comprensié multilingiie de la parla
que utilitza models estadistics i grafs d’unitats lingiiistiques. El punt fort d’aquest sistema
és la seua capacitat per combinar i processar miltiples entrades proporcionades per una o

diverses fonts, com reconeixedors de la parla o traductors automatics.

Com a punt de partida, es va desenvolupar un sistema de comprensié monolingiie basat
en grafs. L’entrada d’aquest sistema és un conjunt de frases obtingut a partir d’'un o més
reconeixedors de la parla. En primer lloc, s’aplica un algorisme d’inferéncia gramatical que
combina aquestes frases i obté un graf de paraules. A continuacio, s’analitza el graf de
paraules mitjancant un algorisme de programacié dinamica que identifica les estructures
léxiques corresponents als distints conceptes de la tasca, de forma que es construeix un graf
de conceptes. Finalment, es processa aquest graf de conceptes per trobar la millor seqiiéncia

de conceptes.

El cas multilingiie ocorre quan 'usuari parla una llengua diferent a ’original del sistema.
En aquest treball s’ha utilitzat una estratégia test-on-source, en la qual les frases d’entrada
es tradueixen a la llengua del sistema, i aquest les tracta de forma monolingiie. Per a fer-ho
es proposen dos sistemes de traducci6 de la parla 'eixida dels quals sén grafs de paraules.

Aquests grafs son posteriorment processats per 'algorisme de comprensioé basat en grafs.

Tant per la configuracié monolingiie com per la multilingiie els resultats mostren que la
combinaci6é de diverses entrades és capa¢ de millorar el resultats obtinguts utilitzant una
sola entrada. De fet, aquesta aproximacié aconsegueix en molts casos millors resultats que

I’actual estat de I’art quan s’utilitza una combinaci6é de diverses entrades.
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Chapter 1

Introduction

1.1 The problem of multilingual spoken language understanding

Communicative acts are constantly occurring in our lives. We want to share our experiences,
feelings, and needs and also receive information about what is happening around us. These
and many other information exchanges may be carried out either verbally by using words or
by means of non-verbal communication. Both types of communication are important, but
most of the conscious communication processes among humans are performed using words,
either in a spoken or in a written form. On one hand, speech is the most natural way for
humans to communicate with each other, since it is based on sounds that are emitted by
our bodies. On the other hand, written language is a human invention which has developed
throughout history and which constitutes a graphical representation of spoken language.
Even though speech and writing can express the same messages and meanings, they are
usually employed differently: written language tends to be more formal and thoughtful,
and spoken language is often more informal and spontaneous. However, the massive use of
social networks and instant messaging applications in the last few years has brought many

of the features of spoken language into written language.

In order to be successful, any communication process requires the following elements:



Chapter 1. Introduction

A sender who sends a message that is encoded using a code. In some cases, the code

is as a language.

o A receiver who obtains the message. The receiver must also know the code in order

to decode the message.
e A channel so that the message is transmitted from the sender to the receiver.

e Information that is external to the message and must be shared by the sender and
the receiver. This information, which is called context, is needed by the receiver to be
able to understand the semantic meaning of the decoded message and the relations

that are included in it.

In other words, in a successful communicative process, the message sent by the sender is
encoded in a language and arrives to the receiver through a channel; then the receiver
decodes the message and can understand it because both the code and the context (which
represent linguistic and non-linguistic information, respectively) are shared by both the
sender and the receiver. However, some problems may arise. For example, one of these
problems is the misrecognition of spoken or written words because they may have been
uttered in a noisy environment or written in an illegible script, respectively. Another
possible problem is the misunderstanding of the meaning of the message since some words
may not have been properly recognized because the context is not completely shared by
the sender and the receiver, or because one of them is not a native speaker of the language

(i.e., the code is not completely shared).

Humans can naturally handle the complexity of communicative processes and can even ask
for clarification if they feel that the communication is not being effective enough. However,
in human-computer interaction a large part of this complexity has traditionally been avoided
in order to make the interactions successful. For many years, human-computer interaction
has been performed in ways that avoid ambiguities, such as commands and menus. The
design of all these interactions makes that the intention of the user is impossible to be
misunderstood. Nevertheless, these interactions provide a limited amount of information

to be communicated to the computer as well as limited expressive flexibility.

In order to enhance human-computer interaction and make it more natural for humans,

Natural Language Processing (NLP) has been an ambitious goal of research in computer
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science in the last few decades. The purpose of NLP is to develop a set of techniques that
allows a computer to analyze a sentence or a discourse that is expressed in a natural language
(e.g., English, Spanish, French, etc.) and provide information that is inferred from it. These
techniques very often rely on machine learning and pattern recognition fundamentals, such
as statistical models that are automatically learnt from data, classification techniques and
algorithms, and representations that are based on the features and relations that can be
extracted from the input. Some examples of NLP tasks are part-of-speech tagging, which
aims to identify the grammatical categories for each word in a text; syntactic analysis, which
aims is to identify the syntactic components of a sentence; machine translation, which aims
to translate texts from one natural language into another natural language (e.g., English
into French); and natural language understanding, which aims to provide a representation

of the semantics contained in a written or spoken text.

Many NLP applications usually expect a well-formed written sentence as their input. How-
ever, spoken language is a more natural and flexible way for human-computer interaction.
Speech technologies attempt to develop a successful interface between humans and ma-
chines using spoken language. The first problem in speech processing that was historically
addressed was to build an Automatic Speech Recognizer (ASR), in order to transcribe spo-
ken utterances provided by humans in a specific language. Achieving good quality in speech
transcription would provide an interface for using text-based applications with speech input.
Furthermore, it would enable the construction of more complex voice-activated systems. For
example, for many years, one ambitious goal of speech technologies was the development
of Spoken Dialogue Systems (SDSs). These systems mimic the understanding and dialogue
skills of a human and provide a fully dialogued communication between humans and com-
puters. SDSs open up more possibilities, such as being able to use a computer and receive
assistance from it in environments where it is impossible to use your the hands for entering
text (for example while driving a car or during surgery). The development of SDSs is an
open research field, and many of its aspects must still be improved. This is the reason that
most of the SDSs that have been developed to date model less critical tasks such as e-mail

applications or help-desk and information services.

Taking a closer look to the understanding abilities of a SDS, they are usually performed
by a module devoted to Spoken Language Understanding (SLU), the goal of which is to
provide a semantic interpretation of the user’s utterance. For this purpose, SLU modules

need to have the message that was transmitted by the user (the acoustic signal or its

3
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transcription), information about the language in which the user spoke (the code of the
communication process), and all the necessary information that provides meaning to the
words of the utterance (the context). Taking this into account, two major problems can be
identified when a SLU system is developed: (i) how to adequately model and represent all
the information that is involved in the understanding process, and (ii) the development of a
semantic decoding algorithm that uses this information and infers a semantic interpretation
of the input utterance (De Mori et al. 2007; Tur and De Mori 2011).

SLU has traditionally been divided into three problems which, to some extent, try to mimic
the different characteristics of the human understanding process. All of them are usually
addressed using machine learning techniques, which, in some cases, may be enriched with

expert linguistic knowledge. The three problems are:

e Domain detection: In order to understand a sentence, the SLU module must figure
out what the user is talking about. For example, it must determine whether the user
is speaking about flight tickets, about the weather, or about the actions that can
be performed on the user’s bank account. Most current SLU systems are specialized
in just one domain (restricted-domain SLU systems). This means that if there is
an application that supports several actions, the SLU module is different for each of
them, and then a decision module determines which of the interpretations is the most
suitable (Khan et al. 2015).

o Intent determination: It is important to capture the goal of the user in order to
provide the information that the user is asking for. For example, in the context of
a flight booking system, it is necessary to determine if the user wants to book a
ticket, know what the possible direct flights that depart from a given city are, or
obtain information about the price of a specific flight. A nice example of an intent
determination system is the How may I help you? system by AT&T (Gorin, Riccardi,
and Wright 1997). This system was implemented for the customer care service in that
company. When the user called the customer care service, the user was prompted with
the question “How may I help you?”. Then, the system extracted the intent of the
user from the answer, and the call was forwarded to a human operator based on the

inferred intent.
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e Slot filling: The goal that is pursued here is to identify the semantic concepts that
appear in the user’s utterance, along with their associated values. The set of concepts
that may appear within a sentence in the scope of a SLU task must be established
beforehand, during the definition of the SLU task, and these concepts constitute an
ontology for the task. For example, in a task that models a flight booking system,
concepts such as departure city, arrival city, date, price, and airline can be defined.
This way, in the sentence “I’d like to travel from Rome to Athens tomorrow” three
concepts can be found with associated values: a departure city, which is Rome; a
destination city, which is Athens; and a date, which is tomorrow. Each concept is
supported by a set of words of the sentence. For example, the concept departure city is
substantiated by the words from Rome, and the value Rome can be extracted from it.
Furthermore, sometimes additional concepts are defined in order to express the user’s
intent, despite the fact that they do not usually have an associated value and they are
not directly related to the task-dependent semantic concepts. This allows the intent
determination problem to be embedded into the slot filling problem. For example,
the concept query may be added to the flight booking task in order to express that
the user is asking for some information. Then, this concept query can be found in the
former sentence supported by the words I’d like to travel. For this reason, the slot
filling problem is often modelled as a sequence labelling problem in which each word
or set of words of the sentence is assigned a semantic label that corresponds to the
concept that the words support. This constitutes a semantic representation of the

user’s utterance.

It is worth highlighting that domain detection can be skipped if the system does not need to
choose between different domains, and the intent determination problem can be embedded
into slot filling if an adequate semantic model is used. For this reason, in the remainder of
this thesis, the problem of SLU will be restricted to the slot filling problem. However, this
definition of the SLU problem still makes it very challenging.

Based on this definition of SLU, one of the problems that must be confronted is that SLU is
described in terms of linguistic units (words), but the user’s input is an acoustic signal (an
utterance). One possible solution for this problem is to perform a speech recognition process
before SLU so that the input to the SLU method is a transcription of the user’s utterance.
Therefore, the ASR must have very good accuracy to ensure that no relevant information

is lost in the recognition process. However, current technology for speech recognition is still

5
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far from perfect, achieving word error rates of around 15% in the transcription of broadcast
news (Hinton et al. 2012). Moreover, these errors can completely change the meaning of
the original utterance. This means that an in-cascade architecture where a SLU module
is fed with a single transcription provided by an ASR is probably not the best setting.
However, if several hypotheses were delivered to the SLU module, it could choose among
more possibilities in order to find the most suitable semantic interpretation. Two formats
for conveying several transcriptions to the SLU module are a list of transcriptions (n-best

list) and a graph structure (word lattice or graph of words).

Graphs have been successfully used in many NLP applications, and they have proven to be
powerful and effective representations for linguistic information (Mihalcea and Radev 2011).
However, the problem with graph structures for SLU is that the usual sequence labeling
methods are not able to naturally process them since they do not represent a single sequence
to be labeled, but rather a set that is represented as a structure that is more complex than
a single sequence. Two of the contributions of this thesis are the modelling of the SLU
problem as a graph search problem and the development of a SLU algorithm that is able
to naturally and efficiently process several transcriptions that are represented as a graph

structure.

The several transcriptions that arrive to the SLU system can be delivered either by a single
ASR or by a set of ASRs that work in parallel. Actually, in the last few years it has been
shown that the use of an appropriate combination of machine learning systems (also known
as ensembles of classifiers) outperforms the results obtained using just one system. There
has been a large amount of research on how the different systems can be combined, and many
fusion methods have been developed (Xu, Krzyzak, and Suen 1992; Kittler et al. 1998; Brill
and Wu 1998; Ruta and Gabrys 2000; Florian et al. 2003; Rokach 2010). Furthermore, not
only outputs from different classifiers can be fused, but inputs from several sources can also
be merged. This idea allows data from several sources or multimodal data (e.g., images and
speech) to be combined to develop more robust systems (Ross and Jain 2003) or to analyze
multimedia (Atrey et al. 2010). In fact, some evaluation campaigns such as the MediaEval
Benchmarking Initiative for Multimedia Evaluation® try to advance the research on the
combination of multimodal data for a number of tasks (Eskevich et al. 2015; Poignant,
Bredin, and Barras 2015). Inspired by this outlook, and exploiting the fact that several

ASR outputs (from one or more ASRs) can be combined into a graph that can be analyzed

www.multimediaeval.org
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using a graph-based SLU algorithm, another contribution of this thesis is the combination

of multiple ASR outputs into a graph of words for SLU purposes.

Due to the challenging nature of the SLU problem, it would be very helpful if, to some
extent, the effort that is required to develop a SLU system for one language or task could
be re-used for other languages or other tasks. This process is known as language portability
or domain portability of SLU systems, respectively. In the case of language portability, it
means that the code (i.e., the language) is not shared between the user and the original
SLU system. This implies that a translation process is needed so that both of them use the
same language. In the case of domain portability, the SLU system is going to be used in
a new task and therefore must acquire some knowledge about it. In other words, the SLU

system must learn about a new context.

This thesis addresses the problem of language portability, also known as multilingual SLU.
As mentioned above, a translation process is needed in order to equalize the languages of

the user and the system. Two methodologies can be used for this purpose:

e Translating the SLU system or the data from which it was learnt to the user’s lan-

guage. This strategy is known as train-on-target.

e Translating the user’s utterances into the language of the SLU system, and then

processing them with this SLU system. This strategy is called test-on-source.

Even though results may be dependent on the corpus and the pair of languages that are
considered, works like (Lefévre, Mairesse, and Young 2010; Jabaian, Besacier, and Lefévre
2013) suggest that the test-on-source methodology leads to better results than the train-
on-target methodology. This is why the multilingual SLU system developed in this work
uses a test-on-source methodology. Two speech translation systems have been developed
for this purpose. In addition, different translations are combined in a graph of words to be
processed by the graph-based SLU method.
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1.2 Objectives and contributions of this thesis

The main objective of this thesis is the development of a SLU system that is able to work
in a multilingual environment and that has the capability of processing uncertain input
that is represented as a graph of words in a natural and efficient way. To confront this
challenge, the SLU problem was first modelled as a graph search problem within a statistical
framework. This formalism is able to naturally accept graph inputs instead of just strings.
A grammatical inference algorithm for combining several sentences (e.g., transcriptions
from an ASR) into a graph of words was studied and was then used to generate the graph
inputs to the SLU module. Then, a set of dynamic programming algorithms was developed,
analyzed, and evaluated to solve the graph search description of the SLU problem. Finally,
this monolingual method was ported to a multilingual environment by incorporating a
speech translation method. Two ways of implementing the speech translation step have
been studied. In order to carry out an experimental evaluation of the multilingual system,

a low-cost strategy for language portability of SLU corpora was developed.

The development of this thesis has led to the following contributions:

e The use of a grammatical inference algorithm to combine and generalize several tran-
scriptions or translations of the same utterance according to their lexical and syntactic
structures, with the goal of being further processed by a SLU module. The result of

this combination is a left-to-right stochastic automaton or graph of words.

e The modelling of the SLU problem as a graph search problem. This graph search
combines the information represented in a graph of words with a semantic model of
the SLU task, which is also represented as a set of graph structures. Furthermore,
this graph representation of the problem fits into a statistical framework, where the
models represent probability distributions, and the goal is to search for the sequence

of concepts with maximal probability given an utterance provided by a user.

e The development of a strategy that allows the best sequence of concepts for a given
utterance to be computed using algorithms on graphs. First, the input is represented
as a graph. Then, the SLU strategy is divided into two stages, in which different
linguistic units are represented in the graphs. The first stage processes a graph of

words and builds a graph of concepts which has lexical, syntactic, and semantic
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information attached to its arcs. The algorithm used to build this graph of concepts
is a Dynamic Programming algorithm that, for a given concept, searches for all the
best sub-paths in the graph of words between any pair of nodes, taking into account
the semantic model for that specific concept. This procedure is repeated for all the
concepts of the task. The second stage uses another dynamic programming algorithm
to find the best path in the graph of concepts, also taking into account the information
contained in a semantic model of sequences of concepts. This procedure provides the
best sequence of concepts; its underlying sequence of words, which is a transcription
of the user’s utterance; and a segmentation of the sequence of words in terms of the

sequence of concepts.

e The construction of a multilingual SLU corpus by porting the Spanish DIHANA
corpus to English and French, and the development of a low-cost language portability

process for SLU corpora in which both human and machine translation are used.

e An extension of the graph-based SLU algorithm to test-on-source multilingual SLU.
In this case, the outputs provided by one or more automatic translators are combined
using the graph builder algorithm. Two methods have been proposed for the speech
translation process: (i) a combination of several general-purpose freely-available web
translators and (ii) an unsupervised acquisition of a task-dependent parallel corpus
to train a phrase-based statistical machine translation system. The output of this
system is analogous to the monolingual setting, but, in this case, the sequence of
words corresponds to a translation of the user’s utterance into the system’s language.
The influence of the combination of translations and the domain-specific semantic

information in the quality of the resulting translation has also been analyzed.

1.3 Structure of the thesis

The content of this thesis is structured in six chapters. After the introduction to the
topic of the thesis, the Chapter 2 provides a more detailed explanation of the historical
evolution of SLU.An in-depth analysis of several statistical approaches to SLU is provided
as well as some extensions to accept uncertain input that is represented as graphs of words is
discussed. The problem of multilingual SLU is also examined, and the two main approaches

for solving this problem (train-on-target and test-on-source) are presented.
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Chapter 3 introduces the corpora that were used in the different experiments presented in
this thesis. For Monolingual SLU, the chosen corpora are the Spanish DIHANA corpus
and the French MEDIA corpus. Furthermore, the Spanish DIHANA corpus was translated
into French and English using different translation methods (machine translation and hu-
man translation) and was partially uttered by native users. This way, the multilingual
DIHANA corpus was obtained. The multilingual DIHANA corpus was the one used for the

multilingual SLU experiments.

Chapters 4 and 5 describe the main contributions that have been developed in this thesis:
a graph-based SLU algorithm that is able to process graphs of words obtained from one or
more sources and its extension to a multilingual setting. Chapter 4 describes this graph-
based SLU algorithm for a common monolingual environment. This algorithm has the
ability to process uncertain input represented as graphs of words in a natural and efficient
way by means of several dynamic programming algorithms. Furthermore, the use of a
grammatical inference algorithm to build a graph of words from a set of sentences for SLU
purposes is also explored. An experimental evaluation of the method is carried out using
both speech and text input, and a comparison with other state-of-the-art SLU methods is

performed.

In Chapter 5, the monolingual model is extended to build a test-on-source multilingual
SLU system, where speech translation is performed before the SLU module. Two different
methods were developed to carry out the speech translation process. Both of them provide
several outputs, which are combined in a graph of words in order to provide the SLU module
with more possible translations. These two speech translation methods lead to two different
multilingual SLU systems which are thoroughly evaluated, and they are also compared to

other in-cascade approaches to multilingual SLU.

Finally, Chapter 6 presents the conclusions that have been drawn and some lines of future

work.
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Chapter 2

State of the art

2.1 Spoken language understanding in the context of spoken dialogue

systems

Speech technologies have a fairly short, but rich history. One of the first goals of the
research on speech technologies was the development of a continuous automatic speech
recognition software that works with a reasonable recognition error rate. Once this goal
was achieved, then the first research projects and proposals of SLU systems emerged. One
milestone during the initial years of the research on SLU was the creation of the ATIS
corpus (Hemphill, Godfrey, and Doddington 1990), which represented the domain of a
flight information system. This corpus was the first to incorporate a semantic labeling to

the information of the utterances.

The first SLU systems were conceived as components of a spoken dialogue system. SDSs
constitute a natural interface for human-machine interaction, which is performed through
conversational speech. Therefore, a good SLU system is crucial for a SDS to work correctly
since the user’s utterances must be properly understood before providing the user with an
answer (see Figure 2.1). Initially, the development of open-domain SDSs that could interact
with the user and provide the user with any information seemed to be a too ambitious goal.
For example, one important problem that still had to be solved was the construction of a

high-performance very large vocabulary open-domain ASR. Therefore, the most reasonable
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option was to develop restricted-domain SDSs (Walker, Passonneau, and Boland 2001),
which could work with a much simpler task-dependent ASR. Some examples of restricted-

domain spoken dialogue systems are:

e VOYAGER (Zue et al. 1992), which was to provide dialogued access to geographical
information and other services as well as telephone numbers within a restricted area.
This system originally worked in English, but was later ported to other languages

such as Japanese and Italian (Glass et al. 1995).

e The Carnegie Mellon Communicator system (Rudnicky et al. 1999), which allows the
user to book flight tickets, hotels, and car rentals using the English language.

e JUPITER (Zue et al. 2000), which works in English and provides weather information.

e Let’s go (Raux et al. 2005), which is a spoken dialogue system in English to access

bus schedule information in Pittsburgh.

e A SDS for the DIHANA task (Griol et al. 2006), where the user can obtain information

about railway timetables and fares in Spanish.

e DS-UCAT (Lopez-Cozar, Callejas, and Montoro 2006), which works in English and
Spanish and has the goal of assisting students and teachers in common activities in

an academic environment.

e A dialogue system for the EDECAN-SPORT task (Planells et al. 2012), where the

user’s goal is to perform booking operations on sports facilities in Spanish.

More recently, systems that are able to provide users with information about different
domains have been built; these are called multi-domain spoken dialogue systems. This is
the case of the system presented in (Planells et al. 2013), where three single-domain SDSs in
Spanish are integrated into a single SDS (one for booking sports facilities, one that provides

weather information, and one that manages a personal calendar).

As Figure 2.1 shows, the input to a usual spoken dialogue system is a spoken utterance
that encodes information provided by the user. This utterance is first processed by an
ASR that transcribes it using information from acoustic and language models. Then the

sequence of words that the ASR outputs is analyzed by a SLU module which provides a
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Figure 2.1: Scheme of the modules of the usual architecture of a spoken dialogue system.

semantic interpretation of the sentence by using one or more semantic models. In order to
provide a complete semantic analysis of the utterance, the different concepts that are found
in it must be instantiated with their corresponding values. One possible way to do this is
to use a frame representation. In a frame representation the goal of the user is identified,
as well as the different attribute-value pairs that summarize the semantic information of
the utterance. This information is provided to a dialogue manager that takes into account
the previous history of the dialogue and the semantic information to build a query to a
structured information repository, such as a database, if the query is needed to provide the
user with an answer. Then, the dialogue manager determines what is going to be said in the
system’s answer, and this information is lexicalized by an answer generator module. Finally,
this sequence of words is produced by means of a text-to-speech synthesizer, in order to
deliver it to the user in a more natural way. After the answer is received, the user can
decide whether or not the information provided by the system fulfills the user’s objective.
If the system’s answer is satisfactory, then the user finishes the dialogue; otherwise the user

can provide the system with more information in order to fulfill the user’s goal.
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To develop restricted-domain SDSs, several SLU systems and corpora with semantic anno-
tations were developed in the framework of a number of research projects for a wide range

of languages and tasks. Some examples are described below.

e The ATIS corpus (Hemphill, Godfrey, and Doddington 1990) was the first dataset
that incorporated semantic annotations. This corpus was developed in the US, and
it represents the domain of an information system for airlines (in fact, ATIS stands

for Air Travel Information System).

e In the framework of the ARISE project (Den Os et al. 1999), four prototypes of SDSs
for different train information systems were developed. These prototypes worked in

French (two systems), Italian and Dutch.

e The French MEDIA/EVALDA project (Devillers et al. 2004) specifically aimed to
assess the performance of SLU systems in the context of SDSs. For this purpose, the
MEDIA corpus (Bonneau-Maynard et al. 2005; Bonneau-Maynard, Quignard, and
Denis 2009) was developed. The content of this corpus is in French and represents a

tourist information task.

e The Spanish DIHANA project, had the goal of developing a SDS to access a train
information service by phone using spontaneous speech in Spanish. The DIHANA

corpus (Benedi et al. 2006) was built in the framework of this project

e The European LUNA project had the research goals of improving language and se-
mantic modelling for SLU, enhancing the robustness of SLU systems, and exploring
the multilingual portability of the SLU components. Three corpora were developed
for this purpose: one in Italian for a computer help-desk service (Dinarelli et al.
2009); another in Polish for a public transportation information service (Marasek and

Gubrynowicz 2008); and a third one in French for stock exchange queries.

More details on corpora for SLU, specifically on the DIHANA and MEDIA corpora, are
provided in Chapter 3.

In addition to academic research, recent advances in speech technologies and natural lan-
guage processing have enabled the creation of commercial personal assistants for smart-

phones, with one of their features being the possibility to request them information by
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means of speech. Examples of these assistants are Google Now!, Apple’s Siri?, Microsoft’s
Cortana®, and Sherpa?. In these systems the idea of spoken language understanding plays a
very important role since the system must extract the relevant information from the user’s
query in order to provide the user with the requested information or to ask for more data

if it is needed.

2.2 Statistical approaches to spoken language understanding

From a methodological point of view, the different approaches to SLU can be divided into
two types: rule-based and statistical-based. Some of the first approaches to SLU were rule-
based, which were based on hand-crafted grammars that could be enriched with probabilities
learnt from training data. Two examples of systems of this kind are TINA (Seneff 1989;
Seneff 1992) and Phoenix (Issar and Ward 1993). Furthermore, the statistical information
that was added to the rules allowed to better handle the usual errors that occur in systems
that depend on a previous ASR, even though the robustness to ASR errors was still very low.
Also, the manual design of these grammar-based SLU systems involved a great linguistic
and engineering expertise in order to avoid coverage leaks and to achieve good performance.
Hence, the development of these systems was difficult and time-consuming, and the final

system was likely to be error-prone and problematic to maintain.

It was at the beginning of the 1990s when the first statistical-based models for spoken
language understanding started to be developed. These models have the advantage that
they can be learnt from corpora, instead of requiring manual effort from experts in lin-
guistics. Two examples of these early statistical-based systems are CHRONUS (Pieraccini
et al. 1992; Pieraccini and Levin 1995), which was developed by AT&T and was based on
Hidden Markov Models; and the system developed by the BBN company, which was based
on Hidden Understanding Models (Miller et al. 1996; Schwartz et al. 1996).

In a statistical framework, the problem of restricted-domain spoken language understanding
can be stated as the search for a sequence of concepts C that best indicates the meaning

of an utterance A. Since this is a restricted-domain task, a set of concepts % should be

Lwww.google.com /landing /now/
Zwww.apple.com /ios /siri/
3windows.microsoft.com /en-us/windows-10/getstarted-what-is-cortana
4
sher.pa
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defined beforehand, usually by a human expert, thereby creating an ontology for the task.
These concepts identify the pieces of information that are contained in a sentence in the
context of the task and that are relevant in its domain. For example, in the context of a
train-schedule information system, some possible concepts that can be identified are the
origin and destination city of a trip, the departure and arrival times, and the services that
are offered during the trip (e.g., if it is possible to smoke on the train, if there is a restaurant
carriage, etc.). In addition, a dummy, null or void concept that represents filler words is
often added. Filler words are the words that are not attached to any relevant concept.
Therefore, according to this scheme, all the words of a sentence will be attached to some
concept, using the filler concept when a word is not relevant to any of the other concepts.
Also, each word is attached to a single concept since each word is part of a single idea
being communicated in the utterance. In many Western languages, the words that shape
a concept are adjacent to each other in a sentence. The resulting structure is called a
segmentation of the sentence in terms of a sequence C of concepts of the task. Table 2.1

shows an example of a segmentation for a public transport information system.

Transcription of Good morning, I'd like to know the timetables to go to
the user’s utterance | Liverpool since I have a meeting there.

Semantic Good morning: courtesy

segmentation I'd like to know: query

the timetables: time? (object of the query)
to go to Liverpool: destination city
since I have a meeting there: null

Table 2.1: Example of a segmentation for a train-schedule information system.

When training statistical models for SLU, it is very important that the training corpus
is segmented and labelled with the concepts of the task in order to properly estimate the
probabilities or features that take part in the computations. The process of segmenting and
labeling a corpus for SLU purposes is usually a time-consuming task that must be carried
out by experts in linguistics. However, some approaches have recently been proposed to
assuage the cost of this task. For example, active learning strategies allow bootstraping from
a smaller amount of samples (Gupta et al. 2006; Garcia et al. 2011). It is also possible to
train models for SLU when the set of concepts that appear within a sentence is known, but
the segmentation of the sentence in terms of those concepts is unknown (Ortega et al. 2010).

Another option is to use targeted crowdsourcing techniques to have the corpus segmented
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and labelled at a lower monetary cost (Chowdhury et al. 2014). All these approaches make
use of human knowledge to some extent and need the active participation of a human to
provide providing certain (possibly small) amount of information. However, there are also
works that aim at unsupervisedly acquiring all the semantic information that is needed to
train a SLU system (Tur et al. 2012; Chen, Wang, and Rudnicky 2015).

Since SLU is defined as the search for a sequence C that best fits an utterance A, it stands
that, in principle, C may be any sequence of concepts that is built from the elements in €.

In other words,

C = argmax p(C|A) (2.1)
Cee*

where €* is the Kleene star closure of €. However, due to the existence of the null concept,
every non-empty sequence of words will have a non-empty sequence of concepts attached
to it. Hence, it is more appropriate to substitute the Kleene star closure by the Kleene
plus closure (i.e., C € €*). Nevertheless, for the sake of readability, the subindex of the

argmax operation will simply be C' in the remainder of this thesis.

One possible solution for the search of the best sequence of concepts given an acoustic
signal would be to integrate in a single unified system or model all the knowledge sources
that take part in the spoken language understanding process (acoustic, lexical, syntactic
and semantic) and apply all the constraints at once. Unfortunately, this solution generates
an excessively large search space, thus increasing the difficulty of the task. In this unified
model, the different individual models should be properly weighted during their combina-
tion, in order to improve the performance of the system. The computation of these weights
makes the application of the unified model even harder. For this reason, a more realistic
option is to use a modular sequential architecture, in which the information that is trans-
mitted from one module to the following one is a set of hypotheses. This set usually only
contains the 1-best transcription, which allows the SLU module to work on a text string.
However, the best transcription provided by the ASR may not be the most semantically
complete sentence of the hypotheses the ASR built (for example due to the existence of
an error in a semantically relevant word). Therefore, it seems an advantage that this set

contains multiple transcriptions, either in the form of a n-best list or as a word lattice.
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In the last few years, the idea of transmitting more than one hypothesis to the SLU module
has gained notable interest, as shown in works such as (Tur et al. 2002; Hakkani-T1ir et al.
2006; Henderson et al. 2012; Bayer and Riccardi 2012; Svec, Ircing, and Smidl 2013; Svec
et al. 2015), among others. Being able to take into account more than one transcription
when performing the semantic decoding has the main advantage that ASR errors, which can
spoil the meaning of the sentence completely, can be alleviated if the SLU module is able to
adequately search among the different options provided. This trend can also be observed in
other speech applications such as speech translation (Bertoldi and Federico 2005; Bertoldi,
Zens, and Federico 2007; Dyer, Muresan, and Resnik 2008). Another variant that is also
explored in this thesis is to use a graph representation to fuse the information provided by
one or more systems and to build a final sentence that represents a consensus among them.
This approach has been successfully used for mixing the outputs from several ASRs (Fiscus
1997; Schwenk and Gauvain 2000), as well as from several machine translation systems
(Bangalore, Bordel, and Riccardi 2001; Freitag, Huck, and Ney 2014).

Other options aim at a tighter coupling of the ASR and SLU processes. One early approach
was to estimate confidence scores during the ASR process and use them at the SLU stage
(Hazen, Seneff, and Polifroni 2002). This way, the SLU module can have information on how
well the system estimates that a word has been recognized and use this information to try
to overcome the harmful effects of misrecognitions in the semantic decoding. More recently,
in (Zamora-Martinez et al. 2012), the authors attempted to enrich the ASR module with
semantic knowledge, and achieved promising results. Other works such as (Tur, Deoras,
and Hakkani-Tur 2013; Garcia et al. 2015a) have explored the possibility of learning the
semantic models for SLU by using the automatic transcriptions of the training sentences
instead of the orthographically correct sentences. This way, the variability introduced by

ASR errors is conveyed to the SLU system.

The most common interpretation of the SLU problem is to see it as a Sequence Labeling
Problem, specially when text is taken as its input. This means that, given an input (a
sequence of words W) the goal is to provide a sequence of labels C' (concepts) that segments
the initial sequence. There are two major approaches to sequence labeling: establishing a
label for each word, in such a way that adjacent equal labels represent the same segment;
and directly finding a segmentation of the input sequence. The approach that is used

depends on the particular statistical model.
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There are two main families of approaches to statistical-based SLU: generative and dis-
criminative. Both types of approaches are often considered to be independent because they
express different points of view on how the sequence of concepts should be obtained, even

though both of them come from the same initial maximization.

Discriminative approaches (Wang and Acero 2006) aim at directly maximizing the proba-

bility of the sequence of concepts C given a sequence of words W:

C = argmax p(C|W) (2.2)
c

Discriminative approaches consider the sequence of words W as granted, and so they can use
all the information in it at any time during the search for the best sequence of concepts. For
example, when deciding the concept to which the i-th word w; belongs, information about
the preceding words w;_, and the following words w;, can be used. The information on the
concepts that have appeared until then can also be used. Some discriminative approaches
to SLU are support vector machines (Haffner 2006; Mairesse et al. 2009), linear chain
conditional random fields (Raymond and Riccardi 2007), log-linear models for statistical
machine translation (Macherey, Bender, and Ney 2009; Jabaian, Besacier, and Lefévre
2011; Jabaian, Lefévre, and Besacier 2014), and recurrent artificial neural networks (Mesnil
et al. 2013; Yao et al. 2013; Yao et al. 2014; Vukotic, Raymond, and Gravier 2015).

Generative methods can be derived from Equation 2.2 as shown in Equation 2.3. This
means that generative methods look for the sequence of concepts C that maximizes the
joint probability of C and the sequence of words W provided by the ASR.

: p(W|C) - p(C)

C = argmax p(C|W) = argmax = argmax p(W, C) (2.3)
c c p(W) c

Generative methods build the sequence of concepts taking the words in W consecutively, as
if the sequence of words was being built at the same time as the sequence of concepts. This
implies that only information on the words and concepts that have appeared until then
can be taken into account when establishing the concept that a word belongs to. Histori-
cally, this family of approaches appeared before the discriminative family since generative

algorithms are inspired on the equations that are traditionally used for speech recognition,
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which was a very important research topic in the 1990s. The relation to speech recognition
is established by considering the similarity of p(W|C') to an acoustic model and the similar-
ity of p(C) to a language model. Hence, it is not surprising that the first statistical-based
systems for SLU were based on hidden Markov models (Pieraccini, Levin, and Lee 1991;
Pieraccini et al. 1992; Pieraccini and Levin 1995; Johnsen et al. 2000) since they were the
state-of-the-art models for speech recognition. Other generative methods for SLU that have
appeared since then are the hidden vector state models (He and Young 2003; He and Young
2005), the models based on composition of stochastic finite state automata (Sanchis et al.
2000; Segarra et al. 2002) or composition of finite state transducers (Raymond et al. 2006),

and the use of dynamic Bayesian networks (Lefévre 2007).

The existence of so many statistical methods for SLU make it very useful in practice to
be able to perform comparisons between them. There are several works in this line, for
example (Raymond and Riccardi 2007; Hahn et al. 2008; Dinarelli 2010). The work by
(Hahn et al. 2011) provides a very comprehensive comparison between generative and dis-
criminative methods, and the authors report that the best result on the French MEDIA
corpus was achieved by using linear chain conditional random fields with a specific set of

feature functions.

The following sections provide a detailed explanation of several of the major generative
and discriminative approaches to SLU. Furthermore, some of these approaches have been
extended to be able to deal with uncertain input, which can be represented as a graph of

words.

2.2.1 Hidden Markov models

First-order Hidden Markov Models (HMMs) are a powerful generative formalism that are
able to model short-term relations between elements of a sequence. Since they had been
successfully applied to speech recognition tasks, they were one of the first statistical for-
malisms that were used for spoken language understanding. However, in the case of speech
recognition they are continuous HMMSs since the acoustic features are real numbers, while

in the case of SLU they are discrete HMMs because the input is composed of words.

The use of HMMs for SLU was first proposed in (Pieraccini, Levin, and Lee 1991) and later
used by the same authors in the CHRONUS system (Pieraccini et al. 1992; Pieraccini and
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Levin 1995). Other spoken dialogue systems have also used HMM-based SLU modules,
for example the one presented in (Johnsen et al. 2000) for a bus information service in

Norwegian language.

The reason why HMM are feasible models for SLU tasks is because generative methods for
SLU can be described as the combination of the prior probability of a sequence of concepts

and the conditional probability of the sequence of words given that sequence of concepts:

C = argmax p(W, C) = argmax p(W|C) - p(C) (2.4)
c C

Let C and W be sequences of the same length (|W| = |C| = K) such that the i-th element
in C, ¢;, corresponds to the concept tag that is associated to the i-th word in W, w;.

Applying the chain rule, Equation 2.4 can be decomposed into:

K K
p(WIC) - p(C) = [p(wr|C) - [ [ p(wilwi-1.w1, O)] - [p(er) - [ [ oleileimroer)]  (2:5)
i=2 i=2

Both product terms in this equation denote the probability of long-term dependencies, either
at the word level or at the concept level. However, these dependencies can be reasonably
approximated by short-term dependencies, as is done in language modelling for speech
recognition. It can also be legitimately assumed that when the i-th word of the input is
considered the concept tag for it is independent of the concept tags of the other words in

W. Thus, Equation 2.5 can be rewritten as:

K K
p(W|C) - p(C) = [p(wi]er) - [ [ p(wilwi—1..cwi—m, )] - [p(er) - [ [ pleileir.cion)]  (2.6)
=2 =2

This equation denotes two Markov processes: the part that calculates the conditional prob-

abilities is a Markov process of order m; and the terms that compute the prior probability
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of the sequence of concepts is a Markov process of order n. Both processes can be approx-

imated by first-order Markov processes, resulting in the following:

K K
p(W|C) - p(C) = [p(wi|er) - [ [ plwilwi—1, )] - [p(er) - [ [ pleilein)] (2.7)
i=2 i=2

By making this approximation, the resulting equation describes a first-order HMM, where
the states denote the concepts of the task and each state has an estimate of the emision
probabilities for each word of the vocabulary. It is worth noting that the topology of a
HMM that fits Equation 2.7 represents a bigram language model of the concepts of the
task, based on a training corpus. Higher order HMM are also possible, but first-order
HMM are the most widely used in the literature. Once the HMM is learnt, for example
using a segmented and labelled training corpus, then the best sequence of concepts can be

obtained by means of a Viterbi search on the HMM according to the input sequence W'.

Figure 2.2: Example of a Hidden Markov Model for SLU.

Multiple variants on this scheme have been proposed in the literature. For example, the
Hidden Understanding Models (Miller et al. 1996; Schwartz et al. 1996) substitute the
transitions of the HMM with a stochastic grammar. Another variant is the Hidden Vector
State model (He and Young 2003; He and Young 2005), which aimed at enhancing the
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expressivity of HMM by introducing hyerarchical relationships that can better model long-
term dependencies among the elements of the sequence of concepts. Another important
variant of HMMs is their extension to discriminative modelling. These are called maximum
entropy hidden Markov models and were proposed in (McCallum, Freitag, and Pereira
2000). In this model the emision probabilities are substituted by feature functions that
allow decisions to be taken grounded on the full sequence of words W and on the previous
concept in the sequence ¢;—1. This model has been used for SLU purposes in works like
(Bender et al. 2003). Maximum entropy hidden Markov models are the predecessors of

linear chain conditional random fields, which are explained in Section 2.2.3.

2.2.2 Stochastic finite state machines

Another generative approach to SLU that has been widely used in the literature is Stochastic
Finite State Machines (SFSMs). Similarly to HMMs, SFSMs were successfully used in
speech recognition before their application to SLU. The use of SFSMs for SLU is explained
by the fact that it is a very powerful mechanism for analyzing sequences, and the input to
SLU is either a sequence of words or a sequence of vectors of acoustic features that represent
the user’s utterance. However, since the expressive power of SFSMs is restricted to regular
languages, they are only able to capture short-term relations among the components of the

sequence.

From a transduction point of view, SLU can be interpreted as a process that analyzes
an utterance A or a sequence of words W and converts it into a sequence of concepts C'.
Among the finite-state formalisms that generate outputs as a function of an input, Moore
and Mealy machines are two well-known models that provide different perspectives of the
transduction process: in Moore machines the output symbols are determined at the states;
but in Mealy machines the output symbols are imposed by the transitions (i.e., by the

current state and the input symbol).

First, let us consider Moore machines, and their relation with Equation 2.6. In this equation,
it was stated that the generation of the words that compose a concept can be generated by
a Markov process of order m, and the sequence of concepts can be generated by another
Markov process of order n. However, these Markov processes can also be interpreted as the
probability provided by an (m + 1)-gram language model and an (n + 1)-gram language

model, respectively. Works such as (Riccardi, Pieraccini, and Bocchieri 1996; Torres and
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Varona 2001) have shown that n-gram language models can be represented as stochastic
finite state automata (SFSA), where the states determine the last unit (word or concept)
that has been analyzed. Hence, for each concept, it is possible to build one SFSA that
represents the conditional probabilities of a sequence of words given that concept, and

another SFSA that represents how the concepts are chained.

For each concept ¢; of the task, let A., be the SFSA that represents the language model
corresponding to ¢;, and let A¢ be the SFSA that provides the probability of a sequence of
concepts. Let o be a regular substitution such that V¢; o(¢;) = L(A,,), where L(A,,) denotes
the stochastic language represented by the automaton A.,. Let us define Agry = o(Ac).
Since each state of Ag is determined by a concept ¢;, it is equivalent to applying the
substitution ¢ to each of the states of A¢ by exploding each state into the corresponding
SFSA A... Then, each state of Agrr can be labelled with the concept ¢; that it represents,
thereby making Agry into a Moore machine since the concept is determined only by the

current state.

The semantic analysis of a sequence of words W is performed via a Viterbi search on the
automaton Agry. The best sequence of concepts C for this input is the one determined by

the states of the best path according to this Viterbi search.

This approach is known as the 2-level approach (Sanchis et al. 2000; Segarra et al. 2002)
since the automaton Ac may be seen as an upper level and each of the automata A., can be
seen as a member of a lower level. Moreover, the formulation of this approach allows each of
the automata to be learnt using a different approach, as long as the automata are consistent
with the finite substitution o. For example, in (Pla et al. 2001), the authors propose
a system where the models for each concept are based on HMMs that use information
from part-of-speech tags. Also, the 2-level approach was eventually extended to 2+ 1-level
(Bonneau-Maynard and Lefévre 2005), where the extra level performs the task of extracting
the value that is associated to a concept (e.g., the hour attached to a concept time) and
normalizes it according to some criteria. Another implementation possibility for a 2+1-level
system comes from the point of view of a multi-stage SLU approach, where the two lower
models are of the generative type, and the higher level is either generative (Lefévre 2006)

or discriminative (Lefévre 2007).

Another 2-level approach but in the fashion of a Mealy machine is the one presented in
(Raymond et al. 2006). In this case, the different SFSMs that are composed are Stochastic
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Figure 2.3: Example of a 2-level model for SLU.

Finite State Transducers (SFSTs). The final result is a SFST whose output alphabet are
the concepts, even though some of its transitions may emit the empty string A. In (Hahn
et al. 2011), there is a nice formulation of a more general SFST-based approach, which also
considers the ASR process as a transducer. Equation 2.8 shows the expression from which

this approach is derived.

C = argmax p(C|A) = argmaxmmz}xp(A|W) -p(W|C) - p(C) (2.8)
c C

Informally, this equation can be seen as a process that first translates an acoustic signal
into words, then translates the words into concepts, and then combines the concepts. These
translation processes can be modelled as an in-cascade composition of several SFST, as

stated in Equation 2.9.
ASLU = )\G[O)\gen] 0 Aw2e © )\SLM[O/\U] (2-9)
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The five SFSTs that are used in this equation to obtain Agry have the following functions:

e The speech transcription process is represented by the Ag transducer. From a SFSM
point of view, a natural output of the ASR is a word lattice, which in this case
can be seen as a SFSA that encodes the probability distribution p(A|W) (i.e., the
acoustic scores given each word in the lattice). This is a strength of this approach,
since it allows to process lattices in a natural way, which is a feature that other SLU

approaches do not have.

e The Ay, SFST allows a lexical categorization of the words of the task. For example,
it can convert the word Paris into a generic lexical category city, or the word nine into
the category number. Hence, this transducer represents a priori lexical knowledge of

the task. This transducer may not be statistical-based and it is optional.

e The phrases that represent concepts of the tasks are then translated into the corre-
sponding concepts. This is performed via the Ayo. transducer, which can be learnt
either from training data or from human knowledge by means of a handwritten gram-
mar. This transducer represents the probability distribution p(W|C) and encodes a

segmentation of the utterance in terms of concepts.

e A SKFST that encodes a language model of sequences of concepts Agras is used to
compute the distribution p(C'). The transduction function for this transducer is the
identity function, but the probabilities are important for computing the probability

of the sequence of concepts.

e A fifth transducer A\, can optionally be used to extract normalized attribute values
from the sequences of words attached to the different concepts. Depending on whether
or not this transducer is used or not, the transducer Agzy will have either the elements

of a frame representation or the concepts of the task as its output alphabet.

Once the Agry transducer has been obtained, a Viterbi search on it provides the best se-

quence of concepts C (or the best frame representation, depending on the output alphabet).

It is worth highlighting that the first transducer is input-dependent; in other words, it
cannot be built before knowing the user’s utterance. However, the distributive property of

SFST composition can be used in this case, and all the other transducers can be composed
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beforehand. Hence, when an utterance is recognized, the corresponding word lattice is

composed with the pre-computed transducer, and then the Viterbi search can be performed.

An important drawback of this approach is that when the different transducers are fairly
large, the size of the Agry transducer increases, which means that the search space for
the Viterbi algorithm also increases. This would lead to large space and time requirements,
even if heuristics like beam-search are used to prune the search. Nevertheless, an advantage
of this SFST-based approach is that it can be easily carried out using SFSM toolkits such
as the AT&T FSM/GRM library (Mohri, Pereira, and Riley 2000; Allauzen, Mohri, and
Roark 2005) or the OpenFst toolkit (Allauzen et al. 2007).

2.2.3 Linear chain conditional random fields

Linear chain conditional random fields (or simply Conditional Random Fields, CRF) are a
discriminative formalism that has become very popular for SLU, mainly due to the good
results that it achieves. In fact, in works in which several approaches are compared such as
(Raymond and Riccardi 2007; Tur and De Mori 2011; Hahn et al. 2011), the best results
are obtained using CRF.

CRF were introduced to the machine learning community by (Lafferty, McCallum, and
Pereira 2001) as an extension of maximum-entropy hidden Markov models (McCallum,
Freitag, and Pereira 2000). Actually, both of them are log-linear models and are based on a
maximum entropy approach, and both have an underlying states-and-transitions topology.
The main difference between them is the normalization factor Z that appears in their
equations. Also, as in the previous state-based generative methods, each word in the input
is attached to a concept label in the output. Hence, W and C are sequences of the same

length, which will be denoted by K.

In a general way, log-linear models for a SLU context are described by Equation 2.10. They
are expressed as the product of several functions that are succesively applied K times in
order to find the probability of a sequence of concepts C of length K. Every time the

functions are applied, they depend on the whole sequence of words W, the current concept
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¢;, and the previous concept ¢;—1. The final product is divided by a normalization factor Z

which ensures that the log-linear model configures a probability distribution.

K
p(C|W) = H (¢i1,ci, W) (2.10)

N \

Log-linear models for SLU are based on the combination of several feature functions
h(ci—1,¢;, W) that take the current and the previous concepts and the whole sequence
of words as their arguments. In this case, each feature function is a 0/1 function that
describes whether or not one or more words of the input fulfil a certain condition, also
taking into account the previous concept and the one to be predicted. Each function is
weighted with a paremeter A that says how important that function is in the prediction
of the concept ¢;. Let M be the amount of feature functions, and let h,,(-) be the m-th
function of the set. Also let A, be the weight associated to hy,,. Then, H(c;—1,¢c;, W) is
defined as:

M
H(ci—1,¢;, W) = exp Z Am - b (ciz1, ¢i, W) (2.11)
m=1

However, in practice, instead of considering the whole sequence of words W as an argument
for the feature functions, these feature fucntions are usually defined using a window of

width A around the current word w;. Thus, Equation 2.11 is re-written as:
M
H(ci—1,¢;, W) =exp Z Am B (Ci— 1,cz,W”'A)) (2.12)
m=1

A crucial factor that, in fact, characterizes the different types of log-linear models is the
normalization factor Z. For example, for CRF Z is a normalization factor that considers the
full sequence of concepts, while in maximum-entropy HMM the normalization is performed
at every single position. To define the normalization factor for CRF, let €% be the set of

all the sequences of concepts of length K. Then, Z is defined as the sum of the combination
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of the different feature functions for each of the concepts that are contained in each the

sequences in €. Mathematically:

K
Z=>Y 1[HG W) (2.13)

Cewr i=1

In the framework of log-linear models, CRF in this case, it is crucial to select a good set of
features to achieve the best possible performance. In (Hahn et al. 2011), the feature func-
tions are classified into the following categories: lexical features, which are about previous
and following words; concept bigram features, also called transition features in (Dinarelli
2010), which capture the dependencies between pairs of consecutive concepts and which
in the graphical model correspond to transitions between states that denote concepts; and
word part features, which are based on sub-lexical units such as prefixes, suffixes, capital
letters, etc. The feature functions can also use extra information apart from the input
words, such as part-of-speech or syntactic tags, provided that they are also part of the
input to the CRF. In (Hahn et al. 2011), the authors show that the set of feature functions
and the width A of the analysis window that provide the best results vary depending on

the corpus and the language being considered.

There are several publicly available toolkits such as CRF++ (Kudo 2005) that allow a CRF
model to be trained and applied to SLU tasks. These toolkits are able to perform both the

training stage, where the different weights of the model are estimated, and the test phase.

Modifications and optimizations on the standard model have also been proposed for SLU
tasks. For example, in (Hahn et al. 2009), the authors propose both a mathematical modifi-
cation of the original formulation in order to avoid numerical instability and a modification
where ideas from large-margin methods (such as support vector machines) are brought into
the CRF framework. Another variation of the model that is addressed to SLU tasks at-
tempts to avoid the loss of information that is introduced into the model when an analysis
window is used on the sequence of words, instead of being able to use the full sequence at
any point in the analysis. To do this, (Jeong and Lee 2006; Jeong and Lee 2008) proposed
using word triggers to model these long-term dependencies that fall outside the analysis
window. The work in (Lehnen, Hahn, and Ney 2011) also follows this philosophy but with

the aim of expanding the context of previous concepts that are taken into account. This
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way, the graphical model underlying the CRF represents a Markov process of order higher
than 1. One more variation that also modifies the linear chain CRF topology is obtained by
taking into account that SLU systems are usually exploited within spoken dialogue systems.
This way, if the information of the state of the dialogue manager is included in the SLU
system, another formalism called triangular conditional random fields can be used (Jeong
and Geunbae Lee 2008).

Both the original CRF model and these modifications are usually applied on a single tran-
scription of the user’s utterance since the whole sequence of words (or at least a window of
a reasonable width) must be known in order to compute the feature functions. However,
ASR errors may completely spoil the behaviour of the SLU module if only one transcription
is used. Research on how to make use of CRF less sensitive to ASR errors, for example by
working on more complex representations of the ASR output has recently been presented,
with very encouraging results. An approach presented in (Deoras et al. 2013) is to enumer-
ate the n-best hypotheses from the ASR (which can be obtained either directly or via a word
lattice) and to perform the semantic decoding process on each one of the hypotheses sepa-
rately. The final result is the one that maximizes the probability p(C|A) = p(W|A)-p(C|W),
where W is each sequence of words contained in the n-best set, p(W|A) is provided by the
ASR, and p(C|W) is obtained using the CRF model on the sequence of words W. However,
it seems more reasonable to apply the understanding model directly on the word lattice, if

possible.

Some recent research has been performed on how to apply CRF on graph representations,
since it is not a straightforward matter. In (Deoras et al. 2012; Deoras et al. 2013), the
authors propose a method for working with CRF on word lattices via the construction of
an expanded lattice where the nodes represent the left and right context in which a word
appears. This expanded lattice is much bigger than the original one, both in terms of
number of nodes and arcs. This is due to the fact that, in usual word lattices, states do not
store knowledge about the previous and future contexts, while, in this kind of expanded
lattices, the nodes are defined using to this information. The left and right contexts that
are represented in a node plus the current word define the analysis window that is used in
the CRF feature functions. Consequently, the CRF model can be applied to the expanded
lattice since the feature functions can be applied to every node locally, because all the

information that is needed to evaluate the functions is contained in the node.
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Word lattices can be converted into a more simple yet powerful representation: Word
Confusion Networks (WCN). The main difference between the two types of graphs is the
restrictions in their topology: word lattices can have any topology as long as there is at least
one topological order in the graph; word confusion networks restrict the arcs to go from one
node to the following one, without skips. Of course, every word confusion network is a word
lattice, but not vice versa. There are algorithms such as the Pivot Algorithm (Hakkani-Tiir
and Riccardi 2003) that are able to convert word lattices into word confusion networks. In
(Tur, Deoras, and Hakkani-Tur 2013), the authors take advantage of the topology of WCN
to run a CRF model on them. They consider each set of arcs between two nodes to be a bin,
and select the k words with the highest probability for each bin. The analysis window can
then be expressed in terms of adjacent bins, and the feature functions are evaluated taking
into account all the possible n-grams that appear within the window. In order to learn the
feature functions, the authors also explore the possibility of considering all the neighbouring
bins that result from recognizing the training utterances. This leads to an improvement
over a system where the feature functions are learnt from single written sentences. This
approach also has the advantage of not having to change the topology of the input graph of
words. The sequence of concepts that is obtained this way has as many elements as there
are bins in the WCN. However, it might be more difficult to recover the values associated
to each concept since they must be searched for among all the possibilites encoded in the

fragment of WCN that corresponds to the span of the concept.

2.3 Using multiple ASR outputs as the input to the SLU system

One important drawback of the SLU approaches that take just the 1-best ASR transcription
as their input is that misrecognized words can dramatically spoil the result of the semantic
decoding. This effect can be due to misrecognitions of named entities, which are usually
very meaningful for SLU tasks. However, other words such as prepositions and numerals,
which are necessary to identify relevant pieces of information within a sentence (e.g., the
destination of a trip or the number of a hotel room), may also change the meaning of a
sentence if they are not recognized properly. Furthermore, the Word Error Rate measure,
which is widely used to assess the quality of a speech recognition system, does not take into
account the semantic interest of a word. Errors made on semantically relevant words and
semantically irrelevant words are counted equally. For this reason, it seems very convenient

to convey multiple ASR outputs to the SLU system. This would make it possible to have a
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better semantic interpretation for a sentence that is represented in this set but that is not
the 1-best transcription. These multiple transcriptions are usually represented either as an
n-best list of sentences or, more compactly, as a graph structure (a word lattice or a word
confusion network). This interest in managing multiple transcriptions as the input to the
SLU model has led researchers to develop extensions of well-known methods to deal with
graph inputs, as described for the SFSMs and the CRF in the previous section. However,
more approaches have been explored in this line. This section presents an overview of other

methods that also follow this philosophy.

Some of the first works that used several ASR outputs in the SLU system were carried
out by AT&T researchers whose goal was to classify calls in their customer-care service,
How may I help you? (Gorin, Riccardi, and Wright 1997), by automatically analyzing
the first utterance of the user. These works represented the multiple transcriptions as
a graph of words (word lattice or word confusion network), which in many cases can be
directly obtained from the ASR. In (Tur et al. 2002), the authors used the FST framework
to perform this classification, which clearly outperformed a baseline that used only the
1-best transcription. This work was further extended in (Hakkani-Tir et al. 2006), where
named entity detection that was based on handwritten and automatically learnt grammars
was incorporated, and the call-type classifier was built on a combination of several simpler
classifiers (boosting). More recent works have also addressed the problem of detecting
named entities for a SLU module. For example, in (Svec, Ircing, and Smidl 2013), this

problem is managed from the FST point of view by using factor automata.

In the Section 2.2.3, it was explained how the CRF formalism was extended to deal with
uncertain data represented as graph inputs. However, instead of modifying a well-known
approach, it is also possible to encode the information in the graph of words in such a
way that this information can be used in a standard framework. This is the case of some
approaches that have taken advantage of the information encoded in graphs of words pro-
vided by an ASR and have used it as the input to a SLU module based on Support Vector
Machines (SVMs). One option in this case is to develop a kernel that is able to deal with
word lattices and prepare the data to be used by a SVM. This was the idea developed
in (Cortes, Haffner, and Mohri 2003) for call-type classification. However, another option
is to build a feature vector from the information represented in the graph of words (e.g.,
n-grams, co-occurrences, etc.) and use it as the input to a SVM-based classifier. This idea,

which is known as semantic tuple classifier (Mairesse et al. 2009), was first developed to
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process single sentences. Its extension to graph structures is presented in (Henderson et al.
2012; Henderson 2015). Furthermore, works such as (Svec, Smidl, and Ircing 2013; Svec

et al. 2015) have extended this idea by means of a multi-stage pipeline.

Another possibility for conveying multiple transcriptions to the SLU module is by means of
an n-best list. This way, the SLU system can re-rank the elements in the list and provide the
semantic interpretation of the most suitable sentence. This is done in (Bayer and Riccardi
2012), where the 100-best transcriptions from an ASR are fed to a SFST-based SLU module,
which gives a semantic interpretation for each sentence in the set. A final re-scoring is then
performed taking into account a joint language model of words and concepts. In (Khan
et al. 2015), the authors give a different insight to n-best processing in the context of a
multi-domain dialogue system. In their work, the n-best are processed separately by m
SLU modules, where m is the number of domains of the dialogue system and the dialogue
manager determines which is the most appropriate semantic interpretation for the user’s

utterance.

In summary, there are different possibilities when dealing with multiple outputs from an
ASR as the input for a SLU module. If these multiple transcritpions are represented in a
graph fashion, two options are available. The first one is to use a method that is able to
naturally accept graphs as its input, either because the formalism is able to analyze them
without any modification or because some extensions have been developed to deal with
these structures. The second option is to convert the graph into another structure (e.g.
a feature vector) that the chosen SLU approach can handle naturally. In contrast, when
the input is presented using an n-best list, the most common option is to process all the
transcriptions separately and have a module that decides which semantic decoding is the
most suitable one for the user’s utterance. In this thesis, a method that builds a graph
structure from the elements of an n-best list will be described. This way, segments from
different sentences can be combined in order to build a sentence that is more semantically

appropriate than any of the individual transcriptions.
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2.4 Multilingual spoken language understanding

Language portability of Natural Language Processing (NLP) systems, and especially those
related to speech technologies, has been a very active research topic in recent years. This
interest is motivated by the convenience of exploiting data or a system in one language
to build a fully functional system in another language without having to develop it from
scratch. For example, some NLP areas for which language portability has been explored
are speech recognition (Schultz 2004; Stolcke et al. 2006; Loof, Gollan, and Ney 2009),
information retrieval (Nie 2010; Grefenstette 2012), question answering (Magnini et al. 2004;
Neumann and Sacaleanu 2005), and plagiarism detection (Potthast et al. 2011; Barrén-
Cedeno, Gupta, and Rosso 2013). Not only that, but also the very recent Zero Resource
Speech Challenge presented at the INTERSPEECH 2015 conference aimed to start building
speech processing systems from zero language-dependent resources, trying to mimic the
learning process of human infants in their first years of life (Versteegh et al. 2015). If
this technology is successfully developed, it would provide a homogeneous framework for
developing speech processing systems from a certain amount of data, regardless of any

language-dependent particularities.

The first efforts made to obtain multilingual SLU systems were performed in the 1990s. For
example, the TINA SLU system was ported to several languages by developing grammars
for each of these languages. These grammars were written by hand, which made the process

human-dependent and error prone (Glass et al. 1995; Zue et al. 1996).

In the initial years of multilingual SLU, the two main schemes that have later been used
for this task were outlined. In (Cettolo, Corazza, and De Mori 1998), the authors stated

that there are two ways to port a SLU system to another language:

e to translate the training corpus from one language to another and then train a SLU
system in this new language. Some years later this approach became known as of

train-on-target.

e to automatically translate the test utterances into the SLU system’s language and
then process them using this system. This method later became known as test-on-

source.
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In 1998, the year in which that work was published, Machine Translation (MT) did not
achieve the results that it offers today. This is why the authors thought that a human trans-
lator would be needed for train-on-target, or spoke about automatic partial translation for
test-on-source. However, nowadays MT can be a very good tool for language portability of
SLU systems, despite the unavoidable errors it makes (Suendermann et al. 2009). Actually,
in the early 2000s, the interest in multilingual SLU decayed, because the necessary MT
technology had not still been developed.

The modern implementations of these two approaches to multilingual SLU, which mainly

rely on MT technology, are explained in detail below.

2.4.1 Train-on-target

The basic idea of train-on-target for porting a SLU system from an original language to a
new one is to translate the training corpus and then train a SLU system with the translated
corpus. However, a SLU corpus not only consists of sentences, but it also consists of
semantic labels (concepts) that express the semantics of the sentence and usually segment
it in terms of these concepts. Hence, when the corpus is translated into a new language, the
concepts must also be conveniently assigned to the words that substantiate them. Table 2.2
shows an example of this problem. The column on the left shows a sentence in Spanish for
a railway information system, the column on the right shows a possible translation of this
sentence into English. It can be seen that the sequentiality of the concepts may not be the
same in both languages due to word reordering issues. Also, it is often convenient not to do
a word-by-word translation of the original sentence, but to change some verbs or structures
that sound more natural in the other language. This is shown in this example where the
Spanish word hay (there is/are) has been changed for the English verb go, which in addition
is assigned to a different concept due to the change of the structure of the sentence. These
are two of the issues that must be addressed when dealing with the train-on-target option
for multilingual SLU.

In recent years, several approaches have been developed for translating the training corpus
and its semantic labeling to another language. The main difference among them is the
amount of human effort and supervision that is needed in the process. The most unsuper-
vised approach consists of translating each of the semantic segments by means of several
general-purpose translators and using this data to train a SLU system in the new language
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| Spanish (original) | English (translated) |

Buenos dias: courtesy Good morning: courtesy

querria saber qué trenes: query | I'd like to know which trains: query
hay manana: departure date go from Valencia: departure city
de Valencia: departure city to Zaragoza: destination city

a Zaragoza: destination city tomorrow: departure date

Table 2.2: Example of the translation and re-segmentation of a training sentence.

(Garcia et al. 2012). In this case, the portability of the segmentation is straightforward
since each segment is translated separately. This strategy was used to translate the French
MEDIA corpus into Spanish. The authors show that, despite the noise and the translation
errors that these translators make, using several translators instead of just one increases

the coverage of the translations and the performance of the multilingual SLU system.

The former approach provides a translation of the corpus at a very low cost, but it does
not take into account any task-specific information. One way to take advantage of this
information is to have an MT system trained with a parallel corpus that represents a
domain that is close to the domain of the SLU system and to use this MT system to
translate sentences from one language to the other (Misu et al. 2012). However, a parallel
corpus that is related to the task is seldom available. Another option is that a small set
of sentences from the training corpus of the SLU system is translated by humans and then
use this parallel set to train a MT system (Jabaian, Besacier, and Lefévre 2010; Lefévre,
Mairesse, and Young 2010; Jabaian, Besacier, and Lefévre 2013). Several toolkits can be
used for translation, but the most widely used one is the MOSES toolkit (Koehn et al.
2007). Then the rest of the training sentences that were not translated by humans can be
translated by this system. This approach was used in (Jabaian, Besacier, and Lefévre 2010;
Jabaian, Besacier, and Lefévre 2013) to train an SLU system for Italian from a small set
of manually translated sentences from the French MEDIA corpus and it was also used in
(Lefévre, Mairesse, and Young 2010) to train an SLU system in French from an original

corpus in English.

In order to port the segmentation from one language to another, several options are avail-
able. One option is to force MOSES to maintain the segmentations of the original sentences

according to the semantic segments throughout the translation process. Another option is
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to translate the original sentences without forcing any segmentation and then build an
alignment between the original sentences and the translated sentences in order to project
the assignment of words to concepts from one sentence to the other. Either of these methods
provides a translated and segmented corpus for training a SLU system in the new language

(Jabaian, Besacier, and Lefévre 2010; Jabaian, Besacier, and Lefévre 2013).

If it is possible to have human intervention during the translation process, then more
alternatives are available. For example, in (Servan et al. 2010) a variation of the former
option in presented. This is an iterative process that starts by splitting the training set
in n blocks. The first block is translated and segmented by humans and is used to train
an MT system. Then, the second block is automatically translated by this system. The
portability of the semantic labels can be done using any of the above approaches. The
automatically obtained translations are then checked and manually corrected by humans.
These translations are added to the training set of the MT system, which is then re-
estimated using the new training data. This procedure is performed until all the data is
fully translated and checked. The authors show that a higher number of blocks (i.e., a

greater amount of human work) leads to better performance of the SLU system.

By increasing the amount of human work, another possible choice is that the corpus is to-
tally translated by humans, i.e. using a professional translation service. This method was
used to translate the Italian LUNA corpus into Spanish, Greek, and Turkish (Stepanov,
Riccardi, and Bayer 2014). In this work the authors also addressed the problem of trans-
lating the speech disfluencies from one language into another, which is a pragmatic aspect
of the spoken language that is not usually taken into account when translating. Over-
all, this approach allows to obtain a high-quality parallel corpus that is valid for training
a task-dependent machine translation system. Nevertheless, even though the authors do
not provide information about the economic cost in their work, it is very likely that the
professional translation effort involved a fairly high economic cost. Hence, the use of this
approach allows high-quality task-dependent parallel corpus to be obtained, but at a cer-
tain monetary cost. In order to semantically label the LUNA corpus in the new languages,
in (Chowdhury et al. 2014) the same authors propose a crowdsourcing strategy. In this
strategy, several labelings are obtained for each sentence, which can be further combined

to improve the overall quality of the semantic annotations (Chowdhury et al. 2015).
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The most expensive and time-consuming option is to completely port the acquisition pro-
cess of the corpus into the new language. In other words, to build a corpus in a new
language using the same tools that were used to obtain the original corpus, by using na-
tive speakers in the acquisition process. This was the process that was used to obtain the
Italian translation of the PORTMEDIA corpus (Lefévre et al. 2012), which is based on
the French MEDIA corpus. The original MEDIA corpus was acquired in French using a
Wizard of Oz technique. To collect the Italian data, the scenarios and the system prompts
were translated into Italian, so that the same procedure could be performed using native
Italian speakers. It is clear that the aim of the authors was not to create a parallel corpus
for machine translation, but to acquire brand new data using a strategy that had already
worked for another language. Nonetheless, it is worth noting that from the point of view of
building a parallel corpus for training a machine translation system this strategy does not
seem very convenient, since when obtaining the data in the new language the speakers have
the freedom to express their goal in the words they wish, without any knowledge of the orig-
inal corpus. Thus, the sentence uttered by the user does not have to be a translation of the
original sentence. However, by proceeding this way, the system can be completely ported to
another language with the same guarantees and features than the original language, which

is the actual goal of this strategy.

2.4.2 Test-on-source

The test-on-source approach to multilingual SLU consists of translating the user’s utterance
into a language for which a SLU system has already been trained, and then to perform
the semantic decoding of the translation using this SLU system. Therefore, the machine
translation process comes between the speech transcription module (ASR) and the SLU

module.

Similarly to the train-on-target case, a wide range of approaches can be found depending
on the amount of the human effort that is required in order to obtain the MT system. The
strategy that requires the least human effort is to use a pre-existing translator to bring the
user’s utterances into the system’s language. For example, in (He et al. 2013) the Microsoft
Bing translator is used for this purpose. This approach provides translations of the user’s
utterances at a very small economic and time cost. Nevertheless, even though there is a
task-dependent corpus available in the system’s language, it does not exploit any in-domain

data during the MT process.
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One way to make use of task-dependent data during the MT process while keeping the
human effort low is to employ a pre-existing MT system (e.g., a general-purpose web trans-
lator) to obtain a translation of the training corpus in the user’s language and then to train
a MT system (e.g., MOSES) from the user’s language to the system’s language using this
automatically collected parallel corpus. The quality of the translations obtained this way is
not as high as if the corpus were translated by professional human translators, particularly
because of the multiple errors that the MT systems make. These errors provide a lower
quality parallel corpus, which would lead to multiple errors when translating the user’s
utterances. Several MT systems can be used to mitigate these errors, providing two main
advantages. First, if ¢ translators are used, then the size of the resulting parallel corpus is ¢
times the size of the original one. This increase in the size of the corpus is convenient for M'T
purposes, since MT systems often need a large amount of data to be conveniently trained.
Second, since there are ¢ possible translations in the corpus for each original sentence, a
statistical machine translation system can learn which structures appear more often, even
in different contexts, and provide good translations despite the noisy training corpus. This
approach was used to translate the training part of the Spanish DIHANA corpus into French
and English (Garcia et al. 2014).

Some human intervention is needed to avoid completely relying on general-purpose MT
systems. The same approaches that were used to translate the training corpus for a train-
on-target approach can be also used for a test-on-source approach. One example is to use
a small number of translations obtained by humans to bootstrap a MT system that is used
to translate the rest of the training corpus (Jabaian, Besacier, and Lefévre 2010; Leféevre,
Mairesse, and Young 2010; Jabaian, Besacier, and Lefévre 2013). Another example is to
have the whole corpus translated by a professional translation service (Stepanov et al. 2013).
Of course, in both cases, once the parallel training corpus has been obtained, it is necessary
to train an MT system that translates the corpus from the user’s language to the system’s

language.

Regardless of whether an automatic approach or human effort is used to obtain a task-
dependent parallel corpus, this parallel corpus is usually made up of only a few thousand
sentences. However, many more sentences are often needed to be able to train a high-
performance MT system. One possible option is to combine the task-dependent dependent
corpus with an out-of-domain corpus. However, it would be desirable for this new data

to be close to the domain of the SLU system. A solution in this direction is provided in
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(Stepanov et al. 2013). It consists of using a search engine to retrieve documents that are
close to the domain of the task, and then the sentences of these documents that are the
most representative for the domain are selected. These close-to-domain sentences can then
be added to the task-dependent corpus to enrich it, without taking most of the data from

outside of the domain.

In this test-on-source setting, a problem that also appears in a monolingual system that
combines an ASR and a SLU module in-cascade is accentuated. This problem is the mis-
match between the errors that can appear at the input of the SLU system (regardless of
whether it comes from an ASR or an MT system) and the data that was used to train
the SLU system, which is usually orthographically and syntactically correct. This means
that recognition and translation errors can dramatically spoil the performance of the SLU

system when the input is noisy with respect to the training data.

Two main solutions have been presented for this problem. One solution consists of an
automatic post-editing of the output of the MT system to correct the errors that may exist
(Jabaian, Besacier, and Lefévre 2011; Jabaian, Besacier, and Lefévre 2013; Stepanov et al.
2013). The other solution is to re-train the SLU system using the original training corpus
plus some sentences in which translation errors have been added (Jabaian, Besacier, and
Lefevre 2011; Jabaian, Besacier, and Lefévre 2013; He et al. 2013). The goal is for these
translation errors to match the translation errors that the test sentences have and then to
provide a good semantic decoding even for these noisy inputs. One simple way to obtain
sentences with translation errors is to translate the training sentences into another language
and then translate them back into the original language. Then, the semantic labeling of
these new sentences can be performed using any of the techniques that are used for labeling

a corpus in the train-on-target approach.

Another option that has been explored in the last few years is to integrate the MT and
SLU processes more closely (Jabaian, Lefévre, and Besacier 2014), instead of having them
as two modules in a pipeline that are connected by the transmission of a single sentence.
This is also one of the goals of the SLU method that has been developed for this thesis.

Finally, it is important to highlight that some works that have performed a comparison
between train-on-target and test-on-source methods suggest that, in practice, the test-
on-source approach achieves better results (Jabaian, Besacier, and Lefévre 2010; Lefévre,

Mairesse, and Young 2010; Jabaian, Besacier, and Lefévre 2013).
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Description of the corpora

In this chapter a description of the corpora that has been used for the empirical assesment
of the experiments reported in this thesis is provided. First, details on the acquisition and
semantic labelling of the Spanish DIHANA corpus are presented. This corpus has been
used for most of the monolingual SLU experiments. Then, the extension of this corpus to a
multilingual environment is explained. This extension constitutes the multilingual DIHANA
corpus, and all the multilingual SLU experiments in this thesis have been performed using
this corpus. The multilingual DIHANA corpus was developed and acquired in the context
of this thesis (Garcia et al. 2014). Finally, some details on the French MEDIA corpus are
provided. The MEDIA corpus was only used for one monolingual experiment, in order to
compare the SLU approach developed in this thesis with other state-of-the-art SLU methods

using a widely spread corpus.

3.1 The Spanish DIHANA corpus

One of the goals of the Spanish DIHANA project was to research new methodologies for
the development of spoken dialogue systems. The chosen task to carry out this study was
an information system for nationwide Spanish trains. This information system should be
able to handle spoken dialogues in order to provide information about train schedules and
prices by means of natural language. Also, this information system may be accessed by a

telephone call.
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For the purposes of this research project, the DIHANA corpus (Benedi et al. 2006) was
collected. During the acquisition of the corpus, it was important that it could accurately
model the task from all the lexical, syntactic, and semantic points of view. In other words,
it should reflect the way in which a naive user would interact with the SDS. Hence, these

two points should stand:

e From the lexical and syntactic points of view, no restriction is applied. The user is
expected to interact with the system using spontaneous speech, and so, grammatical

errors, on-line corrections of the sentence, pauses, doubts, etc. may appear.

e From the semantic point of view, it has a clearly restricted domain, which is the topic
of the SDS.

In order to adequately collect this corpus, a Wizard of Oz methodology was used (Fraser
and Gilbert 1991; Griol 2007). In this methodology, a person simulates the behaviour
of the Dialogue Manager, and receives all the information that is being processed (even
the untranscribed acoustic signal). During the acquisition, the Wizard must follow a pre-
stablished strategy, and the user must not know that a person is taking the place of the

automatic Dialogue Manager.

With the aim of fulfilling the semantic restrictions, several scenarios were defined. This way,
the users should try to achieve the goal specified in their scenario by holding a dialogue
with the SDS (secretly managed by the Wizard), and providing it the needed information to
achieve the goal. Each scenario was described by a goal, it is, the information that the user
must obtain from the system; a motivational situation (for example, the user has a meeting
in some city and wants to arrive there before the beginning of the meeting); and some
restrictions and preferences (e.g. desire of a non-smokers carriage, arrival time restrictions,
and similar). A total of 300 scenarios were defined. The three types of scenarios that were

defined are:

A) The goal is to obtain the schedules of one-way train trips. For this purpose, the
destination and the date of the trip must be specified. The origin, a time interval for
the trip and the type of train are optional. Eventually, the user can also ask for the

type of the train.
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B) The goal is to obtain the price and, optionally, the schedules for one-way train trips.
The destination and the date of the trip are mandatory, while the origin, a time

interval for the trip and the type of train are optional.

C) These scenarios are analogous to type B) but for round trips.

These scenarios were presented to a total of 225 naive users, and their interactions with
the system (user turns) were used to build the corpus. This acquisition was performed
in three different cities — Bilbao, Valencia, and Zaragoza — and the resulting dataset was
composed of 900 dialogues uttered by 153 males and 72 females. The recordings have a
total length of 10.8 hours of speech, and the total number of user turns amounts to 6,278.
All the acquisition was performed using telephone communication between the user and the

Wizard. Thus, the different recordings have the acoustic conditions of this channel.

The recordings of the user turns were carefully transcribed into text, reproducing as well
spontaneous speech phenomena such as disfluencies. These transcriptions were semantically
labelled using a set of 30 concepts. These concepts can be divided into two categories:
task-dependent concepts, such as origin_city and departure time; and task-independent
concepts, like query, negation and null. Furthermore, the set of task-dependent concepts
are divided in two subsets: the concepts that express that a value has been specified by the
user, for example, in the sentence I want to leave at two o’clock the concept departure time
can be identified; and those that ask the system for a value for that concept, for example,
in the sentence What time does the earliest train depart at? it is clear that the object
of the query is a departure time. In this case, the concept is enclosed by angle brackets
(e.g. <departure_time>). The semantic labeling of a sentence using a sequence of concepts
constitutes a segmentation of the sentence in terms of the sequence of concepts. Table 3.1

shows some figures about the semantically labelled corpus.

Using this semantic segmentation, a frame representation is also defined for each sentence
of the corpus. This frame representation aims at summarizing all the relevant information
contained in the sentence by means of the use of pairs of attributes and values. Further-
more, if the user is asking for the value of any of the attributes, it is represented between
round brackets. In order to standarize the content of a frame, a canonical representation is
obtained by sorting its attributes following a pre-stablished order, and the numerical values

that appear in the sentence are instantiated. However, sometimes a point of reference is
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Number of user turns 6,229
Total number of words 47,222
Vocabulary size 811
Number of concepts 30
Average number of words per user turn 7.6
Total number of semantic segments 18,588
Average number of words per semantic segment 2.5
Average number of segments per user turn 3.0
Average number of samples per concept 599.6

Table 3.1: Characteristics of the semantically labelled Spanish DIHANA corpus.

needed in order to convert a value from a lexicalized form to a numerical representation. For
example, the specific date corresponding to the word tomorrow will depend of the current
date. For this purpose, some reference values are also defined. Table 3.2 shows an example

of both the semantic segmentation of a sentence and its frame representation.

Sentence Quiero obtener el horario para el viaje de ida de Vitoria a
Madrid el catorce de mayo para llegar antes de mediodia

(I want to know the schedule for a one-way trip from Vitoria
to Madrid on May 14th arriving before noon)

Semantic segmentation | quiero obtener: query

el horario: <time>

para el viage de ida: type of trip
de Vitoria: origin _city

a Madrid: destination city

el catorce de mayo: date

para llegar: arrival

antes del mediodia: time

Frame representation TYPE-OF-TRIP = one-way
(TIME)

ORIGIN-CITY = Vitoria
DESTINATION-CITY = Madrid
ARRIVAL-TIME <= 12:00
DATE = 14/05/2015

Table 3.2: Example of the different types of semantic labellings that are contained in the DIHANA
corpus.
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3.2 The multilingual DIHANA corpus

The multilingual DIHANA corpus (Garcia et al. 2014) was acquired with the goal of en-
abling the research on multilingual spoken language understanding grounded on the Spanish
DIHANA corpus. As it was already discussed in Section 2.4, the creation of a multilingual
SLU corpus is a great effort in which several important aspects must be taken into account,
such as the amount of human effort that is going to be used, its economic cost, and the
desired quality of the corpus, both in terms of the quality of the sentences that constitute
the corpus and the closeness to the task domain of these sentences (i.e. they can range from
completely out-of-domain sentences to translations of the original sentences of the corpus).
Actually, these points are correlated, since a higher human intervention usually leads to a
better quality of the corpus, but at a greater economic cost. However, an important factor
for current language portability of Natural Language Processing systems is that it can be
effectively achieved using a rapid and low-cost approach. This philosophy was adopted for
the construction of the multilingual DIHANA corpus.

As it has already been discussed, the use of current machine translation technology can be
very helpful to obtain multilingual SLU corpora. Nevertheless, the problems that arise when
working with a test-on-source strategy or with a train-on-target approach are not the same.
The selection of a train-on-target methodology implies that, for most SLU methods, the
semantic segmentation of the original sentences must be ported to the new language in order
to train a new SLU system. On the contrary, for test-on-source, any translation system can
be used in order to translate the user’s utterance into the system’s language. One option
is to build a task-dependent translator using sentences from the original corpus, but their
translation must be previously obtained in order to build a parallel corpus. The multilingual
DIHANA corpus fulfills this requirement, since it is a semi-automatically collected corpus
that enables the development of a task-dependent translator for test-on-source multilingual
SLU.

In order to build this corpus, the Spanish DIHANA corpus was first split in two sets: 4, 887
sentences for the training set, and 1340 for the development and test set. This distinction
is important because each of these two sets is processed independently and in a different

manner.
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Spanish  Quisiera horarios para el proximo sdbado a Barcelona por la maniana
Serait planifier pour le samedi matin & Barcelona
J’aimerais planifier pour samedi prochain a Barcelona le matin

French 1l vouldit horaires pour le prochain samedi & Barcelona par le matin
1l voudrait des horaires pour samedi prochain a Barcelona le matin
I would like schedule for Saturday morning to Barcelona
. I would like to schedule for next Saturday to Barcelona in the morning
English

It wanted schedules for next Saturday to Barcelona in the morning
Would want schedules for next Saturday to Barcelona in the morning

Table 3.3: Example of the translations that were collected in English and French for a single
training sentence in Spanish using the four selected general-purpose web translators.

The translation of the training set was performed using several general-purpose web trans-
lators, namely Bing Translator!, Google Translator?, Lucy®, and Opentrad®. This way,
four translations are obtained for each training sentence. The advantages of using several
translators are twofold. One one side, the coverage on the vocabulary in the user’s language
is increased. On the other, errors of single translators on keywords that are strongly related
to the meaning of the whole sentence are mitigated. This is important because if these
errors were transmited to the final translation, the performance of the SLU system would

be severely damaged.

Table 3.3 shows an example extracted from the corpus of the different translations that the
four general-purpose web translators provided in English and French for a original training
sentence in Spanish. This example shows that each individual translation may have many
errors corresponding to words and structures that a native speaker would not say, or that
are simply translation errors. However, the combination of all the four sentences in a
translation model could help to obtain translations of a reasonable quality, despite the
errors they have, since their structures are mixed and generalized. Unfortunately, the
existence of these translation errors makes this tool not effective enough in order to model

a native user that speaks to the SLU system in a real multilingual environment.

l4ww.bing.com/translator

2translate.google.com
3www.lucysoftware.com
4www.opentrad.com
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The goal that is pursued in the translation of the development and test set is that it can
adequately model a situation in which a person that speaks English or French natively inter-
acts in a natural way with the system in which the multilingual SLU module is integrated.
Thus, in order to reflect this situation, this set of sentences was manually translated into
English and French by native speakers. A subset of these sentences was also uttered by
native speakers. The development and test set in French is composed of 1,277 sentences,
500 of which were uttered by 4 native speakers. In the English case, this set is composed
of 1,336 sentences, and all of them were uttered by a total of 6 native speakers. The hu-
man translators had in some cases information of the context of the dialogue in which the
sentences appeared. This way, they could incorporate some contextual information in the
translations if they thought that it was more natural for a native speaker of that language
to say it in that way. This is shown in the French translation shown in Table 3.4, where
the phrase il arrive trop tard explicitly refers to the arrival time of a train (the pronoun il
refers to the word train), while in the other languages the user just says “that’s too late”

without an explicit mention to the fact that it is an arrival time of a train.

Spanish  Es demasiado tarde, querria uno que llegara un poco mds pronto
French Il arrive trop tard, je voudrais en prendre un qui arrive un peu plus tot
English  That’s too late, I wanted one that arrives a bit earlier

Table 3.4: Example of human translations of a test sentence into English and French.

3.3 The French MEDIA corpus

The French MEDIA /EVALDA project (Devillers et al. 2004) had as one of its goals the
development of an evaluation protocol which allowed to assess the performance of SLU in
the context of SDSs (Bonneau-Maynard et al. 2006). For this purpose, the French MEDIA
corpus (Bonneau-Maynard et al. 2005) was created. The selected task for the corpus was a
tourist information system that allowed the user to book hotel rooms by keeping a spoken

dialogue by telephone with the system.

For the acquisition of this corpus, a Wizard of Oz system was used in order to simulate the
dialogue manager. In order to acquire a varied but in-domain dataset, several scenarios were
generated from a set of templates, obtaining a range of eight levels of difficulty. Furthermore,

the Wizard could be less or more cooperative with the user at his discretion. At the end
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of the acquisition, 1,257 dialogues were collected using 250 speakers, amounting to a total

length of around 70 hours of speech.

The text transcriptions of the recordings were semantically annotated using a hyerarchical
semantic representation which is based on (Bonneau-Maynard and Rosset 2003) and con-
stitutes an ontology for the domain of the task. For the purpose of the experimentation in
this thesis, 73 concepts from this ontology were used, plus a null concept that was added
in order to identify all the unlabelled sequences of words. Table 3.5 shows more features
of the semantically annotated corpus. In addition, Table 3.6 shows an example of semantic

labelling of a sentence.

Number of user turns 16,279
Total number of words 114,969
Vocabulary size 2,357
Number of concepts 74
Average number of words per user turn 7.1
Total number of semantic segments 53,942
Average number of words per semantic segment 2.1
Average number of segments per user turn 3.3
Average number of samples per concept 709.8

Table 3.5: Characteristics of the semantically labelled French MEDIA corpus.

Sentence je souhaiterais réserver pour la deuriéme semaine
de janvier a Paris a coté de I’Arc de Triomphe
(I would like to book for the second week of
January next to the Arc de Triomphe)
Semantic segmentation | je souhaiterais réserver: command-tache

pour la deuxiéme: rang-temps

semaine: temps-unite

de janvier: temps-mois

a Paris: localisation-ville

a coté de: localisation-distanceRelative

I’Arc de Triomphe: localisation-lieuRelatif

Table 3.6: Example of the semantic labelling of a sentence of the MEDIA corpus.
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Chapter 4

A graph-based approach to spoken

language understanding

In this chapter, a graph representation of the SLU problem and a graph-based approach
to SLU are presented. Previous works that show development of this strategy are (Calvo
et al. 2012a; Calvo et al. 2012¢; Calvo et al. 2013a; Garcia et al. 2015b; Calvo et al. 2015).

This chapter begins with an explanation of the statistical ground of this graph-based SLU
method, which is derived from the generative approach to the SLU problem. A strong point
of this method is that it can naturally handle a graph representation of the combination
of multiple recognition hypotheses generated by one or more ASRs. The SLU process is
divided into several modules. These modules are introduced and analyzed along the chapter,
and at the same time the graph representation of the SLU problem is described. Finally,

some experimental results will be presented and discussed.
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4.1 System overview

One of the approaches to SLU consists on finding the sequence of concepts C that best fits
the semantics contained in an utterance A. Considering a stochastic SLU system, it can be

stated as:

C = argmax p(C|A) (4.1)
C

where C' stands for any sequence of concepts made of elements of the set of concepts €

defined for the task.

If we also take into account the sequence of words W - unknown beforehand - which underlies

A, Equation 4.1 can be re-written as follows:

C = argmax max p(W, C|A) (4.2)
C w

Or, equivalently, applying the Bayes’ Rule:

p(AW,C) - p(W,C)
p(A)

(4.3)

C = argmax max
C w

Finally, it can be assumed that the utterance A and the sequence of concepts C' are in-
dependent variables. Also, the denominator can be removed, since it is not part of the

maximization. Hence, it can be equivalently expressed as:

A~

C' = argmax mvz[}xp(A]W) -p(W|C) - p(C) (4.4)
c

Many SLU systems approximate this equation by decoupling the ASR and SLU processes.
This way, they take as the input to the SLU module the best transcription generated by the
ASR, and they take it for granted all along the semantic decoding process, which converts

Equation 4.4 into:

C = argmax p(W|C) - p(C) = argmax p(W, C) (4.5)
C C
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where W stands here for the sequence of words provided by the ASR.

However, feeding the SLU module with just the 1-best hypothesis from the ASR implies
two substantial limitations. First, it is extremely hard for the forthcoming modules (if not
impossible) to correct the errors made in the recognition stage. Second, there is many
information generated by the ASR, such as n-best lists, lattices, acoustic posteriors, etc.
that is no longer considered. Despite most of the state-of-the-art approaches to SLU are
designed to take a single sentence as their input (which can be seen in the formulae that
support each of the approaches), there has been a wide interest in the last years in trying
to overcome these limitations derived from using just one hypothesis. Some works like
(Hakkani-Tiir et al. 2006; Henderson et al. 2012; Tur, Deoras, and Hakkani-Tur 2013; Svec,
Ircing, and Smidl 2013) aimed at exploiting the information contained in the ASR lattices.
Another option is to convert the ASR n-best list into a single sentence, by merging all the
hypotheses into one by means of a voting algorithm (Fiscus 1997). Then, this sentence can

be processed by any of the available SLU methods.

The idea underlying the approach developed here is to overcome the two limitations stated
above by taking multiple transcriptions provided by one or more ASRs, and keeping as
much information as possible in each of the steps of the process. This will be achieved
by building graphs, which, in each case, will represent different linguistic information. An
advantage of using graphs is that they provide an efficient and compact way to convey mul-
tiple hypotheses among the different modules without any loss of information. Even more,
extra information may be inferred when building the graphs, if a grammatical inference
algorithm is used for this purpose. However, the most widely used state-of-the-art SLU
methods do not accept graphs as their input in a native way. Hence, a very important
feature of this SLU system is that it is completely based on algorithms on graphs. Figure
4.1 shows a scheme of the decoupled modular architecture which implements this approach,

which is based on Equation 4.4.

The most important modules will be explained in detail in the following sections, but in

order to give the reader a general overview, we will provide now a brief description of them.

1. A first module dedicated to Automatic Speech Recognition, which will be used as a
black box. As we would like to take advantage from multiple hypotheses generated
by this module, its output will be a set of sentences provided either by a single ASR
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Chapter 4. A graph-based approach to spoken language understanding

W; ...W;:Concept,
Wi.1- - -WyiConcept,

Graph of Words Wp.q- - -WpiConcept,
SLU
FRAME_NAME
SLU  “sLu Frame slot;ivalus,
sloty:value,
Stage 1J Stage 2 J Converter

Graph of Concepts slotn:value,
B %
P e

Figure 4.1: Scheme of the architecture of the complete SLU system.

(n-best list) or by several ASRs working in parallel (set of 1-best or n-best decodings).
It is also possible that the output of the ASR module is a word lattice. In this case,

as a lattice is a graph of words itself, the next step can be skipped.

2. The graph of words builder module takes a set of sentences provided by the ASR
module and outputs a graph. This graph represents a set of sentences that not only
contains the input ones, but also a generalization of them according to their structures
(roughly, the new sentences in the set are made of pieces of the original sentences).
This way, the coverage increases, as the SLU module is provided with new inputs that
were not in the original set. Also, a graph is a more concise and efficient representation
than an enumeration of hypotheses. This graph also provides a re-estimation of the
probability distribution p(A|W), but restricted to the sequences of words that are
represented in the graph. It is also worth noting that a word lattice generated by an
ASR is a graph of words itself. Hence, another option is to take a word lattice from
the ASR module and skip this step. In both cases, in this system the words will be
represented on the arcs of the graph, along with a score showing the contribution of
that arc to p(A|W).

3. Then, the semantic decoding is carried out by means of a SLU module that is able to
deal with graphs of words. For this purpose, a semantic decoding methodology that
computes the remaining terms of Equation 4.4 in two steps has been developed. This
methodology is entirely based on algorithms on graph structures. In particular, all
of them are Dynamic Programming algorithms, as this strategy allows to efficiently

optimize a function in a large search space. The first stage takes as input a graph
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4.2 The graph of words builder

of words and a set of graph structures which model the lexical realizations of each
concept. It makes a joint analysis of them and builds a graph of concepts. A graph
of concepts represents matchings between sequences of words and concepts, and this
information is represented on its arcs. Then, the graph of concepts is analyzed in a
second stage, which also takes a graph representation of the possible concatenations
of concepts in the scope of the task. The output of this module is the best sequence of
concepts, as well as the underlying sequence of words and its segmentation in terms
of the concepts. Thus, this module not only provides a semantic representation of the
user’s utterance, but also a transcription of what the user said, taking into account

lexical, syntactic and semantic knowledge.

4. Finally, the semantically relevant information is extracted, normalized, and converted
into a frame representation. This is performed by a combination of both rules and

stochastic models.

4.2 The graph of words builder

One of the key ideas of the SLU system presented here is that the different modules of the
system share as much information as possible, in order to avoid critical errors made by one
of the modules that can not be amended afterwards. For example, it is very important not
to make recognition mistakes which could spoil the semantic decoding process. However,
it is also convenient that the SLU system is not ASR-dependent, that is, that one can use
any ASR as the front-end for the SLU system. Then, the ASR engines should be treated as
“black boxes”. In consequence, there are two different options in order to keep an opportune

amount of information for the following modules:

e The ASR supplies a word lattice generated by the search algorithm. This lattice is
usually weighted using the probabilities p(Aif |w) for each word w that appears in the
lattice, where t1,%9 are the start and end times estimated for that appearance of w,
and AE is the fragment of audio that spans from t; to . Hence, for each sequence of
words W that can be built from a path on the lattice, the combination of the different
weights associated to the words of W provides the probability p(A|W).

e The output of the ASR module is a set of sentences, which may be a n-best list from

one or more ASRs.
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Chapter 4. A graph-based approach to spoken language understanding

Inspired by the idea that underlies word lattices, if the output of the ASR module is a
set of sentences, it can also be converted into a graph representation. One possible way
to do this is to build an automaton that accepts the language constituted by that set of
sentences, which can be efficiently performed using, for example, the algorithm presented
in (Daciuk et al. 2000). However, it may also be convenient to have a closer look to the
set, of sentences, and analyze them in order to extract new information according to their

structure. This can be performed via a grammatical inference algorithm.

4.2.1 Grammatical inference

According to (Fu and Booth 1975), grammatical inference, is the “problem of learning a
grammar based on a set of sample sentences”. In other words, the aim of grammatical
inference is to identify the language L(G) from which a set S C L(G) of sentences (or
strings) were drawn, by building a grammar G that generates L(G). However, this can
only be achieved when all the information about L(G) is known, which implies that S =
L(G). As it is generally not the case, the learning process will find a grammar G’ such
that S C L(G’). This learning is usually performed by considering and generalizing the
structural features that appear in the samples and using them to build G’. Given a set
S, the obtained grammar G’ will depend on the construction algorithm that is used for

building the grammar.

However, it would be useful for many practical problems that the inferred grammar also
provides the probability of generating each of the strings of the language it represents. These
grammars that provide probabilities along with the structure associated to the language are
called Stochastic Grammars. In the case of automata, they are called Stochastic Finite State
Automata (SFSA). If they are consistent, both of them represent a probability distribution
over the strings of the language, since for every inferred grammar G’ Equation 4.6 must

stand.

S pla) =1 (4.6)

Let D(x) be the set of leftmost derivations of z using G’. If the grammar is unambiguous,

or the automaton is deterministic, the cardinality of D(z) is always 1, since there is a
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4.2 The graph of words builder

unique way of deriving each string that belongs to the language. Let d be the derivation
that provides z, and let R(d) be the set of rules used in d. Then, the probability of = to be
generated by G’, p(z), is defined as:

px)= ] »() (4.7)
)

reR(d

Furthermore, stochastic grammars and automata can also be obtained via grammatical
inference. The techniques to estimate the probabilities attached to an inferred stochastic
grammar or automaton are based on the frequency counts of the structual features of the

elements in S.

Provided the usefulness of inferring grammars or automata from samples in the fields of
syntatic and structural pattern recognition and computational linguistics (among others),
many algorithms have been proposed in order to address this subject, depending also on
the features of the samples and on the specific task in which it is going to be used. For
example, (De La Higuera 2005; D’Ulizia, Ferri, and Grifoni 2011; Stevenson and Cordy
2014) present a nice review of grammatical inference algorithms and techniques, and also
discuss their practical applications. In this thesis, grammatical inference will be used for
several purposes. In the following lines, one of them will be described: the generalization of
multiple outputs provided by the ASR module in order to be analyzed by the SLU system

developed in this work.

4.2.2 Building a graph of words from several ASR hypotheses

A graph of words GW is a graph structure in which lexical and syntactic information are
represented. One of the possible ways to represent the lexical information is to attach words
to the arcs of the graph, as well as weights which represent the relevance of each word. The
structural information that is provided by the arcs represent syntactic information on how
the words can follow each other, i.e., a path in the graph represents a possible concatenation
of words. If the graph has an initial node I and a final node F', all the paths that start
from I and reach F' shape the set of sentences L that are represented in the graph. The
combination of the weights of the arcs used while building a sentence give a score that

represents the relevance of that sentence in L. This definition of a graph of words makes it
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Chapter 4. A graph-based approach to spoken language understanding

equivalent to a weighted finite state automaton, where the language it represents is L(GW).
Moreover, if the weights of the graph represent probabilities, their combination is performed
by means of a multiplication, and the sum of the weights for all the sentences in L(GW) is
1 (i.e. it represents a probability distribution, see Equation 4.6), then a graph of words is
equivalent to a SFSA. In this work, a graph of words is built from multiple ASR outputs
in such a way that it has SFSA properties. This is performed by means of a grammatical

inference algorithm.

The algorithm that is used in this thesis for building a graph of words from multiple ASR
hypotheses is based on the idea of searching for the segments of words that represent an
agreement among all the ASR hypotheses, and produce an alignment matrix according to
these agreements. Then, the graph of words is constructed from the information contained
in this matrix. This idea was first presented in (Bangalore, Bordel, and Riccardi 2001),
where the authors applied it for finding a consensus between several translations provided

by a machine translation system.

In order to analyze the set of transcriptions of the utterance, to look for their similarities,
and to build a matrix with this information, a Multiple Sequence Alignment (MSA) algo-
rithm is used. The Multiple Sequence Alignment problem is a generalization to K sentences
(K > 2) of the well-known pairwise Edit Distance problem, which is particularly useful for
the alignment of sequences that represent biological information. Similarly to the Edit
Distance problem, the MSA problem can be solved exactly via Dynamic Programming.
However, it has a computational complexity of O(N¥ - 25) where N represents the length
of the sentences to be aligned, and K is the number of sentences. Actually, it was proved in
(Wang and Jiang 1994) that this problem is NP-Hard. Due to this high complexity, several
heuristics have been proposed. One of them is implemented by the ClustalW (Larkin et al.
2007) Multiple Sequence Alignment software.

This software was initially conceived for aligning biosequences. Hence, it was necessary
to convert the sequences of words into symbols that represent elements in a biological
sequence. In addition to these symbols, a special symbol is also used for Multiple Sequence
Alignment. This symbol is usually represented as ’-’ and denotes a gap in the alignment. In
other words, it represents an insertion of an “empty symbol”, meaning that no word in this

sentence was aligned with any word of any other sentence for this position (non-alignment
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4.2 The graph of words builder

point). Regarding weights, all substitutions of different symbols and gap insertions have

the same cost.

The result of the Multiple Sequence Alignment process is an alignment matrix. Each row
in this matrix represents a different sentence, and each column represents the alignment of
each symbol. The total number of columns is usually greater than the length of the longest
sequence due to the existence of gaps. Figure 4.2 shows an example of an alignment matrix
built from several ASR outputs.

me puede decir horarios de trenes Alicante

Multiple ASR Outputs: puede decir horas de trenes Alicante
me puede decir hola trenes a Alicante

me puede decir horarios de trenes — Alicante
MSA Matrix: —  puede decir horas de tremes — Alicante
me puede decir hola — trenes a Alicante

Figure 4.2: Alignment of several ASR outputs.

Once the MSA alignment matrix is built, the information contained in it is used to construct
a weighted directed acyclic graph of words. In a graph of words the nodes denote temporal
information, in the sense that they inform about which words can follow other words; and
the arcs provide information about the words themselves and their weights. Let us define a
graph of words GW = (Vgw, Agw) as a tuple, where Vg is the set of vertices or nodes of
the graph and Aqw is the set of directed arcs in the graph. Each arc can be represented as
the 4-tuple (src, dest, word, weight), where each element represents respectively the source
node of the arc, the destination node of the arc, the word attached to the arc, and its
weight. For notation purposes, if a € Ay, then src(a), dest(a), word(a) and wgt(a) will

provide access to the corresponding attributes of the arc.

The graph construction algorithm starts creating as many nodes as columns in the alignment
matrix, plus one for the starting node. Both the nodes and the columns are numbered
correlatively: the nodes are numbered starting in 0, where node 0 is the initial node, and
the columns are numbered starting in 1. This way, a correspondence between the nodes
of the graph and the columns of the matrix is established, except for the initial node of
the graph. Then, for each cell (k,7) in the matrix that contains an aligned word w, the
information it contains is translated into the graph representation. Let ¢ be the previous

cell of the same row not containing a gap (*-’), or 0 if this cell does not exist. If there was
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Chapter 4. A graph-based approach to spoken language understanding

not already an arc from ¢ to j labelled with w in the graph of words, then it is built, and
a counter initialized to 1 is attached to it. However, if it was already created, its counter
is incremented by 1. The node that represents the last column of the matrix (i.e. the one
with the highest index) is the final node of the graph.

When all the cells representing an aligned word have been processed, all the counters of
the arcs are normalized in a range between 0 and 1. These weights are computed in the
following way. For each node i in the graph of words, let Agw (i) be the set of arcs that
depart from i, and let S(7) be the sum of the counters of the elements in Agw (i). Then,
the final weight for each arc in Agw (i) is computed by dividing its counter by S(7). This

procedure guarantees that > wgt(a) = 1. This fact makes the weights represent

a€Agw (i)
probabilities, which are estimated according to a Maximum Likelihood criterion. The whole
method to build a graph of words from a MSA matrix is shown in Algorithm 1. Figure
4.3 shows an example of the full process that creates a graph of words from multiple ASR

outputs.

Both the time and space complexity of Algorithm 1 are O(K - N), where K and N are
the dimensions of the MSA matrix (number of sentences provided by the ASR module and

number of columns of the matrix, respectively).

Every path from the initial node to the final node in a graph of words which is built using
Algorithm 1 represents a recognition alternative for the input utterance. The probability
of a sentence contained in a graph is the product of the probabilities attached to the arcs
in the path for that sentence. This way of defining the probability of a sentence, and the
fact that for each node the sum of the probabilities of the arcs that depart from it is 1,
imply that the graph of words yields a probability distribution on the different sentences
that are contained in the graph. In other words, if L(GW) represents the set of sentences

represented in a graph of words GW, then it stands that erL(GW)p(m) =1.

Another property of the graphs built using Algorithm 1 is that taking their nodes in as-
cending index order represents a topological sorting of these nodes. It stands because all
the arcs in the graph span from a node of lower index (which represents an earlier column

of the MSA matrix) to a node of higher index (which represents a later column).
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Algorithm 1 Method for building a graph of words from a MSA matrix.

Input: M = MSA matrix [1..K][1..N]
Output: Graph of words GW = (Vow, Aaw)

1: Vew = sequence of N + 1 nodes (labelled from 0 to N)
2: Agw = 0

3: degrees[0..N — 1] = {0,0,...,0} // Output degree for each node
4: for k =1 to K do

5. 1=0 // Last processed word

6: for j=1to N do

7: if M[k|[j] has a word w then

8: a = arc from ¢ to j labelled with w

9: if a € Agw then

10: counter(a) = counter(a) + 1

11: else

12: add a to Agw

13: counter(a) = 1

14: end if

15: degrees|i] = degrees[i] + 1

16: 1=7

17: end if

18:  end for

19:  // We must ensure that do not have several final states.
20:  // If so, we add a A-transition with the probability of that state of being final.
21:  if i # N then
22: a = arc from 7 to j labelled with A
23: if a € Agw then
24: counter(a) = counter(a) + 1
25: else
26: add a to Agw
27: counter(a) = 1
28: end if
29: degrees[i]| = degrees]i] + 1
30:  end if
31: end for
32: // Convert counters into probabilities
33: fori=0to N —1do
34:  for all arc a € Agw departing from node ¢ do
35: wegt(a) = counter(a) / degreesli]
36: end for
37: end for

38:

return GW = (Vgow, Aew)
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Moreover, this method for building a graph of words from multiple ASR hypotheses can
be seen as grammatical inference process. Let GW be a graph of words that was built
using Algorithm 1, and let L(GW) be the set of sentences represented in GW. If there is
some disagreement among the different ASR outputs that are used to build the graph (i.e.
they are not all the same), then L will not only contain these sentences, but it will also
contain new sentences formed by pieces of them. Also, these new sentences present similar
structural features to the original sentences. This happens because the MSA algorithm
searches for segments that are common to all the original transcriptions, and aligns them
by placing the common segments in the same columns, and locating the rest of the words in
the other cells of the alignment matrix, making use of gaps if necessary. Then, Algorithm
1 combines the multiple transcriptions by keeping the certainty in the zones where there is
an agreement among them, but providing several options where there are disagreements.
Please note that if the output of the ASR module is a single sentence or all the ASR
outputs are equal, then the graph built this way would only contain one path and all the

probabilities in the arcs would be 1.0.

Figure 4.3 shows an example of the whole process for building a graph of words from multiple
ASR hypotheses. As shown, this graph represents not only the input sentences, but also a
set of sentences with similar structual features. For example, the correct sentence me puede
decir horarios de trenes a Alicante (could you tell me train timetables to Alicante) was not
among the transcriptions provided, but it can be built using the information that is in the
graph (red path on the graph). It can be also seen that this is not the path of maximum
probability on the graph, since if the blue arc labelled with the word “Alicante” was taken to
go from node 6 to node 8, the probability of this path would be higher than the probability
of the path that contains the sequence of words that constitutes the best recognition for the
utterance. However, this information will be combined in the next module with semantic

knowledge, in order to find the best semantic interpretation of the content of the graph.

As an additional element, A-transitions are added between every pair of adjacent nodes,
with a probability very close to zero. These transitions will allow to skip unknown words

when they are analyzed by the semantic decoding algorithm.

Bringing all together, this way of building a graph of words from multiple ASR outputs
provides a re-estimation of the probability distribution p(A|W) by restricting the set of

possible sentences to a generalization of the individual transcriptions provided by the ASR
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Correct utterance: me puede decir horarios de trenes a Alicante
(could you tell me train timetables to Alicante)

me puede decir horarios de trenes Alicante
Multiple ASR Outputs: puede decir horas de trenes Alicante
me puede decir hola trenes a Alicante

1 2 3 4 5 6 7 8
MSA Matrix: ¢ puede dec%r horarios de trenes — Al%cante
—  puede decir horas de tremes — Alicante
me puede decir hola — trenes a Alicante
Graph of words:
horarios Alicante
me (1/3) de tr((ei‘n)es 173 a (1)
(2/3)

trenes
(1/3)

(1/3)_~
e

Figure 4.3: Method to build a graph of words from multiple ASR outputs.

module, and weights them according to a Maximum Likelihood criterion. This re-estimation
of p(A|W) is represented in an efficient way by means of a graph of words which is equivalent
to a SFSA. Moreover, regarding the structure of the graphs of words that are built using this
method, they can be considered word lattices. This implies that the same mechanisms that
have been developed for analyzing these graphs also work if their input are word lattices
supplied by an ASR.

4.3 The semantic decoding algorithm

The approach to SLU that is described in this thesis is based on finding the sequence of
concepts C that maximizes Equation 4.4, which is reproduced here for clarity. In this
equation, W stands for any sequence of words (perhaps within a restricted vocabulary) and

C stands for any sequence of concepts built from the set of concepts of the task.

A~

C = argmax mwa}xp(A]W) -p(W|C) - p(C)
C
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In this system, the probabilities p(A|W) can be provided either in the form of a word
lattice generated by the ASR search algorithm, or as a graph of words built from several
ASR outputs. Since both of them are graph structures, it is necessary to build a semantic
decoding algorithm that is able to deal with graphs of words'. In this case, a generative

approach is used.

The graph-based semantic decoding algorithm works in two stages. First, it builds a graph
of concepts from a graph of words. The method for building the graph of concepts is based
on seeking those paths in the graph of words which underlying segment of words represent
any of the concepts of the task. The arcs of the graph of concepts are built according to
the segments found and the concepts they represent. In order to find the segments of words
that represent concepts, statistical semantic models that provide the probabilities p(W|c)
of the different lexical realizations W that can express each of the concepts of the task ¢
are trained. These semantic models are learnt from semantically segmented and labelled
data.

The second stage finds the best path in the graph of concepts. For this purpose a statistical
semantic model is used to represent the probability p(C') of each possible sequence C' of
concepts of the task. This model is also learnt from a semantically segmented and labelled

training corpus.

4.3.1 Stage 1: Building a graph of concepts

The first stage of the semantic decoding process builds a graph of concepts from a graph
of words. In a graph of concepts, its arcs represent the different segments of words that
correspond to paths in the graph of words, and can be assigned to any of the concepts of
the task. In other words, the sequences of words that are attached to the arcs represent
lexicalizations of the concepts of the task they are associated to. The arcs in the graph
of concepts are weighted with a combination of the score of the corresponding path in the

graph of words and the probability of that segment of words according to the concept.

Let GC = (Vao, Age) be a graph of concepts that is built from a graph of words GW =
(Vew, Agw ), where in each case V represents the set of vertices or nodes of the graph
and A the set of arcs. According to the definition of a graph of concepts, that is based

In the rest of this chapter both the word lattices generated by an ASR and the graphs built using the
algorithm explained in Section 4.2.2 will be referred to as graphs of words.
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on scanning the graph of words looking for sequences of words that are relevant to any of
the concepts of the task, the semantically relevant segments can span between any pair of
nodes i,5 € Vgw : ¢ < j. Hence, the nodes of the graph of concepts must be the same as
the nodes of the graph of words, it is, Vgo = Vow.

Regarding arcs, let us define an arc of the graph of concepts as the 5-tuple (sre, dest, words,
conc, weight), where each element represents respectively the source node of the arc, the
destination node, a sequence of words, the concept represented by the sequence of words,
and the weight associated to the arc. Let also M = {M(c1)... M(cy) ... M(cig)} be a set
of semantic models such that, for each concept ¢, € €, M(c,) provides the probability of
a sequence of words W given the concept c¢,, it is, p(W|c,). Then, for each concept ¢,
a path Pij in the graph of words WG that spans from node ¢ to node j and induces the
sequence of words WZJ is a candidate to generate an arc from ¢ to j in the graph of concepts
GC if p(VVij|cu) # 0, according to M(c,). Given a candidate, its weight wgt is defined as
a weighted combination of p(WZJ lc,) and the weight of sz . It is possible that there are
several candidates that, while their sequences of words are different, they represent the
same concept and start and finish at the same pair of nodes. Since the second step of the
semantic decoding method will search the best path (maximum weight path) in the graph
of concepts taking also into account how the concepts are chained, it is not necessary to
keep all the "candidates" that represent the same concept between the same pair of nodes,
but only the one of maximum weight. Hence, the set of arcs of a graph of concepts Agc
is defined as the set of tuples (i, j, WZJ , Cu, Wgt) induced by paths Pij in the graph of words
such there is no other path Qg such for the same concept ¢, would provide a candidate
with a higher weight than wgt. In other words, given a pair of nodes ¢, j and a concept ¢,
the algorithm that builds the graph of words seeks the sequence of words that spans from
i to j in the graph of words and provides the maximum combined score of the score of the
path and the probability of the semantic model corresponding to concept ¢, and converts

this information into an arc.

As it has been stated, the set of semantic models M that provide the probability of a
sequence of words W given a concept p(W|c,)Ve, € € plays a very important role in the
process of building a graph of concepts. Although these models can be trained in a variety
of ways, the one that has been used in this work is training a n-gram language model for
each concept of the task. In order to train these models, it is needed that the training

corpus is segmented and labelled in terms of concepts.
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Let the training corpus T be a set of sentences, where each sentence Z = wy...w, is

represented as a sequence of m pairs (s;, ¢,), where:

e cach s; is a segment of words made of consecutive words of W,
e s starts with wi,

e 3, finishes with w,,,

e Ywy € Z ds; 1 z € s,

o Vi,je[l,m]siNs; =0,

e and ¢, €F.

Let us call this sequence of pairs a segmentation of the sentence Z in terms of the set of

concepts of the task %.

Then, it is possible to collect for each ¢, € % all the segments s; € T that are attached to
¢, and build a n-gram language model using just these segments as the training samples.
Thus, these language models provide the probability p(W|ec,) of a sequence of words W
given a concept, as they are trained using only positive samples for that concept. These
language models are part of the semantic models that will be used to compute the semantics
of the input utterance, and they will be referred to as concept-dependent semantic models.
These models can be represented as Stochastic Finite State Automata. Figure 4.4 shows
an overview of the knowledge sources and the data structures that constitute the inputs
and the output for this first SLU stage.

With all these definitions, the problem of building a graph of concepts can be stated as
the problem of searching, for each pair of nodes of the graph of words and each concept-
dependent semantic model, the sequence of words that maximizes their combined probabil-
ity. Algorithm 2 shows a method that exhaustively checks the feasibility of all the possible
subpaths in the graph of words given the set of concept-dependent semantic models. This
is not the algorithm that is ultimately used for building the graph of concepts, but the ob-
jective of including it here is twofold: not only it is very useful in order to better clarify the
goal that is being pursued, but it also constitutes the bottom line from which the definitive

Dynamic Programming algorithm will be built.
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Figure 4.4: Overview of the Stage 1 of the graph-based semantic decoding algorithm.

In Algorithm 2 two heuristic factors that are usual in speech applications (such as speech

recogintion) are introduced. These factors are tuned empirically, and they are:

e a grammar scale factor o that aims to compensate the magnitude differences between

the graph of words and the concept-dependent semantic models,

e and a word insertion constant 3 that is added for each word that is appended to a

segment.

Algorithm 2 starts creating a graph of concepts with as many nodes as the graph of words
has, and with the same numeric labels, and an empty set of arcs. Then, for every possible
path P/ in the graph of words and each concept ¢, the combination of the probabilities

provided both by the graph of words and the semantic model corresponding to the concept
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Chapter 4. A graph-based approach to spoken language understanding

Algorithm 2 Unoptimized method for building a graph of concepts from a graph of words
and a set of concept-dependent semantic models.
Input: Graph of words GW = (Vaw, Agw),
set of semantic models M = {M(c1) ... M(cj¢))},
grammar scale factor «,
word insertion constant 3
Output: Graph of concepts GC = (Vge, Ace)
L Voo = Vew
2: Aao = 0
3: for i =0 to |Vge| — 1 do
4:  for j=i+1to |Vge| do
for all path Pz-j that spans from node ¢ to node j in GW do
wgtGW = Haepij wgt(a)

5
6
7 WZJ = sequence of words underlying Pij
8
9

for u =1 to |¢| do
probLM = p(W/|c,) calculated using M (c,)

10: if probLM # 0 then

11: wgt = probLM® - wgtGW - 37~

12: // The symbol * represents a wild card that matches any value
13: if Je = (4,4, *, cu, %) : € € Agc then
14: if wgt > wgt(e) then

15: Agc = Ao — {6}

16: newarc = (1,7, W7, ¢y, wgt)

17: Ace = Age U {newarc}

18: end if

19: else A

20: newarc = (i, 3, W}, ¢y, wgt)

21: Age = Age U {newarc}

22: end if

23: end if

24: end for

25: end for

26: end for

27: end for

28: return GC = (Vge, Ago)

¢, is computed, taking into account the factors o and 3. If there was no arc in the graph

of concepts from node ¢ to node j labelled with concept ¢,, then the information in Pij is

converted into an arc in the graph of concepts, which is also labelled with ¢, and weighted
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4.8 The semantic decoding algorithm

with the computed combined probability. However, if there was already an arc from node
1 to node j labelled with concept ¢,, only the hypothesis with the maximum probability is
kept. Please note that the notation of the loops in lines 3 and 4 works because the sequence
of node labels {0,1,..., |[Vaw| — 1} provides a topological sorting of the nodes of the graph

of words.

The time complexity of Algorithm 2 is O(KVowl. [Vaw|? - |€]), where K is the number of
hypotheses the ASR module provided, and therefore the maximum output degree a node
of the graph of words can have. The exponential factor comes from the fact that every
possible path in the graph of words has to be computed, in order to see whether it will lead
to an arc in the graph of concepts or not. It can be assumed that the operations on the

graph of concepts take O(1), if efficient data structures are used to represent the graph.

The space complexity of Algorithm 2 is O(|Vaw|? - |€]), because it is an upper bound of
the number of arcs that the graph of concepts can have (one for each concept and each pair

of nodes in topological order).

Despite Algorithm 2 is a good way to understand how to build a graph of concepts, it
is not useful in practice due to its excessive time complexity. However, a closer look to
the algorithm reveals that many calculations are computed multiple times, and the use of
Dynamic Programming would speed up the algorithm. For example, for every path from i
to j of length [ > 1, all the calculations corresponding to preffixes of length [ —1 were already
performed, and could be used to work out the values when adding a new element. On one
side, given a preffix x of length [ — 1, the result of adding the arc a to this preffix is wgt(z)-
wgt(a). On the other side, the concept-dependent semantic models will be represented as
SEFSA. Hence, let M., be the SFSA representing the concept-dependent semantic model for
concept ¢, and let Q(M,,) be the set of states of this SFSA. Let ¢ € Q(M,,) be the state
in which the analysis of the string corresponding to x ends, and p(z|M,,) the probability
that M., gives to x. Then, the probability of the concept-dependent semantic model when
the word attached to the arc a is appended to x is p(z| M., ) - p(word(a)|q), where the latter
probability is the probability attached to the transition in M., that departs from ¢ and
is labelled with word(a). This incremental procedure leads to the Dynamic Programming
(DP) algorithm that is stated in Algorithm 3.

Algorithm 3 has three parts. The first one creates as many nodes as the graph of words has,

and assigns them the same labels. The second part is described by Equation 4.8. In this
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Chapter 4. A graph-based approach to spoken language understanding

Algorithm 3 Dynamic Programming method for building a graph of concepts from a graph
of words and a set of concept-dependent semantic models.
Input: Graph of words GW = (Vaw, Agw),
set of concept-dependent semantic models M = {M(c1) ... M(ci4))},
grammar scale factor «,
word insertion constant 3
Output: Graph of concepts GC = (Vge, Ace)
L Voo = Vew
2: for u=1 to |¥]| do
3: // T is the DP matrix. Each node of the graphs and each state of M., are mapped
to an integer in order to index the matrix.

4. T00..[Vge| — 1][0..|Vac| — 1]]0..|Q(M,,)| — 1] = {0,0,...,0}
5:
1 ifi=jAqg=qo(M,)
0 ifi=jAq#q(M,)
o 0 ifj<i
CE max  T(i,sre(a),q) - plalg’, word(a)* - wet(a) - B
VacAgw :dest(a)=j
VQIEQ(Mcu)
L otherwise
(4.8)
6:
Vij € Voo i <
(i7ja lea Qu» IL’) € AGC if v = maxgem,,, T(Z7Ja q) (49)
where W7 is the sequence of words attached to this path
7: end for

8: return GC = (Vgo, Ago)

equation T'(7, j, q) represents the cell of the DP matrix that stores the best score that can
be achieved by a sequence of words which starts at the node ¢ of the graph of words, ends at
the node j of the same graph, and finishes its analysis by the concept-dependent semantic
model M., at the state q. Also p(q|q’, word(a)) represents the probability of moving from
state ¢’ to state ¢ using a transition labelled with word(a), and go(M,,) is the initial state
of the SFSA corresponding to M., .

The base cases of this DP equation are pretty straightforward. First, each 0-length path

will have a score of 1 if it is paired with the initial state of the concept-dependent semantic
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4.8 The semantic decoding algorithm

model, and 0 otherwise. Also, the final node of the path must appear later than the initial

node; thus, if it is not the case, the assigned score will be 0.

In order to fill the matrix for the general case, the is and js are considered in ascending
order, with ¢ < j. Furthermore, the maximization is performed, for each pair of nodes, at
the language model state level. This way, the optimum is always kept, along with other
hypotheses that arrive to other states of the language model which could overtake the
maximum until this step when analyzing further words. Moreover, the case of A-transitions
in the graph of words are handled as any other transition, but no score from the concept-

dependent model is considered since no word is added to the current segment.

According to the definition of the graph of concepts, for every pair of nodes i,j € Vgo 1 i <
j, and for each concept ¢, € €, only the sequence of words sz represented by a path in
the graph of words from ¢ to j that yields the maximum combined score will lead to an arc
in the graph of concepts. Using the information provided by Equation 4.8, it is easy to find
the hypothesis that has the maximum score by iterating over the different states g (keeping
fixed ¢ and j), and then build the new arc using this information. This procedure is stated
in Equation 4.9, which is the third part of the algorithm. This equation implies that the
sequence of words that provides the maximum score for each i, j, ¢ is known when building
the arcs for the graph of concepts. Therefore, the values in the DP matrix of Equation 4.8

must be enriched in order to store this information.

It is also worth noting that it is not necessary to completely fill the DP matrix to apply
Equation 4.9. On the contrary, it is sufficient to have it filled for all the cells corresponding
to a pair of nodes (i,7) to be able to run Equation 4.9 for this pair, which it is sure to
be true when Equation 4.8 starts to fill the cells where the origin node is j. Therefore,
Equations 4.8 and 4.9 can be interleaved, fixing each time the pair of nodes i, j that are to

be processed.

Figure 4.5 shows an example of how a graph of concepts is built. In this example, for
concept c1, the hypotheses that depart from node ¢ of the graphs of words go to different
states on the automaton M., . Let us suppose that the combined probability correspoding
to wy is greater than the one for wi. This makes that an arc in the graph of concepts
labelled with the pair (ws,c;) is built. However, when ws is considered, both segments
collapse in the same state ¢ of M,,, and a maximization is performed. In this case, the

hypothesis corresponding to the sequence wjws is given a higher probability, and is the one
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[w,ws,c,]

Figure 4.5: Example of the construction of a graph of concepts where a small graph of words and
two concepts are considered.

that is converted into an arc from node 4 to node j in the graph of concepts. Also, it can
be seen that the same word can be attached to many concepts (w9 is associated to both ¢;
and cg), but for every pair of nodes there must not exist two arcs labelled with the same

concept.

Q(M,,)|). The data structure

that leads to this cost is the Dynamic Programming matrix, which has a size of |[Vgw| X

The space complexity of Algorithm 3 is O(|Vew | - max,, ey

|Vaw| x max,, ey |Q(Me,)| cells. For each cell, the algorithm must keep track of the words
that led to that score, in case they are later needed to build the corresponding arc for the
graph of concepts. In the worst case, the number of words that could be associated with a

cell is |Vew| — 1.

However, this matrix can be stored in a more efficient way without worsening its temporal

cost using the following guidelines:

1. For a given graph of words and a concept-dependent semantic model M., , the most

frequent case is that, for a given pair of nodes 7, j, the analysis of all the subpaths
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from i to j end at a small set S of different states of M.,. Actually, the upper bound
for the cardinality of S is min(K™""=L7=9 |Q(M.,)|), where K is the number of
sentences the ASR module provided (and thus the maximum output degree of a node
in the graph of words), and n is the maximum length of the n-grams is M.,. In
practice, it often stands that S << |Q(M,,)|.- This makes the DP matrix very sparse.

Hence, storing only the elements of the DP matrix that are not null is a good idea.

2. Each time a new starting node ¢ is being considered, all the information in the cells
(7', 4,q) with i’ < i can be deleted, as they will not be used for the calculations of the
hypotheses starting at 1.

In consequence, if bigrams are used for the concept-dependent language models (which will
be the case in most of the experiments in this thesis), the space complexity can be more
tightly expressed as O(|Vow|® - K). Furthermore, the lengths of the sequences of words
that represent concepts are in practice much lower than the number of nodes of the graph.
Hence, in practice the space cost is O(|Vgw|? - X - K), where X is the average length of a

sequence of words representing a concept.

The time complexity of the algorithm built by interleaving Equations 4.8 and 4.9 is
QM. )|* K -|€]). A O(|Vaw|? - max.cy |Q(M.,)|) factor comes

from the loops that iterate for each cell of the 3-dimensional matrix. Then, for each cell,

O(|Vaw|? - max,ex

there is a maximum with two arguments. The first argument iterates for each arc that
arrives to a given node j. Because of the way the graph of words was built, the input
degree of a node of this graph can be at most K, so this part has a cost of O(K). The
second argument is the set of states of the language model. Thus, the cost that this ar-
gument provides to the full process is O(max.cy |Q(M,,)|). This process is repeated for
each concept, hence a multiplying factor of O(|¢’|) must also be added. The algorithm of
Equation 4.9 does not contribute to the total cost, since when interleaved with Equation
4.8 it would just contribute with an addend that is smaller than the rest of factors of the

cost.

Nevertheless, if the improvements on space mentioned before are applied, then the time
Q(M.,)| - |€|). Furthermore, a small

change in the algorithm can be performed in order to improve the temporal efficiency. This

complexity decreases to O(|Vow|? - K? - max.cy

modification is related to the maximization that iterates for every possible predecessor in
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Chapter 4. A graph-based approach to spoken language understanding

the concept-dependent language model. Instead of doing the dynamic programming in a
backwards way, by looking the possible predecessors of each hypothesis, it is possible to do
it in a forward manner, by expanding the possible children that each hypothesis can have.
Then, for a given word, it is not necessary to search all the possible destinations, as there
is only one possibility. Thus, if an appropiate data structure is used for this step, its cost
becomes O(1). Then, the time complexity for this algorithm becomes O(|Vgw |>- K2 - |€]).

hola de trenes#query

horarios de trenes#<time>

horarios de trenes#<departure_time>
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horarios#<time>

de trenes#<time>
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horarios#<arrival_time>
de#<departure_time>
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horarios#<departure_time> \°

O ——
| hola#query de#time ::e
\ horarios de#<departure_time #

horarios de#<arrival_time>

trenes#<time>

trenes#<departure_time>

horarios de#<time>

horas de#time

hola de#query

Figure 4.6: Fragment of a graph of concepts built from the subgraph induced by the set of nodes
{3,4,5,6} of the graph of words of Figure 4.3. For the sake of clarity, only a set of six concepts
from the DTHANA task are considered, and weights are omitted.

Figure 4.6 shows a fragment of a graph of concepts built from the graph of words of Figure
4.3. This fragment corresponds to the subgraph induced by the set of nodes {3,4,5,6},
and it is built taking into account only six of the concepts from the DIHANA task. As it
is shown, all segments of any length that can be attached to any concept are found, but
for every pair of nodes and each concept, only one segment is kept (the one of maximum
combined score). For example, horas could also be attached to the concept <time>, but
if the probability that horarios represents this concept is higher, then the latter is turned
into an arc, but not the first. Another aspect is that the segments can actually have a
correct syntactic structure or not (due to speech recognition errors and the generalization

process used to build the graph of words), but if a concept-dependent semantic model gives
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the segment a not null probability, then the segment has chances of being converted into
an arc. For example, the segment hola de trenes (hello of trains) is syntactically incorrect,
but the model corresponding to the concept query gives it a not null probability. However,
other segments will actually have a correct syntactic structure, like horarios de trenes (train
timetables), which in this example can be attached either to the concept <time> or to the

concept <departure time>.

Considering together how the graph of concepts are built and Equation 4.3, a question may
arise: how can the probability of a sequence of words given a sequence of concepts p(W|C)
be computed, if the concept-dependent semantic models only provide the probability of a
sequence of words given a concept? The answer to this question is based in the notion
of segmentation that was introduced before. If it is possible to assume that each word
of the input utterance must be attached to exactly one concept (which it is usually the
case, as non-meaningful words can be assigned to some kind of null or wvoid concept),
then the output of the SLU system is a segmented sentence, according to the concepts
of the task. Hence, for each segment le in this segmentation that spans from word ¢
to word j and is attached to concept c,, the probability of that segment given the whole
sequence of concepts is equal to the probability of the sequence given just the concept it
is attached to, that is, p(WZ]]C) = p(Wj\cu) Thus, if S is a sequence of pairs (Wij,cu)
that represents a segmentation of W and the concatenation of all the ¢, is equal to C, then
p(W1C) = H(Wj,cu)esp(Wij|C“)' In the terms of a graph of concepts, S is a full path in the
graph (from node 0 to node |Vgeo| — 1), and each element of S is an arc with both the pairs
(segment of words, concept) and the conditional probabilities, although these are combined

with acoustic probabilities.

In addition to individual arcs, paths made of more than one arc are possible, like the one
that concatenates the arc where hola (hello) is attached to courtesy and the one where de
trenes (of trains) represents the concept query. Actually these paths are the fundament of

the Stage 2 of the semantic decoding algorithm.
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4.3.2 Stage 2: Finding the best sequence of concepts

The second stage of the semantic decoding completes the search process by finding the best
sequence of concepts. For this purpose, a Dynamic Programming algorithm is applied on
the graph of concepts and a stochastic model which represents the probability distribution
p(C). This way, the scores of the graph of concepts are combined with the probabilities
from a stochastic model of sequences of concepts, in order to fulfill Equation 4.4. For this
purpose, this Dynamic Programming algorithm searches for the full path in the graph of
concepts which maximizes its score combined with the probability that the stochastic model
gives to the underlying sequence of concepts. Furthermore, this method not only provides
the best sequence of concepts, but also more information that is also contained in the graph

of concepts. Hence, the output of the algorithm consists of several items:

e The sequence of concepts C' of maximum combined probability, which is obtained
taking into account acoustic, lexical, syntactic and semantic information. This is the
sequence of concepts underlying the path in the graph of concepts which is found by

the algorithm.

e The sequence of words W which is attached to the path in the graph of concepts
that provides C. This sequence of words represents the best recognition of the input

utterance by incorporating semantic knowledge to the speech recognition process.

e A segmentation S(W, C’) of W according to C. This is obtained by taking separately
each arc in the path on the graph of concepts that leads to C.

Figure 4.7 shows an overview of this second stage of the SLU algorithm.

As it has been mentioned, it is necessary to train a model that provides the probability of
a sequence of concepts, it is, p(C'). To train this model, it is possible to take advantage of
the segmentation of the training sentences. This way, since a segmentation is a sequence of
pairs (segment of words, concept) that fully splits a training sentence, it is possible to train
a stochastic semantic model from the sequences obtained by concatenating these concepts.
One of the possible stochastic semantic models that can be trained is an n-gram language
model of sequences of concepts, which will be the one used in this work. Also, this model

will be represented as a Stochastic Finite State Automaton.
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Figure 4.7: Overview of the Stage 2 of the graph-based semantic decoding algorithm.

Algorithm 4 describes a Dynamic Programming method to find the full path in the graph
of words that maximizes the combined score. Let i be a node in the graph of concepts, and
let g be a state of M¢, it is, ¢ € M. Let T be a Dynamic Programming table where T'(i, q)
represents the maximum score achieved by a path that arrives to node ¢ and the analysis
of the underlying sequence of concepts arrives to the state g. The method for calculating
this DP matrix is stated in Equation 4.10. It is also worth mentioning that, as it happened
in Algorithm 3, there are a grammar scale factor v and an insertion constant (in this case
a concept insertion constant) u in order to adequately weight the different scores that take

part in the algorithm.

Furthermore, when the analysis of the graph of concepts reaches its final node, a transition
is forced from every active state in M¢ to the final state of the automaton ¢r(M¢), using for

this purpose the special symbol "< /s>" (Equation 4.11). The hypothesis that achieves the
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Algorithm 4 Algorithm that finds the best sequence of concepts and its underlying infor-
mation.
Input: Graph of concepts GC = (Vao, Age),
semantic model M,
grammar scale factor -,
concept insertion constant
Output: Best sequence of concepts C ,
underlying sequence of words W,
segmentation of W according to C' S(W, ()
1: T[0..|Vge| — 1][0..|Q(M.)| — 1] = {0,0, ...,0}

2:
1 ifi=0Aqg=q(Mc)
0 ifi=0Aq# qo(Mc)
) — a T(src(a),q’) - ! conc(a))” - wgt(a) -
T4 = vuen™8 o) (sre(a),q') - p(qlg’, conc(a))” - wet(a) - p (4.10)
Vq'€Q(Mc)
otherwise
3:
best = argmax T'(|Vac| — 1,q) - p(qr(Mc)|q, </s>)7 (4.11)
q€Q(Mc)
4: pbest = path in the graph of concepts associated to best
5: C' = sequence of concepts of pbest
6: W = concatenation of the segments of words in pbest
7. S(W,C) = sequence of pairs (segment of words, concept) in pbest
8: return C, W, S(W,C)

maximum score is kept, and the path that led to this hypothesis is recovered, for example

using backpointers.

Regarding costs, the space complexity of Algorithm 4 is O(|Vae| - |Q(M,)|), and it is due
to the size of the Dynamic Programming table that is built in Equation 4.10. Backpointers
can be stored in order to recover the best path at the end of the algorithm (line 4). This
way, the space complexity is not asymptotically increased, but a linear traversal of the

backpointers must be performed in order to recover this path.

The time complexity of this algorithm is O(|Vge|? - |Q(M,)| - |€]), and it is determined
by the maximization performed in Equation 4.10. The computation of this cost is divided
into two parts. First, each element of the DP matrix has to be processed, which leads to
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a factor of O(|Vae| - |Q(M,)|). Second, for each element of the matrix a maximization is
performed, which takes into account each arc that arrives to the corresponding node of the
graph of concepts. The worst case can be found at the final node of the graph, where, due
to the own construction of the graph of words, the possible number of arriving arcs can be
up to (|Vac|—1)-|%], it is, an arc for each concept starting from each of the other nodes in
the graph. For the second element of the maximization, which iterates for each predecessor
in the semantic model, its cost can be reduced to O(1) if the DP algorithm is implemented

in a forward manner, it is, using successors instead of predecessors.

Table 4.1 shows an example of the output of the second stage of the semantic decoding

algorithm, and thus the output of the SLU system.

Sequence of query <departure time> destination city
concepts
Sequence of me puede decir horarios de trenes a Alicante
words (could you tell me train timetables to Alicante)
Semantic me puede decir : query
segmentation | horarios de trenes : <departure time>

a Alicante : destination city

Table 4.1: Example of the output of the full SLU process. This example corresponds to the one
introduced in Figure 4.3.

4.4 The frame converter

SLU usually takes place in the context of a spoken dialogue system, and its output is often
fed into a module called dialogue manager. For convenience on this purpose, the output of
the SLU module can be taken through a post-process that filters out the irrelevant concepts,
sorts the remaning concepts according to a canonical order, and standarizes the values that
appear associated to the concepts. The structure that results from this process is called
frame. Each frame is composed by a frame name and a set of attributes, which are called
slots, that have values associated to them. As an example, Table 4.2 shows the frame
representation that is obtained from the semantic segmentation shown in Table 4.1. In this
case, the frame name is (DEPARTURE-TIME), which indicates that the user asked for the
departure time of some train, and there is a slot called DESTINATION-CITY that has the

value Alicante showing the place the user wants to travel to.
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(DEPARTURE-TIME)
DESTINATION-CITY = Alicante

Table 4.2: Frame representation corresponding to the semantic segmentation obtained in Table
4.1.

In order to obtain this representation, the frame converter module uses a strategy which
is very similar to the one used for the dialogue system developed for the DIHANA project
(Griol et al. 2006). The translation from the semantic segmentation into the frame structure
is mainly performed by means of rules. However, for some values such as times and dates,
stochastic automata learnt from data are used. Furthermore, some structures such as
tomorrow or in the morning must be translated into numerical values, which, in addition,
are in some cases relative to some implicit information (for example, the current date or
the current time). For example, assuming that the current date is the 4th of October 2015,
the sentence “I want to know the trains that arrive to Alicante tomorrow morning” can be

represented by the frame representation shown in Table 4.3.

(QUERY)

DESTINATION-CITY — Alicante
ARRIVAL-DATE = 05/10,/2015
ARRIVAL-TIME — [07:00-12:00]

Table 4.3: Frame representation for the sentence I want to know the trains that arrive to Alicante
tomorrow morning.

In order to standarize the representation of the semantic information by means of a frame,
the attributes are arranged following a pre-stablished order, and the values are converted
into a canonical representation. This allows for a smooth mechanism of communication
with the forthcoming dialogue manager (in the case of a full spoken dialogue system), as
well as to easily compute a measure of how well the semantic information is being caputred

by the SLU module by using the edit distance algorithm.
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4.5 Experimental evaluation

In order to evaluate this approach, an exhaustive experimentation has been performed
using two different corpora: the DIHANA corpus in Spanish, and the MEDIA corpus in
French. First, a set of experiments using the DIHANA corpus will be presented, in order to
show the behaviour of this approach when combining multiple outputs from several ASR
engines. Next, this approach will be compared for both corpora with other two state-of-

the-art approaches: CRF, and the two-level approach.

The following measures were used to assess the performance obtained in the different ex-

periments:

e The Concept Error Rate (CER), which quantifies the percentage of errors in the
output of the SLU module. In other words, this measure determines how well the

concepts of the sentence are found, according to a reference.

e The Frame-Slot Error Rate (FSER), which evaluates the percentage of errors in the
slots of the frames in the final output of the system. That is, it checks how many
of the relevant concepts of the sentence were found, along with their corresponding

value.

e The Word Error Rate (WER), which measures the percentage of errors in the final
transcriptions provided by the system. These transcriptions are obtained as the se-
quence of words underlying the best sequence of concepts. Hence, when a combination
of multiple transcriptions in a graph of words is used, the WER provides a measure

of the contribution of the semantics to the recognition process.

All these measures are calculated using the edit distance between the output of the system
and the reference, either at concept, frame component or word label. The error rates
are calculated in all cases according to Equation 4.12, where the numerator represents
the amount of the usual edit operations (substitutions, deletions and insertions) that are
obtained from the calculation of the edit distance, and the denominator is the number of

items of the reference.

D+1
Error Rate = S_‘_T—i_ (4.12)
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Moreover, it is also worth noting that the FSER is likely to be lower than the CER because
all the concepts that are not relevant for the frame representation are not transmitted to it.
For example, the concept courtesy in the DIHANA corpus is not conveyed into the frame,
thus errors in this kind of concepts do not affect the FSER. Also, sometimes two different
concepts are translated into a single item in the frame representation. For example, if
the user expressed their will to depart from some city and then mentioned a time, it is
likely that this time will be a departure time. Unfortunately, to evaluate the FSER for a
corpus it is required that a frame representation exists for that corpus. It actually exists
for DIHANA, but not for MEDIA. Hence, it has only been possible to evaluate the FSER
for the DIHANA corpus.

4.5.1 SLU on the combination of multiple outputs from the ASR module

A first experimental evaluation is focused on checking how a combination of multiple ASR
outputs lead to a best understanding result. This experimentation was performed using
the DIHANA corpus. For this purpose, 4, 887 utterances were used for training, and 1,109
for test. The 4,887 sentences of the training set were used to build the semantic models
needed for the SLU method. All the semantic models were estimated as bigram models of
the corresponding units, it is, words in the case of the concept-dependent semantic models,
and concepts for the second stage of the SLU process. Also, when using speech input, some
acoustic and language models of some ASRs were trained using the utterances from this

part of the corpus.

The ASRs used for this experimentation were HTK (Young et al. 1997), Loquendo and the
Google ASR. For HTK, both the language and the acoustic Models of the ASR were trained
with the training set of the corpus. For Loquendo, only the language model was trained
with information from the corpus — the acoustic model used was the one it incorporates
by default. No information of the task was provided to the Google ASR. The WERs
obtained for the test set considering the 1-best output of each of the ASRs individually
were: 17.9 for HTK, 17.9 for Loquendo and 29.5 for Google. It is worth mentioning that
the DIHANA corpus has very hard acoustic conditions, in addition to being telephonic
spontaneous speech. Results point out that both the HTK acoustic models learnt from the
corpus and the built-in Loquendo acoustic models are adequate for this task, since their
WER is the same in similar language modelling conditions, and their language models were

estimated in both cases from training data from the task. Of course, the fact that HTK and
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Acoustic models | Language models
trained from trained from
ASR the corpus the corpus WER
HTK yes yes 17.9
Loquendo no yes 17.9
Google no no 29.5

Table 4.4: Corpus-dependent training information provided to each of the ASRs, and WERs
obtained from each of them, measured on the test set.

Loquendo have the same WER does not mean that they make the same errors (actually,
they are very different). The WER obtained for the Google ASR is higher than the rest
because it is a general purpose ASR, without any knowledge of the task, while the others

have some information about it. This information is summarized in Table 4.4.

Several experiments were driven using different inputs built from the outputs of the ASRs:

1. Taking the 1-best of each ASR separately, in order to know the performance that can

be achieved without any combination. These experiments constitute the baselines.

2. Using as the input for the SLU module the word lattices generated by HTK. In this
case, the graph builder module is skipped, as the output of the ASR is itself a graph
of words that can be processed by the graph-based SLU module.

3. Transferring to the SLU module a graph of words that is built as a combination of
the 3, 5 and 20-best hypotheses provided by the Google ASR.

4. Taking the 1-best recognitions provided by all the three ASRs, and combining them

into a graph of words.

5. Additionally, an experiment using as the input to the SLU module the correct textual
transcriptions of the user’s utterances was performed. This gives an idea of the best

performance that can be achieved by the speech understanding system.

Table 4.5 shows the results obtained for each of these experiments. The first row indicates
the results obtained with the written transcriptions of the utterances, which simulates a
The

following three lines show the baseline results obtained using the 1-best outputs from the

perfect ASR. This establishes an upper bound for the results using speech input.
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| Input graphs of words | CER | FSER | WER |

’ Text reference ‘ 5.4 ‘ 14 ‘ - ‘
HTK 1-best 17.7 13.0 17.9
Loquendo 1-best 18.3 11.9 17.9
Google 1-best 25.8 23.4 29.5

| HTK word lattice | 142] 112] 179
Google 3-best 20.0 18.7 25.2
Google 5-best 18.9 17.7 24.5
Google 20-best 18.4 17.3 23.3

’ HTK + Google + Loquendo 1-bests ‘ 12.8 ‘ 8.9 ‘ 13.5 ‘

Table 4.5: Results obtained using the different compositions of ASR outputs, as well as the
textual transcriptions and the individual 1-bests.

three ASRs separately. As expected from their WER, HTK and Loquendo achieve better
results than Google. Furthermore, the different nature of the errors made by the HTK
and Loquendo ASRs is also reflected on this Table, since the HTK output allows to better
identify the sequence of concepts, but the transcription provided by Loquendo identifies

better the relevant concepts, leading to a lower FSER.

Then, the results obtained by performing a semantic decoding of the HTK word lattices
are shown. These results should be compared to the ones obtained with the HTK 1-best.
It outperforms the CER and FSER obtained by the 1-best, which means that the semantic
decoding algorithm is able to accurately decide among the different options that are rep-
resented in the word lattice which one leads to a better semantic interpretation. However,
it is interesting to note that the WER obtained this way (it is, the WER calculated from
the sentence underlying the best sequence of concepts) is the same than the 1-best. A
closer analysis of the recognition errors made for each of the inputs reveals that the sen-
tences underlying the best sequences of concepts contain more semantically relevant words,
even when they constitute errors, and some non meaningful words, such as stopwords, are
sometimes deleted. This indicates that the SLU algorithm searches for sequences of words
that contain semantically relevant words in order to build the graph of concepts, and thus
reinforce the probability of the arcs containing these concepts, even if some grammatically
necessary but non meaningful words are skipped. However, when the input is the 1-best
from the ASR, the errors are mainly due to acoustic confusion that leads to an erroneous

analysis by the language model. Of course, the acoustic confusion is also a problem when
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the word lattice from the ASR is used, but since two layers of semantic information are
applied during the semantic analysis, the semantic information turns to be more relevant

for the search of the best path than the acoustic information.

The next section of the Table shows the evolution when several sentences are taken from
the Google ASR and are combined in the graph builder module. The baseline in this case
are the results obtained for the Google 1-best. The greatest improvement is observed when
the 3-best sentences are taken to perform the semantic decoding, with respect to the results
obtained with just the 1-best transcription. Taking the 3-best improves the numbers of the
1-best in 5.8 absolute points of CER, 4.7 points of FSER and 4.3 points of WER. This
improvement indicates that it is actually convenient to build a consensus graph using the
different transcriptions, and then use a SLU algorithm that is able to process it and search
for the most convenient semantic interpretation. When more hypotheses are added to the

n-best set the results improve steadily, but at a slower pace.

Finally, the last row shows the figures obtained using as the input for the SLU module
a combination of the 1-best outputs from the HTK, Loquendo, and Google ASRs. This
combination provides the best results, which indicates that combining information from
several sources in an adequate way leads to an improvement on the performance of the
system. This way, the different kinds of errors made by each of the ASRs can be coun-
terbalanced by the other ASRs, leading to a better semantic interpretation as well as to a

better transcription of the user’s utterance.

In conclusion, the SLU method developed for this thesis is able to obtain a semantic inter-
pretation of single sentences and graphs of words (including word lattices from an ASR) in
an homogeneous way. Results show that an adequate combination of several transcriptions
outperform the results obtained with just the 1-best. This indicates that the SLU algorithm
is able to choose among the different options in order to build the segments of words that

represent concepts, and then obtain the best sequence of concepts.
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4.5.2 Comparison with other state-of-the-art approaches

In order to assess the performance of the graph-based SLU method developed for this
thesis, an empirical comparison with two other state-of-the-art methods has been performed.
One of them is a discriminative method that has been proven to be very effective for
SLU tasks: conditional random fields. Many of the best results obtained for several SLU
tasks, such as the French MEDIA, have been achieved using this approach (Raymond
and Riccardi 2007; Hahn et al. 2011). The other method that has been chosen for this
comparison is the two-level approach: a generative method that performs a Viterbi search on
a composition of several automata. Since these two models usually work on a single sentence,
this experimental comparison was carried out using the correct textual transcriptions of
the user’s utterance for both corpora, and the 1-best output from the HTK ASR for the
DIHANA corpus.

To train the models needed for the two-level approach, several bigram language models
were learnt: one for the lexical realizations of each concept plus another for the sequences
of concepts. Despite several ways of learning these models can be used, the reason for
choosing bigram language models is that they are the ones most used in the literature for
this approach. Hence, the learning process for these models is very similar to the one used

for the graph-based SLU system.

The experimentation with CRF was driven using the toolkit CRF++ (Kudo 2005). The
CRF were trained using an IOB labelling of the training sentences (Ramshaw and Marcus
1999), in order to better represent the dependences of the words within a concept. The
set of features used is based on the lexical features within a window of +2 words (the two

precedent and the two following words), considering both unigrams and bigrams.

To calculate an upper bound of the performance that can be obtained using these three
systems, an Oracle has been defined. This Oracle takes the outputs from the three SLU
systems (graph-based, two-level, and CRF), compares them to the reference at a concept
level, and keeps the sequence of concepts that is closer to the reference (i.e. takes the

semantic decoding that provides the lowest CER).

Table 4.6 shows the results obtained when the input is the correct text transcriptions of
the user’s utterances. For this input, the graph-based system outperforms the other two
in both CER and FSER. The improvement respect to the CRF system is in line with the
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System | CER | FSER
Graphs 5.4 1.4
Two-level | 11.0 3.9
CRF 8.8 4.1
Oracle 3.0 0.7

Table 4.6: Results for the DIHANA corpus using as input for the SLU module the correct text
transcriptions of the utterances.

results reported in (Raymond and Riccardi 2007), where the generative method (Finite
State Transducers in their work) outperformed the discriminative CRF when the training
corpus was not very large. This can be explained by the fact that the CRF model must
estimate parameters for many feature functions, and thus, needs a large amount of data
in order to estimate these values properly. In fact, in that work it was reported that for
the MEDIA corpus the CRF outperform the generative model when the training corpus
reaches a size of 7,000 sentences. In this case, the training corpus of the DIHANA task is
composed by less than 5,000 sentences, and despite the fact that the number of concepts
and the size of the vocabulary are smaller than in MEDIA, this set of sentences turns to be
still inadequate for a proper learning of the parameters of the CRF. On the contrary, this
set of sentences permits to adequately learn the concept-dependent semantic structures and
the sequences of concepts represented as n-gram models to be used in generative models
such as the graph-based or the two-level. However, it turns that the graph-based method
behaves much better than the two-level, despite they share the semantic modelling for the
task. This indicates that a two-step processing allows for a better identification of the
concepts than an integrated model (two-level). Also, the different models can be better
weighted using a two-step procedure. Furthermore, the results obtained with the Oracle
show that depending on the input sentence, the best semantic decoding is obtained with a
different SLU method.

Table 4.7 shows the results when the input to the SLU systems is the 1-best transcription
from the HTK ASR. For this setting, the CRF obtains better results than the other two
methods. However, the FSER obtained by the CRF and the graphs are very similar, which
means that many errors that the graphs make are on non-meaningful concepts, while the

slots and values corresponding to relevant concepts are well identified.
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System | CER | FSER
Graphs 17.7 13.0
Two-level | 20.5 14.8
CRF 15.9 12.7
Oracle 12.8 11.4

Table 4.7: Results for the DIHANA corpus using as input for the SLU module the 1-best output
of the HTK ASR.

In order to know how the graph-based SLU system behaves in another language and another
task, also in comparison to the two-level and CRF approaches, a set of experiments with
the textual references of the French MEDIA corpus were also conducted. The 16,279 user
utterances of the corpus were split into three disjoint sets: 12,000 sentences for training
the SLU models, 1,279 for development, and 3,000 turns for test. In this case, since
the training set is larger than in the DIHANA task, the semantic models were trained as
trigram language models. Table 4.8 shows the results obtained in this set of experiments.
As a frame representation of the sentences is not available for this corpus, the FSER cannot
be measured. However, in order to approximate this criterion, a slightly different one has
been determined: the CER considering only the relevant concepts (i.e. those different to
null and similar). It is shown in Table 4.8 as CER*.

System | CER | CER*
Graphs 17.1 15.9
Two-level | 20.4 194
CRF 13.4 12.7
Oracle 9.2 9.0

Table 4.8: Results for the MEDIA corpus using as input for the SLU module the correct text
transcriptions of the utterances. The column labelled as CER* refers to the CER obtained without
considering the non-meaningful concepts, such as null.

These results confirm the aforementioned behaviour: a larger training corpus (12,000 sen-
tences in this case) favour the performance of the CRF model. The two generative models
are still well trained and show a reasonable performance, specially the graph-based method,
but they are beaten by the CRF. Furthermore, while in the written DIHANA corpus the

training sentences provide a good knowledge of the structures that appear in the test set,
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in the case of MEDIA the training and the test set present a lower correlation. This setting
is to some extent comparable to the case of speech input, where the errors in the transcrip-
tions de-correlate the training and the test sets. As in that setting, here the CRF are more

robust to unseen structures.

Another feature of the MEDIA corpus plays an important role in support of the CRF
method. There are some concepts such as nombre_ chambre (room number), nombre_re-
servation (number of booking), and nombre hotel (number of hotels) that are very similar
in their lexical realizations (numbers in these cases). Hence, they are only distinguishable
by taking into account their semantic context and some long-term dependencies in some
cases. CRF have good built-in mechanisms to model long-term dependencies within their
analysis window. On the contrary, many generative models are only able to model short-
term dependencies — for example, bigram models only reflect the dependencies with respect
to the last analyzed item. However, the graph-based method can model to some extent long-
term relations. For any two adjacent concepts in the graph of concepts, first their underlying
sequences of words are analyzed separately, and then the concepts are considered together
taking into account the concept-dependent probabilites of their sequences of words. Hence,
when combining the probabilities of two arcs, a dependency between two adjacent sequences
of words conditioned to their concepts is also considered. This ability for considering these
longer-term dependencies help the graph-based approach outperform the two-level method,

despite that their underlying semantic models are very similar.

In conclusion, when just one sentence is taken as the input for the SLU algorithm, if the
training set is not very large and the test set is quite correlated with the training sentences,
then the graph-based method outperforms the other two. However, when the test set is
de-correlated with respect to the training sentences, or the number of training samples
is increased, then the CRF reaches the highest performance among the three methods
considered. Nevertheless, the main strength of the graph-based approach is to be able to
analyze in a natural and efficient way uncertain input represented as a graph of words.
Actually, it has been shown in this Chapter that an adequate combination of multiple
outputs from one or more ASRs leads to better results both from the point of view of the

semantic decoding and from the point of view of the quality of the transcription.
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Chapter 5

A test-on-source approach to multilingual

spoken language understanding

In this Chapter, the approach presented in Chapter 4 is extended in order to deal with the
problem of multilingual SLU, by means of a test-on-source strategy (Calvo et al. 2012b;
Calvo et al. 2013b; Laguna et al. 2014). Two systems are presented, depending on how the
speech translation stage is performed. However, both systems share the same statistical
background. This approach combines a speech translation module, in which a generalization
of multiple translations is performed by means of graphs, and the graph-based SLU that
was previously presented. Finally, an exhaustive experimentation using the multilingual

DIHANA corpus is shown and discussed.

5.1 System overview

As it has already been mentioned, the multilingual SLU approaches that exist in the liter-
ature can be grouped in two large sets depending on which data is translated into another
language: train-on-target, where the training corpus must be translated into the user’s lan-
guage (and often more postprocesses are also needed such as resegmenting and relabeling the
training sentences) and a new SLU system must be trained; and test-on-source, where there
is a monolingual SLU system built for some language and the user’s utterance is translated

into it. The method described in this chapter follows the test-on-source approach.
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Like in the monolingual case, the multilingual SLU problem can be stated as the problem

of finding the best sequence of concepts C given an utterance A, it is:

C = argmax p(C|A) (5.1)
C

Let u be the user’s language, and let s be the system in which the monolingual SLU system
was trained. Of course, u and s are different, otherwise it would be the monolingual case.
Let Wy be a translation into the language s of the sequence of words underlying the user’s
utterance A. Introducing this as a hidden variable into Equation 5.1, it can be rewritten
as:

~

C = argmax max p(Ws, C|A) (5.2)
c W

Which, applying the Bayes’ Rule, can be transformed into:

A p(A|W870)p(W570)
C = argmax max
R p(4)

(5.3)

On one side, it must be noted that the denominator in Equation 5.3 is independent of the
maximization, so it can be considered a constant and thus be removed. On the other, it is
reasonable to assume that A and C are independent variables (the acoustic utterance does
not depend on the sequence of concepts to be expressed, and the sequence of concepts does

not depend on the acoustic signal). Thus, the latter equation can be stated as:

C = argmaxn‘}gxp(mws) -p(Ws, C) (5.4)
C s

From the point of view of the test-on-source approach to multilingual SLU, Equation 5.4
can be split into two parts. First, the p(A|W;) can be seen as a speech translation process
which finds the best translation Wy for the input utterance A. Then, the term p(Ws, C)
represents a monolingual SLU process which finds the best sequence of concepts for the
input Ws. However, following the same reasoning of the monolingual case, taking only one

translation from the speech translation module as the input to the SLU system may be very
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FRAME_NAME
w; ... wiConcepty slot; :value;
Wiyp... W;:Concept, slot, :value,

Speech | GrapnofWords | gomantic | Wmey-wn Concepty  Frame sloty, valuep,
Translator ——®»| Decoder ———» Converter ——»

Figure 5.1: General architecture of a test-on-source multilingual SLU system using graphs as the
output of the speech translator module.

error prone, since translation errors can strongly damage the overall quality of the system.
For this reason, the output of the speech translation module developed for this multilingual
SLU system is a graph of words that represents multiple alternative translations for the
input utterance, where each of them is weighted with a probability representing p(A|Wj).
Then, the same monolingual SLU system presented in Chapter 4 can be used to perform
the semantic decoding of this graph of translations. Figure 5.1 shows a rough diagram

corresponding to this approach.

As mentioned, the semantic decoder and the frame converter modules can be the same
than for monolingual SLU. However, a proper speech translation strategy must be defined
in order to supply the monolingual SLLU module with suitable translations to be semantically
decoded. In the next Section, two approaches to speech translation will be presented, in

the framework of test-on-source multilingual SLU.

5.2 Two approaches to speech translation for test-on-source
multilingual SLU

Speech translation can be defined as the problem of translating a speech signal into text
or voice in another language. The test-on-source multilingual SLU approach needs to use
a speech translation system that provides the inputs to the semantic decoder, since the
user’s utterance must be translated into the system’s language. However, errors produced
by the speech translation system can severely damage the performance of the SLU system.
As a solution for this problem, it is proposed in this work to obtain several translation
candidates for the input utterance, and then combine them into a graph of words. This

graph not only represents the original translations, but also some new ones that are built
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from segments of the original ones. Hence, following this apprach, the components of the

speech translation stage are:

1. An ASR working in the user’s language that provides a transcription of the user’s

utterance.

2. One or more translators that supply several translation alternatives for the user’s

utterance.

3. A graph of words builder module which combines the multiple translations into a
single graph of words by means of a grammatical inference process. In this system,
it is the same module that joined several recognitions into a graph of words in the

monolingual SLU system.

The final output of these three steps is a graph of words that represents a set of alternative
translations. Similarly to the monolingual case, each of these translations is weighted with
a probability, representing in this case the probability distribution p(A|Wj), but restricted

to the set of translations contained in the graph.

In the framework of this thesis, two approaches have been developed to perform the speech
translation process. The first of them is based on the use of several general-purpose web
translators. The second approach tries to take advantage of the domain-dependent infor-
mation that is present in a SLU task, by building a task-dependent Statistical Machine
Translation (SMT) system.

5.2.1 An approach based on the use of several general-purpose web

translators

Current state-of-the-art machine translation systems need large parallel corpora to be
trained. A parallel corpus is a collection of sentences in two languages, such that for
each sentence in one language, there is a sentence in the other language that corresponds
to its translation. There are many large vocabulary parallel corpora available, which offer
training data for a variety of languages. For example, one of them is the Europarl parallel
corpus (Koehn 2005), which is composed by parallel text from proceedings of the European
Parliament. There are also many machine translation systems, such as MOSES (Koehn et

al. 2007), that can be trained using these corpora. However, SLU tasks usually work within
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a restricted domain, with usually a not so large vocabulary. Unfortunately, in the general
case there are not enough parallel data available to train task-specific machine translation
systems for SLU. Hence, using general-purpose translators for this function is a reasonable
approach. Nevertheless, due to the differences in their vocabularies, it may happen than
when using general-purpose data to translate restricted domain sentences, many errors ap-
pear in the translated sentences, with respect to the reference sentences. These errors fall

into these two categories:

e FErrors related to semantics and pragmatics: due to the characteristics of the trans-
lation system, it often happens that some words are translated by synonyms of the
word that appears in the reference sentence. Then, the meaning of the sentence does
not change, but these words are usually considered errors by the metric that eval-
uates the performance of the machine translation system. However, from the point
of view of pragmatic linguistics, despite two words are synonyms for some meanings,
sometimes one of them is preferred to the other in some specific contexts, which may
be the case of the domain of a multilingual SLU system. Hence, if the translation
system is trained with data from other domain, it may result in systematic errors due
to words that synonyms but one is preferred to the other for the context of the SLU
system. Two other aspects of pragmatic linguistics that can also play an important
role in this translation process are the language style and the register. For example,
if the translation system was trained using formal language and the user is expected
to use spontaneous informal language (as it is usually the case of SLU systems). This
difference between styles and registers may also lead to a large amount of translation
errors. In fact, some recent works like (Stepanov et al. 2013) have investigated how
to perform style adaptation in order to improve the translation step of test-on-source

multilingual SLU systems.

o Other translation errors: as it happens in other machine learning systems, errors in
machine translation systems are unavoidable, which can be due to a large variety of
factors: structures that do not appear very frequently, confusion between structures,

reordering issues, etc.

Both of these types of problems depend on the features of the translation system that is
being used: whether it is statistical-based or rule-based, how the parameters were tuned,

which training data was provided to the system, etc. Hence, a possible solution is to mix
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Figure 5.2: Scheme of the architecture based on the combination of the outputs of several general-
purpose web translators.

several outputs from different machine translation systems by means of a method that
finds a consensus between them. This way, the overall coverage of the translation system
is increased and the impact of errors of single translators is minimized. In this thesis, the
graph of words builder algorithm presented in Section 4.2.2 has been used in order to find

a consensus between translators.

One way to obtain several translations for a sentence from a variety of translators is to
use the existing resources that are available in the web. There are many general-purpose
web translators that are freely available, and whose outputs can be combined. However,
for many of these translators it is impossible to know how they were built and trained,
but it is reasonable to think that at least each one used different data during the training
step. Other previous works, such as (Garcia et al. 2012) also explored this possibility. In
it, the authors used several general-purpose web translators to build a SLU system for
Spanish from the French MEDIA corpus using a train-on-target approach, for which they

used translations of the sequences of words that represent each isolated concept.

Figure 5.2 shows another system based on the combination of several general-purpose web

translators, following in this case the test-on-source philosophy, which has been developed
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for this thesis. In this system, the user’s utterance is first transcribed using a single ASR in
the user’s language. Only the 1-best transcription is taken, in order not to generate more
variability when mixing several translations. Then, the transcription is translated into the
system’s language by several general-purpose web translators. Finally, a graph of words is

built from the translations, using the graph builder algorithm presented before.

Figure 5.3 shows an example of the complete speech translation process using six different
translators. In this example, the user speaks in French and the system’s language is Spanish.
Also, for the sake of this example, it is assumed that the ASR in French makes no errors
for this sentence. A natural translation in Spanish for the input utterance is puede repetir

a qué hora sale el primero.

In this example, there is one translation among the six provided by the translators that is
very similar to the natural sentence in Spanish. Specifically, the translation provided by
translator number 2 only changes the word sale by the word marcha. This is an example
of a pragmatic error. The words sale (form of the verb salir) and marcha (form of the verb
marchar) are synonyms in this context, since both of them mean to depart. However, a
native Spanish speaker is much more likely to say sale rather than marcha in this context.
Despite being synonyms, this translation error could severly damage the results of the
semantic decoder, since it is very possible that the word marcha was not present in the
sentences used to train the SLU system because it does not usually appear in the context
of the SLU task.

Regarding the graph of words, the one in this example can be divided in three parts. In the
first part, that spans from node 0 to node 3, there is much confusion because there is little
agreement between the translators. The second part goes from node 3 to node 6, and it only
has one arc between each pair of adjacent nodes because all the translations agree in this
segment. Finally, there is again some disagreement between the different translations from
node 6 until the end. It can be verified that this process generalizes the sentences provided
by the translators, since the sentence puede repetir a qué hora sale el primero was not
among the original ones, but there is a path in the graph that allows to build this sentence.
The path corresponding to this good translation of the utterance is highlighted in red in
the Figure. It is worth noting that this path, despite respresenting a good translation, it
is not the one of maximum probability, since if the arc coloured in blue was taken to go

from node 0 to node 3 was taken, then the total probability of the path would be higher.
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source sentence| pouvez-vous répéter a quelle heure part le premier
(could you repeat what time the first one departs at)

poded a qué hora sale el premier

(1) puede repetir a qué hora marcha el primero
multiple poded a qué hora sale el premier
translations puede repetirse a qué hora parte el primero

pueda repetirse a qué hora parte el primero
puede me repetir a qué hora marcha el primero

- - | poded |a|qué|hora| sale |el| premier
puede| - | repetir |a|qué|hora|marcha|el| primero
alignment - - | poded |a|qué|hora| sale |el| premier
matrix puede | - |repetirse|a|qué|hora| parte |el| primero
pueda| - |repetirse|a|qué|hora| parte |el| primero
(3) puede |me| repetir |a|qué|hora|marcha|el| primero
marcha
1/3) .
premier
a qué hora
(l)_@ (l)_@ (1)

Figure 5.3: Steps for obtaining the graph of words from the original sentence "pouvez-vous répéter
a quelle heure part le premier”, ("could you repeat what time the first one departs at”). A good
translation for this sentence into Spanish is "puede repetir a qué hora sale el primero”.

However, building a graph of words provides the SLU module with more sentences in order
to build a better semantic interpretation of the input utterance. Furthermore, since the
SLU module will finally choose a sentence that is represented by a path in this graph, as
a subproduct of the semantic decoding process a translation of the utterance will be built,

by incorporating semantic knowledge for its construction.

A key feature of this approach is that, despite the graph of words built this way may
have any words in the system’s language since the translators are general-purpose, the SLU

module is able to restrict the words provided by the different translators to the system’s
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task-dependent domain. For example, if many translators provide a word that is not in
the domain of the system, and just one outputs an in-domain word, then the paths that
are chosen to build the graph of concepts will contain this in-domain word, and the out-
of-vocabulary words will be avoided. Thus, in this approach the conversion from a general
domain to a restricted one is performed by the SLU module via its restricted task-dependent

vocabulary.

5.2.2 An approach based on a task-dependent statistical machine translation

system

One drawback of general-purpose machine translators applied to restricted-domain tasks,
such as multilingual SLU, is that they do not take advantage of domain-specific knowledge.
This is even more important in the case of multilingual SLU, since in language under-
standing tasks there are usually some keywords that determine a large part of the meaning
of a sentence, and if these keywords are lost during the translation process, sometimes
due to synonyms and other pragmatic errors, then the understanding result would be very
poor. This problem could be solved using a task-dependent (or domain-specific) corpus
to train the machine translation system. In the case of the multilingual DIHANA cor-
pus, a task-dependent parallel corpus was obtained by translating the training data by four
general-purpose web translators. This parallel corpus is then used to train a task-dependent
MOSES translator.

Figure 5.4 shows a diagram of the resulting architecture. In it, the training corpus (Spanish
DIHANA in this case) has a double function. On one side, it is used to train the semantic
models for the SLU module that works in Spanish. On the other, it is the ground from
which the statistical machine translation system for translating the user’s utterances will be
built. All the sentences from this training corpus are translated by several general-purpose
web translators, building this way a parallel task-dependent corpus. Then, this parallel
corpus is used to train a statistical machine translation system, which in this system is the
MOSES software. In this training phase lexical models, phrase-based models and reordering
models are built. It is worth highlighting the alignment and phrase extraction steps. In the
alignment step each pair of training sentences (it is, each sentence and its translation) are
aligned according to some metric (Och and Ney 2003), building this way an alignment table.

Then, in the phrase extraction step this matrix is processed to determine which chunks of
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Chapter 5. A test-on-source approach to multilingual spoken language understanding

the sentence in one language are translated by which segments of the sentence in the other
language. The phrases determined here will be later used to translate the input sentence:
when a sentence is to be translated, the phrases that appear in it are identified and used
in the translation algorithm. Hence, in the case of the multilingual DIHANA corpus, this
means that the different translations that were obtained using several general-purpose web
translators can be mixed, if the translation algorithm finds that it will lead to a translation
with a higher score. It also means that the projection to in-domain words in the system’s
language is performed via this machine translation process, since the translations will be
based on the original training sentences, and they are expected to be adequate for the SLU
task.

LO—30
rr"(-'"'!' \
Graph of Words
Speech Translator Semantic Decoder
wy ..w; :Concept,
Statistical raoh of Semantic Semantic N,
WM“-—' ASR [ Transiator |l PR » Decoding | — Decoding ||, T P
(MOSES) Step 1 Step 2 e e
W, -Wol.once
1-best n-best Graph of Cnncepl§ i1 " P
%2:&5/
TEST
- Ty TRAINING
Translation Semantic
Model Model
4 A
le—1I| DIHANA .
Translation Model || Web Corpus Semantic
Learning (MOSES) | Translators (Training Model Learning
Set)

Figure 5.4: Scheme of the architecture based on a task-dependent machine translation system
using MOSES.

In order to tune the parameters of the machine translation system, for example using the
MERT algorithm (Och 2003), a small set of development sentences translated by humans

may be used, which must be different to the training ones.

Finally, the n-best translations provided by the statistical machine translation system are

used to build a graph of words in the same way that it worked for the other system. This
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allows to amend the errors that the 1-best translation may have, possibly due to the presence
of errors in the training corpus, if the correct word is in the other sentences of the n-best

set.

5.3 Graph-based SLU

Following the test-on-source approach, once the input utterance has been translated into the
system’s language, then any monolingual SLU engine may be used to extract the semantic
information contained in it. In this case, the output of the speech translation module is a
graph of words which represent a set of possible translations of the input utterance, each
of them weighted with a probability of the distribution p(A|W;) restricted to the sentences
represented in the graph. This case is very similar to when in the monolingual case several
recognitions of an utterance were joined into a graph of words. Hence, the same approach
to graph-based SLU can be used here (see Section 4.3 for more detail on the algorithms

used).

First, the graph of words is converted into a graph of concepts, by searching those segments
of words that are lexical realizations of a concept. These segments of words are converted
into arcs in the graph of concepts, along with the concept they represent. The weight of this
arc is a combination of the product of the arcs of the graph of words that lead to this path
and the probability that the concept gives to the segment of words. More formally, this
weight is p(A|WSJZ) p(WSJZ\c), where i and j are the beginning and ending nodes of the path
in the graph of words and c is the concept represented by the segment Wgz The models
that provide the probability of a sequence of words given a concept, it is, p(ng]c), are
called concept-dependent semantic models, and can be learnt as n-gram language models

of the sequences of words that lexicalize the concepts of the task.

The graph of concepts is then processed in order to find the best sequence of concepts
C. This is performed by computing the path in the graph of concepts that maximizes the
combination of its probability and the probability p(C) that a semantic model gives to
the underlying sequence of concepts. This semantic model can be estimated as an n-gram

language model of sequences of concepts.

This way of finding the best sequence of concepts fulfills what it was stated in Equation

5.4. It is also worth noting that in both stages of the graph-based SLU process there are

99



Chapter 5. A test-on-source approach to multilingual spoken language understanding

a few tuning parameters that must be adjusted. A development dataset may be used to

determine an empirical value for them.

The search of the best path in the graph of concepts not only provides the best sequence of
concepts C , but also some additional information. Since each arc of the graph of concepts
has a segment of words associated to it, joining the segments corresponding to the best path
provides a translation W, of the input utterance. This translation is expected to be more
semantically consistent than a sentence provided by a single translation system (although in
some cases they might be the same sentence). The output of the SLU process also provides

a segmentation of the translation W, in terms of the concepts of C.

As an example, Table 5.1 shows a possible output of the SLU module when the input is
the graph of words of Figure 5.3. The segmentation can be further processed to obtain a

frame representation of the semantics.

Sequence of query <departure time> relative number
concepts
Sequence of puede repetir a qué hora sale el primero
words (could you repeat what time the first one departs at)
Semantic puede repetir : query
segmentation | a qué hora sale : <departure time>

el primero : relative_number

Table 5.1: Example of a possible output for the graph of words of Figure 5.3.

5.4 Experimental evaluation

In order to evaluate the two presented systems that implement a test-on-source approach to
multilingual SLU, an exhaustive experimentation using the multilingual DIHANA corpus
(Garcia et al. 2014) has been driven. For this experimentation, the partition of the corpus
that has been used is analogous to the one used in the monolingual experimentation: 4,889
sentences for training, 340 for development, and 1,000 for test. The training set was
translated using four general-purpose web translators, which amounts to 4,889-4 = 19, 556
training sentences. The development and test sets were translated and uttered by native

speakers of the different languages.
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The experiments were conducted using English and French as the user’s languages, being
Spanish in all cases the system’s language. Also, both textual and spoken inputs were
considered. The ASR used for spoken inputs was the Google speech recognizer. The
Word Error Rates obtained during speech recognition were 20.0 for English and 19.5 for
French. It must be noted that, since the French dataset has just 500 spoken utterances,
the experiments with French speech input were performed using 500 items, instead of the
1,000 used in the English dataset. Also, for the spoken datasets, all the modules of the

system were tuned using correct written inputs.

For the system that performs a combination of several outputs from general-purpose web
translators, four translators were used to obtain the translations of the test utterances that
are to be combined. These translators are the same that were used to obtain the training
part of the multilingual DIHANA corpus: Bing Translator, Google Translator, Lucy, and
Opentrad.

For the system based on a task-dependent machine translation system, the MOSES toolkit
was used. The translation models were learnt using the training part of the multilingual
DIHANA corpus, and the system was tuned by optimizing the BLEU score on the written
sentences of the development set. Up to the 5-best translations were taken as the output

of this module.

Similarly to the monolingual case, all the semantic models were trained as bigram models of
linguistic units: words in the case of the concept-dependent semantic models and concepts

for the other semantic model.

To compare the results obtained by these two systems, a experimentation in the same

conditions was performed with two other systems:

e A system that takes a set of translations and performs the semantic decoding using
the graph-based algorithm but taking each translation separately. Then, the output
to which the SLU module assigned the maximum score is the one provided by the
system. This system is equivalent to removing the graph of words builder module,
then having several SLU systems for just one sentence working in parallel, and finally
taking the one with maximum score as the final output. This allows to analyze the
consequences of the inference process which builds the graph of words that contains

several new translations. The inputs to this system have been the set of translations
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provided by the general-purpose web translators, and the 5-best translations from
MOSES.

e A system that takes a single translation and uses a CRF model to obtain the best
sequence of concepts. The inputs to this system were the individual outputs from
the general-purpose web translators and the 1-best translation from the MOSES sys-
tem. This allows to compare the graph-based multilingual SLU system to another in-
cascade multilingual SLU setting composed by a machine translation system plugged
to a state-of-the-art CRF-based Monolingual SLU engine. For the CRF, the CRF++
toolkit was used. With the objective of improving the representation of the relation
between words within a concept in order to achieve better SLU results (and thus
to obtain a harder baseline) the training set was labelled using IOB tags. Lexical

features based on unigrams and bigrams were used to train the CRF tagger.

Several measures have been used to assess the quality of the different systems. To evaluate
the quality of the semantic decodings provided by the SLU module, the Concept Error
Rate (CER) and the Frame-Slot Error Rate (FSER) have been computed (see Section 4.5).
However, the SLU module also builds a translation of the input utterance which takes into
account the translations provided by one or more systems and the semantic knowledge of
the task. To judge the quality of these translations, the Word Error Rate (WER) and the
BLEU score have been determined. BLEU stands for Bilingual Evaluation Understudy and
it is nowadays the most used translation score. It was presented in (Papineni et al. 2002)
and it is based on a modification of the n-gram precision of a translation according to a

reference. A higher BLEU score indicates a better translation.

For reference purposes, the monolingual results for Spanish are shown in Table 5.2, where
the Google ASR was used to transcribe the speech input. In this table, the WER refers to

the one achieved by the speech recognizer.

| Input | WER | CER | FSER |
Text - [ 45 | 14
Speech | 17.6 | 14.2 12.8

Table 5.2: Results achieved by the monolingual system in Spanish.
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Translators \ CER \ FSER ‘ WER ‘ BLEU

1000 241 [ 152 | 456 | 35.2
0100 245 | 175 [ 470 | 370
0010 323 | 196 | 523 | 25.6
0001 319 [ 265 | 542 | 20.6
1100 207 [ 119 | 432 | 405
1010 21.7 [ 129 | 435 | 384
1001 221 [ 144 | 435 | 36.8
0110 208 [ 11.8 | 441 | 383
0101 240 [ 181 | 453 | 37.9
0011 281 [ 19.6 | 48.2 | 29.0
1110 [19.2 ] 10.6 [ 42.5 [ 41.1
1101 21.0 | 128 | 42.5 | 40.6
1011 215 [ 139 | 435 | 382
0111 19.9 | 122 [ 428 | 396
1111 ] 208 | 129 | 43.6 | 392

Table 5.3: Results for English text using general-purpose web translators.

5.4.1 Results with the system based on general-purpose web translators

For each of the languages and types of input (text or speech), all the combinations of
the four general-purpose web translators were experimentally explored. This amounts to
15 possible combinations of translators for each language and type of input. In order to
give a concise representation of the translators used in each experiment, they have been
represented as a binary code, where 1 indicates that the translator was used, and 0 denotes
its absence. In this binary representation, from left to right, the different numbers will
represent the presence or absence of: Bing, Google, Lucy, and Opentrad. For example, the
code 0110 means that the translations from Google and Lucy were combined, discarding

those from Bing and Opentrad.

Table 5.3 shows the results obtained when the input are correct written English sentences.
It can be observed that the performance in terms of the semantic measures showed by each
of the translators alone is very poor when compared to their aggregation. For example,
the combination 1100 outperforms the best single translator by 3.4 points of CER and 3.3

points of FSER. In this case, among all the possible combinations, the one that provides

103



Chapter 5. A test-on-source approach to multilingual spoken language understanding

the best results is not the union of all the translators, but the combination of three of them
(1110). This outperforms the best single translator in 4.9 points of CER and 4.6 points of
FSER. Also this combination provides the translations of best quality, achieving a WER
of 42.5 and a BLEU of 41.1, while the best results achieved by any single translator are a
WER of 45.6 and a BLEU of 37.0.

It is interesting to note that the combination 1101 achieves the same WER than 1110, but
leads to worse BLEU, CER and FSER. In the case of BLEU, it is explained because the
WER measure is defined in terms of words and BLEU is determined by common n-grams.
Then, it can happen that two sequences that lead to the same WER, have different number
of common n-grams with respect to a reference. Regarding CER and FSER, this indicates
that the combination 1101 makes more translation errors that are semantically relevant, it is,
words which failure lead to errors in the identification of the semantic segments (concepts).
On the contrary, the combination 1110 makes the same amount of errors (in percentage)

but more semantically relevant words are preserved.

Table 5.4 shows the results when the input to the system are spoken utterances in English.
In this case, the best combination for all the understanding measures is also 1110, which
outperforms in 6 absolute points of CER and 3.8 absolute points of FSER the best result
obtained by a single translator. Also this is the combination that achieves the best BLEU
score, 31.9, which amounts to 3.3 points more than the best single translator. However,
the combination that provides the best WER is 0111. This can be explained similarly to
the previous case: the sequence of words that provides the best Word Error Rate does not

have to lead to the best results on CER, FSER, and BLEU.

Both Table 5.3 and Table 5.4 show that an adequate combination of the information pro-
vided by several translators leads to both an improvement of the quality of the semantic
interpretation and an increase of the quality of the resulting translation. This means that
when pieces of information form several translations are combined by means of a graph,
the SLU algorithm jumps from one to other translation in order to select in each case
the segments of words that lead to the best semantic intepretation, and additionally, to a
translation of the user’s utterance that also incorporates semantic knowledge. This shows
the suitability of this strategy for multilingual SLU. Furthermore, the improvement in the

quality of the translations suggests that the incorporation of semantic knowledge to ma-
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Translators \ CER \ FSER ‘ WER ‘ BLEU

1000 359 [ 288 [ 55.0 | 25.2
0100 39.7 | 330 | 56.5 | 28.6
0010 408 | 331 | 584 | 217
0001 404 [ 383 [ 59.8 | 183
1100 322 [ 259 | 524 | 30.9
1010 321 [ 271 | 51.9 | 289
1001 327 | 276 | 527 | 273
0110 335 | 272 [ 52.6 | 308
0101 344 | 301 [ 53.7 | 30.0
0011 37.0 | 306 | 55.7 | 243
1110 [ 29.9 [ 25.0 [ 51.6 | 31.9
1101 326 | 265 | 51.6 | 314
1011 314 [ 262 | 51.8 | 30.0
0111 307 [ 252 | 51.2 | 314
1111 [ 318 ] 263 | 531 | 309

Table 5.4: Results for English speech using general-purpose web translators.

chine translation systems could lead to a decrease in the number of errors made by the

system, specially in those related to semantics and pragmatics.

It is interesting to point out that for both modalities of English input the best results are
achieved when not all the translators are used. This means that, provided a graph of words
built from some set of translations, adding one translation to the set may not induce a
graph of words that is more appropriate for the semantic decoding process. When adding
a new translation to a set, the resulting graph of words may differ in two ways from the
former graph: (i) in the probabilities represented in the arcs, and (ii) in their topology.
These new probabilities and the new topology may lead to a completely different graph of
concepts whose probabilities mislead the semantic decoding process through a path that
contains more errors. In other words, it sometimes happens that adding more translations
to a set either increases the entropy of this set or reinforces a wrong path, resulting in a
less adequate graph of words that generates a not so adequate graph of concepts and thus

to errors in the semantic interpretation.
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Translators \ CER \ FSER ‘ WER ‘ BLEU

1000 30.7 | 23.1 52.4 30.1
0100 33.0 | 254 594.6 27.8
0010 27.5 18.5 50.6 30.1
0001 30.6 | 20.0 04.3 24.5
1100 26.3 18.9 50.1 34.0
1010 22.7 15.4 46.5 38.3
1001 23.9 16.6 49.3 33.8
0110 24.9 18.0 47.9 36.5
0101 23.3 16.7 48.9 34.4
0011 25.0 16.5 48.7 33.5
1110 21.6 14.4 45.9 39.7
1101 21.7 14.8 47.4 37.3
1011 21.2 13.7 45.8 38.7
0111 21.2 14.4 | 45.7 39.2

1111 [ 20.2 | 13.2 | 45.7 | 39.9

Table 5.5: Results for French text using general-purpose web translators.

Tables 5.5 and 5.6 show the results obtained for both text and spoken French input. In both
cases the best result is now obtained when a combination of all four translators is taken.
This means that, overall, all the translators contribute to an increase of the quality of the
resulting graph of words. Also in both modalities significant improvements are achieved in
all the measures with respect to the best single translator. This confirms the hypothesis that
the SLU algorithm is able to adequately combine chunks from several translations in order
to find the best semantic interpretation and the most semantically appropriate translation,

which, in turn, also improves the measures related to the quality of the translation.
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Translators | CER | FSER | WER | BLEU

1000 353 | 30.7 | 58.7 | 231
0100 373 | 335 | 612 | 227
0010 304 | 261 | 584 | 211
0001 324 | 273 | 615 | 177
1100 31.1 | 269 | 55.9 [ 282
1010 27.7 [ 244 | 538 | 289
1001 285 | 249 | 56.2 | 270
0110 29.7 | 263 | 558 | 285
0101 288 | 248 [ 559 | 271
0011 28.7 | 239 | 56.8 | 244
1110 262 | 21.7 | 531 | 323
1101 265 | 226 | 53.9 | 30.7
1011 263 | 220 | 533 | 30.7
0111 26.7 [ 230 | 533 | 31.0
1111 [ 24.8 | 20.8 | 52.3 | 33.1

Table 5.6: Results for French speech using general-purpose web translators.
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In order to further analyze the improvements that offer the inferred translations represented
in the graphs of words, another experiment without this combination has been performed.
In it, the different translations provided by the general-purpose web translators are ana-
lyzed by the graph-based SLU module independently, and the semantic interpretation that
obtains the best score is kept. Table 5.7 shows the results obtained in this experiment,
compared to those achieved taking only the sentences provided by the single translator
that provides the minimum CER, and to the best results that were reached by means of a

combination of hypotheses.

CER | FSER | WER | BLEU
Best single translator (1000) | 24.1 15.2 45.6 35.2
Text | Maximum score separately 21.9 12.1 44.1 294
Graph combination (1110) 19.2 | 10.6 | 42.5 | 41.1

English Best single translator (1000) | 35.9 | 28.8 | 55.0 | 25.2
Speech | Maximum score separately 33.7 | 26.1 54.1 22.9

Graph combination (1110) 29.9 | 25.0 | 51.6 | 31.9

Best single translator (0010) | 27.5 | 18.5 50.6 30.1

Text | Maximum score separately 27.3 18.9 49.8 25.8

French Graph combination (1111) 20.2 | 13.2 | 45.7 | 39.9

Best single translator (0010) | 30.4 | 26.1 58.4 21.1
Speech | Maximum score separately 31.6 26.4 57.4 20.8
Graph combination (1111) 24.8 | 20.8 | 52.3 | 33.1

Table 5.7: Results for text and speech in English and French selecting for each utterance the
translation from the general-purpose web translators that achieves the maximum score in the SLU
module. These results are compared to the best results obtained by a single translator and to the
best results obtained using a combination of the different translations by means of a graph of words.

The numbers show that the best results are obtained in all cases using a combination of
hypotheses by means of a graph of words. For example, in the case of French text input,
the graph combination improves the separate processing of the translations by 7.1 absolute
points of CER and 5.7 absolute points of FSER. These results clearly show that, in fact,
the SLU algorithm selects at each step the word in the graph that is more suitable to build
the sequences of words of the graph of concepts, regardless of whether two consecutive
words in the segment came from the same original translation or not. This leads to a better

quality of the segments built, and then to a higher quality semantic interpretation. A better
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translation is obtained this way as well, thanks to the semantic knowledge that the SLU

process adds to the machine translation engines.

It is also worth noting that in the English case the separate combination of translations
outperforms the results of the best single translator in the semantic measures, but the BLEU
it achieves is worse than the single translator. This indicates that just selecting a translation
among a set according to semantic criteria does not lead to an improvement of the quality
of the translations, while an accurate mix of the translations actually improves this quality.
However, in the French case, the CER and FSER obtained by the separate combination of

translations are slightly worse than the numbers for the best single translator.

In consequence, this naive selection method actually allows to prove that: (i) given two
sentences and a set of tramslators, the translator that provides the best results for the
first sentence may not be the best for the second, since each sentence may have different
structures and each translator was learnt using different data, and (ii) mixing subsequences
of words from several translations by means of an adequate mechanism (a graph of words in
this case) provides better results than processing each sentence separately and then deciding

which semantic interpretation should be kept.

Finally, Table 5.8 shows a comparison between the performances of the graph-based multi-
lingual SLU system and a configuration in which the output of each translator is fed into
a CRF-based Monolingual SLU system. Two different kinds of contrasts are shown in the
Table. First, for each single general-purpose web translator, the SLU results obtained with
the CRF system are shown, as well as the variation (in absolute points) obtained with
respect to the graph-based system when just that translator is used. A negative variation
indicates that the CRF behaves better than the graph-based system, while a positive vari-
ation shows that the results obtained with the graph decoding are better. Second, the row
labelled as Graphs shows the best results obtained by using a combination of translators

on the graph-based system.

A comparison of the results obtained by each translator, language and type of input sepa-
rately does not clarify much this discussion. Sometimes the CRF behaves better (it improves
the numbers of the graph-based system by 5.0 points of CER and 3.3 points of FSER in
one of the settings that use English speech), but other times the graph-based semantic
decoder outperforms the CRF (for example, in one of the French speech settings it offers
an improvement of 2.4 points of CER and 5.3 points of FSER over the CRF). In general,
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Text Speech

Translators CER FSER CER FSER
1000 24.5 (+0.4) | 174 (+2.2) | 33.7 (-2.2) | 29.3 (40.5)
0100 23.9 (-0.6) | 15.8 (-1.7) | 34.7 (-5.0) | 29.7 (-3.3)
English | 0010 312 (-1.1) | 22.2 (+2.6) | 37.3 (-3.5) | 31.0 (-2.1)
0001 33.1 (+1.2) | 26.6 (+0.1) | 40.2 (-0.2) | 35.8 (-2.5)

Graphs 19.2 10.6 29.9 25.0
1000 30.1 (-0.6) | 24.3 (+1.2) | 33.6 (-1.7) | 31.3 (-+0.6)
0100 32.7 (-0.3) | 27.4 (+2.0) | 37.5 (+0.2) | 34.5 (+1.0)
French 0010 262 (-1.3) | 22.2 (+3.7) | 304 (0) | 3L1 (5.0
0001 30.8 (+0.2) | 22.6 (+2.6) | 34.8 (+2.4) | 32.6 (+5.3)

Graphs 20.2 13.2 24.8 20.8

Table 5.8: Results for text and speech using CRF in English and French taking as input the trans-
lations generated by the general-purpose web translators separately. The numbers in parentheses
are the variations with respect to the graph-based approach when the same translator is used. A
negative variation indicates that the CRF obtains better results than the graph-based approach for
that translator, and a positive variation indicates a better behaviour of the graph-based strategy.
The row labelled as Graphs shows the best result obtained by a combination of translators and the
graph-based approach.

it seems that the CRF obtain better results for the CER measure, but the graph-based
approach achieves a better performance for FSER. This indicates that CRF provides a
more accurate sequence of concepts, but in the underlying segmentation some meaningful
words are assigned to the wrong concept, which leads to more mistakes when a more con-
cise representation (such as a frame) is used. However, it is clear that the combination of
translations by means of graphs of words certainly outperforms the numbers obtained with
the CRF. This means that an adequate combination of translations that is analyzed by a
SLU algorithm that is able to process and exploit them in a natural and efficient way is
more convenient than the use of a state-of-the-art SLU system that only utilizes a single

translation.
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5.4.2 Results with the system based on a task-dependent MOSES translator

For the experiments with the system based on a task-dependent MOSES translator, up
to the 5-best translations were taken for each of the languages and input modalities (text
or speech). The set of translations used to build the different graphs of words was built
incrementally, it is, the 2-best translation was added to the 1-best, the 3-best was added
to the 1 and 2-best, and so on. Hence, in the following tables, a row labelled as 3 means
that the 3 first hypotheses provided by MOSES were used to build the graph of words.
The MOSES systems were tuned to optimize the BLEU score on the correctly written
development set. This means that two different translators were built: one for English
and another for French, and for each language each translator processed both the correctly
written and the speech transcription inputs. It should be highlighted that the sizes of the
training and the development sets used in these experiments (19,556 and 340 respectively)
are much smaller than the sizes of usual machine translation corpora, which usually have
several hundred thousand sentences for training and several thousand for development.
This may lead to problems related to this data scarcity, such as a weak estimation of the
different probabilities of the translation models, as well to a suboptimum tuning of the

different parameters of the translator.

Table 5.9 shows the results obtained for the English correctly written input. The CER
obtained for the 2 and 4 best translations are very similar, but the lowest is obtained using
the 2-best. However, it does not lead to the best FSER, which is obtained just using the
1-best. This small difference may be due to slight differences in the segmentations obtained
by each system, and specifically in the non-relevant concepts (such as courtesy), which are
better identified by the system that uses the 2-best hypotheses. It is also worth noting that
when the 3-best translation is added to the set (and the same happens with the 5-best) the
quality of the graph of words decays considerably. This can be explained similarly to the
case of the general-purpose translators: if a bad translation is added to the set and it did
not already have a strong probability mass assigned to arcs that provide a good assignment
of words to concepts, then the quality of the graph of concepts that is subsequently built

is also deteriorated, which worsens the quality of the final semantic decoding.

However, this explanation arises a new question regarding the quality of the translations:
why the 3-best translation is a bad translation, while the 4-best is a good translation since

it leads to an improvement of the results? Actually, this could happen in any machine
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n-best | CER | FSER | WER | BLEU

1 219 | 12.8 | 44.1 38.5
21.2 | 133 43.5 39.0
227 | 148 43.5 38.8
214 13.4 43.5 38.8
22.5 14.7 | 43.2 | 39.3

[G13IEN GV V]

Table 5.9: Results for English text using MOSES.

translation system (there are re-ranking strategies in order to find the most accurate trans-
lation, which may not be the 1-best), but in this case it is related to the training data
scarcity. In the multilingual DIHANA corpus, each Spanish sentence has four translations
obtained by means of general-purpose web translators. These translations have also errors
since they are unavoidable in machine translation. Hence, different structures (probably
with errors) in English and French are alligned to phrases of the same correctly written
Spanish sentence. The integration of all these structures leads in the translation models
to a large variability in the different assignments of phrases between languages (which are
called alignments). When translating correct English and French sentences into Spanish,
the translator searches for structures that it saw during the training phase, and the phrases
in the other language that are aligned with them. In the case of the multilingual DIHANA
corpus, two effects can be observed during the translation process. First, due to the errors
present in the training corpus, the structures of the written sentences that coincide with
structures of the training sentences may be very short. Second, due to the data scarcity,
the alignments that were obtained during the training phase may not be of a high quality,
resulting in a translation by a sequence of words that is not appropriate. However, it may
happen that a translation that is below in the n-best list (i.e. has received a lower score
by the translator) is actually more adequate. Hence, when this translation is added to the

set, an improvement of the results is observed.

Table 5.10 shows the results for the English speech input. The tendency of the results

obtained with this system is similar to the one that was presented by the textual input.

Another effect that is observed for both modalities of English input is that the best quality
of the translations is obtained when all the 5-best translations are combined. MOSES itself

tries to obtain translations that optimize the BLEU measure, but when several translations
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n-best | CER | FSER | WER | BLEU

1 31.0 | 24.2 53.1 27.9
30.6 | 25.0 52.7 28.1
31.5 | 26.0 52.9 27.9
309 | 254 52.8 28.1
31.5 | 25.7 | 52.4 | 28.3

[G13IEN GV V]

Table 5.10: Results for English speech using MOSES.

are combined using task-dependent semantic knowledge, then the quality of the translations

is improved.

Tables 5.11 and 5.12 show the results obtained when the input language is French. In the
case of text input, the best results according to the semantic measures are obtained using
the 3-best translations, while the translation quality measures achieve their best results
when using all the 5-best translations. However, in the case of speech input, the best
results for all the measures are obtained when the 5 translations are used, with a steady
improvement of the figures as the number of translations increases. Hence, the tendencies
observed for French are similar to those presented by the experiments using English: (i)
a higher number of translations may not lead to a better semantic decoding, and (ii) the
incorporation of semantic knowledge to the combination of translations allows to improve
the results provided by the translation models of MOSES.

Another important fact is observed in all the four tables obtained in this experimentation
until now: all the numbers for all the measures are very close, much more than in the
case of the general-purpose web translators. This is explained by the different natures
of the translators used in each of the cases. On one side, in the case of general-purpose
web translators, the 1-best outputs from several translators, each one probably built from
different data, were mixed. Furthermore, the output vocabulary in Spanish was not limited
to the scope of the SLU task, and it was the SLU algorithm who decided which words
to take to represent each concept, avoiding out-of-vocabulary words when building the
graph of concepts. Then, the combination of several translators makes it more possible
that more in-vocabulary words appear in the graph of words, which leads to a better
quality graph of concepts and then to a significant improvement of the results. On the

other side, when using a MOSES-based translation system, several sentences from a single

113



Chapter 5. A test-on-source approach to multilingual spoken language understanding

n-best | CER | FSER | WER | BLEU

1 21.9 15.2 45.8 374
21.8 15.1 45.8 37.5
21.6 | 14.7 | 458 37.6
21.6 15.0 45.6 37.8
21.6 14.8 45.4 | 38.1

[G13IEN GV V]

Table 5.11: Results for French text using MOSES.

n-best | CER | FSER | WER | BLEU

1 274 | 23.1 51.5 31.0
26.8 | 22.1 51.4 314
26.3 | 218 51.2 314
26.2 | 21.7 51.1 31.6
26.0 | 21.7 | 51.0 | 31.7

QU = W N

Table 5.12: Results for French speech using MOSES.

translator are used, which means less variability than using several translator. In addition,
the output vocabulary is restricted to the task, which means that the difference between
the translations of the 5-best set will not be very large in most of the cases. Hence, the
limited changes that can be found among the options provided by the MOSES translator

also lead to tighter variations in the results obtained for each experiment.

The described effect can also be observed in Table 5.13, where the results obtained with
the 1-best decoding and the graph combination that optimizes the CER are compared to
the strategy of processing each sentence of the 5-best separately and then taking the one
that is given the best score by the SLU module.

In this Table it is shown that selecting a sentence among the ones in the 5-best set always
outperforms the results obtained for the semantic measures when just the 1-best is taken.
This means that there are other sentences in the set that are more semantically adequate
than the 1-best (despite the BLEU obtained is lower). However, the separate processing
and the graph combination achieve in most cases very similar results. It is due to the
way MOSES works, in which performs an inference process with the training sentences in

which their different structures may be mixed, but limited to the task-dependent output
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CER | FSER | WER | BLEU
1-best 21.9 12.8 441 38.5
Text | Maximum score separately 21.3 | 12.3 | 43.5 30.9
Graph combination (2-best) | 21.2 | 13.3 | 43.5 | 39.0

English 1-best 31.0 | 242 | 531 | 27.9
Speech | Maximum score separately 29.9 | 23.2 | 52.7 23.5

Graph combination (2-best) | 30.6 | 25.0 | 52.7 | 28.1

1-best 21.9 | 15.2 45.8 37.4

Text | Maximum score separately | 21.4 | 14.8 45.4 30.0

French Graph combination (3-best) | 21.6 | 14.7 | 458 | 37.6

1-best 27.4 23.1 51.5 31.0
Speech | Maximum score separately 26.4 | 22.0 51.3 26.0
Graph combination (5-best) | 26.0 | 21.7 | 51.0 | 31.7

Table 5.13: Results for text and speech in English and French selecting for each utterance the
translation from the 5-best provided by MOSES that achieves the maximum score in the SLU
module. These results are compared to the ones obtained using the 1-best translation and to the
best results obtained using a combination of several translations by means of a graph of words.

vocabulary. Adding a combination mechanism of several translations by means of graphs
provides a systematic and effective way to mix them and incorporate semantic knowledge

in order to build the semantic structures that can be inferred from them.

Finally, Table 5.14 shows a comparison of the graph-approach to a CRF semantic decoder
which analyzes the 1-best output from MOSES. The row labelled as 1-best+CRF shows
the results of this system, and the numbers in parentheses show the difference to analyzing
the same translation with the graph-based system. In this comparison, the CRF always
outperforms in CER the results obtained by the graph-based system processing the 1-best.
However, regarding FSER, in almost all the graphs surpass the CRF system. This implies
that the CRF system does not identify the meaningful concepts as accurately as the graph-

based system.

If the CRF are compared now to the best results obtained with the graph-based system
(second row for each language), some disparity is observed. CRF work better for English,
while in general the graphs work better for French. It can be then concluded that both
approaches are comparable and that the graph-based approach outperforms the state-of-

the-art CRF formalism for some of the settings.
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Text Speech
SLU method CER FSER CER FSER
English |_Pest-CRE | 19.3 (-2.6) | 13.3 (+0.5) | 26.8 (-4.2) | 23.1 (-1.1)
Graphs 21.2 13.3 30.6 25.0
Fronch 1-best+CRF | 21.8 (-0.1) 16.1 (+0.9) | 24.7 (-2.7) | 23.5 (+0.4)
Graphs 21.6 14.7 26.0 21.7

Table 5.14: Comparison of the results obtained using a CRF system on the 1-best output of
MOSES and the best results obtained by the graph-based approach using MOSES. The numbers
in parentheses are the variation with respect to the graph-based approach using just the 1-best
translation. A negative variation indicates that the CRF approach obtains better results than the
graph-based approach, and a positive variation indicates a better behaviour of the graph-based
strategy.

5.4.3 Comparison between systems

In order to compare the two approaches to multilingual SLU that have been presented in
this chapter, Tables 5.15 to 5.18 show the best results obtained by each of these systems.
In both cases, the results refer to systems with the full working pipeline, it is, when the
graph builder algorithm is used and the graph-based method is applied at the SLU stage.
In all cases, the best results are obtained by the system that uses general-purpose web
translators. However, as aforementioned, it is important to highlight that the training and
development corpora for the MOSES system were very small compared to usual corpora
for machine translation, and probably this had a negative effect on the results for this
approach. As future work, a larger task-dependent corpora may be collected, but a more
interesting idea would be to use some domain adaptation techniques for machine translation,
such as interpolating a general-purpose corpus with a task-dependent one, with the goal of

increasing the amount of data used, its quality, and its coverage for a SLU task.

Furthermore, in the case of the results using the general-purpose web translators and the
graph-based method, they are in many cases better than the results obtained with the CRF
approach and the 1-best output from MOSES (this is the best setting for the CRF method,
see Table 5.8).

In conclusion, results show the usefulness of combining several translations from one or
more translators by means of a graph that generalizes these translations, and the use of a

SLU system that is able to exploit this combination by identifying semantic structures that
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can be made of parts of different original sentences. This combination is more convenient if
general-purpose translators are used, since it allows to better fuse in-vocabulary segments of
sentences that may contain several out-of-vocabulary words, which generally are not useful

for SLU purposes.

| System | CER | FSER | WER | BLEU
general-purpose web translators (1110) 19.2 | 10.6 | 42.5 | 41.1
task-dependent MOSES translator (2-best) | 21.2 | 13.3 | 43.5 39.0

Table 5.15: Best results obtained for English text for each of the approaches.

System | CER | FSER | WER | BLEU |

general-purpose web translators (1110) 29.9 | 25.0 | 51.6 | 31.9
task-dependent MOSES translator (2-best) | 30.6 | 25.0 | 52.7 28.1

Table 5.16: Best results obtained for English speech for each of the approaches.

System | CER | FSER | WER | BLEU

general-purpose web translators (1111) 20.2 | 13.2 | 45.7 | 39.9
task-dependent MOSES translator (3-best) | 21.6 | 14.7 | 45.8 37.6

Table 5.17: Best results obtained for French text for each of the approaches.

System [ CER [ FSER | WER | BLEU

general-purpose web translators (1111) 24.8 | 20.8 | 523 | 33.1
task-dependent MOSES translator (5-best) | 26.0 | 21.7 | 51.0 | 31.7

Table 5.18: Best results obtained for French speech for each of the approaches.
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Chapter 6

Conclusions

This thesis has addressed the challenges of spoken language understanding. For this pur-
pose, a graph representation of this problem has been developed and a complete SLU system

based on graphs of linguistic units and statistical models has been built.

There are two main modules in the developed graph-based SLU system. The first module
is a graph of words builder module that uses a grammatical inference algorithm to con-
struct a graph structure from a set of sentences. The resulting graph generalizes the input
set of sentences based on their syntactic structures. The second module is a graph-based
semantic decoding module that uses stochastic models and works in two steps. The first
step builds a graph of concepts by searching for the sub-paths in the graph of words that
correspond to lexical realizations of the concepts of the task. To do this, a dynamic pro-
gramming graph search algorithm that combines the information of the graph of words and
the stochastic semantic models has been developed. The second step finds the best path
in the graph of concepts by means of another dynamic programming algorithm by also
using the information of another stochastic semantic model. Besides the graph of words
built with the presented algorithm, the input to the SLU module can also be a word lattice
generated by an ASR. The output of the semantic decoding module is the best sequence
of concepts, the sequence of words contained in the graph of words that underlies the best
sequence of concepts, and a segmentation of the sequence of words in terms of the concepts.
The experimental evaluation of this SLU system has shown that the results achieved are

competitive with other state-of-the-art approaches when a single sentence is provided as its
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input. Furthermore, the performance of the system improves when several sentences are
provided by means of a graph of words, also obtaining an enhancement in the quality of

the speech transcriptions when semantic information is used.

In order to perform semantic decoding experiments in a multilingual environment, a brand
new corpus was built for this work. This corpus is the multilingual DIHANA corpus, which
is an extension of the Spanish DIHANA corpus to English and French. A low-cost semi-
supervised approach was developed to obtain the training part of the corpus in the new
languages by means of several general-purpose web translators. The development and test
sets were manually translated by native speakers in order to better model real users. Also,

a subset of the test sentences were uttered by native speakers.

The proposed graph-based approach to monolingual SLU has also been extended to a mul-
tilingual setting using a test-on-source approach. For this purpose, two speech translation
techniques were developed. One technique uses several general-purpose web translators, and
the other technique uses a task-dependent parallel corpus. In both cases, the set of trans-
lations obtained is used to build a graph of words in the same way as for the monolingual

case. These graphs of words are then analyzed by the graph-based SLU method.

The experimental evaluation of this multilingual SLU approach was carried out using the
multilingual DIHANA corpus in both English and French with both text and speech inputs.
For the sake of comparison, two other systems were used, but taking single transcriptions
from the translators instead of a graph of words. All the experiments showed the conve-
nience of using several translations as the input of the SLU system. Both the measures that
assess the quality of the semantic interpretation and those that determine the quality of
the translations were improved when several translations were combined and the semantic
information was used in order the most semantically convenient translation. This improve-
ment was particularly important in the case of the system based on general-purpose web
translators, where the best results even outperformed those achieved with the CRF system.
In the case of the MOSES-based speech translation system, the results are comparable to
those obtained using the 1-best translation and the CRF system. Overall, the best results
were obtained when several translations from different translators were considered since the
knowledge provided by each of them was combined, filtered, and analyzed by the graph-
based SLU algorithm. Thus, it has been shown that the approach presented in this thesis

is appropriate for monolingual and multilingual SLU.
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Finally, there are several lines of future work that can be followed to further extend the

work presented in this thesis. These include:

e the development and evaluation of other grammatical inference algorithms to deter-
mine if the performance of the SLU method can be further improved by exploring

other combinations of translations and transcriptions.

e further research on developing discriminative models for SLU using a graph represen-
tation of the SLU problem.

e the evaluation of the test-on-source multilingual SLU method with other corpora and
other less related pairs of languages, such as Greek - Italian and Turkish - Italian, for

which the multilingual LUNA corpus can be used.

e exploring the possibility of using graphs for combining and improving the translations
provided by several MT systems in order to obtain a training corpus for a train-on-

target SLU system.
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