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Abstract

Index tracking, a popular technique for passive portfolio management, seeks to minimize the
unsystematic risk component by imitating the movements of a reference index. The partial
index tracking only considers a subset of the stocks in the index, enabling a substantial cost
reduction in comparison with full tracking. Two criteria are usually referred in the literature
when constructing tracking portfolios: Tracking error variance and portfolio variance. By
means of a multiobjective model, this paper considers a new parameter in the tracking error
problem: The frontier curvature. This criterion is not defined for a particular portfolio, but for
all the portfolios that define the tracking frontier. The main implication is that a manager can
satisfy different investment profiles with the same subset of stocks. The new model is
applied on the S&P 100 Index.
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1. Introduction

The large number of academic papers published indicates that the analysis
of the efficiency of investment funds remains a major area of research in
the field of portfolio theory. The valuation of funds is still subject to analysis
and comparison because of their crucial role in financial markets.

Jensen (1968) was among the first to point out the need to critically
evaluate the performance of investment funds. The high number of
research papers in this area has evolved in parallel with the growth in the
number of managed funds and assets. Comparisons are often made
between active and passive management funds (Elton et al., 1993; Malkiel,
1995, 2003; Gruber 1996; Carhart, 1997; Edelen, 1999; Davis, 2001;
among others).

These studies demonstrate how difficult it is for investment funds to
outperform a benchmark. In the United States, the Standard & Poor's 500

1



Index has been between 65% and 85% more profitable than the funds
analyzed over a long time window. Similar conclusions have been reached
after considering the risk assumed.

The questionable success of many actively managed investment funds in
outperforming the benchmark explains that index tracking is currently
among the most popular techniques used by investment fund managers
(Frino and Gallagher, 2001; Malkiel and Radisich, 2001, Coleman et al.,
2006). This technique has become even more popular after the appearance
of exchange traded funds (ETFs).

Index tracking seeks to minimize the unsystematic risk component by
imitating the movements of a reference benchmark — a stock index. Faced
with active management techniques that endeavor to beat the underlying
index, tracking portfolios in general and tracking indices in particular, are
configured as a powerful passive strategy. Following this strategy, the
manager does not necessarily pursue efficiency in the sense of mean-
variance, but instead replicates the behavior of the market from a more
conservative approach. Mixed approaches that search for consensus
solutions between the two models can also be found in the literature
(Burmeister et al., 2005).

Index Tracking can be full or partial depending on the number of stocks that
are considered.

In the case of full tracking, the portfolio includes the same stocks as the
index, and an exact tracking is produced if these stocks are weighted in the
same proportion as the index. It is also possible to generate other
combinations of risk and return by varying the weights of the stocks in the
tracking portfolio. However, in this case, the imitation of the stock index is
not accurate, and it does not necessarily outperform the index in the mean-
variance sense; while the greater or lesser required returns may lead to an
increase or decrease in the proportional risk of the position (Roll, 1992).
The disadvantages of full tracking include the high portfolio management
and transaction costs, as well as the need to invest in all the stocks in the
index. Another disadvantage is the cost associated with realigning the
portfolio if the composition of the underlying index changes. This situation is
particularly critical for stocks with low weighting in the index, and which
often have little impact on the movement of the index. It is also critical for
stocks with little liquidity, while various other drawbacks are mentioned in
the literature (Ruiz-Torrubiano and Suarez, 2009). A restrictive view of the
costs associated with tracking portfolios has also been discussed in
numerous academic papers (Meade and Salkin, 1990; Adcock and Meade,
1994; Connor and Leland, 1995; Canakgoz and Beasley, 2008) and the
drawbacks are usually addressed through mathematical programming
models.



In partial tracking, which is the subject of this paper, a manager builds a
portfolio from a subset of stocks contained in the underlying index and this
process removes some of the drawbacks listed above. The counterpart is
that an exact tracking of the index cannot be built. However, this does not
necessarily imply a decline in the risk-return relationship — as will become
evident later.
Three issues must be resolved when building a partial tracking.
Firstly, the number of stocks in the tracking must be chosen. An evaluation
can be made using sensitivity analysis on the results to contrast the
desirability of increasing or decreasing the cardinality of the portfolio
(Tabata and Takeda, 1995).
After setting the number of stocks, the second question involves selecting
the stocks among the available ones. This is the most complex problem
when building a partial tracking. The simplest approach is to assess each
potential stock, to measure the index tracking error, and then select those
stocks that minimize this deviation. Unfortunately this approach is
computationally difficult because it represents an NP-hard problem (Ruiz-
Torrubiano and Suarez, 2009). For example, a number of
17,310,309,456,440 portfolios must be evaluated if the aim is to track the
S&P 100 with a portfolio of ten stocks.
Finally, the third question involves the precise weight to be given to each
stock in the tracking portfolio, depending on the desired return and the
tracking error the manager is willing to assume.
The second issue of stock selection has received special attention from
researchers and many methods for finding the local problem optimum have
been proposed. These methods can be grouped into two broad families:
those that make use of mathematical programming; and those using
multivariate analysis techniques.
Without being exhaustive, authors using mathematical programming
models for optimal local searches include: Tabata and Takeda (1995),
whose approach is employed in this paper and discussed in a later section;
Beasley et al. (2003), whose approach uses a population heuristic in which
the cardinality of the portfolio is made explicit through the restriction
N . z; = n, n being the number of stocks in the tracking portfolio, and z; a
binary variable that indicates if the i-th stock is to be included in the
portfolio. This approach supposes that the local optimum is conditioned by
the whole problem resolution method being used; Derigs and Nickel (2004)
use a procedure of Simulated Annealing; Ruiz-Torrubiano and Suarez
(2009) combine a genetic algorithm with a model of quadratic programming
in a more general formulation of the problem; Gaivoronoski et al. (2005)
use different measures of risk in mathematical programming models, such
as return variance, semi-variance, tracking error variance, or value at risk
(VAR).



Works that make use of multivariate analysis techniques include: Focardi
and Fabozzi (2004); and Dose and Cincotti (2005), who use cluster
analysis on return time series so that the cardinality of the tracking portfolio
is established from the number of clusters obtained — preferably by
choosing a single stock as representative of each cluster in each tracking
portfolio. Corielli and Marcellino (2006) propose the use of factor analysis
so that stocks are grouped around various factors depending on their past
returns, and the tracking portfolio contains those stocks that best explain
the variability of these factors. In their results, several stocks are used as
representatives of each factor, so the tracking portfolio can include stocks
that explain the same parts of the variability in the performance of the
index.

All these papers are characterized by the search for a single portfolio,
characterized by a maximum of three possible parameters (Chow, 1995):
tracking error variance, excess returns and volatility of returns. The stocks
in the tracking portfolio are identified during this process and the given
weighting complies with the constraints imposed on those parameters.

This paper proposes the addition of a new parameter: the curvature of the
frontier. This criterion is not defined for a given portfolio, but for the set of
portfolios that define the tracking frontier. The main advantage is that a
fund manager can satisfy different investment profiles using the same
subset of stocks — with all the portfolios on the frontier containing the same
stocks and so reducing transaction costs.

Usually partial tracking portfolio models have attempted to obtain a single
portfolio that will only satisfy those investors whose profile is perfectly
aligned with the configuration chosen by the portfolio manager. It is
noteworthy how this analysis has not pursued a parallel strategy to that
followed in Markowitz’s classical mean-variance model of 1952, in which
the goal is the generation of the so-called efficient frontier — rather than the
identification of a specific portfolio with a fixed risk and return.

The rest of the paper is structured as follows. The second section
analytically presents the three key concepts for tracking indices: tracking
error variance, excess return, and portfolio variance. The following section
introduces a new criterion, the curvature of the tracking frontier, and
discusses the benefits that arise from adding the concept of gradient to the
previous ones. The fourth section presents a multiobjective programming
model for generating tracking frontiers by simultaneously considering all
these parameters. In addition, various other propositions regarding the
curvature of the tracking frontier are discussed and demonstrated. In the
fifth section, the above model is applied to the partial tracking of the S&P
100. A summary of the main conclusions is presented in the final section.



2. Parameters in the tracking portfolio problem: tracking error
variance, excess return, and portfolio variance

Tracking error is defined as the difference between tracking portfolio
returns and the returns produced by the index that is being tracked. Since
the aim is for both portfolios to maintain a parallel evolution over time, the
problem is posed as a minimization of the volatility in the tracking error. A
reduction in the volatility of the tracking error means minimizing the
variance in returns between the tracking portfolio and the stock index (Roll,
1992). In this way, a clear parallel with the mean-variance model
(Markowitz, 1952, 1959) is established. However, with the difference that
instead of looking for the portfolio with the least volatility for a given return,
managers try to obtain the portfolio with the minimum tracking error
variance for a given level of return in excess of the index. These are the
foundations of the TEV (Tracking Error Variance) criterion: (1) minimize the
TEV; (2) assume a certain TE (Tracking Error'). Both objectives are
inherently conflicting, so the manager should look for consensus solutions.
The TEV is given by the expression (1):

TEV = x'Vx (1)

where:

x = a vector of dimension Nx1, contains the various weightings of the N
stocks between the tracking portfolio and the index; that is, x = Xp = Xp,
where x,, is the vector of weightings in the tracking portfolio and x,, is the
weighting vector in the index (subscript b for benchmark). A full tracking is
obtained if all elements of x are zero, while non-zero deviations can take
risk-return positions that differ from the index. In the partial tracking, the
vector x,, will have the same number of non-zero elements as there are
stocks included in the tracking, n, and the remaining weights will be left with
a value of zero.

V = the variances-covariances matrix between the returns of the stocks.
The excess return G on the index is obtained as the difference between the
returns of the tracking portfolio and the index (2):

G=x'R=x,R—x;R=R, —R, (2)

where:
R = vector of returns of N stocks.

! Alternatively, Rudolf et al. (1999) suggest using linear measurements of tracking
error, and propose the use of goal programming for solving optimization models.
This technique has also been recently used by Wu et al., (2007).
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R, (Rp ) = returns of the tracking portfolio (index).

Unlike other models, in the tracking portfolio the return in excess G is
obtained by subtracting the index return, and not the return of the risk-free
asset. The full tracking can be easily resolved by using a quadratic
mathematical model (3):

Min = xt'Vx
s.t. X'R=G
x1 =0 (3)

where:

1 = vector of dimension Nx1 with all the elements 1.

Note the need to explicitly include the constraint on G, since the profitability
of the tracking portfolio and the index can differ by a constant, and the
value of the TEV can then be zero. The second constraint ensures that the
total investment in the tracking portfolio is the same as the index — and so
the sum of positive and negative deviations is compensated. If the intention
is to implement a partial tracking then an additional constraint should be
added to n, although mathematical programming algorithms do not ensure
the global optimum.

It is also worth to underline that the portfolios obtained with strictly positive
values of G do not necessarily exceed the index. To exceed the index, in
addition to having a better return than the index (G > 0), it is necessary to
obtain less variance in returns, something which is not guaranteed by
model (3).

Some researchers (Canakgoz and Beasley, 2008) impose a restriction on
the alpha and beta of the tracking portfolio, as estimated from the market
model (4):

R, = a+ BR, (4)

The exact imitation of the index supposes imposing restrictions (1) a =0,
and (2) g = 1. The first restriction is equivalent to considering G = 0. The
second restriction does not guarantee the achievement of efficient
portfolios in the mean-variance sense. For proof of this statement, let us
consider the decomposition of the total risk of a portfolio p in its systematic
and unsystematic components (5):

of = B*of + O'ezp (5)

where:
oZ (6f) = return variance for tracking portfolio (index), with o2 =
x5Vx, (o7 = xjVxp).



B%0f = systematic risk of the tracking portfolio.

gep2 = unsystematic risk of the tracking portfolio: variance of the regression
residuals between the index returns and the tracking portfolio returns.
ogep220, we have op220b2 in order to impose F=1. That is, the tracking
portfolio will offer the same return as the index (« = 0), but also with at least
the same risk, which means it cannot outperform the index in the mean-
variance space.

To overcome the agency problem that arises from this situation (Jorion,
2003), it is necessary to restrict the total portfolio risk rather than the
systematic risk, which facilitates the generation of tracking portfolios that
can exceed the index in the mean-variance space. Chow (1995) proposes
a parametric model that in addition to considering the TEV and excess
returns, also considers the third criterion set out in this section: return
variance in the tracking portfolio.

3. An additional parameter: the curvature of the TEV frontier

Model (3) enables as many different portfolios to be obtained as there are
different stocks with a profitability in excess G. These different portfolios are
obtained by varying the weights of the stocks, and/or varying the stocks
when the tracking is partial. Markowitz’s minimum variance frontier model
and TEV frotiner appear in Figure 1. For the case of the full tracking, Roll
(1992) shows that the distance in the axis of the returns variance between
the two frontiers is constant, k, for any value of return R,. Therefore, the
TEV frontier is a simple shift of Markowitz’s frontier in the variance axis,
and the inefficiency of the index b can be quantified as k = o/ — o, being
constant for any portfolio on the tracking frontier.

The above property is not satisfied in the case of partial tracking. Figure 1
shows two TEV frontiers, each generated by removing a single stock from
the tracking. The TEV frontier TEV_; (TEV_;) results from the exclusion of
the tracking of the i-th stock (j-th). Generally, the removal of one or more
stocks from the tracking means a greater TEV without necessarily reducing
the efficiency of the portfolios. In the example in the figure, the TEV_;
frontier and the TEV_; frontier partially improve the efficiency of the original
TEV in the mean-variance sense. Specifically, both frontiers generate
better risk-returns in portfolios nearer to the R, index than the TEV frontier
in the full tracking. If the TEV_; and TEV_;, frontiers are compared then
different results will again be reached according to the considered return.
However, it must always be remembered that Figure 1 only reflects risk and
return, and not TEV.

[Insert Figure 1 here]
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Figure 1 shows the different curvature of the TEV_; and TEV_; frontiers. It is
precisely this characteristic that can be very useful for the fund manager.
The TEV_; frontier provides a better risk-return combination than the TEV_;

frontier for portfolios with a return of R, € [Ry,R;]. However, for returns

outside this range, the TEV_; frontier generates returns that are clearly
better than the portfolios on the TEV_; frontier. In this situation, the
manager must consider which of the two frontiers can best satisfy client
profiles. For conservative profiles that intend to simply mimic the index, the
TEV, frontier is the most suitable, and so the j-th stock is removed from the
tracking. But if a return in excess G is required, then the TEV_; frontier
would be the best option. Therefore, not considering the curvature of the
tracking portfolio frontier means that the proposed portfolios only satisfy
specific values of risk, return and TEV, without considering the possibly
varying risk profiles of the fund’s clients.
When choosing between two tracking frontiers for a given value of G and
with the same levels of risk-return and TEV, the manager must select the
frontier with less curvature — because this enables more efficient options to
be offered to investors. Examining the curvature of the tracking portfolio
enables the manager to make a more global analysis of the offer presented
to his/her clients. To achieve this, the entire TEV frontier should be
examined and not just a specific point on it.
We can conclude that the manager will have the following preferences
when evaluating tracking portfolios for the criteria presented:
Assumption 1: Investment fund manager preferences:
a. Criteria concerning the tracking portfolio
a.1 Return: portfolios with higher returns are preferred, ceteris
paribus.
a.2 Return variance: portfolios with less risk are preferred, ceteris
paribus.
a.3 TEV: portfolios with less TEV are preferred, ceteris paribus.
b. Criteria concerning the TEV frontier
b.1 Curvature of the TEV frontier: TEV frontiers with less
curvature are preferred, ceteris paribus.
Note that for the curvature of the TEV frontier, Figure 1 only shows the
frontier in the mean-variance plane. We will assume that TEV frontiers are
preferred with less curvature in the mean-variance and mean-TEV spaces.
The following section presents a multiobjective mathematical programming
model that enables the simultaneous consideration of all these preferences.
This methodology has been widely published in the field of operations
research (Zeleny, 1974, 1982; Steuer, 1986), and is currently used in many
financial applications (Zopounidis, 1998; Hallerbach and Spronk, 2002).



4. A multiobjective approach to the problem of partially tracking
portfolios

It is possible to consider the TEV frontier curvature, along with other criteria
already referred to in the literature (excess return, return variance, and
TEV) into the utility function (6):

U(p) = woR, — wy05 — w,TEV, — w3k; (6)

where:

Kk = represents the curvature of the TEV frontier, of which portfolio p forms
a part.

w; = weights of each criteria, with i = 0..3.

Note that the curvature is defined on a frontier f, and not on a given
portfolio p, since the curvature is the same for all portfolios on the frontier
(the returns variance and the TEV are quadratic functions).

Given that in the tracking portfolios the manager fixes a value for the
parameter G, all of the portfolios evaluated with utility function (6) obtain the
same return R, = R, + G. In this way, (6) can be simplified as (7):

U(p) = w07 — w,TEV, — wsky (7)

For convenience, the proposed model will be presented as a minimization
problem (8):

MaxU(p) = Min(-U(p)) = Min w07 + w,TEV, + waks (8)
The multiobjective mathematical programming model is (9):

Min = wyx,VX, + woX VX + waky

s.t. x'R=¢G
x1=0
X, = Xp +X (9)

where the only unknown element is the weightings vector x. Note that no
restrictions are included on the cardinality of the tracking portfolio.
For the application of model (9) it is necessary to address three issues. The
first relates to how to find a good solution within the exponential number of
portfolios that can be formed and limiting to n the number of stocks in the
tracking portfolio. The objective of model (9) is to make a comparison
between these portfolios using the utility function, and not to generate a
frontier. The second question to address is how to calculate k¢, the only

parameter that has not yet been derived analytically. Finally, there remains
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the determination of the w; weights in the utility function. Each of these
questions is discussed separately in the following subsections.

4.1 Search for local optima

As mentioned in the introduction, the optimal solution to the problem of
partially tracking portfolios is a difficult problem from a computational point
of view. All optimal local search methodologies in the literature are
consistent with model (9), and it is not the aim of this paper to propose new
heuristic strategies. The greatest computational burden when solving an
instance of model (9) is calculating the curvature of the TEV frontier, as
shown in the following paragraph. In the example developed in a later
section for the tracking of the S&P 100 an adaptation of the algorithm
proposed by Tabata and Takeda (1995) has been used. This algorithm was
chosen because it is simple to implement and generates good local optima.
The algorithm ensures that the solution found cannot be improved unless
two or more stocks are changed in the tracking portfolio. For a better
understanding of the overall process, we present the adaptation of the
algorithm2 to the multiobjective mathematical programming model (9)
(Algorithm 1). Tabata and Takeda (1995) have only considered a search for
a portfolio with lesser TEV given a pre-determined n default cardinality; and
so it is necessary to make an adaptation to look for the other two
parameters of the objective function (9): portfolio return variance and
frontier curvature. Moreover, Algorithm 1 can be easily adapted to the case
of a single objective. It is only necessary to place a non-zero value for one
of the w; weights and leave the rest at zero.

Algorithm 1. Adaptation of the algorithm by Tabata and Takeda (1995)

Definitions:
VAR, (j,i) = change in return variance in tracking portfolio p after
substituting the i-th stock for the j-th stock.
TEV (j,i) = change in the TEV after substituting i-th stock for the j-th
stock in the portfolio with x weighting vector differences.
k¢(j, i) = change in the curvature of the TEV frontier after substituting
the i-th stock for the j-th stock.
F(j,i) = function that evaluates the change in the objective function
after substituting the i-th stock for the j-th stock in the tracking
portfolio. Its value is calculated as F(j,i) = w VAR, (j, 1) +
woTEV, (j, ) + waks(j, ).

> The adaptation of the Tabata and Takeda (1995) algorithm has been

programmed in R version 2.2.0. The authors will provide the code on request.
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sM(n) = set of stocks included in the tracking portfolio in the m-th

iteration, where n represents the cardinality of the portfolio.
Pseudocode:

Step 0. s:=0. Let S (n) be the initial set of stocks, n cardinality.

Step 1. If an optimal solution has not been found for the x;, weighting

vector difference of S (n) and for the objective function F;, it can be

obtained using model (9) by considering only those stocks in the

S (n) set. Setj:=n + 1.

Step 2. xi:=x.. For Sj"(is)(n), (i=1..n) calculate F; — E (j,i). If

F — F (j,q) = max{F; — F,(j,i)} > 0, go to step 3. Otherwise, j:=

j+1.Ifj>Nthenj:=n+1,i:=1, go to step 4.

Step3.s:=s+1,5®(n): = ij‘(;_l)(n). Return to step 1.

Step 4. For Sj"(is)(n) calculate x*® and its corresponding Fy (j, 0). If

F} —Fe (j,i) >0, then set si=s+1, S®(n): = Sj:(l.s_l)(n) and return
to step 1. Otherwise, perfform i:=i+ 1. Ifi <n, thenj:=j+ 1. If j <
n, set i:= 1 and repeat step 4. If j > n, the current solution S (n)

and x; is the optimal local solution for building a tracking portfolio
with n stocks: STOP.

The algorithm requires the previous determination of the cardinality n of the
tracking portfolio for the total N available stocks. Once this value is set, by
following the steps defined in Algorithm 1, a local optimum of the problem
that considers the three criteria defined in the objective function is obtained

(9).
4.2 The TEV frontier curvature

As Roll (1992) demonstrated, the full tracking TEV frontier is a shift of
Markowitz’s minimum variance frontier, and the curvatures of both frontiers
necessarily coincide (Figure 1). This section sets out various propositions,
including one that shows that the curvature of the TEV frontier generated
from a subset of n stocks matches the curvature of the minimum variance
frontier generated from the same n stocks.

The variance of a minimum variance portfolio p can be obtained by
analytically solving Markowitz’'s mean-variance model (10).

14
Min = EXPVXP

s.a. xL,R=R,
xi1 =1 (10)
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Following Merton (1972), we propose using the Lagrangian (11) method on
this model, deriving for the vector of portfolio weights x,, and multipliers
Aiand 4,, and equating to zero. The solution to the equation system
appears in the expression (12).

L =2x5Vx, + 4 (X5R = R,) + A5 (x51 — 1) (11)
_y-1 -1[Rp
x,=V[R 1]a7[ 7] (12)

where A=[R 1]'V7'[R 1]= [Z lg] a=RVTIR, b =R'V™!1 and ¢ =
1tv-11,

We can express the variance of the p portfolio using a weights vector (12)
such as 05 = x,";pr, and developing its expression to arrive at a result

which depends on a, b and ¢ (13):

o2 = xtVx, = [R, 1]A" [lﬂV‘1VV‘1[R 1]A™ [}ip] —[R, 1]A™ [Rlp]
a—2bR, + cR}
- ac — b2
(13)
The ks curvature of the frontier of minimum variance is obtained as the
second derivative of g7 with respect to R,, (14):

0%a; 2¢
= dR,  ac — b2

14
(14)
This curvature matches the curvature of the TEV frontier if the tracking is
full. If the tracking is partial, the curvature cannot be calculated using the
expression (14), as the values ofa, b and c¢ are linked to the full set of
stocks. Nevertheless, the following proposition shows how the computation
is equivalent to the curvature of the minimum variance frontier generated
using the same subset of stocks.
Proposition 1. The curvature of the TEV frontier generated from a subset
ofn stocks has the same curvature as the minimum variance frontier
generated from the same subset of stocks.
Demonstration: See Annex 1.
Proposition 1 characterizes the case of a partial tracking that Roll (1992)
demonstrated for the full tracking. In this way, to calculate the curvature of
the TEV frontier in the partial tracking we can use the expression (14)
derived from Markowitz’'s model. Nevertheless, it should be noted that a =
R{VTIR, b =R!'V™'1 and ¢ =1'V~'1 must be calculated whenever a

12



change is made in the subset of stocks in the tracking — eliminating the
corresponding rows and columns of the matrix V — and with the inevitable
computational cost in the mean-variance models (Phillips, 2008, p.185).
Proposition 2. The TEV frontier generated from a subset of n stocks (n <
N) is a shift of the minimum variance frontier obtained from the same
subset of stocks.

Demonstration: See Annex A.2.

Proposition 2 presents an interesting difference between full and partial
tracking. In full tracking, the TEV frontier is only a shift in the axis of
variance of Markowitz’s frontier. Therefore, all the tracking portfolios share
the same inefficiency k, which is identical to the inefficiency of the index
that it replicates (Figure 1). In addition to this shift, a deviation appears in
the axis of returns in the partial tracking and this causes the inefficiency in
the portfolios in the tracking frontier to vary according to the required level
of return. In other words, the partial tracking minimum variance frontier and
the tracking frontier are not parallel. This explains why dominance in the
mean-variance sense sometimes alternates between the TEV frontier
obtained with the partial tracking, and the frontier obtained with the full
tracking.

Another characteristic to remember about the partial tracking is the
relationship between the TEV frontier curvatures that depends on how
stocks are excluded from the tracking.

Proposition 3. The TEV frontier curvature generated from a set of n stocks
is less than the curvature of the TEV frontier obtained when excluding one
or more of those stocks.

Demonstration: See Annex A.3.

Proposition 3 shows that the curvature increases when cardinality of the
considered tracking decreases. Accordingly, each stock that is excluded
supposes a worsening in the value of the curvature, although this does not
necessarily mean a decrease in efficiency in the mean-variance sense.
This differs significantly from Markowitz's classical model, where the
progressive exclusion of stocks necessarily implies a decrease in
efficiency.

4.3 Criteria weighting in the multiobjective utility function

The solution of the multiobjective programming model (9) depends on the
w; weights set for each of the three parameters considered in the objective
function. This section proposes a solution for objectively quantifying these
parameters:
Step 1. Apply Algorithm 1 with weights w; = 1 and w, = w3 = 0. Use
the resulting vector x;, to calculate the weight of the variance criteria

13



wlx=1VARxn+* being VARxn+ the variance of the tracking portfolio
defined by weight vector x;,.
Step 2. Apply Algorithm 1 with weights w, =1 and w; = w3 = 0. Use
w2+x=1TEVXn*.
Step 3. Apply Algorithm 1 with weights w3 =1 and w; = w, = 0. Use
xn+ vector resulting to calculate the weights of the curvature criteria:
w3x=1xxn*, Wwith xxn+ being the curvature of the TEV frontier
generated with the stocks in the tracking portfolio.
The weight of each parameter is fixed in a way that is inversely proportional
to the solution — the ideal value — that is obtained when applying Algorithm
1 to the corresponding monoobjective problem. The use of ideal values in
the calculation of the w; weights is common in multiobjective programming
(Ballestero and Romero, 1991) and, more specifically, in compromise
programming (Yu, 1973; Zeleny, 1973).
If the multiobjective frontier does not satisfy the requirements of the
investment fund manager, then the weights defined in Steps 1-3 can be
changed until a solution is found that better fits the manager’s preferences.

5. Application of the multiobjective model to the partial tracking of the
S&P100 Index

This section develops an application of the multiobjective model (9) for
obtaining tracking frontiers of the S&P 100. The data set was obtained from
the OR-Library (Beasley, 1990), which has been used by various
researchers for comparing tracking portfolio algorithms (Beasley et al.,
2003; Ruiz-Torrubiano and Suarez, 2009). The data includes the weekly
returns of the index and 98 of its represented stocks during the period
1992-1997. Although the data is not recent, it remains equally valid for
illustrating our proposal.

Before obtaining the tracking frontiers, two issues must be resolved prior to
the implementation of the multiobjective model: first, the excess return
required; and second, the number of stocks in the portfolio. For the first
case, the possibility of allowing for negative returns on the underlying index
(G < 0) was dismissed, as this would assume that the investor is willing to
receive a return below the index. We have conservatively assumed that the
investor is content with the same return as the index (G = 0). With respect
to the cardinality of the portfolio, the results are presented considering 5, 7,
10, and 15 stocks. In this way, the robustness of the model can be tested
for different sizes of portfolio, and the differences that unfold when
increasing the n number of stocks can be observed.

The adapted Tabata and Takeda (1995) (Section 4.1) algorithm was used
for the selection of the tracking portfolio stocks. The solution proposed in
section 4.3 was used for the w; weights. However, the frontiers obtained
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were relatively close to the TEV frontier. Accordingly, the criterion of the
return variance was over-weighted. Specifically, the weight was multiplied
by vn. The square root of n was used because it is a function with a
negative second derivative.

Following the implementation of Algorithm 1 as proposed in Section 4.1
various portfolios are generated according to the cardinality imposed. Table
1 shows the composition of the portfolios for the multiobjective case and
the three monoobjective possibilities: minimize the variance of the tracking
portfolio — optimization in the sense of Markowitz (w; =1, w, = wy = 0);
minimize the TEV (w, = 1, w; = w3 = 0); and minimize the curvature of the
tracking frontier (w3 =1, w; =w, =0). With the minimization of the
variance, the portfolio with minimum variance and identical return to the
index is obtained (G = 0). Using these stocks it is possible to generate a
frontier of minimum variance by changing the required return — following
Markowitz’s classic mean-variance model. With the minimization of TEV the
model selects the stocks that also produce the minimum TEV for the case
G = 0, and with these same stocks the corresponding TEV frontier is also
generated. Finally, in the model for minimizing the curvature, stocks are
selected that minimize this expression and consider excessive returns to be
null in the same way. In all cases, the number of stocks in the portfolio was
limited to n.

Table 1 demonstrates how the composition of the portfolios varies as
cardinality increases. Together with the stocks, the ratio between two
numbers appears in brackets. The first is the number of stocks that are
repeated with respect to the portfolio with immediately inferior cardinality.
The second number is the cardinality. For example, for the multiobjective
model with n =15, there are 7 stocks that are repeated in the
multiobjective portfolio with n = 10. Specifically, these are stocks are 05,
13, 33, 53, 57, 65 and 81. Therefore, the portfolio withn = 15 has inherited
7 of the 10 stocks that made up the portfolio with n = 10, and so the ratio is
7/10. This offers an idea of the persistence with which stocks are held when
cardinality increases.

The results show that the mean-variance monoobjective model is the most
persistent in its stocks. The portfolio with n = 7 selects 4 out of 5 stocks
from n=15; and for n = 10it is 6 of the 7 possible stocks; while n = 15
inherits 10 of the possible stocks in the n = 10 portfolio. Of the four models
suggested, the model that generates the most variable portfolios is the one
that minimizes TEV.

[Insert Table 1 here]
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It is interesting to analyze the graphical representation of the mean-
variance and mean-TEV. Figure 2 shows the frontiers obtained for each
model on the mean-variance plane according to the cardinalities
considered in each case. The frontiers are generated from the stocks
shown in Table 1 by simply varying the excess return required. For
example, in the case n = 5, the frontier that minimizes the variance of the
portfolio corresponds to Markowitz’s classical model when only considering
the stocks 33, 38, 52, 57 and 65. These stocks correspond to the minimum
variance portfolio for G = 0, and so the portfolio at this point is less volatile
than the other frontiers at the same G = 0 point.

For nearly the entire spectrum of G values considered in the graph, the
minimum variance frontier dominates the two frontiers generated with the
monoobjective models: the TEV frontier and the frontier curvature.
However, this does not happen with the multiobjective model frontier. For
example, in the case n =75 it can be seen how the minimum variance
frontier dominates the multiobjective frontier for weekly returns of between
0.22% and 0.37% (annual returns of 12.1% and 21.2% respectively). This
implies that if the investor wants to achieve a return that is within this range,
then he/she should select the minimum variance frontier. But if the investor
will accept returns below 0.22%, or if the investor's risk profile requires
returns greater than 0.37%, then the multiobjective frontier should be
chosen.

The greater curvature of the minimum variance frontier implies that the
distance between it and the multiobjective frontier grows rapidly when |G|
increases. For example, if an investor wants a weekly return of 0.45%, the
risk of his position on the minimum variance frontier would be 0.00046
when measured as the variance of return. The investor who chooses the
multiobjective frontier would assume a variance of 0.00031. In other words,
the variance recorded at the minimum variance frontier would be 50%
higher than the variance in the multiobjective frontier.

Moreover, the greatest distance between the minimum variance frontier
and the multiobjective frontier occurs at the weekly return point of 0.29%.
The difference between the variances is 0.000047, while the relative
advantage of investing in the minimum variance frontier instead of the
multiobjective frontier is 24%.

Similar comments can be made for the remaining cardinalities. Figure 2
shows that as the cardinality of the portfolios increases, the frontier
curvature decreases. This means the effect of including the curvature in the
multiobjective model is dissipated, because the curvature of the minimum
variance frontier is approaching the minimum curvature frontier. The range
of returns in which the minimum variance frontier dominates the
multiobjective frontier grows, albeit slowly. The difference between the two
frontiers also decreases as cardinality increases. Therefore, the S&P100
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can be efficiently tracked with 15 stocks with good results in the mean-
variance plane. Adding more stocks to the tracking would not generate an
improvement beyond that observed in Figure 2.

Figure 3 shows the frontiers in the mean-TEV plane when considering the
same cardinalities as in Figure 2. It can be seen that the frontier that
minimizes the TEV approaches the position of the index as cardinality in
the portfolio increases. This frontier is preferred in the case of n = 15 as it
dominates the remaining frontiers in all the considered return rates.
Something similar occurs with n = 10. However, if the number of stocks in
the portfolio is restricted to 5, then the excessive curvature means that the
multiobjective frontier dominates when returns are below 0.26% or are
greater than 0.37%. This relationship of dominance only becomes clear in
the casen =5 due to the already mentioned overweighting of the return
variance in the multiobjective function (it has been multiplied by /n).
Similarly, the weight of the criteria can be varied so the multiobjective
function tilts towards one in particular, depending on the strategy defined by
the fund manager.

In any case, we can conclude that the multiobjective model finds
consensus solutions among the monoobjective models. The model may
therefore be a good alternative for managers who do not aim to optimize a
particular criterion, but wish to offer clients a balanced solution and so
satisfy a wider range of risk profiles.

[Insert Figure 2 here]
[Insert Figure 3 here]
6. Conclusions

Criticisms made about active investment fund management have boosted
the success of passive strategies. Various studies have shown how difficult
it is for active management to beat the results of passive management —
even more so when transaction costs are considered. Tracking portfolios
have become one of the most common passive management strategies —
and the emergence of ETFs has heightened their popularity.

Many authors have suggested that costs can be reduced by employing
heuristics for the partial tracking of portfolios. Unlike full tracking, partial
tracking_portfolios use only a subset of the stocks in the index. Researchers
have made use of a limited number of parameters in the selection of these
stocks: Tracking error variance (TEV) if the only objective is to imitate the
behavior of an index; and return variance if the efficiency of the portfolio at
the mean-variance plane is also under consideration. Both criteria are
linked to the tracking portfolio, so the portfolio composition varies with the
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level of return required. Accordingly, different returns can mean that
different stocks are considered in the tracking. This represents an increase
in transaction costs because fund managers who wish to satisfy clients with
heterogeneous profiles are then forced to invest in many stocks. This
practice reduces the advantages of passive management in comparison to
active management.

This paper considers a new parameter for use with the above: Frontier
curvature. This criterion is not defined for a given portfolio, but for the set of
portfolios that define the tracking frontier. The main implication is that the
manager can satisfy different investment profiles using the same subset of
stocks, with all the portfolios containing the same stocks and so reducing
transaction costs.

For the joint consideration of these criteria we propose the use of
multiobjective mathematical programming. In this way the solution can
generate a new frontier as a consensus between the frontiers obtained by
separately considering each criterion.

The proposed model has been used for tracking the S&P 100. The results
show how the multiobjective frontier is balanced between monoobjective
frontiers. From a theoretical viewpoint, the generation of multiobjective
solutions is justified for partial tracking portfolios for several reasons.

First, if only the TEV criterion is considered then naive solutions could be
obtained in many cases, meaning solutions dominated by stocks with the
highest market capitalizations. In such situations, the application of
heuristics for building tracking portfolios would not offer a significant
advantage with respect to a naive strategy of selecting stocks on the basis
of market capitalization. This would occur mainly with composite indexes
built from a relatively small number of stocks — such as the French CAC-40,
the German DAX-30, or the Spanish IBEX-35.

Second, if only the variance of portfolio returns is considered, then
portfolios would be obtained whose future behavior would not necessarily
correspond with past behavior. This is one of the main problems with the
mean-variance model in which returns and the covariance structure among
stocks changes over time — negatively affecting the predictive ability of
models. This does not occur with TEV models, where the recent history of
stocks satisfactorily explains the evolution of the index. Moreover, these
models tend to retain their explanatory power in the future. The reason is
simple: there are many stocks that maintain their influence and weight in
the composition of the index because of their substantial market
capitalizations.

Finally, the inclusion of the curvature of the tracking frontier as a new
criterion enables us to contemplate a wider range of investment profiles.
With this criterion, it is possible to go beyond the objective of building a
single tracking portfolio and to aim for a more general goal: to obtain a
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tracking frontier that satisfies a larger number of investors by using the
same subset of stocks.
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Annexes

Annex A1

Proposition 1. The curve of the TEV frontier generated from a subset of n
stocks (n < N) has the same curvature as a minimum variance frontier
generated from the same subset of stocks.

This is demonstrated when n =N — 1, that is, the number of stocks is
reduced by one.

Let us calculate the curve of a TEV frontier for a tracking portfolio built from
N — 1 stocks. Without loss of generality, let us suppose that the excluded
oTEV—i2, can be expressed as:

ofpy_, = XpVX, = (X + X)'V (X, +X) = X5 VX, + x5, VX + 2X VX
(A.1)
where:
x_; = vector difference of weights between the index and the portfolio,
excluding the portfolio’s i-stock.
The vector x_; can be obtained by solving the following model:
1
Min Ext_iVX_i
s.t. xX,'/R=¢G
xt1=0
x5;0; = —qp;
(A.2)

where:

0; = is the weights vector sized Nx1 with all zero values except in the i-th
position where it has a value of one.

qp, = represents the weight of the i-th stock in the stock index.

By using the Lagrangian method for this model and solving the system, the

solution for x_; is (A.3):
G
0
—qp;
(A.3)

Below we will develop each of the terms in (A.1). Expressing the second
term xt,Vx_; (A.4):

X_; = V_l[R 1 OI]A:%
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R G
Xt_iVX_i = [G 0 _QbL]A:} 1 V_l VV‘l[R 1 OL]A:]L- O ] =
0; —qbp;

G
0 |=
— b,

G*(cf — e?) + qp,(ac — b?) — 2q,,G(be — cd)
h acf + 2bde — ae? — b2f — cd?

(A.4)
Proceeding in the same way with the third variance term produces the
expression (A.5):
G G
—p; —qp;

) G(R,(cf —e?) + qp,(be — cd) + de — bf) — qbi(Rb(be - cd) + qp,(ac — b?) + bd — ae)
a acf + 2bde — ae? — b2f — cd?

2x!Vx_; =2x[VV7I[R 1 0;]AT}

(A.5)
By adding the three variance terms we obtain (A.6):
O-TZEV_L-
) G*(cf — e?) + qp,(ac — b?) — 2q,,G (be — cd)

acf + 2bde — ae? — b2f — cd?
o G(R,(cf —e?) + qp,(be — cd) + de — bf) — qbl.(Rb(be —cd) + qp,(ac — b*) + bd — ae)
acf + 2bde — ae? — b?f — cd?

(A.6)
The second derivative with respect to G provides the frontier curve that we
will term x4:

OZJ%EV_i _ 2(cf —e?) .
G acf + 2bde — ae? — b2f —cd? 7!

(A.7)
To calculate the frontier curve of the minimum variance considering the
same N — 1 stocks, the next mathematical programming model can be
used and the x,, ;;weight vector solved:

Min Xp,/V%p/p0)

S.t. X;/{l}R = Rp
Xppl =1
Xp(0i = 0
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This is Markowitz’s classic minimum variance model where only the
constraint that the i-th weight must be zero has been added. The solution

appears in (A.9):
Rp
!
0

Xp/{i} =V_1[R 1 OL]A:}

(A.9)
R:VTIR RiV™11 Rtv~1o;
where A_; = |R'V™11  1tv~11  1ftv~1o,|.
R‘v~10; 1tv~lo; o0iv-lo,;

The variance of the portfolio with x,, ;; weights are calculated in (A.10):

R R
p
O';/{L} = X;/{i}pr/{i} = [Rp 1 O]A:} 1 V‘1VV‘1[R 1 OL]A:% 1
0, 0
Ry
0
_ Ri(cf —e?) + 2R,(de — bf) + af — d?
acf + 2bde — ae? — b?f — cd?
(A.10)

Bearing in mind that the returns of the portfolio can be expressed as the
returns of the stock index plus return relative to G:

o2 (Ry + G)?(cf —e?) + 2(R, + G)(de — bf) + af — d?
ZCa acf + 2bde — ae? — b2f — cd?

(A.11)
The second derivative of 05/{1'} with respect to G provides the curvature of
the minimum variance frontier:

020y _ 2(cf —e?)
G  acf + 2bde — ae? — b2f — cd?

(A.12)
This coincides with the gy curvature of the TEV frontier.
In this way, the coincidence in the curvature of the efficient frontier built
from a subset of n stocks and the TEV frontier obtained from the same n
stocks is demonstrated. The generalization for 2 < n < N — 1 is immediate
and so the proposition is demonstrated.
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Annex A.2

Proposition 2. The TEV frontier generated from a subset of n stocks (n < N)
is a shift of the minimum variance frontier obtained from the same subset of
stocks.

This is firstly demonstrated for the case of a subset composed of N-1
stocks. The extension to the general case is immediate.

With respect to the expression (A.6) of the variance of the TEV frontier, the
slope of the curve for a given Ry, is given by (A.13):

0025y _; _ 2(R, + G)(cf —e?) — 2qy,(be — cd) + 2(de — bf)
oR, acf + 2bde — ae? — b%f — cd?

(A.13)
If we calculate the slope of the minimum variance frontier at a point with the
same return we get (A.14):

995/ _ _2Ry(cf — e?) + 2(de — bf)
O0R,  acf + 2bde — ae? — b2f — cd?

(A.14)
The two curves only coincide under the improbable condition:

G(cf —e?) = qp,(be — cd)

(A.15)
Therefore, in the partial tracking of the TEV frontier, the axis of variance is
displaced for the case of the full tracking, as already shown by Roll (1992)
for full tracking. The slope of variance is also displaced for returns — since
they have different slopes at a point with the same return. The coincidence
in the slopes, which is the same as a non-shift in the returns axis, only
occurs under condition (A.15).
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Annex A.3

Proposition 3. The curvature of a TEV frontier generated from a set of n
stocks (n < N) is less than the curvature of the TEV frontier generated
excluding some of these stocks.

This is demonstrated by comparing the curvatures of a full tracking and a
partial tracking after removing one stock. The generalization of the
statement in the proposition is immediate.

The curvature of the TEV frontier in the full tracking coincides with the
curvature of the minimum variance frontier (Roll, 1992), and so its
expression coincides with (17), and is termed «f2:

2c
K12 = e — b2
(A.16)
To calculate the curvature of the TEV frontier in the partial tracking we will
suppose without loss of generality that the excluded stock occupies the i-th
position. In this way, the curvature of the frontier takes the value k¢, (A.7),

which for convenience we will reproduce below:

3 2(cf —e?)
= acf + 2bde — ae? — b2f — cd?
(A.17)
The aim is to compare the relationship kgq = kp,:
2(cf — e?) - 2c
acf + 2bde — ae? — b?2f —cd? ~ ac — b?
ac?f — ace? — b%cf + b%e? > ac?f + 2bcde — ace? — b2cf — c*d?
c?d? + b%e? — 2bcde = 0
(cd —be)? =0
(A.18)
Given that any squared scale is greater than or equal to 0O, it is shown that

Kfl > KfZ-
Because of similarity with the minimum variance frontier, it will be equal if
the variance-covariance matrix is not invertible. Therefore, necessarily

Kfl > KfZ'
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Figure 1. The minimum variance frontier and various TEV frontiers
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Key: - - - Minimum variance frontier; — TEV frontier; — TEV frontier excluding the j-
th stock; TEV frontier excluding the i-th stock; b: position of the index in the

mean-variance plane; b*: projection of the index on the minimum variance frontier;
R4: return of portfolio 1 (see Roll, 1992); R,: return of portfolio 2 (see Roll, 1992);
Ry: index return; o7: index return variance; a,f*: return variance of portfolio b*.

Table 1. Composition of the portfolios in the solution of the multiobjective

model and the three monoobjective models.

Monoobjective Multiobjective models
models
Cardinality . . . . : :
of the w, = vVn/VARy Min portfolio Min tracking error Min tracking
portfolio ! — 1/TEV, n? variance - variance — TEV frontier curvature
W2 = X! Markowitz (w; =1, | W, =1, w; = w3 = w3 =1,w; =
wy = 1/Cy»
3T Xn wy = ws = 0) 0) w, = 0)
Stock06, Stock15, | Stock33, Stock38, | Stock05, Stock17, | Stock01, Stock15,
n=->5 Stock 38, Stock60, | Stock 52, Stock57, | Stock 59, Stock79, Stock 51,

Stock89

Stock65

Stock90

Stock84, Stock89

Stock05, Stock19,
Stock33, Stock50,
Stock52, Stock53,

Stock13, Stock33,
Stock38, Stock 53,
Stock57, Stock65,

Stock05, Stock17,
Stock26, Stock49,
Stock 53, Stock74,

Stock08, Stock34,
Stock50, Stock
51, Stock60,
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Stock65
(0/5)

Stock80
(4/5)

Stock90
(3/5)

Stock68, Stock89
(2/5)

Stock05, Stock13,
Stock19, Stock 33,
Stock50, Stock52,

Stock33, Stock38,
Stock 52, Stock 53,
Stock57, Stock61,

Stock05, Stock12,
Stock18, Stock19,
Stock33, Stock43,

Stock08, Stock15,
Stock34, Stock50,
Stock 51,

n=10 | giock53 Stock57, | Stock65, Stock7s, | Stock 93, Stock | Stock60, Stockes,
Stock65, Stock81 | Stock80, Stockd7 59, Stock 65, | Stock75, Stocks4,
’ ’ Stock74 Stock89
(717) (6/7) 3/7)) (7/7)
Stock05, Stock08, Stock08, Stock13, Stock05, Stock14, | Stock05, Stock08,
Stock13, Stock 33, Stock33, Stock38, Stock15, Stock18, | Stock15, Stock16,
Stock49, Stock53, | Stock 52, Stock 53, | Stock35, Stock38, | Stock22, Stock25,
Stock57, Stock65, Stock57, Stock61, Stock43, Stock47, | Stock28, Stock33,
n=15 Stock74, Stock80, Stock65, Stock75, | Stock49, Stock 53, | Stock34, Stock53,

Stock81, Stock84,
Stock89, Stock90,
Stock97

(7/10)

Stock80, Stock81,
Stock83, Stock89,
Stock97

(10/10)

Stock 56, Stock
59, Stock 63,
Stock 66, Stock96

(5/10)

Stock75, Stock78,
Stock84, Stock89,
Stock98

(6/10)

Figure 2. Graphical representation of the return variance versus the weekly
returns for the multiobjective model and the three monoobjective models.
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Figure 3. Graphical representation of the TEV versus the weekly returns for
the multiobjective model and the three monoobjective models. Cardinality:
n=5,7,10,15
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Weekly return
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