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Abstract: 12 

Bioelectrical surface recordings are usually performed by unipolar or bipolar disc electrodes even 13 

though they entail the serious disadvantage of having poor spatial resolution. Concentric ring electrodes 14 

give improved spatial resolution, although this type of electrode has so far only been implemented in 15 

rigid substrates and as they are not adapted to the curvature of the recording surface may provide 16 

discomfort to the patient. Moreover, the signals recorded by these electrodes are usually lower in 17 

amplitude than conventional disc electrodes. The aim of this work was thus to develop and test a new 18 

modular active sensor made up of concentric ring electrodes printed on a flexible substrate by thick-film 19 

technology together with a reusable battery-powered signal-conditioning circuit. Simultaneous ECG 20 

recording with both flexible and rigid concentric ring electrodes were carried out on 10 healthy 21 

volunteers at rest and in motion. The results show that flexible concentric ring electrodes not only 22 

present lower skin-electrode contact impedance and lower baseline wander than rigid electrodes but are 23 

also less sensitive to interference and motion artefacts. We believe these electrodes, which allow 24 

bioelectric signals to be acquired non-invasively with better spatial resolution than conventional disk 25 

electrodes, to be a step forward in the development of new monitoring systems based on Laplacian 26 

potential recordings. 27 

 28 

 29 

 30 
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1. Introduction 31 

Bioelectrical activity is a spatio-temporal process which is spatially distributed over the three 32 

dimensions of the organ system and evolves in time. It is therefore of great importance to interpret 33 

bioelectrical signals not only in time but also in the space domain, which consists of localizing any 34 

bioelectrical sources which may be picked up by non-invasive electrical recordings such as 35 

electrocardiograms (ECG) and electroencephalograms (EEG). Bioelectrical signals are generally recorded 36 

non-invasively by disc electrodes in a bipolar or unipolar configuration. In the former method the potential 37 

difference is measured between a pair of electrodes and in the latter the potential of each electrode is 38 

compared either to a neutral electrode or to the average of all electrodes [1]. One drawback of using 39 

conventional disc electrodes in bioelectrical surface recordings is their poor spatial resolution, which is 40 

mainly caused by the blurring effect of the different conductivities of the volume conductor [2-5]. To 41 

improve spatial resolution in the field of electrocardiography, body surface potential maps have been 42 

obtained by extending the standard 12-lead ECG to include a larger number of recording points covering the 43 

body surface [6]. However, the spatial resolution of body surface potential mapping is still limited due to the 44 

smearing effect caused by the torso volume conductor, which could not be resolved by simply increasing the 45 

number of body surface recording electrodes [7]. In this respect, considerable efforts have been made to 46 

study the feasibility of body surface Laplacian electrograms to localize bioelectrical sources [8, 9, 10].  47 

Theoretically, the Laplacian of surface potential is proportional to the derivative of the component of 48 

current density orthogonal to the body surface and can be interpreted as a filter that allocates more weight to 49 

the bioelectrical dipoles adjacent to the recording points [11]. The Laplacian has been shown to reduce the 50 

smoothing effects caused by the volume conductor and to increase the spatial resolution in localizing and 51 

differentiating multiple dipole sources [8, 11, 12, 13]. Laplacian methods were first applied to bioelectrical 52 

recordings by Hjorth in 1975 in order to increase the spatial resolution achieved in electroencephalographic 53 

(EEG) recordings [14]. In this study the Laplacian of the EEG signal was estimated using the surface 54 

potential picked up by five disc electrodes arranged in the form of a cross. This technique is known as the 55 

five-point method. Since then, other discretization techniques have been developed to estimate Laplacian 56 

bioelectrical potentials, including the nine-point method [12]. In the late 80s, analytic solutions were 57 

proposed to estimate the Laplacian of the surface potential in order to reduce discretization errors [15-17]. 58 

However, these are complex discrete computational techniques and are generally not suitable for real-time 59 

applications. 60 

In addition to discrete and analytic methods, the Laplacian potential can also be directly recorded 61 

from the body surface using concentric ring electrodes [11, 12], which act as spatial filters reducing low 62 

spatial frequencies and increasing spatial selectivity [18]. This reduces mutual information and alleviates 63 
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orientation problems better than disc electrodes [9]. Bioelectrical signals recorded by concentric ring 64 

electrodes on the body surface are very weak in amplitude and present high output impedance, so it is 65 

advisable for them to be conditioned (preamplified and filtered) as close as possible to the recording surface 66 

[9, 10, 18]. Lu and Tarjan developed an active Laplacian ECG sensor with a rigid tripolar concentric ring 67 

electrode in quasi-bipolar configuration (TCB, in which the outer ring and the centre disc were electrically 68 

shorted) to study the feasibility of applying this type of electrode to detecting cardiac arrhythmia in real time 69 

[19]. Furthermore, activation patterns have also been detected by Laplacian potential maps using ring 70 

electrodes [20-21]. Active TCB electrodes have been used to estimate the Laplacian potential of other 71 

bioelectrical signals such as the electroencephalogram (EEG), electroenterogram (EEnG) and the 72 

electrohysterogram (EHG), so as to increase the spatial resolution of conventional surface potential 73 

recordings [9, 10, 22].  74 

However, in spite of its numerous advantages the clinical application of Laplacian techniques based 75 

on concentric ring electrodes is still limited, mainly due to the fact that these electrodes are implemented on 76 

rigid substrates, which neither adequately adapt to the body surface contours nor offer an acceptable comfort 77 

level in out-patient applications. On the other hand flexible substrates, which are widely used in electronic 78 

engineering, would be more adaptable to body contours than rigid electrodes and would potentially improve 79 

and stabilize skin-electrode contact impedance [23-25]. Flexible concentric ring electrodes would thus 80 

combine the comfort of existing disposable electrodes with high spatial sensitivity. 81 

The goal of this work was therefore to develop and test a new modular active sensor containing 82 

disposable concentric ring electrodes printed on a flexible substrate connected to a battery-powered signal 83 

conditioning circuit and to compare it to the performance of rigid conventional concentric ring electrodes.  84 

2. Material and methods 85 

2.1 Active flexible electrode design & development 86 

In order to analyze the effect of the electrode dimensions on its response, tripolar electrodes were 87 

designed in bipolar configuration (TCB) in two different sizes: 18 mm (TCB18) and 24 mm (TCB24) 88 

external diameter. The other electrode dimensions were calculated to comply with the following 89 

requirements (see Figure 1):  90 

 

 

 Radius 

Type a (mm) b (mm) c (mm) d (mm) e (mm) 

TCB24 2 5.5 7.53 11.03 12 

TCB18 2 4.5 5.9 8.4 9 
 

Figure 1. Tripolar concentric ring electrode dimensions. 91 
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 92 

a) Considering that the common mode input impedance of the signal conditioning system is balanced, it 93 

is advisable to ensure that the electrode impedance is also balanced, which is possible if the areas of 94 

the electrode leads are equal. In a TCB electrode, in which the internal disc and the outer ring are 95 

shorted, the area of the inner disc plus the area of the outer ring may be approximately equal to the 96 

area of the middle ring (1). A minimum area of 50 mm
2
 was set to ensure signal acquisition. 97 

( ) ( ) 2222
2

22
1 50··· mmdeaAbcA ≥−+=≅−= πππ                                         (1) 98 

b) The distance (D) between the inner disc and middle ring must be equal to the distance between the 99 

middle and outer rings in order to attenuate common mode interference: 100 

cdabD −=−=                                                                           (2) 101 

c) The minimum width of the rings was set at 0.6 mm to avoid continuity problems during 102 

implementation. For the same reasons a minimum radius of 2 mm was chosen for the central disc. 103 

d) Considering that the greater the distance between registration points, the greater the amplitude of the 104 

differential electric potential, the dimensions will be selected that optimize the value of the product 105 

of the square of the distance between conductors (D
2
) by the conduction area (A1).  106 

According to these criteria, the possible designs of TCB24 (24 combinations) and TCB18 electrodes 107 

(8 combinations) were generated, these being the dimensions that optimised product (D
2
•A1), as shown in 108 

Figure 1. The rigid and flexible electrodes used for the ECGs recordings were given these dimensions. 109 

The flexible electrodes were produced by screen-printing technology by means of a three layer 110 

design as shown in Figure 2. The first layer was made up of a silver conductor in which the central dot and 111 

outer ring were short circuited, with the additional function of containing the two connection lines. The area 112 

of both poles was matched by adjusting the semi-arc length. The second layer is insulating and prevents the 113 

intermediate disc from being short-circuited by the connection lines that join the inner disc and the outer 114 

ring. The third layer was made of a silver conductor and consisted of three concentric rings in contact with 115 

the subject’s skin. A 200 mesh screen was used for each layer. The serigraphy was made by using an 116 

AUREL 900 high precision screen stencil printer. The curing period of inks was 130ºC for 10 minutes. 117 

Conductive and dielectric biocompatible screen-printing pastes were chosen that presented good adherence 118 

to polymeric substrates (Dupont 5064 Silver conductor with resistivity ≤ 10 mΩ/sq/25µm and Dupont 5036 119 

Heat seal with Insulation Resistance > 10 GΩ/sq/mil and Dielectric Constant (@ 1kHz ASTM D150) < 5).  120 

Tests were carried out on different polymeric substrates (Valox FR-1, Polyester MelinexST506 and 121 

Ultem R16SG00) to select the one that offered the best results relative to electrode flexibility and adhesion 122 

to conductive and insulating pastes, as well as low skin-electrode impedance. The strength of the adherence 123 
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of the pastes to the different polymeric substrates (Valox FR-1, polyester MelinexST506 and Ultem 124 

R16SG00) was assessed by means of sticky tape (8915 Filament APT 3M). The skin-electrode contact 125 

impedance of each electrode pole was measured in 10 volunteers using the General Devices EIM 105 126 

impedance meter, which is based on three electrode impedance measurement techniques. For this, two 127 

additional disposable electrodes were placed on both shoulders of the subjects. 128 

                a) 

 

                              b) 

 
c) 

 

Figure 2. Screen patterns used in the final printing of 2 TCB electrodes. a) 1
st
 layer: composed of conductive Ag 129 

paste; b) 2
nd

 layer: composed of dielectric paste; C) 3
rd
 layer: composed of conductive Ag paste. This is the outer layer 130 

of the electrode and is in contact with the subject’s skin. 131 

Fifteen TCB24 and fifteen TCB18 flexible electrodes, developed using the substrate that offered the 132 

best results, were assayed in the ECG recordings as detailed in the following section. The flexible concentric 133 

ring electrodes response was also compared to that of rigid ring electrodes with the same dimensions. 134 

Fifteen rigid ring electrodes of each size (TCB24 and TFCB18) were implemented on a conventional FR4 135 

substrate.  136 

As has been previously mentioned, flexible and rigid ring electrodes were directly connected to a 137 

battery-powered conditioning circuit with a low cut-off frequency of 50 mHz and a total gain of 3384 V/V. 138 
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This circuit is similar to that presented in a previous paper of the present research group [10]. The main 139 

characteristics of the signal-conditioning circuit of the sensor were experimentally checked, as shown in 140 

Table 1. It can be observed that the battery life (>12 h) was adequate for the recording sessions and the 141 

CMRR -118 dB at medium frequencies, 100 dB at 50 Hz- and output noise values -0.186 mVrms- were also 142 

appropriate for bioelectrical applications.  143 

Table 1. Conditioning circuit main parameters 144 

Parameter Value 

Cut-off frequency of the high pass filter 0.05 Hz 

Differential gain at medium frequencies 3384 V/V 

CMRR at medium frequencies 118 dB 

CMRR at 50 Hz 100 dB 

Battery life 750 min 

Output noise 0.186 mVrms 

 145 

The flexible and rigid electrodes were tested before carrying out the protocol described in the next 146 

section. Firstly, the electrical continuity of all electrodes was checked. After that, a preliminary inter-147 

electrode reproducibility test was performed on one volunteer: chest skin was prepared and 1 minute ECG 148 

signal was monitored for the 15 electrodes of each type (TCB24 flexible, TCB24 rigid, TCB18 flexible and 149 

TCB18 rigid. For the same electrode type changes in ECG morphology were not found and ECG amplitudes 150 

were also similar. 151 

2.2 ECG signal recording 152 

Ten recording sessions were carried out on 10 healthy volunteers in a supine position. A Laplacian 153 

ECG (LECG) recording protocol was established so as to minimize the high dependence of the electrode 154 

position on the bioelectrical activity acquired: firstly, the two chest locations on which the electrodes were to 155 

be placed, 6 cm over and 2 cm to the right of the left nipple (upper position) and 6 cm below the nipple and 156 

aligned with the other electrode (lower position), were exfoliated and cleaned to remove dead skin cells and 157 

reduce contact impedance. A flexible TCB24 sensor was then placed in the upper position (U) and a rigid 158 

TCB24 sensor in the lower position (L). The contact impedance between electrodes and skin was then 159 

measured. Next, ECG was recorded simultaneously during a 5-minute period with the subject at rest. ECG 160 

was then recorded during lateral head movement, with a one-minute rest, vertical arm movement, one 161 

minute rest, vertical leg movement, one minute rest and laugh (Protocol 1). Afterwards, Protocol 1 was 162 

repeated changing the position of the TCB24 electrodes, rigid (U) and flexible (L) (Protocol 2). Next, 163 

similar tests were carried out using TCB18 electrodes (Protocols 3 and 4). See Figure 3. For each recording 164 

session a new set of electrodes (one TCB24 flexible, one TCB24 rigid, one TCB18 flexible and one TCB18 165 

rigid) was used and the same TCB24 flexible and TCB24 rigid electrodes were changed from upper to lower 166 
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position and vice versa (protocol 1 and 2) and the same TCB18 flexible and TCB18 rigid electrodes were 167 

used in protocol 3 and 4. 168 

 169 

 170 

Figure 3. Diagram of ECG recording protocol. 171 

 172 

The ECG signals picked up by the ring electrodes, and preamplified by the above mentioned battery-173 

powered signal conditioning circuit, were connected to commercial instrumentation amplifiers (Grass 174 

Technologies P511). P511 amplifier gain was set to 10 and its low and high cutoff frequencies were set at 175 

0.05 Hz and 100 Hz, respectively. A third electrode (virtual ground) was placed on the subject’s right hip 176 

and connected to the ground of the commercial and the battery-powered amplifiers. The sampling rate was 177 

1 kHz for all signals. 178 

2.3 ECG parameters 179 

ECG fiducial points were obtained by detecting the R-wave of the ECG signal with the algorithm 180 

proposed by Pan and Tompkins (1985) and slightly modified by Hamilton and Tompkins (1986) [26]. A 181 

fifth-order Butterworth high pass filter  with a cut-off frequency at 0.1 Hz was applied to surface signals, 182 

giving rise to a filtered signal x(t). Then the averaged beat, restECG , extending from 275 ms prior to the R-183 

wave to 450 ms after it, was calculated in analysis windows of 60 s. 184 
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In order to compare the surface signals recorded by rigid and flexible active concentric ring 185 

electrodes at rest, the following parameters were defined and worked out.  186 

• The root mean square voltage of the averaged beat at rest ( restECG ): this value shows the amount of 187 

energy contained in the acquired ECG signal. 188 

• Signal to noise ratio (SNRrest). ECG is contaminated by different types of interference such as power 189 

line interference and muscle noise. Once the restECG  has been worked out, then an estimated target 190 

ECG signal ( )(tECG rest ) is generated by assigning the restECG  to each detected beat, considering a 191 

window length about the R wave, as mentioned above. Zero value was assigned outside this window. 192 

The noise embedded in the recording was therefore calculated as the difference between the filtered 193 

surface signal, x(t), and the estimated target signal )(tECG rest . Then SNRrest was calculated as:  194 

( )
( )














−
=

)()(
·log20)(

tECGtxVrms

ECGVrms
dBSNR

restrest

rest
rest

                                             (3)

 195 

The parameters studied for motion ECG recordings were: 196 

• SIRmotion. Defines the relationship between the Vrms value of the averaged beat at rest ( )restECG and 197 

the effective voltage of the raw surface signal during movement (ECGmotion(t)) expressed in decibels 198 

(dB) and quantifies the change in the energy content of the ECG signal between rest and motion. 199 

( )
( )













=

)(
·log20)(

tECGVrms

ECGVrms
dBSIR

motion

rest
motion

                                                   (4)

 200 

• Saturation percentage. Motion can cause loss of contact between electrodes and skin, which may 201 

entail the saturation of the amplifiers. This parameter is defined as the proportion of time during 202 

motion during which the amplifiers were saturated. 203 

 204 

3. Results 205 

3.1 Active flexible electrode 206 

Types TCB24 and TCB18 flexible ring electrodes were developed on different substrates (Melinex, 207 

Valox or Ultem) and the TCB24 and TCB18 rigid electrodes on FR4 (printed circuit board) substrate. 208 

Photographs of Type TCB24 rigid and flexible electrodes can be seen in Figure 4. The flexibility and 209 

reduced thickness of the flexible electrodes can be appreciated in Figure 5. 210 



 

Figure 4. (a) TCB flexible concentric ring electrode and (b) TCB rigid electrode211 

212 

Figure 5. Photograph of the flexible ring electrode showing its thickness and flexibility 213 

 214 

Contact impedance and pastes215 

flexible substrate for the implementation of the ring electrodes. All the flexible substrates tested showed 216 

good adherence with the silver and dielectric p217 

MelinexST506 after more than 30 cycles, whereas both the conductor and dielectric pastes lasted more than 218 

50 cycles on both UltemR16SG00 and Valox FR219 

impedance and standard deviation for both flexible and rigid electrodes in 10 volunteers. It is noteworthy 220 

that all the flexible electrodes presented lower skin221 

that flexible electrodes give better skin222 

implemented on UltemR16SG00 were223 

production by screen printing and its slightly lower skin224 

is believed that similar results would be obtained if other flexible assayed substrates were to be used in ECG 225 

recordings. 226 

9 

(a) TCB flexible concentric ring electrode and (b) TCB rigid electrode

 

Photograph of the flexible ring electrode showing its thickness and flexibility 

Contact impedance and pastes-substrate adherence trials were carried out to select the most suitable 

flexible substrate for the implementation of the ring electrodes. All the flexible substrates tested showed 

good adherence with the silver and dielectric pastes: the dielectric paste separated from polyester 

MelinexST506 after more than 30 cycles, whereas both the conductor and dielectric pastes lasted more than 

50 cycles on both UltemR16SG00 and Valox FR-1. Table 1 shows the mean electrode

dance and standard deviation for both flexible and rigid electrodes in 10 volunteers. It is noteworthy 

that all the flexible electrodes presented lower skin-electrode impedance than the rigid ones, which suggests 

that flexible electrodes give better skin-electrode contact. Based on these 

ere selected for further ECG monitoring analysis, 

production by screen printing and its slightly lower skin-electrode impedance (see Table 

is believed that similar results would be obtained if other flexible assayed substrates were to be used in ECG 

a) 

 

(a) TCB flexible concentric ring electrode and (b) TCB rigid electrode. 

Photograph of the flexible ring electrode showing its thickness and flexibility  

substrate adherence trials were carried out to select the most suitable 

flexible substrate for the implementation of the ring electrodes. All the flexible substrates tested showed 

astes: the dielectric paste separated from polyester 

MelinexST506 after more than 30 cycles, whereas both the conductor and dielectric pastes lasted more than 

1. Table 1 shows the mean electrode-skin contact 

dance and standard deviation for both flexible and rigid electrodes in 10 volunteers. It is noteworthy 

electrode impedance than the rigid ones, which suggests 

Based on these tests, flexible electrodes 

selected for further ECG monitoring analysis, due to its ease of 

electrode impedance (see Table 2). Nevertheless, it 

is believed that similar results would be obtained if other flexible assayed substrates were to be used in ECG 

b) 
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Table 2. Electrode-skin contact impedance values of concentric ring electrodes TCB24 implemented on different 227 

substrates measured on the chest. The electrode-skin contact impedance was measured for each substrate in 10 228 

volunteers (6 men, 4 women). 229 

 Electrode-skin 

Contact impedance (kΩ) 

Valox 5.14 ± 2.28 

Melinex 5.65 ± 2.79 

Ultem 5.09 ± 2.25 

Rigid PCB   8.86 ± 3.83 

 230 

3.2 Laplacian ECG recordings (LECG) 231 

Figure 6 shows 15 s of simultaneous LECG recordings at rest with the rigid ring electrode placed in 232 

the upper position and the flexible electrode in the lower position. Heartbeat fiducial points can be clearly 233 

distinguished in both LECG recordings, as their morphology is more abrupt than the conventional ECG 234 

signal. The LECG amplitude in both recordings is in tens of microvolts (about 30 µV), that considering a 235 

mean radius of 6.14 mm for TCB24 electrodes corresponds to 319.2 µV/cm
2
), which is similar to the LECG 236 

signal amplitude reported by other authors [12, 27]. 237 

 238 

Figure 6. Left: 15 seconds of simultaneous ECG recordings obtained with a concentric rigid TCB24 electrode in the 239 

upper position and a flexible TCB24 concentric electrode in the lower position. Right: averaged beat corresponding to 240 

1 minute recording of the chest surface signals shown on the left. 241 

Furthermore, it was observed in all recording sessions that P wave amplitude strongly depends on the 242 

electrode position (U or L) no matter the electrode substrate (rigid or flexible) as shown in figure 6: The P 243 

wave can be clearly indentified in the averaged beats of the signals picked up by the ring electrodes in the 244 
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upper position, close to the atrial area, whereas the P wave is much more attenuated in the signals captured 245 

by the ring electrodes in the lower position, farthest from the atrial area. It agrees to the fact that laplacian 246 

recordings presented high spatial resolution. 247 

It can also be appreciated that the signals recorded by flexible electrodes have lower baseline wander 248 

and are less sensitive to low frequency interference than those recorded by rigid electrodes of the same 249 

dimensions. 250 

Table 3 shows the average and standard deviation of the signal parameters at rest and in motion 251 

obtained from 10 volunteers. Regarding the parameters at rest, In general, both the rms value of the averaged 252 

beat at rest ( )restECG and the SNRrest show mean values that are slightly higher for flexible electrodes than 253 

that of rigid electrodes of the same size in the same position – except for restECG of TCB18 electrodes in the 254 

lower position –.. However, paired t-tests reveal that these differences are not significant for restECG  (p1-2 = 255 

0.59, p3-4 = 0.4, p5-6 = 0.12, p7-8 = 0.42), nor SNRrest (p1-2 = 0.29, p3-4 = 0.29, p7-8 = 0.28), except for TCB24 256 

electrodes in lower position with significant better SNRrest results for flexible electrodes (p5-6 = 0.003). As 257 

for the influence of electrode size (for the same substrate and recording position) on the parameters during 258 

rest, higher mean values of restECG  are obtained in general for TCB24 vs TCB18. Nevertheless, again the 259 

differences are not statically significant for this parameter (p1-3 = 0.14, p2-4 = 0.054, p5-7 = 0.31, p6-8 = 0.07), 260 

neither for the SNRrest (p1-3 = 0.63, p2-4 = 0.69, p5-7 = 0.13, p6-8 = 0.13).  261 

Table 3. Values for the rest test parameters ( restECG , and SNRrest) and for the motion test parameters (SIRmotion, 262 

Saturation) corresponding to flexible and rigid electrodes TCB24 and TCB18. 263 

  Upper position Lower position 

  TCB24 TCB18 TCB24 TCB18 

  Flexible (1) Rigid (2) Flexible (3) Rigid (4) Flexible (5) Rigid (6) Flexible (7) Rigid (8) 
R

e
s

t 

restECG  (µV) 4.89 ±1.29 4.63 ±1.34 3.79 ±1.62 2.92 ±1.97 4.33 ±1.98 3.25 ±0.54 3.63 ±1.45 4.43 ±1.84 

SNRrest (dB) 10.79 ±3.93 8.82 ±2.94 12.0 ±5.70 9.39 ±5.55 17.59 ±4.17 7.85 ±4.43 13.54 ±7.56 9.64 ±5.0 

M

o
t

i

o
n 

 

SIRmotion (dB) -2.57 ±1.89 -6.64 ±3.52 -3.58 ±3.95 -14.46 ±4.90 -1.80 ±2.23 -5.42 ±3.66 -8.64 ±7.04 -8.58 ±5.17 

Saturation (%) 0.84 ±1.68 5.96 ±2.81 4.38 ± 6.21 13.10 ±10.23 2.76 ±2.59 1.27 ±2.54 13.20 ±10.26 12.27 ±12.67 

Figure 7 shows how the rigid electrode motion recordings (lower trace) are more sensitive to motion 264 

artefacts: a strong artefact around the second 9 causes saturation of the amplifiers. However, in the top trace 265 

in this figure, corresponding to the simultaneous flexible electrode recording, motion only involves a small 266 

change in the baseline. 267 
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 268 

Figure 7. Simultaneous ECG recorded in motion with a concentric rigid TCB24 electrode in the lower position and a 269 

flexible TCB24 concentric electrode in the upper position. 270 

This is also reflected in the parameters that quantify the behaviour of ring electrodes in motion 271 

recordings (see Table 3): in general flexible ring electrodes have significantly higher values for the SIRmotion 272 

parameter than rigid ones (paired t-tests, p1-2 = 0.02, p3-4 = 1.48·10
-5

, p5-6 = 1.47·10
-4

, p7-8 = 0.59), which 273 

indicates that they are less sensitive to motion artefacts. As for electrode dimension, best results correspond 274 

to TCB24 electrodes. Likewise saturation percentage in motion, in upper position ECG recordings, is 275 

significantly lower for flexible ring electrodes compared to rigid ring electrodes (paired t-test, p1-2 = 0.003, 276 

p3-4 = 8.09·10
-4

) but without significant differences for lower position ECG recordings. Finally, saturation 277 

percentage for TCB24 electrodes is significantly lower than that of TCB18 (paired t-tests, p1-3 = 0.03, p2-278 

4 = 3.27, p5-7 = 0.02), except for rigid electrodes in lower position (p6-8 = 0.12). 279 

4. Discussion 280 

4.1 Active flexible concentric ring electrode 281 

Active flexible concentric ring electrodes were developed and implemented on flexible substrates 282 

including a preconditioning and amplification system. The aim was to develop electrodes that adapt to the 283 

patient’s body contours, allowing non-invasive surface bioelectric recordings to be obtained with a 284 

combination of comfort, high spatial sensitivity and good signal-to-noise ratio. It is noteworthy that other 285 

research groups have developed and used active concentric ring sensors to increase spatial resolution in the 286 

acquisition of surface bioelectric potential, such as in electrocardiograms, electroenterograms and the 287 
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electrohysterogram [9, 10, 12, 28]. However all these sensors were developed on rigid substrates and were 288 

used in research but are not suitable for clinical or out-patient applications. 289 

The multilayer screen-printing technique was chosen to produce the electrodes due to the fact that it 290 

provides them with the optimum homogeneous finish, significantly thicker than that obtained by 291 

electroplating. Screen-printing is also highly reproducible and facilitates serial production. The use of 292 

graphic art printing technologies in the electronic industry is making it possible to develop new types of 293 

electrodes on flexible substrates and at present alternative or complementary technologies are being 294 

introduced, as the inkjet or gravure printed, which can make the manufacture in mass of this type of 295 

electrodes easier [29, 30].  296 

On the other hand, an important feature of the developed sensor is its modularity, which means that 297 

the electrodes can be interchanged while maintaining the same signal conditioning system. This feature is 298 

especially important in clinical applications with regard to hygiene standards and helps to reduce operating 299 

costs. 300 

In addition, the proposed flexible ring electrodes could be used in long-term recordings, avoiding the 301 

gel dehydration problems involved in using wet electrodes. In the last decade, research groups have made a 302 

considerable effort to develop conductive and capacitive electrodes for dry ECG recordings, most of them 303 

focused on the acquisition of unipolar ECG signals [31, 32]. One of the major problems of bioelectrical 304 

surface recordings with dry electrodes is the high skin-electrode contact impedance involved, giving rise to 305 

surface recordings with low signal-to-noise ratio, high baseline wander and high sensitivity to motion 306 

artefacts. In order to reduce the skin-electrode contact impedance in the present study, Ag pastes were used 307 

to implement the ring electrodes, since the low frequency impedance of Ag paste is lower and more stable 308 

than that of other materials such as Ag/AgCl, aluminium or steel used for dry recording electrodes. The 309 

noise level present in the LECG recordings in this study is similar to that obtained in other studies that used 310 

Ag dry electrodes for LECG recordings and is lower than ECG recorded by capacitive SiO2 electrodes [31]. 311 

The LECG recordings obtained in the present study with flexible electrodes also have less baseline 312 

fluctuation and greater immunity to motion artefacts than those obtained from rigid electrodes, thanks to 313 

their being able to adjust to body contours, thus providing better contact [31]. However, these electrodes are 314 

still more susceptible to motion artefacts than commercial wet Ag/AgCl electrodes. The incorporation of a 315 

self-adhesive substrate in contact with the skin, similar to that of the presently available disposable wet 316 

electrodes, would exert a constant pressure on both rings, avoiding friction with the skin and minimizing any 317 

motion artefacts generated by the skin-electrode interface. 318 

 319 
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4.2 Laplacian recordings of ECG 320 

It has been proven that Laplacian potential mapping can enhance the spatial sensibility of surface 321 

bioelectrical activity recording in respect to conventional biopotential mapping [27, 33]. Non-invasive high 322 

spatial resolution mapping of cardiac electrical activity can provide valuable information for clinical 323 

diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. It has also been 324 

found that the QRS complex can be identified in Laplacian ECG recordings carried out with 36 mm 325 

external-diameter active rigid ring electrodes [27, 34]. In the present work we tested the possibility of 326 

picking up the heart signal with smaller ring electrodes (TCB18 and TCB24) in order to obtain potential 327 

Laplacian maps with higher spatial resolution than those obtainable from 36 mm electrodes. 328 

It is known that the greater the external diameter of ring electrodes, the greater their capacity to pick 329 

up deep bioelectrical sources and the higher the signal amplitude obtained, even though this involves a 330 

reduction in spatial resolution [35]. We found that the fiducial points of the ECG complex can be identified 331 

in surface recordings by TCB18 and TCB24 electrodes without significant differences in the amplitude of 332 

the LECG signals due to electrode size. This suggests that smaller electrodes (TCB18) could be used for 333 

non-invasive high density surface mapping of cardiac signals with the subject at rest. By contrast, TCB24 334 

electrodes significantly improve on the TCB18 response against motion artefacts (lower saturation 335 

percentage). The higher resistance of the TCB24 electrodes to motion artefacts could be due to the better 336 

skin-electrode contact obtained from their larger recording area. These results highlight the importance of 337 

ensuring good skin-electrode contact in surface bioelectrical recordings. 338 

Regarding the influence of the substrate, as mentioned above, in general flexible electrodes give 339 

better performance in terms immunity to motion artefacts than recordings made with rigid ring electrodes, 340 

which means that flexible TCB24 electrodes would be suitable for out-patient applications. In this work we 341 

tested the response of both rigid and flexible electrodes to slight movements of head, arms and legs. The 342 

flexible electrodes performed well against sudden and continuous movements typically found in out-patient 343 

applications. This aspect will be further developed in future studies. 344 

The LECG morphology obtained from the ring electrodes recordings was sharper than that associated 345 

with the standard ECG, but is similar to the morphology reported by other research groups using 346 

discretization techniques or ring electrodes to estimate the ECG Laplacian potential [8, 27, 33, 34, 36]. The 347 

LECG amplitudes are much smaller (µV) than that of the standard ECG (mV), and are similar to LECG 348 

amplitudes obtained from 36 mm external diameter rigid electrode recordings [27]. The noise level is also 349 

similar to that reported by other authors in LECG recordings, which are noisier than the standard ECG 350 

recordings acquired from disposable wet electrodes. 351 
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It is noteworthy that the high spatial resolution of the ring electrodes is evident in the surface 352 

recordings obtained from the upper chest position close to the atrial area. The P wave can be clearly 353 

distinguished on the averaged beat, restECG ,but in the simultaneous recording from the electrodes in the 354 

lower position this component is much more attenuated, picking up mainly ventricular activity. LECG 355 

recordings have already been shown to give high spatial resolution in detecting atrial activity patterns [20, 356 

21]. 357 

5. Conclusions 358 

This work describes the development of active concentric ring electrodes on flexible substrates using 359 

printed electronics technology that combine ease of use and the adaptability to body contours of 360 

conventional disposable electrodes with the enhanced spatial resolution of concentric ring electrodes. 361 

Flexible ring electrodes provide better skin-electrode contact than ring electrodes on rigid substrates, reduce 362 

baseline wander, noise and sensitivity to motion artefacts. We believe the proposed electrodes are an 363 

advance in Laplacian-based monitoring systems and will allow bioelectrical signals to be acquired non-364 

invasively with higher spatial resolution than those obtained from conventional disc electrodes. 365 
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