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Abstract

As sequencing technologies progress, the amount of data produced grows exponentially, shifting
the bottleneck of discovery towards the data analysis phase. In particular, currently available map-
ping solutions for RNA-seq leave room for improvement in terms of sensitivity and performance, hin-
dering an efficient analysis of transcriptomes by massive sequencing. Here, we present an
innovative approach that combines re-engineering, optimization and parallelization. This solution re-
sults in a significant increase of mapping sensitivity over a wide range of read lengths and substantial

shorter runtimes when compared with current RNA-seq mapping methods available.
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1. Introduction

The last generations of high-throughput sequencers produce data at
an unprecedented scale with associated sequencing costs in a con-
tinuous decrease. In particular, RNA sequencing (RNA-seq) technol-
ogy,' which provides a comprehensive profile of a transcriptome, is
increasingly replacing conventional expression microarrays.” Pri-
mary data processing in RNA-seq (as well as in other massive se-
quencing experiments, including genome resequencing) involves
mapping reads onto a reference genome. This step constitutes a com-
putationally expensive process in which, in addition, sensitivity is a
serious concern.’ A variety of programs, many of them implementing
the Burrows-Wheeler Transform (BWT) algorithm that is based on
an indexing method which enormously speed up the searching pro-
cess, have been developed.*™®

Recently proposed algorithms for DNA read mapping map ~98—
99% of DNA reads (a gain of only 2% with respect to the 96% ob-
tained by previously available mappers at a modest speedup).”!*
Thus, the current software provides a reasonably quick and sensitive
framework for read mapping in DNA resequencing experiments.
However, the scenario in RNA-seq is far from these standards. Map-
ping sequencing reads in the context of transcripts is a much more
complex problem than simply mapping reads onto the genomic se-
quence, as in the case of genome resequencing experiments. Eukaryot-
ic transcriptomes are complex, with an average of more than nine
transcripts per gene'” with exons of 250 bp on the average that
span over several hundreds of kilobases, and more new transcript iso-
forms are continuously being discovered.'? It has been reported that
widely used mappers, such as TopHat,'* can hardly reach 70% of
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100 bp reads correctly mapped in a realistic scenario with sequencing
errors, while the best sensitivity (82%) is attained by GSNAP.'S Al-
though GSNAP seems to display a lower sensitivity in an ideal error-
free scenario.'® According to this last report, other RNA-seq mappers
like RUM,'” STAR,'® or MapSplice!® align sequencing reads with
even lower accuracy. However, more recent reports>” support a better
performance of STAR'® or MapSplice!® with respect to the other
methods, in agreement with earlier benchmarks.'” Moreover, as
read length increases (the natural trend of the continuous upgrades
of sequencing instruments), the sensitivity of the methods drops
down, causing serious problems in terms of sensitivity and runtime.'®
Mapping is actually problematic with most BWT-based mappers, be-
cause they often allow only a small number of mismatches (insufficient
for the current read lengths even in scenarios of low variability). New
aligners, such TopHat2,'* which uses the new Bowtie2,'” have signifi-
cantly accelerated the mapping step (with a small trade-off in sensitiv-
ity), although the strategy for junction detection remains unchanged.
While this study was under review, a new mapper was published,
HISAT,*' that combines the BWT and the Ferragina-Manzini index
in its indexing scheme. Similarly, this speedup that shows this program
seems to be attained at the exchange of a trade-off in sensitivity.
Despite the interest in the use of RNA-seq for transcriptome ana-
lysis and the advancements in algorithms either for quantifying

2223 or for transcript discovery,>* the basic problem of mapping

reads
reads in the context of transcripts is far from being solved.

Here, we propose an innovative solution for high-quality map-
ping of both short and long reads, based on a combination of map-
ping with BWT and local alignment with Smith-Waterman (SW),
that drastically increases mapping accuracy (95 versus 60-85% by
current mappers, in the most common scenarios) and substantially
reduces runtimes (by about 15x when compared with TopHat2, 8x
with MapSplice and 2x with STAR). In addition, the proposed strat-
egy has also demonstrated to be quite robust against indels and mis-
matches. This proposal provides a simple, fast and elegant solution
that maps almost all the reads, even those containing a high number
of mismatches or indels. This solution also saves a substantial
amount of time in the mapping step which, consequently, critically
contributes to the acceleration of the current pipelines of sequencing
data processing. This strategy, implemented in a program that makes
use of different high-performance computing (HPC) technologies,
HPG Aligner, shows an excellent performance with both, short
and long reads, with runtimes presenting only a linear dependence
with the number of reads.

2. Methods

Most modern mappers rely on the BWT indexing method to speed up
the searching process. However, speedup by indexing is achieved at
the exchange of sensitivity, which decreases as read length increases,
since most common BWT implementations only allow a limited num-
ber of mismatches. On the other side of the spectrum, the well-known
BLAST mapper’ uses SW as a local alignment algorithm, which pre-
sents a high sensitivity, being able to map reads with many mis-
matches or indels. However, its performance in terms of runtimes
makes BLAST unsuitable for mapping the huge number of reads pro-
duced in next-generation sequencing (NGS) experiments.

Here, we have brought together the best of both algorithms: the
performance of BWT and the sensitivity of SW, by implementing a
combined strategy that allows an ultrafast and high sensitivity read
mapping, even in the presence of high proportions of mutations and

indels. The algorithm proposed also deals very efficiently with the
problem of introns, no matter that only a small fragment of the end
of the read is contained in the next exon. This is achieved by using a
highly efficient data structure, which we called ‘metaexon’, that learns
from high-quality mapped reads and helps to map low-quality or more
complex reads. This metaexon structure stores information of the gen-
omic coordinates and the number of aligned reads with low memory
requirements (Supplementary Fig. S1). By doing so, the proportion of
hard and soft clipping is drastically reduced.

The aligning process is completed in two main steps: first, our
BWT implementation, based on a previous version for exact align-
ment,”® is used to map reads containing up to two mismatches
(BWT index is built with a default factor of 8). The resulting high-
quality alignment information is stored in the metaexon data struc-
ture. Secondly, reads containing more than two mismatches, indels
or introns are mapped following a multi-stage process: (i) contiguous
seeds are generated covering the whole read and also two more reads
overlapping the beginning and end of the read are generated (Fig. 1).
These overlapping seeds will help to align multi-exon covering reads.
A seed size of 16 nucleotides (nt) represents a good trade-off between
performance and sensitivity. These seeds are mapped using BWT,
with no mismatches allowed. (ii) Seeds mapping at distances closer
than a read length and with the same strand orientation are brought
together to generate candidate alignment locations (labelled as can-
didate alignment location in Fig. 1); (iii) candidate alignment loca-
tions are clustered together to define transcripts providing they are
closer than 500,000 nt and in the same strand orientation. Note
that several clusters can be obtained from the candidate alignment
locations; (iv) for each cluster, the gaps produced by either not
aligned seeds or exon—intron boundaries are aligned using a HPC im-
plementation of SW. This implementation uses Streaming SIMD Ex-
tensions (SSE) instructions, which allow mismatches and indels and
present a high sensitivity to determine intron boundaries. For align-
ing seeds mapping at the ends of the exons, the metaexon data struc-
ture is queried to obtain candidate exon junctions. Using this simple
strategy, HPG Aligner can provide a high-quality alignment for
spliced reads; (v) finally, a score is obtained and the alignments are
reported.

Due to the HPC implementation, we have devised a simple but
powerful strategy in which the original high sensitivity of the algo-
rithms is maintained without sacrificing performance. HPG Aligner
can map reads containing many mismatches and indels, which can
cover one or more introns. The algorithms have been implemented
in the most convenient accelerator hardware. Thus, BWT has been im-
plemented in two ways: in a multi-thread library that exploits the mod-
ern multicore CPUs and also using Nvidia CUDA library for GPUs.
Both implementations can be executed simultaneously to obtain high-
er performance. On the other hand, SW benefits from the parallelism
of SIMD registers present in each core of modern CPUs and has been
implemented using SSE4 instructions.

The performance of HPG aligner was greatly improved with the
implementation of some specific strategies to overcome the bottlenecks
detected in the alignment process. Most significant implementation
improvements include: (i) the use of a custom SW implementation
based on multisequence vectors;>” during the alignment, SW execu-
tions are buffered to execute them in parallel. (ii) Grouping seeds
that map close in the genome (conceptually similar to clustering)
was an expensive operation. This was easily solved by storing all the
seeds from different chromosomes independently and sorted. (iii)
BWT is a very fast algorithm and a significant fraction of the
FASTQ file could be aligned with less than two mismatches.
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Figure 1. Schema of the implementation of the mapping process. (Top) Contiguous seeds of size (16 bp) are taken covering the whole read. Also, two more
overlapping seeds near the ends of the read are taken for anchoring the ends to the exons. (Middle) Seeds are mapped without allowing any mismatch. Seeds
mapped closer than read size and, in the same strand orientation, constitute a candidate alignment location (CAL). (Bottom) CALs closer than 500,000 bp and, in
the same strand orientation, are clustered to form candidate exons and transcripts. These are evaluated and scores based on SW are assigned to them. This figure is

available in black and white in print and in colour at DNA Research online.

Therefore, reads are aligned with BWT before seeding. When the
alignment fails (because there are more than two mismatches), the
aligned part of the read is still stored as a seed (i.e. if after BWT
there are 40 bp exact alignment, then this is considered a seed.). (iv)
The metaexon data structure (see above and Supplementary Fig. S1)
reduces the computing time for some of the more difficult alignments.

To improve the overall performance of the implementation, several
advanced tools for high-performance profiling were used during the
development (in particular, Paraver http:/www.bsc.es/computer-
sciences/performance-tools/paraver and Extrae http:/www.bsc.es/
computer-sciences/extrae). These tools revealed that some steps of
the internal pipeline were not taking fully advantage of the hardware
resources. A dynamic runtime engine was developed and built inside
HPG Aligner.”® Each of the steps of the pipeline were considered as a
task that needs some resource to be executed. Requested resources
were assigned by the engine runtime in a dynamic and efficient way.
In this way, the computing resources (such as cores) are assigned to
the different tasks in an optimal way to avoid some cores to be waiting
for other tasks to finish. This is a more complex implementation,
which can usually be found in HPC applications. This allowed us to
increase significantly the performance.

By leveraging the HPC implementation, the software runs many
times faster than any other currently available solution and, in add-
ition, it presents much higher sensitivity. Moreover, this implementa-
tion has proved to be technically much more efficient than current
state-of-the art implementations since (i) the requirement of memory
is much lower and it is kept below 10 GB, (ii) scalability in a multicore
CPUs (up to 24 cores) is maintained and (iii) no large secondary indi-
ces or ‘temp’ files are generated during the execution, so no extra hard
disk space is required.

2.1. Paired and unpaired RNA-seq simulated datasets
comparison

We have used two popular programs for the simulations of paired and
unpaired reads from the human transcriptome: BEERS (http:/www.
cbil.upenn.edu/BEERS/), a simulator specifically devised to produce
mRNA populations'” and also the popular dwgsim 0.1.8 from SAM-
tools (http:/sourceforge.net/apps/mediawiki/dnaa/index.php?title=
Whole_Genome_Simulation).

Using BEERS, we generated 10 million reads for 10,000 genes in a
duplicate of all the simulations, that is, FastQ files of 50, 75, 100, 150,
250 and 400 bp long, with different error ratios (0.001, 0.01 and 0.02
corresponding to 0.1, 1 and 2% mismatches, respectively). In all the
configurations, the fraction of mutations that are indels was set to
10%.

The program dwgsim was run in ‘Illumina’ mode with option ‘-c 0’
for the six different length sizes tested. To study sensitivity against mu-
tations and N’s present in reads, three quality configurations were
tested. First, a high-quality dataset containing 0.1% of mutations
and a maximum of 2 N’s per read was generated with options ‘-r
0.001 -n 2’. For the second and third datasets, higher proportion of
mutations and N’s were allowed to increase up to 1 and 2% of muta-
tions, respectively, and 3 N’s per read with options “-r 0.01 -n 3’ and ‘-r
0.02 -n 3’. In both configurations, the fraction of mutations that are
indels was set to 10% with option “R 0.1°.

The coordinates for cDNA sequences were taken from Ensembl 68
built upon GRCh37. For all combinations of length sizes and quality
configurations, single-end and paired-end datasets were generated. For
paired-end datasets, the inner distance between reads was set to 400
for reads smaller than 250 nt and a distance of 250 for the datasets
of 250 and 400 length sizes.
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Human assembly GRCh37.p8 was taken from Ensembl 68. HPG
Aligner was run in ‘rna’ mode. The default command line parameters
for the programs can be found in Supplementary data.

Benchmarks were performed in a high-end machine with two
hexa-core Intel Xeon E5645 2.40 GHz CPUs and 48 GB of memory.
All executions were done using the 12 cores available and memory use
was monitored. HPG Aligner showed a memory peak of 10 GB.

All the FastQ file generated in the simulations and the BAM files
generated in the benchmarking are available at: http:/bioinfo.cipf.es/
publications/supplementary_material.

2.2. Real RNA-seq datasets comparison
To test short- and long-read alignment with real data, two different
datasets from Sequence Read Archive (SRA) were used, and the first
dataset tested was SRR364003 (http:/www.ncbi.nlm.nih.gov/sra?
term=SRR364003) sequenced with Illumina HiSeq 2000 platform
and contained 81.6 million single and paired-end short reads of
100 nt length; the second dataset was built by combining the two runs
of SRX025091 (http:/www.ncbi.nlm.nih.gov/sra?term=SRX025091)
sequenced using the Roche 454 GS FLX platform; in total, a dataset
of 1.26 million of single-end reads of about sequences, 600 nt long,
was obtained.

The programs were run using default command line options in a
single and paired-end mode (see above). Evaluation was performed

by counting as correctly mapped the number of reads mapping within
known transcript positions. The known transcripts are taken from En-
sembl.?’ Benchmarks were performed in a high-end machine with two
hexa-core Intel Xeon E5645 2.40 GHz CPUs and 48 GB of memory.

3. Results

3.1. Performance of the method: speed and sensitivity
We have compared the proposed aligner with the most extensively
used RNA-seq mapper, TopHat2!'* (version 2.0.9), STAR'® (version
2.3.0), MapSplice'” (version 2.1.3) and HISAT?! in simulated datasets
with 10 million reads of lengths of 50, 75, 100, 150, 250 and 400 nt,
in three scenarios of variability (0.1, 1 and 2% of mismatches, 10% of
these being indels). Simulations were initially carried out with the
BEERS program (see the Methods section).

Figure 2 shows the sensitivity of the proposed aligner, measured as
the number of reads generated by BEERS correctly mapped (that is,
mapping correctly the start and end and covering splice sites in be-
tween). HPG Aligner outperforms TopHat2 with Bowtie 2, HISAT
(except in unrealistic scenarios of no error with read lengths of 150
and 250), STAR and MapSplice, even when mapping short reads
(see details in Table 1) and, as read length grows and the error rate in-
creases, the difference in sensitivity increases even more. In current
conventional lengths (100 bp) in an ideal scenario of low error,
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Figure 2. Representation of mapping sensitivity (percentage of reads correctly mapped) versus runtimes (in min) for simulated datasets of different single read
lengths (from 50 bp, upper left, to 400 bp, lower right) containing 10 million single-end reads in two scenarios of variability (low variability represented by
circles and high variability represented by triangles). The colour code corresponds to the different programs. In all the cases, HPG Aligner sensibilities and
runtimes were better than the ones shown by the rest of programs (Supplementary Table S1). These differences increase as read length and error increase.
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Table 1. Benchmarking for the simulated dataset containing 10 million single-end reads simulated with the BEERS program

RL MR (%) HPG Aligner 1 HISAT STAR 2 TopHat 2 + Bowtie 2 MapSplice 2
IMR RNM CMR T IMR RNM CMR T IMR RNM CMR T IMR RNM CMR T IMR RNM CMR T
0.1 3.08 0.42 96.5 4.8 4.42 3.22 9236 4.45 7.32 1.46 91.22 8.28 2.05 0.93  97.02 36.35 2.82 1.16 96.02 26.93
50 1 4.26 0.84 94.9 4.9 9.79 8.61  81.60 4.80 11.23 1.72 87.05 8.73  2.06 3.04  94.90 79.65 2.95 2.03 95.02 26.13
2 5.82 2.26 91.92 52 16.29 17.18 66.53 4.58 15.44 3.16 81.40 8.85 2.00 10.18 87.82 374.9 3.21 4.81 91.98 26.08
0.1 3.51 0.24 96.25 5.8 2.30 1.13  96.57 6.21 7.81 0.46 91.73 9.52  0.28 2.98 96.74 48.22 3.31 0.24 96.45 37.32
75 1 4.17 0.94 94.89 6 4.64 348 91.88 6.40 11.82 1.18 87.00 9.97 1.24 6.90 91.86 50.78 3.59 1.16 95.25 35.05
2 5.64 1.27 93.09 6.4 10.59 1046  78.95 6.46 16.62 1.55 81.83 11.25 0.94 22.18 76.88 58.93 5.13 2.20 92.67 34.28
0.1 4.07 0.24 95.69 7.4 2.57 1.24  96.19 7.86 7.59 0.64 91.77 11.77  1.69 1.94 96.37 65.08 3.54 0.26 96.20 51.17
100 1 4.95 0.55 94.50 7.5 5.70 4.51  89.79 8.15 11.90 0.62 87.48 12.08 0.99 11.70 87.31 74.02 3.98 0.68 95.34 46.03
2 6.07 0.93 93.00 7.8 15.64 1719 67.17 8.40 16.48 1.14 82.38 12.35 0.60 36.14 63.26 85.65 6.45 1.50 92.05 45.6
0.1 5.58 0.31 94.11  10.5 3.15 1.56 9529 11.75 8.40 0.57 91.03 15.07 1.49 3.55 94.96 97.9 5.45 0.21 94.34 56.88
150 1 7.77 1.95 90.28 10.6 12.49  13.03 74.48 11.41 12.88 2.73 84.39 15.08 0.82 27.13 72.05 121.55 8.23 2.67 89.10 53.53
2 7.06 0.78 92.16 10.9 2442 39.76 35.82 1191 15.97 0.73 83.30 15.73 0.45 61.84 37.71 140.28 13.65 1.57 84.78 56.73
0.1 8.21 0.66 91.13 16.55 4.49 2.47 93.04 17.80 9.13 0.62 90.25 21.58 1.62 6.70 91.68 185.78 11.51 0.23 88.26 75.55
250 1 8.43 0.81 90.76  16.5 2228  31.6 46.12  19.28 12.99 0.71 86.30 22.3 0.28 53.29 46.43 256.83 29.85 0.75 69.40 79.28
2 8.72 1.62 89.66 17.45 17.75 77.04 521 1746 18.35 1.43 80.22 23.35 0.07 89.62 10.31 309.85 35.27 1.24 63.49 76.37
0.1 10.02 1.08 88.90 25.45 6.88 5.04 88.08 28.5 9.98 0.56 89.46 3212 0.99 12.32 86.69 369.58 17.33 0.03 82.64 106.67
400 1 12.94 3.35 83.71 25.6 22.52  66.17 11.31 29.7 14.82 4.26 80.92 33.83 0.09 8240 17.51 573.18 S51.64 1.65 46.71  103.98
2 11.78 2.84 85.38 26 3.08 96.82 0.10 27.10 32.75 2.75 64.5 24.5 0.01  99.02 0.97 603.28 54.34 0.51 45.15 106.53

First column, RL, indicated read length in bp. Second column represents the mutation rate (MR). For each program, the table contains the following columns with the percentages of: IMR: incorrectly mapped reads; RNM:

reads not mapped; CMR: correctly mapped reads covering the corresponding splice junctions. The last column, T, represents runtimes for producing a BAM file in min.

910z ‘2 Afenuer uo W AdN ® /B10'seuIno(plojxo yoeasareup//:dny wouy papeojumod

‘e 10 eUIpaI |


http://dnaresearch.oxfordjournals.org/

6 Highly sensitive and ultrafast RNA-seq mapping

performances are quite similar (95-96%). However, if error is a bit
higher (1%), HPG Aligner and MapSplice 2 maintain the sensitivity
(94.50 and 95.34%, respectively). At this read length, TopHat2 and
STAR sensitivities drop to a lower, but still reasonable value of ~87%.
For longer reads, the difference in sensitivity between HPG Aligner
and STAR with respect to TopHat2 and MapSplice 2 grows consider-
ably in scenarios of moderate error (see Table 1 reads 250 or 400 long
aterrors 1 or 2%). TopHat2 presents a peculiar behaviour: it keeps an
extraordinarily low ratio of incorrect read mapping (below 2%) at the
exchange of increasing the number of unmapped reads, which arrives
to 27.13% for read lengths of 150 bp and 1% error and 53.29% for
250 bp (same error). It is remarkable that HPG Aligner, STAR and
MapSplice keep the number of unmapped read below 5% across all
the range of read lengths. Regarding runtimes, HPG Aligner runs
much faster, ranging from 7x to almost than 10x for read lengths of
50-150, respectively, for TopHat2, 7x in the case of MapSplice and 2x
in the case of STAR. HISAT runtimes are similar, although a bit
slower, except in the case of very short reads (not produces anymore
by modern sequencers), in which it is slightly faster than HPG Aligner.

We repeated the simulations in the same conditions with the
dwgsim simulator (see the Methods section). The results obtained in
the transcriptomics simulated scenario provided by dwgsim are similar
although the percentages of correct mapping decrease for all the pro-
grams across the wide range of lengths (Supplementary Table S1). In
particular, the sensitivity of TopHat2 notably decreases in the low
variability (0.1%). As noise and read length increase, the sensitivity
falls down again. One of the reasons for this general decrease in the
sensitivity can be the fact that dwgsim has an extra parameter that ac-
counts for the error of the sequencing technology, which introduces an
extra amount of mismatches per read. As expected, the results ob-
tained in the case of paired reads were quite similar (Supplementary
Table S2).

Actually, sequencing technologies are progressively increasing the
read length (currently, HiSeq 2500 or HiSeq 1500 in rapid run mode
produces read lengths of 150 bp, 454 GS FLX+ Lifesciences average
read length is of 700-800 bp and Pacific Biosciences is over 3 Kb).
Therefore, a desirable property for aligners is robustness against in-
creasingly large sequence lengths.

When the five aligners are tested against a real dataset of 20 million
reads, 100 bp long, from an Illumina HiSeq (SRA accession
SRR364003), HPG Aligner was able to map at known transcript posi-
tions almost 80% of the reads, whereas HISAT and MapSplice
reached ~76%, STAR 72% and TopHat2 only reached 63%. In
terms of runtimes, HPG Aligner, HISAT and STAR are >10 times fas-
ter than TopHat2 and MapSplice (~10 versus over 100 min; Table 2).
When a dataset with longer reads, obtained with 454 GS FLX+ Life-
sciences (average 600 bp), was analysed (SRA accession SRP003173),
the number of reads mapped by HPG Aligner reduces to ~50%, while
STAR only reached 30%, HISAT and TopHat almost none and Map$-
plice did not get any result after 3 days running (Table 2).

Apart from read length, another important consideration is the
continuous increase in the number of reads. Table 3 summarizes the
different behaviours of the four aligners tested. HPG Aligner and
HISAT clearly render much better runtimes than the rest of programs.

We have also assessed the performance of the method in speci-
fically mapping reads containing splice junctions. Two sets containing
5 million reads 100 bp long, spliced and non-spliced, respectively,
were constructed. Runtimes obtained were very similar (220.61 s non-
spliced versus 222.45 s spliced). We repeated the simulation with
longer reads (250 bp) obtaining a similar result (485.56 s non-spliced
versus 488.74 s spliced).

Table 2. Real RNA-seq datasets taken from sequence read archive (SRA)

MapSplice

RNM CMR Time

TopHat2 + Bowtie2
RNM CMR Time

STAR
RNM CMR Time

HISAT
RNM CMR Time

HPG Aligner
RNM CMR Time

Run description

Run accession

SRA Study

4.63 76.83 1399
288.1

115.9
230.6

13.9 25.73 63.38

5.50 75.00

10.43
21.46

15.16 76.10
15.00 77.8

1.0

1

4.53 79.72
4.90 7820 216

Illumina HiSeq 81 M 100 nt (single-end)

SRR364003_1

SRP009262 SRR364003_1

77.5

04

S.

8.00 72.02 22.7 2926 59.9

Illumina HiSeq 81 M 100 nt (paired-end)

SRR364003_2

99.97  0.02 5206 NA NA NA

6.6

30.25

0.10 345 41.6

99.87

6.9

11.40 48.04

Roche 454 GS FLX 1.26 M ~600 nt

SRP003173 SRR063344

(single-end)

SRR063345

SRA SRP009262 study was sequenced with Illumina HiSeq and contains 81.6 M reads (20 M reads are used for the benchmarking) of 100 nt length. Aligners were run in single and paired-end mode. SRA SRP003173 study

was sequenced with Roche 454 GS FLX and contains 1.26 M reads (1,265,460) of ~600 nt.

For each program, the table contains the following columns with the percentages of: RNM: reads not mapped; CMR: correctly mapped reads (mapped reads that cover the corresponding to known transcript positions). The last

column, T, represents runtimes for producing a BAM file in min.
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Table 3. Scalability with the number of reads

Million HPG HISAT STAR TopHat2+ MapSplice
reads Aligner Bowtie2

2 0.9 0.95 4.5 38.7 11.8

5 1.9 1.7 5.6 40.5 18.65
10 3.8 4.2 7.75 75.2 36.4

20 7.6 728 135 112.2 68.5

Runtimes for producing a BAM file (in min) of the different aligners in
datasets of growing size.

3.2. Other technical advantages

In addition, the implementation presented here has additional advan-
tages. The program can directly read gzipped, FASTQ files saving in
this way both disc space and the time required for the decompression.
It is also able to directly generate BAM formats, saving the SAM to
BAM conversion step. From a technical point of view, the use of mem-
ory is highly efficient and can be managed by the user. For example,
HPG Aligner only needs 9 GB of RAM in the analysis of the simula-
tions shown in Fig. 2, whereas TopHat2 and STAR require 35 GB.
HPC implementation guarantees that software will have a good run-
time performance in most modern and future CPUs and GPUs. HPG
Aligner scales quite efficiently with the number of cores (threads),
which is a desirable property in a scenario in which the deep of sequen-
cing (number of reads sequenced) reveals as a crucial factor to properly
measure differential expression.?” Source code and development pro-
cess have been opened to the community and released in GitHub;
biologist and computational researchers are encouraged to use and
contribute to HPG Aligner.

3.3. Program availability
HPG Aligner is free and open source. Documentation and software are
available at: https:/github.com/opencb/hpg-aligner/wiki.

4. Discussion

Transcriptomic studies are nowadays essential for understanding bio-
logical mechanisms.*° For most than one decade, expression microar-
rays have been the dominant technology for transcriptomic analysis.
However, in a quick technological transition, RNA-seq is becoming
today the mainstream technology. The continuous upgrades of NGS
technologies result in an increase of both throughput and read lengths.
This trend requires of algorithms able to efficiently and accurately pro-
cess an increasing number of reads of increasing length. Current algo-
rithms present serious limitations in both aspects, which preclude an
optimal use of RNA-seq technologies.

Mapping sequencing reads in the context of transcripts is a problem
of much higher complexity than simply mapping reads onto the genomic
sequence, as in the case of genome resequencing experiments. Eukaryot-
ic transcriptomes are complex, with an average of more than nine tran-
scripts per gene'? with exons of 250 bp on the average that span over
several hundreds of kilobases, and more new transcript isoforms are
continuously being discovered.'® Particularly, splices near the ends of
reads can be especially difficult to align, given that a minimum amount
of sequence is needed to confidently identify exon boundaries.?® Accur-
ate mapping of both short and long reads as well as a precise detection
of potential splice junctions are crucial for accurate transcript isoform
definition, which is essential for a proper RNA-seq data analysis.

In addition, new strategies to speed up runtimes are needed. Brute-
force scaling-up strategies that rely only in the use of more powerful

computers are expensive, inefficient and unsustainable. Contrarily, al-
gorithmic solutions that take advantage of the intrinsic parallelism of
NGS data and exploit the different possibilities of parallelization in the
hardware used (multicore CPUs, SIMD and GPUs) offer a promising
solution to the problem of the ever-growing genomic data. Actually,
given the trend of increasing the number of cores in the new CPUs,
scalability becomes a desirable property for any algorithm that aims
to cope with the future growing sequencing datasets.

Recent comparative analysis reported that STAR'® or MapSplice'®
performed better than other methods. Here, we have shown how the
proposed approach is faster and more accurate than these ones over a
wide range of read lengths and errors. Summarizing, here we present a
solution for RNA-seq short-read mapping, which is optimal in terms
of speed and accuracy alignment. This solution is robust to growing
read lengths, it is highly sensitive to indels, and from a technological
point of view, it is quite effective in memory management and efficient-
ly scalable to many cores or processors. All these properties make of
HPG Aligner, a particularly suitable solution for the analysis of cur-
rent and future sequencing datasets.

Supplementary data

Supplementary data are available at www.dnaresearch.oxfordjournals.
org.
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