

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/ 10.1016/j.cam.2015.04.001

http://hdl.handle.net/10251/62700

Elsevier

Ruíz Martínez, PA.; Sastre, J.; Ibáñez González, JJ.; Defez Candel, E. (2016). High
performance computing of the matrix exponential. Journal of Computational and Applied
Mathematics. 291:370-379. doi:10.1016/j.cam.2015.04.001.

High perfomance computing of the matrix exponential

P. Ruiza,∗, J. Sastreb, J. Ibáñeza, E. Defezc

Universitat Politècnica de València, Spain

aInstituto de Instrumentación para Imagen Molecular
bInstituto de Telecomunicaciones y Aplicaciones Multimedia

cInstituto de Matemática Multidisciplinar

Abstract

This work presents a new algorithm for matrix exponential computation that
significantly simplifies a Taylor scaling and squaring algorithm presented pre-
viously by the authors, preserving accuracy. A Matlab version of the new
simplified algorithm has been compared with the original algorithm, provid-
ing similar results in terms of accuracy, but reducing processing time. It
has also been compared with two state-of-the-art implementations based on
Padé approximations, one commercial and the other implemented in Matlab,
getting better accuracy and processing time results in the majority of cases.

Keywords:

Matrix exponential, scaling and squaring, Taylor series.

1. Introduction

Matrix function computation has received remarkable attention in the
last decades due to its usefulness in a great variety of engineering problems.
Especially noteworthy is the matrix exponential, which emerge in the solu-
tion of systems of linear differential equations in numerous applications and
a large number of methods for its computation have been proposed [1, 2].
Moreover, in many cases, the resolution of these systems involve large ma-
trices, so, not only accurate, but also efficient methods are needed. In this
sense, the authors presented in [5] two modifications of a Taylor-based scal-

∗Corresponding author
Email address: pruiz@dsic.upv.es (P. Ruiz)

ing and squaring algorithm to reduce computational costs while preserving
accuracy.

In [3] the authors presented a scaling and squaring Taylor algorithm based
on an improved mixed backward and forward error analysis, which was more
accurate than existing state-of-the-art algorithms for matrix exponential such
as that in [7], in the majority of test matrices with a lower or similar cost.
Subsequently, in [4], the authors gave a new formula for the forward relative
error of matrix exponential Taylor approximation and proposed to increase
the allowed forward error bound depending on the matrix size and the Tay-
lor approximation order. This algorithm reduces the computational cost in
exchange for a small impact in accuracy. In this work, we present a new
algorithm that significantly simplifies the one presented in [3] providing a
competitive scaling and squaring algorithm for matrix exponential compu-
tation in comparison with both previous algorithms and the state-of-the-art
implementations based on Padé approximations from [7] and [11].

Throughout this paper Cn×n denotes the set of complex matrices of size
n× n, I denotes the identity matrix for this set, ρ(A) is the spectral radius
of matrix A, and N denotes the set of positive integers. The matrix norm
‖·‖ denotes any subordinate matrix norm; in particular ‖·‖1 and ‖·‖2 are the
1-norm and the 2-norm, respectively. The symbols ⌈·⌉ and ⌊·⌋ denote the
smallest following and the largest previous integer, respectively. This paper
is organized as follows: Section 2 presents a general scaling and squaring
Taylor algorithm; Section 3 presents the scaling and squaring error analysis;
the new algorithm is given in Section 4; finally, Section 5 shows numerical
results and Section 6 gives some conclusions. Next Theorem 1 from [4] and
the new Theorem 2 will be used in section 3 to bound the norm of matrix
power series.

Theorem 1. Let hl(x) =
∑

k≥l bkx
k be a power series with radius of con-

vergence R, and let h̃l(x) =
∑

k≥l |bk|xk. For any matrix A ∈ Cn×n with

ρ(A) < R, if ak is an upper bound for ||Ak|| (||Ak|| ≤ ak), p ∈ N, 1 ≤ p ≤ l,
p0 ∈ N is the multiple of p with l ≤ p0 ≤ l + p− 1, and

αp = max{a
1

k

k : k = p, l, l+1, l+2, . . . , p0−1, p0+1, p0+2, . . . , l+p−1}, (1)

then ||hl(A)|| ≤ h̃l(αp).

2

Theorem 2. Let l ∈ N, l ≥ 1, and let q ∈ N be the minimum value with

1 ≤ q ≤ l such that

‖Aq‖ 1

q ≤ max{‖Ak‖ 1

k : k = l, l+1, . . . , q0−1, q0+1, q0+2, . . . , l+q−1}, (2)

where q0 ∈ N is the multiple of q with l ≤ q0 ≤ l + q − 1. Then if

‖Ak0‖
1

k0 = max{‖Ak‖ 1

k : k = l, l+1, . . . , q0−1, q0+1, q0+2, . . . , l+q−1} (3)

then

max{‖Ak‖ 1

k : k ≥ l} = ‖Ak0‖
1

k0 (4)

Proof. Since q0 is a multiple of q, then q0/q ∈ N and using (2) and (3) one
gets

‖Aq0‖1/q0 = ‖Aqq0/q‖1/q0 ≤ ‖Aq‖q0/(qq0) = ‖Aq‖1/q ≤ ‖Ak0‖1/k0 . (5)

For any integer k ≥ l + q we can write k = l + i + jq for positive integers i
and j with 0 ≤ i ≤ q− 1 and j = [k− (l+ i)]/q, and then using (2), (3) and
(5) it follows that

‖Ak‖ 1

k ≤
[

‖Al+i‖‖Aq‖j
]

1

k ≤
[

‖Ak0‖
l+i
k0 ‖Ak0‖

jq

k0

]
1

k

= ‖Ak0‖
k

k0k = ‖Ak0‖
1

k0 .�

(6)

2. Taylor algorithm

Taylor approximation of order m of exponential of matrix A ∈ Cn×n can

be expressed as the matrix polynomial Tm(A) =
m
∑

k=0

Ak/k!. The scaling and

squaring algorithms with Taylor approximations are based on the approxi-

mation eA =
(

e2
−sA

)2s

≈ (Tm(2
−sA))

2s
[1], where the nonnegative integers

m and s are chosen to achieve full machine accuracy at a minimum cost.
A general scaling and squaring Taylor algorithm for computing the matrix

exponential is presented in Algorithm 1, where mM is the maximum allowed
value of m.

3

Algorithm 1 General scaling and squaring Taylor algorithm for computing
B = eA, where A ∈ Cn×n and mM is the maximum approximation order
allowed.

1: Preprocessing of matrix A.
2: Choose mk 6 mM , and an adequate scaling parameter s ∈ N ∪ {0} for

the Taylor approximation with scaling.
3: Compute B = Tmk

(A/2s) using (7)
4: for i = 1 : s do

5: B = B2

6: end for

7: Postprocessing of matrix B.

The preprocessing and postprocessing steps (1 and 7) are based on ap-
plying transformations to reduce the norm of matrix A, see [2, 8], and will
not be discussed in this paper.

In Step 2, the optimal order of Taylor approximation mk 6 mM and
the scaling parameter s are chosen. Matrix polynomial Tm(2

sA) can be
computed optimally in terms of matrix products using values for m in the
set mk = {1, 2, 4, 6, 9, 12, 16, 20, 25, 30, . . .}, k = 0, 1, . . ., respectively, see [2,
p. 72–74]. The choice of s is fully described in section 3.

After that, in Step 3, we compute the matrix exponential approximation
of the scaled matrix by using the modified Horner and Paterson–Stockmeyer’s
method proposed in [3, p. 1836-1837]. Note that this modified method has
the same optimal values for m as the original one:

Tm

(

2−sA
)

=

{{

· · ·
{

Aq

2sm
+Aq−1

}

/[2s(m−1)]+Aq−2

}

/[2s(m−2)]+· · ·+A2

}

/[2s(m−q+2)] +A

+2s(m− q + 1)I

}

Aq

22s(m− q + 1)(m− q)
+Aq−1

}

/[2s(m− q − 1)] +Aq−2

}

/ [2s(m− q − 2)] + · · ·+A2

}

/[2s(m− 2q + 2)] +A+ 2s(m− 2q + 1)I

}

× Aq

22s(m− 2q + 1)(m− 2q)
+ · · ·+A2

}

/[2s(q + 2)]+A+2s(q + 1)I

}

× Aq

22s(q + 1)q
+Aq−1

}

/[2s(q − 1)] + · · ·+A2

}

/[2s2]+A

}

/2s + I, (7)

where matrix powers Ai = Ai, i = 1, 2, . . . , q are computed, with q =
⌈√

mk

⌉

or ⌊√mk⌋, both values dividing mk and giving the same cost [2, p. 74]. Table

4

Table 1: Values of qk depending on the selection of mM .

k 0 1 2 3 4 5 6 7 8 9
mM�mk 1 2 4 6 9 12 16 20 25 30
20 1 2 2 3 3 4 4 4
25 1 2 2 3 3 4 4 5 5
30 1 2 2 3 3 4 4 5 5 5

1 shows some optimal values of q for orders mk, k = 0, 1, 2, . . . ,M , with
mM = 20, 25, 30, denoted by qk.

Finally, after the evaluation of Tm (2−sA), s repeated squarings are ap-
plied in Steps 4-6 and the postprocessing is applied in Step 7 to obtain the
matrix exponential approximation of the original matrix A. The computa-
tional cost of Algorithm 1 in terms of matrix products is Cost(mk, s) = k+s.

3. Error analysis

Following [3, 4], denoting the remainder of the Taylor series as Rm(A) =
∑

k≥m+1 A
k/k!, for a scaled matrix 2−sA, s ∈ N ∪ {0}, we can write

(

Tm(2
−sA)

)2s
= eA

(

I + gm+1(2
−sA)

)2s
= eA+2shm+1(2−sA), (8)

gm+1(2
−sA) = −e−2−sARm(2

−sA), hm+1

(

2−sA
)

= log
(

I+gm+1(2
−sA)

)

, (9)

where log denotes the principal logarithm, hm+1(X) is defined in the set Ωm =
{

X ∈ Cn×n : ρ
(

e−XTm(X)− I
)

< 1
}

, and both gm+1(2
−sA) and hm+1 (2

−sA)
are holomorphic functions of A in Ωm and then commute with A. As showed
in [3], hm+1(2

−sA) and gm+1(2
−sA) are related with the backward and for-

ward errors in exact arithmetic from the approximation of eA by the Taylor
series with scaling and squaring, respectively. Choosing s so that

∥

∥hm+1

(

2−sA
)∥

∥ ≤ max
{

1,
∥

∥2−sA
∥

∥

}

u, (10)

where u = 2−53 is the unit roundoff in IEEE double precision arithmetic,
then: if 2−s ‖A‖ ≥ 1, then the backward error ∆A ≤ ‖A‖u and using (8)
one gets (Tm (2−sA))

2s
= eA+∆A ≈ eA, and if 2−s ‖A‖ < 1, using (8)-(10) and

the Taylor series one gets

∥

∥Rm

(

2−sA
)∥

∥ ≈
∥

∥Tm

(

2−sA
)∥

∥ u. (11)

5

Hence, as Algorithm 1 evaluates explicitly Tm (2−sA), by (11) one gets
e2

−sA = Tm (2−sA)+Rm (2−sA) ≈ Tm (2−sA), and there is no need to increase
m or the scaling parameter s to try to get a higher accuracy. Using scalar
Taylor series in (9) one gets

gm+1(x) =
∑

k≥m+1

b
(m)
k xk, hm+1(x) =

∑

k≥1

(−1)k+1(gm+1(x))
k

k
=

∑

k≥m+1

c
(m)
k xk,

(12)

where b
(m)
k and c

(m)
k depend on the order m. Moreover, b

(m)
k = c

(m)
k , k =

m+ 1,m+ 2, . . . , 2m+ 1 and if ‖hm+1(2
−sA)‖ ≪ 1 or if ‖gm+1(2

−sA)‖ ≪ 1,
then hm+1(2

−sA) ≈ gm+1(2
−sA), see [4]. Using MATLAB symbolic Math

Toolbox, high precision arithmetic, 200 series terms and a zero finder we
obtained the maximal values Θm of Θ = ‖2−sA‖, shown in Table 2, such
that, using the notation of Theorem 1

||hm+1 (2
−sA) || ≤ h̃m+1 (Θ) =

∑

k≥m+1 |c
(m)
k |Θk ≤ max{1,Θ}u. (13)

Hence, if ||2−sA|| ≤ Θm then (10) holds. For the cases where Θm > 1,
note that f(Θ) = h̃m+1 (Θ) − Θu is a continuous function in [0,Θm] and
f(Θm) = 0, f(0) = 0. For m = 20, 25, 30 we have checked that there are no
other zeros in [0,Θm], and f(Θ) < 0, Θ ∈]0,Θm[. Thus, for those orders the
next bound holds

||hm+1

(

2−sA
)

|| ≤ h̃m+1

(

||2−sA||
)

= h̃m+1 (Θ) ≤ Θu, 0 ≤ Θ ≤ Θm. (14)

4. New Taylor algorithm

4.1. New scaling algorithm

In this section a new scaling algorithm is proposed, being a simplification
of that presented in [3, p. 1837-1838]. For all norms appearing in the scaling
algorithm we will use the 1-norm, and mM will be the maximum allowed
Taylor order. Using the bounds and a similar process that we describe below,
we will first check if any of the Taylor optimal orders mk = 1, 2, 4, . . . ,mM−1

satisfy (10) without scaling, i.e. with s = 0. If not, we will calculate the
optimal scaling s for order mM in two phases: first, we will calculate an
initial value of the scaling parameter, s0, and then we will try to refine it,
testing if it can be reduced. In this paper we have simplified both phases

6

Table 2: Maximal values Θm=‖2−sA‖ such that h̃m+1 (Θm)≤max{1,Θm}u,
coefficient ratios c

(m)
m+1/c

(m)
m+2, values u/|c

(m)
m+2|, maximal values Θ̂m using only

the first 2 terms in series h̃m+1(Θ̂m), and values h̃m+1(Θ̂m)/(max{1, Θ̂m}u)
considering 200 series terms.

m Θm c
(m)
m+1/c

(m)
m+2 u/|c(m)

m+2| Θ̂m
h̃m+1(Θ̂m)

max{1,Θ̂m}u

1 1.490116111983279e-8 -3/2 3.3e-16 1.490e-8 1.00
2 8.733457513635361e-6 -4/3 8.9e-16 8.733e-6 1.00
4 1.678018844321752e-3 -6/5 1.6e-14 1.678e-3 1.00
6 1.773082199654024e-2 -8/7 6.4e-13 1.777e-2 1.02
9 1.137689245787824e-1 -11/10 4.4e-10 1.150e-1 1.11
12 3.280542018037257e-1 -14/13 7.5e-7 3.358e-1 1.37
16 7.912740176600240e-1 -18/17 4.2e-2 8.269e-1 2.19
20 1.438252596804337 -22/21 5.9e03 1.474 1.70
25 2.428582524442827 -27/26 4.7e10 2.538 3.36
30 3.539666348743690 -32/31 9.4e17 3.771 8.34

with respect to the algorithms from [3] and [4], avoiding costly and complex
checks that rarely allow to reduce the scaling parameter.

We begin estimating the 1–norm of ||Am+1|| using the block 1–norm esti-
mation algorithm of Higham and Tisseur [6]. For a n×nmatrix this algorithm
carries out a 1-norm power iteration whose iterates are n× t matrices, where
t is a parameter that has been taken to be 2, see [7, p. 983]. Hence, the
estimation algorithm has O(n2) computational cost, negligible compared to
the cost of a matrix product, i.e. O(n3).

In [3, p. 1837], the upper bounds ak for ||Ak|| needed to apply Theorem
1 in (13) were obtained using products of norms of matrix powers estimated
for current and previous tested orders, i.e. ||Amk+1||, k = 0, 1, 2, . . . ,M , and
the powers of A computed for evaluation of TmM

(2−sA), Ai, i = 1, 2, . . . , q,
as

∥

∥Ak
∥

∥ ≤ ak = min
{

‖A‖i1
∥

∥A2
∥

∥

i2 · · · ‖Aq‖iq
∥

∥Am1+1
∥

∥

im1+1
∥

∥Am2+1
∥

∥

im2+1 · · ·

×
∥

∥AmM+1
∥

∥

imM+1 : i1 + 2i2 + · · ·+ qiq + (m1 + 1)im1+1

+ (m2 + 1)im2+1 + · · ·+ (mM + 1)imM+1 = k
}

, (15)

7

where the minimum was desirable, but not necessary. Then, in [3], αp val-
ues from Theorem 1 with l = mM + 1, see (1), were obtained successively
for p = 2, 3, . . . , q,m1 + 1,m2 + 1, . . . ,mM + 1, stopping the process when
(ap)

1/p ≤ max{(ak)1/k : k = m + 1,m + 2, . . . ,m + p}, since if this condi-
tion holds, then for p′ > p it follows that αp′ ≥ αp , see [4, p. 105] for a
demonstration. Then, the minimum value among all values αp, denoted by
αmin, was selected.Finally, the initial minimum scaling parameter s0 ≥ 0 so
that 2−s0αmin ≤ ΘmM

was computed as follows: if αmin ≤ ΘmM
then s0 = 0,

and otherwise s0 = ⌈log2(αmin/ΘmM
)⌉. In [3] it was also shown that taking

s = s0 then (10) holds.
In this work, we have simplified all that process by directly approximating

αmin ≈ max{a1/(m+1)
m+1 , a

1/(m+2)
m+2 }, (16)

where am+1 and am+2 are the 1–norm estimation of ||Am+1|| and ||Am+2||,
respectively, using the block 1–norm estimation algorithm of Higham and
Tisseur [6]. Theorem 2 establishes that max{‖Ak‖ 1

k : k ≥ l} is obtained for
l ≤ k ≤ l+q−1, where 1 ≤ q ≤ l. If we use maximum Taylor order mM = 30
for the computation of a matrix exponential then from Theorem 1 and 2 it
follows that l = mM +1 = 31 and l+ q− 1 ≤ 61. For normal matrices, since

‖Ak‖2 = ‖A‖k2, then max{‖Ak‖
1

k

2 : k ≥ l} = max{‖A‖
k
k

2 : k ≥ l} = ‖A‖2 and
(16) will be a good approximation (it would be exact if we used the 2-norm
and the exact values of ||Am+1||2 and ||Am+2||2). For the case of nonnormal

matrices Figure 1 shows the values {‖Ak‖1/k2 }61k=1 for 103 matrices A from the
matrix exponential literature with ‖A‖2 = 1 and sizes from 2×2 to 100×100,
see [7, p. 973]. Since ‖Ak‖1/k → ρ(A) as k →∞ [7, p. 972], in the majority
of matrices the values ‖Ak‖1/k tend to be decreasing and tend to have less
variations for higher matrix powers, so (16) will be a good approximation

for max{‖Ak‖ 1

k : k ≥ mM + 1}. In fact, for those nonnormal matrices

with monotonically decreasing sequence ‖Ak‖ 1

k , k = 1, 2, . . . it follows that

max{‖Ak‖ 1

k : k ≥ mM + 1} = ‖AmM+1‖
1

mM+1 and then the value αmin from
(16) gives the best possible selection. The fact of taking at least two matrix
powers in (16) comes from the example matrix (3.8) from [8]

A =

[

1 a
0 −1

]

, |a| >> 1, ‖A2k‖1 = 1, ‖A2k+1‖1 = 1 + |a|, (17)

where the norm of the odd powers is much greater than the norm of the even

8

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: {‖Ak‖1/k2 }61k=1 for 103 matrices A with ‖A‖2 = 1 and sizes from
2× 2 to 100× 100.

powers. Note that in this case

max{‖Ak‖ 1

k : k ≥ m+ 1} = max{‖AmM+1‖
1

mM+1 , ‖AmM+2‖
1

mM+2}, (18)

and it is necessary to check at least two matrix powers to obtain the maxi-
mum. Numerical tests confirmed that using only two terms in (16) made no
noticeable difference in the accuracy results in the majority of test matrices.

Once obtained s0, if s0 ≥ 1 we check if (10) holds reducing the scaling
s = s0 − 1, and using the bounds for

∥

∥Ak
∥

∥ ≤ ak to test if bound

‖hm+1 (2
−sA)‖

|c(m)
m+2|

≤
m+2
∑

k=m+1

∣

∣

∣

∣

∣

c
(m)
k

c
(m)
m+2

∣

∣

∣

∣

∣

ak
2sk
≤ max

{

1,
∥

∥2−sA
∥

∥

} u

|c(m)
m+2|

, (19)

holds, truncating the series. Note that we will stop the series summation if af-
ter summing the first term, the sum is greater than max{1, ||2−sA||}u/|c(m)

m+2|.
Table 2 presents some values of c

(m)
k /c

(m)
m+2, and the values u/|c(m)

m+2|. In (19)
we have simplified the process of determining the error bound with respect to
those in [3] and [4], using only the two first terms of the error series, instead
of the q terms used in algorithms from [3] and [4]. Table 2 shows the maximal

9

values Θ̂m such that h̃m+1(Θ̂m)≤max{1, Θ̂m}u using only the first 2 terms in
series h̃m+1(Θ̂m), and the values h̃m+1(Θ̂m)/(max{1, Θ̂m}u) considering then
200 series terms. These values show that for normal matrices, considering
only two series terms makes little relative difference, (≤ 8.34) in the worst
case, with respect to considering all the series terms.

For nonnormal matrices the value of the remaining series terms will de-

pend on the values ‖Ak‖1/k, k ≥ m+3 and their ratio with max{‖Am+1‖ 1

m+1 ,

‖Am+2‖ 1

m+2}. Given the results from Figure 1, typically the terms of the
power series of function ‖hm+1 (2

−sA)‖ will be decreasing, so the first terms
tend to determine the error bound.

Taking all the previous into account we decided to reduce the number of
terms of the error series to be used and we checked empirically that using
more terms rarely modified the final result. Again, taking into account matrix
(17) we use the first two terms of the power series of ‖hm+1 (2

−sA)‖.
In this step, we have also removed a complex and costly test that previous

versions of the new Taylor algorithm do when expression (19) does not hold
with s = s0−1, see (15) from [3] and (45) from [4]. We have found empirically
that when (19) does not hold, then very rarely those tests are satisfied.

In the next subsection, a detailed description of the new algorithm is
given.

4.2. Taylor algorithm

The new proposed algorithm is presented in Algorithm 2. For all norms
appearing in the scaling algorithm we use the 1-norm. The maximum allowed
Taylor order, mM , is an input parameter. In our experience, the optimal
values for mM are 20, 25 or 30, increasing slightly the cost in tests with
increasing mM but also improving the accuracy, see Fig. 1 and Table 2 of
[3]. For clarity in the algorithm, we have considered that the maximum value
for mM is 30. However, extending the algorithm to higher values for mM is
straightforward.

In Steps 3–27, Algorithm 2 checks if any of the Taylor optimal orders
mk = 1, 2, 4, . . . ,mM satisfies (10) without scaling (s = 0), using the bounds
provided in the previous section. As mentioned above, we compute the 1–
norm estimate of ||Am+1|| and ||Am+2|| using the block 1–norm estimation
algorithm of [6].

If no value of mk ≤ mM satisfies (10), the algorithm computes αmin using
only the 1-norm estimate of the matrix powers ||Am+1|| and ||Am+2||, and

10

determines the initial scaling parameter s0 in Steps 29–30. Then, if s0 > 0,
the algorithm checks in Steps 31–37 if the initial scaling parameter can be
reduced, testing if (10) holds with s = s0 − 1.

Then, in Steps 38–42, similarly to the algorithms proposed in [3] and [4],
Algorithm 2 tests if (10) holds with s and mM−1; Taylor order m = mM−1

will be used if (10) holds, or m = mM otherwise.
Finally, in Step 43 we use (7) to compute the exponential approximation

of the scaled matrix, and in Steps 44–46 s squaring steps are done to obtain
the matrix exponential approximation of the original matrix A.

Algorithm 2 Given a matrix A ∈ Cn×n and a maximum order mM , this
algorithm computes B = eA by a Taylor approximation of order m 6 mM .
Inputs: A ∈ Cn×n and maximun order approximation mM

Output: B = eA

1: Set Θm, c
(m)
m+1/c

(m)
m+2 and u/|c(m)

m+2| values from Table 2
2: s← 0
3: if ||A|| < Θ1 then

4: m← 1
5: B ← A+ In
6: quit
7: end if

8: for m ∈ [2, 4, 6, . . . ,mM] do ⊲ Optimal values for m, from 2 to mM

9: if m = 2 then

10: Compute and save A2

11: else if m = 6 then

12: Compute and save A3

13: else if m = 12 then

14: Compute and save A4

15: else if m = 20 then

16: Compute and save A5

17: end if

18: b← max{1, ||A||} · u/|c(m)
m+2|

19: a(m+ 1)← ||Am+1|| ⊲ Estimate value of ||Am+1||
20: if |c(m)

m+1/c
(m)
m+2| · a(m+ 1) ≤ b then

21: a(m+ 2)← ||Am+2|| ⊲ Estimate value of ||Am+2||
22: if |c(m)

m+1/c
(m)
m+2| · a(m+ 1) + a(m+ 2) ≤ b then

23: B ← Tm(A) ⊲ Evaluate Tm(A) using (7) with s = 0
24: quit
25: end if

26: end if

27: end for

11

Algorithm 2 (continued)

28: m← mM ⊲ Maximum order selected
29: αmin ← max{a(m+ 1)1/(m+1), a(m+ 2)1/(m+2)}
30: s0 ← ⌈log2(αmin/Θm)⌉
31: if s0 > 0 then ⊲ Check if (10) holds reducing the scaling s = s0 − 1
32: s← s0 − 1
33: b← max{1, ||A||/2s)}u/|c(m)

m+2|
34: if |c(m)

m+1/c
(m)
m+2| · a(m+ 1)/2(m+1)s + a(m+ 2)/2(m+2)s > b then

35: s← s0 ⊲ (10) does not hold, then s = s0
36: end if

37: end if

38: m← mM−1 ⊲ Test if scaled matrix allows using mM−1

39: b← max{1, ||A||/2s} · u/|c(m)
m+2|

40: if |c(m)
m+1/c

(m)
m+2| · a(m+ 1)/2(m+1)s + a(m+ 2)/2(m+2)s > b then

41: m← mM ⊲ Scaled matrix does not allow using mM−1, then m = mM

42: end if

43: Compute B = Tm(A/2s) ⊲ Evaluate Tm(2−sA) using (7)
44: for i = 1 : s do ⊲ Squaring phase
45: B = B2

46: end for

5. Numerical experiments and conclusions

In this section we compare a Matlab implementation of the new algorithm,
denoted by exptaynsv3, with the functions exptayns and exptaynsv2

from [3] and [4], respectively, and also a Fortran version of exptaynsv3

with one of the main commercial software available for computing matrix
exponentials: the NAG library [11]. The four functions are available at:

http://personales.upv.es/jorsasma/Software/exptayns.m
http://personales.upv.es/jorsasma/Software/exptaynsv2.m
http://personales.upv.es/jorsasma/Software/exptaynsv3.m
http://personales.upv.es/jorsasma/Software/exptaynsv3fortran.zip
We have also included a comparison of exptaynsv3 with MATLAB func-

tion expm new from [7], that implements a scaling squaring Padé algorithm
to compute matrix exponential. The accuracy was tested by computing the
relative error E = ‖eA − X̃‖1/

∥

∥eA
∥

∥

1
, where X̃ is the computed approxima-

tion and the cost is given in terms of matrix products. We used the following
sets of matrices for testing:

1. One hundred diagonalizable matrices of size 1024. These matrices have
the form V TDV , where D is a diagonal matrix whose diagonal elements

12

are random values between −k and k with different integer values of k,
and V is an orthogonal matrix obtained as V = H/16, where H is the
Hadamard matrix.

2. One hundred matrices with multiple eigenvalues of size 1000. These
matrices have the form V TDV , where D is a block diagonal matrix
whose diagonal blocks are Jordan blocks with random dimension and
random eigenvalues between −50 and 50, and V is an invertible matrix
with random values in [−0.5, 0.5].

3. 32 matrices 1000 × 1000 from the function matrix from the Matrix
Computation Toolbox [10]. Matrices whose exponential cannot be rep-
resented in double precision due to overflow were excluded from all the
matrices given by function matrix. These matrices appear in the state
of the art in the exponential matrix computation [7, 9].

The “exact” value of matrix exponential for matrix sets 1 and 2 was
computed by using transformations eA = V T eDV , where V T eDV was com-
puted using vpa function from Matlab’s Symbolic Math Toolbox with 32
decimal digit precision. For matrix set 3, we used quadruple precision Taylor
algorithm in Fortran with different orders and scaling parameters for each
matrix to check the result correctness. The maximum order used for Taylor
approximation in all cases was mM = 30.

Figure 2 presents the comparison of functions exptaynsv3 and exptayns

in terms of matrix products and relative errors. The new algorithm saved
one matrix product in 21.5% of cases from the matrix sets 1 and 2, and one
matrix product in 3.1% of cases from the matrix set 3. Both algorithms
achieved very similar accuracy results, with max(|E1 − E3|/|E1|) = 0.0194
for matrix sets 1 and 2, and max(|E1 − E3|/|E1|) = 0.0038 for matrix set 3.

Similarly, Figure 3 shows the results of the comparison between the
functions exptaynsv3 and exptaynsv2. In this case considering matrix
sets 1 and 2, the new algorithm saved one matrix product in 18.5% of
cases. With respect to matrix set 3, it saved one matrix product in 3.1%
of cases, whereas it performed one more matrix product in 9.4% of cases.
In terms of accuracy, see Figure 4, results are very similar to those ob-
tained in the previous case when considering matrix sets 1 and 2, obtain-
ing max(|E2 − E3|/|E2|) = 0.0194. Considering matrix set 3, see Figure 4b,
the only case where the error difference is significant is for matrix 7, where
exptaynsv2 gives a 10−15 order accuracy, while exptaynsv3 obtains a higher
accuracy of order 10−20. For the remaining cases max(|E2−E3|/|E2|) = 0.41.

13

78.5%

10%

11.5%

P
3
 = P

1
−1

E
3
 > E

1

P
3
 = P

1
−1

E
3
 < E

1

P
3
 = P

1
E

3
 = E

1

(a)

96.9%

3.1%

P
1
 = P

3
E

1
 = E

3

P
3
 = P

1
−1

E
3
 > E

1

(b)

Figure 2: Comparison of the cost in terms of matrix products (P) and the
relative error (E) between exptaynsv3 (P3 and E3) and exptayns (P1 and
E1) with matrix sets 1 and 2 (a), and matrix set 3 (b).

81.5%

7.5%

11%

P
3
 = P

2
E

3
 = E

2

P
3
 = P

2
−1

E
3
 < E

2

P
3
 = P

2
−1

E
3
 > E

2

(a)

87.5%

3.1%

9.4%

P
3
 = P

2
E

3
 = E

2

P
3
 = P

2
−1

E
3
 > E

2

P
3
 = P

2
+1

E
3
 < E

2

(b)

Figure 3: Comparison of the cost in terms of matrix products (P) and the
relative error (E) between exptaynsv3 (P3 and E3) and exptaynsv2 (P1 and
E1) with matrix sets 1 and 2 (a), and matrix set 3 (b).

14

0 50 100 150 200
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

Matrix

R
el

at
iv

e
er

ro
r

exptaynsv2
exptaynsv3

(a)

0 5 10 15 20 25 30 35
10

−20

10
−18

10
−16

10
−14

10
−12

Matrix

R
el

at
iv

e
er

ro
r

exptaynsv2
exptaynsv3

(b)

Figure 4: Relative error comparison between exptaynsv3 and exptaynsv2

with matrix sets 1 and 2 (a) and matrix set 3 (b). Taylor maximum order
mM = 30.

The accuracy comparison between the functions exptaynsv3 and expm new

is presented in Figure 5. Function exptaynsv3 achieved a higher accuracy in
88.5% of the matrices from matrix sets 1 and 2, and in 87.5% of the matrices
from matrix set 3. The number of matrix products performed by exptaynsv3

to compute all the matrix exponentials of matrix sets 1, 2 and 3 were 1115,
700 and 351, respectively, whilst expm new carried out 1338, 1596 and 345.6
matrix products, respectively.

Although matrix set 3 includes some ill-conditioned matrices, we found
interesting to check the behaviour of the functions with a very nonnor-
mal and ill-conditioned matrix, such as the one generated by the command
gallery(’triw’,20,4.1) of Matlab [8]. We computed the “exact” expo-
nential of this matrix using vpa Matlab’s function with 500 decimal digit
precision and the relative error obtained was 1.8163 ·10−16 for the three Tay-
lor functions and 1.1408·10−15 for expm new. The number of matrix products
performed were 10 for the Taylor functions and 7.3 for expm new.

We have also included an execution time comparative of the three Taylor
functions in Matlab. Although execution time in Matlab is not always reli-
able, since the three functions are similar the results can be useful. Table 3
shows the total time in seconds taken by each function to compute all ma-
trix exponentials of each matrix set. As shown, exptaynsv3 computes the
exponential faster than the other two previous versions in all cases.

15

0 50 100 150 200
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

Matrix

R
el

at
iv

e
er

ro
r

expm_new
exptaynsv3

(a)

0 5 10 15 20 25 30 35
10

−22

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

Matrix

R
el

at
iv

e
er

ro
r

expm_new
exptaynsv3

(b)

Figure 5: Relative error comparison between exptaynsv3 and expm new with
matrix sets 1 and 2 (a) and matrix set 3 (b). Taylor maximum order mM =
30.

Table 3: Execution time comparison in seconds between the functions
exptayns, exptaynsv2 and exptaynsv3 in Matlab.

exptayns exptaynsv2 exptaynsv3

Matrix set 1 262.83 266.94 227.69
Matrix set 2 178.25 179.54 136.37
Matrix set 3 171.93 170.81 165.47

Finally, we have compared a Fortran version of the new algorithm with
one of the main commercial software packages that allows the computation
of matrix exponentials. The function f01ecc from NAG Library, see [11],
computes the matrix exponential of a real square matrix, using the algorithm
based on Padé approximants and the scaling and squaring method described
in [9] and [2].

The tests have been done in a Linux system with an Intel processor, using
the Math Kernel Libraries from Intel. We have used the 32 matrices from
Matlab Toolbox and the 100 random Jordan matrices from previous tests.
Results are shown in Figures 6 and 7. In this case, execution time instead of
matrix products was used to evaluate the cost of both functions, and function
exptaynsv3 obtained better results than the NAG routine in both accuracy,
89.4% of cases, and execution time, 84.1% of cases. The total time taken by

16

84.1%

15.9%

T
3
 < T

N

T
3
 > T

N

(a)

89.4%

10.6%

E
3
 < E

N

E
3
 > E

N

(b)

Figure 6: Cost in seconds (T) (a) and relative error comparison (E) (b)
between exptaynsv3 (T3 and E3) and f01ecc from NAG Library (TN and
EN) with matrix sets 2 and 3.

exptaynsv3 to compute all matrix exponentials was 521 seconds, versus 866
seconds taken by f01ecc function. Moreover, exptaynsv3 was significantly
more accurate in the majority of cases, see Figure 7.

6. Conclusions

A competitive modification of the Taylor algorithm from [3] has been
proposed based on a simplification of the calculation of the error bounds
used to select the order of the approximation and the scaling parameter.
These modifications were based on theoretical results for normal matrices
and empirical results for nonnormal matrices, leading to a new simplified
algorithm that obtained similar accuracy as previous algorithms from the
authors in the majority of test matrices with a lower processing time, and also
better results than state-of-the-art algorithms based on Padé approximations.

7. References

[1] C.B. Moler, C.V. Loan, Nineteen dubious ways to compute the expo-
nential of a matrix, twenty-five years later, SIAM Rev. 45 (2003) 3–49.

[2] N.J. Higham, Functions of Matrices: Theory and Computation, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

17

0 20 40 60 80 100 120 140

10
−20

10
−15

10
−10

10
−5

Matrix

R
el

at
iv

e
er

ro
r

f01ecc from NAG Library
exptaynsv3

Figure 7: Relative error comparison between exptaynsv3 and function
f01ecc from NAG Software.

[3] J. Sastre, J. Ibáñez, E. Defez and P. Ruiz, Accurate matrix exponential
computation to solve coupled differential models in engineering, Math.
Comput. Model., 54 (2011) 1835–1840.

[4] J. Sastre, J. Ibáñez, E. Defez and P. Ruiz, Accurate and efficient matrix
exponential computation, Int. J. Comput. Math., 91 (1), (2014), 97–112

[5] J. Sastre, J. Ibáñez, E. Defez and P. Ruiz, New Scaling-Squaring Taylor
Algorithms for Computing the Matrix Exponential, SIAM J. Sci. Com-
put. 37-1 (2015), pp. A439–A455.
http://dx.doi.org/10.1137/090763202

[6] J. Higham, F. Tisseur, A block algorithm for matrix 1-norm estimation,
with an application to 1-norm pseudospectra, SIAM J. Matrix Anal.
Appl. 21 (2000) 1185–1201.

[7] A.H. Al-Mohy, N.J. Higham, A new scaling and squaring algorithm for
the matrix exponential, SIAM J. Matrix Anal. Appl. 31 (3) (2009) 970–
989.

[8] A.H. Al-Mohy, N.J. Higham, Computing the Action of the Matrix Ex-
ponential, with an Application to Exponential Integrators, SIAM J. Sci.
Comput., 33(2), 488–511 (2011).

[9] N.J. Higham, The scaling and squaring method for the matrix exponen-
tial revisited, SIAM J. Matrix Anal. Appl. 26 (4) (2005) 1179–1193.

18

[10] N. J. Higham, The Matrix Computation Toolbox,
http://www.ma.man.ac.uk/%7Ehigham/mctoolbox/

[11] NAG Library Function Document,
http://www.nag.co.uk/numeric/cl/nagdoc cl23/html/F01/f01ecc.html

19

