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Abstract:  
Ground thermal conductivity and borehole thermal resistance are key parameters for the design of 
closed Ground-Source Heat Pump (GSHP) systems. The standard method to determine these 
parameters is the Thermal Response Test (TRT). This test analyses the ground thermal response 
to a constant heat power injection or extraction by measuring inlet and outlet temperatures of the 
fluid at the top of the borehole heat exchanger. These data are commonly evaluated by models 
considering the ground being homogeneous and isotropic. This approach estimates an effective 
ground thermal conductivity representing an average of the thermal conductivity of the different 
layers crossed by perforation. In order to obtain a thermal conductivity profile of the ground as a 
function of depth two additional inputs are needed, first, a measurement of the borehole 
temperature profile and, second, an analysis procedure taking into account ground is not 
homogeneous. This work presents an analysis procedure, complementing the standard TRT 
analysis, estimating the thermal conductivity profile from a temperature profile along the borehole 
during the test. The analysis procedure is implemented by a 3D Finite Element Model (FEM) in 
which depth depending thermal conductivity of the subsoil is estimated by fitting simulation results 
with experimental data. The methodology is evaluated by the recorded temperature profiles 
throughout a TRT in a BHE monitored facility, which allowed the detection of a highly conductive 
layer at 25 meters depth. 
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1. Introduction 

To reduce primary energy consumption and emissions of green house gases, more and 
more attentions are paid to GSHP as heating ventilation and cooling system (HVAC) to 
conditioning spaces into buildings and to provide hot water [1, 2, 3, 4, 5]. In general, a 
typical GSHP system mainly consists of a heat pump, a group of borehole heat exchangers 
and indoor units. Commonly are coupled with the ground as heat source or sink for 
exchanging energy by circulation of heat carrier fluid in the tubes of BHEs [6, 7]. The 
GSHP system takes advantage of subsoil high thermal inertia that remains at a constant 
temperature, that is more favourable than the outside, so higher energy efficiency can be 
obtained as compared to traditional air-conditioning systems [8].  
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The performance of GSHP systems is determined by ground stratigraphy in which thermal 
conductivity, ground water flow and initial temperature play an essential role [9, 10] 
Detailed and accurate information of thermal behaviour of subsoil layers crossed by 
perforation is a prerequisite for improving the ratio between the heat transfer optimization 
and cost of the installations [11]. Namely, for determination of the maximum heat transfer 
using the minimum length of the GHE installations.  

In order to estimate heat transfer at the vertical BHE, diverse numerical and analytical 
methods have been proposed from data obtained in field investigation studies [12, 13]. 
Currently, the more extended method is the TRT based on Infinite Line Source Model 
(ILS) [14], which describes conductive heat transfer in a homogeneous medium with a 
constant temperature at infinite boundaries. The TRT consists in applying a constant 
power input to the soil by a fluid flow inside the pipes and monitoring changes of 
temperatures at inlet and outlet of the perforation. Mainly two parameters are obtained: 
effective thermal conductivity, ૃ܎܎܍, and borehole thermal resistance, ܊܀, by following 
theory proposed by Hellström et al. [15]. However, it is difficult to accomplish the 
optimum design of a GHE and some factors as significant temperature variations produced 
by weather conditions, pipe insulation, variations in the power source, heterogeneous 
distribution of subsurface properties… can affect the measuring output of TRT. 
Additionally, standard TRT measuring output can be considerably affected by the 
advection effect of groundwater flows and lead to an undesirable deviation of the ૃ܎܎܍ 
[16].  

Some other studies [17, 18, 19] presented the importance of groundwater flow on 
improving the performance of BHE and argued that those effects should not be neglected. 
From the point of view of engineering applications, this enhanced effect is favourable for 
reducing the possible imbalance between heat injection and extraction from and to the 
ground, which is helpful for the long-term operation of GSHP systems. For a specific 
energy demand of a GSHP system, accounting for the axial effects can lower the required 
length and numbers of boreholes. Marcotte et al. [20] showed for an example design 
problem that the calculated borehole length could be 15 % shorter when axial effects are 
considered, which conclusively means a more cost-efficient system. Chiasson et al. [21], 
Wang et al. [22] and Fan et al. [23] evaluated the effects of groundwater flow on the heat 
transfer into the BHE. They concluded that groundwater flow enhances heat transfer 
between the BHE and the aquifer. In this case, shorter or less BHEs are needed for the 
same technical performance.  

In the last decades various investigations have been conducted to reliably calculate TRTs 
influenced by groundwater flow. One possibility to calculate the influence of groundwater 
flow is a stepwise TRT evaluation based on the Kelvin line source theory [24]. Witte et al. 
[25] illustrated an increasing value with increasing evaluation time step size as an 
indicator for groundwater flow. Another possibility is the suggested analytical solution by 
Molina-Giraldo et al. [26] based on a Moving Finite Line Source model (MFLS) which 
takes into account both aspects: groundwater flow and axial effects overcoming the 
limitations of previous analytical models [27, 28]. The analytical procedure is verified 
with a finite element model and is concluded that the performance of axial effects 
essentially depends on the groundwater velocity in the aquifer and the length of the 
borehole heat exchanger. Some other studies based on the recorded data during the TRT 
and finite element simulations analysed the importance of natural subsurface conditions, 
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such as vertical geothermal gradients and thermal dispersion [29]. And later, a parameter 
estimation strategy to calculate information about the actual Darcy velocity based on 
MFLS was presented by Wagner et al. [30, 31], which is sensitive to conduction and 
advection.  

However, these concepts provide neither information about the exact location of the 
underground water flow nor information about the depth-depending thermal conductive 
parameters of heterogeneous ground profiles. For overcoming that, novel strategies are 
developed based on Distribution Temperature Sensing (DTS) system [32]. In DTS 
systems, optical fiber thermometer is placed along the inlet pipe of the installation, from 
which the vertical temperature distribution can be measured. Hence, thermal conductivity 
of the ground can be evaluated along depth [33]. Fujii et al. [34] performed a comparative 
study on conventional TRT and the enhanced TRT on DTS. The obtained effective 
thermal conductivity for both cases is very similar and furthermore, the enhanced TRT 
indicated the presence of a highly conductive region due to the presence of an aquifer. 
Wagner and Rohner et al. [35] showed how specific layers with groundwater flow 
(enhanced λୣ୤୤ values) can be estimated. Nevertheless, the cost of the required equipment 
for optical fiber thermometer is high and the process to guarantee the correct placement 
along the diameter of the pipes can be difficult. 

In this research work, an innovative analysis procedure to obtain a detailed depth-
depending thermal conductivity profile along vertical BHE subsoil surrounding is 
presented. The vertical thermal conductivity gradient is estimated from an additional 
temperature profile along an auxiliary pipe during an experimental TRT and by fitting a 
3D finite element model with test results. Likewise, the measured additional temperature 
profile along an auxiliary pipe by a wired digital temperature probe overcomes the 
limitations of the methods discussed above. 

This paper is divided as follows. Firstly, a BHE built at Universidad Politécnica de 
Valencia campus of 40 meters depth and composed by six different layers of geological 
strata is described and the obtained data throughout a TRT of 1 kW are presented. 
Secondly, the analysis procedure to estimate the thermal conductivity profile of the subsoil 
layers crossed by perforation based on a finite element model is described. Thirdly, the 
obtained results after applying the procedure to the recorded data from the performed 1 
kW TRT are presented, which allows the detection of a highly conductive layer at 25 
meters depth. Finally as conclusions, the obtained results and the hypothetical causes of 
the discovered thermal conductivity profile are discussed.  

 

Nomenclature: 

Tin: Water temperature inside inlet pipe 
Tout: Water temperature inside outlet pipe 
Tavg: Water average temperature between inlet and outlet pipes 
Top: Temperature inside observer pipe 
Top(z): Observer pipe temperature related to depth 
Top(z,t): Observer pipe temperature related to depth and time 
Top_simu(z,t): Simulated observer pipe temperature related to depth and time  
Top_exp(z,t): Experimental observer pipe temperature related to depth and time 
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TSS: Near subsoil temperature 
Tssl: Far subsoil temperature 
Rpp: Thermal resistance between pipes  
Rpo: Thermal resistance between pipes and observer pipe  
Rog: Thermal resistance between observer pipe and near ground 
Rgg: Thermal resistance between near ground and far ground  
Rbo: Thermal resistance between borehole and observer pipe 
λb: Borehole grouting material thermal conductivity  
λs(z): Borehole surroundings thermal conductivity profile 
λeff: Effective thermal conductivity, the mean thermal conductivity of the surrounding 
subsurface 
Rb: Heat transfer between pipes and borehole wall 

 

2. Experimental facility and data 

On the Universidad Politécnica de Valencia campus is available a BHE of 40 m depth, 160 
mm drill diameter and two geothermal independent pipes ALB GEROtherm PE-100 of 40 
mm diameter and, 29 and 39 m long respectively. The pipes are disposed with a turn of 
90º between them, keeping uniform the distance between the pipes of the geothermal 
probes with separators of polyethylene distributed every meter depth. The borehole was 
drilled by rotopercussion technic with a metallic cylinder contention, which was not 
extracted during refilling phase. Samples of the subsoil stratigraphy were taken during the 
drilling to determine composition. In figure 1 is depicted the geological profile and a 
diagram of the pipes disposal inside drilling and in figure 2 is shown an image of the 
installation. 
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Thus, the temperature (Top(z)) will change in function of Rog resistance that is dependent 
on the conductivity of the subsoil. 

In this approach, a 3D finite element model simulation is employed, in order to adjust a 
series of temperature profiles taken inside the borehole (Top(z,t)). The procedure is 
initiated by assigning the effective thermal conductivity obtained from the TRT to both 
borehole and subsoil, and is performed a simulation of the TRT. Once the simulation is 
finished, the obtained temperature profiles are compared with those measured during the 
experimental TRT, and thermal conductivity of the subsoil is modified based on the 
following algorithm: 

If max(abs(Top_simu(z,t) – Top_exp(z,t))) > ε 

If (Top_simu(z,t) < Top_exp(z,t)) then increase λs(z) 

If (Top_simu(z,t) > Top_exp(z,t)) then decrease λs(z) 

 Start a new simulation 

Else  Simulations are completed 

Namely, it will be conducted as many simulations and adjustments of thermal conductivity 
profiles λs(z) as it will be necessary for reaching an error smaller than the desired value 
between the measured temperature profiles during the TRT and the obtained during the 
simulation. The resultant conductivity profile is taken as the one that represents the subsoil 
surroundings of the exchanger. 

 

4. Application of the procedure to an experimental TRT 

In this paragraph the previously elaborated procedure is applied to the recorded data from 
the experimental TRT of 1kW heat injection described before. A 3D finite element model 
with the same geometry of the experimental BHE is developed using COMSOL 
Multiphysics ® version 4.4. Then, the model is adjusted to fit with the measured data in 
order to estimate the thermal conductivity profile of the borehole surrounding layers. 

From all the modules available, the Heat Transfer in Solid (ht) and Non-Isothermal Pipe 
Flow (nipfl) have been used. 

The simulations have been completed under following conditions: 

 Only heat transmission in solid has been considered into borehole and 
surroundings (convective effects has been neglected). 

 Thermal parameters of borehole grouting materials have been considered 
constants, λb = constant, Cp = constant, ρ = constant.  

 Thermal conductivity of surrounding has been defined as depth dependent, λs(z), 
and has been adjusted in order to fit the temperature profile into observer pipe. 

In order to simplify computer operations and to reduce the calculation time, a symmetry 
plane defined by the pipes that form the U of the exchanger has been considered, which 
has reduced the total volume of the model by half. In figure 8 is presented the resultant 
model after applying symmetry, in which is possible to appreciate the two contained 
domains as two concentric cylinders. The smaller cylinder of 0.08 m radius, represents the 
perforation filled with the grouting material in which the U pipes are inserted, and the 
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Parameter Value 
Borehole depth 30 m 
Borehole radius 0.08 m 
Outer radius of U-tube pipe 0.02 m 
Inner radius of U-tube pipe 0.016 m 
Centre to centre half distance 0.06 m 
Pipe thermal conductivity 0.6 W/m K 
Pipes length  29 m 
Ground radius 0.75 m 
Ground deep 30 m 

Table 1. Simulation parameters. 

After establishing a finite geometry, both domains were defined with equal characteristics 
assigning the effective conductivity of 2.41 W/m K obtained during the last stretch of the 
realized experimental TRT.  

Therefore, for the first simulation both domains were configured with a thermal 
conductivity of 2.41 W/m K, a density of 1800 kg/m3 and a specific heat capacity of 2000 
J/kg K. The simulation was set up using an injected power of 950 W and a caudal of 420 
l/hour. The initial temperature value of the topsoil was established as the recorded average 
value of 16 ºC throughout the days of the TRT implementation. As well as, the layers of 
the ground were initialised with the obtained temperature values along the observer pipe 
before the beginning of the TRT. 

Another important factor that directly affects to the simulation time and accuracy is the 
model meshing. Some simulation trials were run with different user-defined meshing 
configurations until the most suitable solution was found in the simplest model as less 
time was used in converging to a solution without lose accuracy in the results. Finally, a 
model meshing with a maximum size of element of 0.25 m, a minimum size of 0.03 m, a 
factor curvature of 0.3, a narrow regions resolution of 0.85 and a maximum growth of 1.35 
elements was selected. With those parameters, 423.256 tetrahedral elements for model 
domains were obtained. Another model composed of 684.863 elements was built and 
simulated in order to check if the accuracy was improved but, after comparing both 
results, an absolute error of 0.005 ºC and a relative error of 0.05 % were obtained. A third 
model with 265.088 elements was built obtaining an absolute error of 0.013 ºC and a 
relative error of 0.05 % compared to the model of 423.256, but with similar simulation 
time. In consequence the decision of employing a model with 423256 elements was taken. 

Temporal parameters of simulation were established as follow: total simulation time of 3.1 
days, maximum step of 100 seconds and data registration every 20 minutes.  

Then, the calculated effective thermal conductivity from TRT datasets were adjusted to 
both domains and, the first simulation was conducted. In figure 9 the obtained Tin and Tout 
temperature profiles from simulation are presented in superposition with the recorded data 
during the experimental TRT. Additionally, in a similar manner, in figure 10 is depicted 
the superposition of simulated temperature profiles and the obtained ones along the 
observer pipe during the experimental TRT. 
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Figure 13. Superposition between the obtained data in experimental TRT for 2 kW and 3 
kW between the obtained results from model simulation.   

 

5. Conclusions 

One of the main findings of this research work is the estimated conductivity profile of 
geothermal layers crossed by perforation from the results of a 3D finite element model 
simulation. The presented novel temperature profile is an additional measurement that can 
be implemented in combination with the conventional TRT enhancing the obtained results. 
This methodology does not require samples of ground stratigraphy and has been possible 
to obtain a thermal conductivity profile of the subsoil by the recorded data during the 
suggested enhanced TRT. Furthermore, the calculated effective thermal conductivity of 
2.41 W/m K during the experimental TRT agreed with the obtained value from 
simulations, demonstrating the applicability and reliability of the testing and data 
interpretation methods. Also, the recorded U pipe inlet and outlet and observer pipe 
temperature profiles during the experimental TRT are very similar to the achieved results 
from simulation.  

The obtained thermal conductivity profile presents an accurate adjustment of the 
temperatures along the observer pipe, except for a region located between 24 and 26 
meters that may be caused by the groundwater advection effects. The development of a 
new model in which conduction and advection are taken into account will likely improve 
the obtained results. In such case, more detailed information of the axial effects can be 
interpreted, as for example, an estimation of the location and the velocity of underground 
water flows. 

To sum up, the proposed enhanced TRT and the analysis procedure are validated as a 
useful method to identify the position of the groundwater flow in a borehole subsoil 
surroundings. The location of groundwater flow can help to improve heat transfer 
efficiency of BHE. Therefore, the obtained data could easily parameterize the length of the 
drilling for implementing a totally optimized heat exchanger in order to maximize the 
W/m relation of the thermal transfer. The findings of this study will provide valuable 
information for thermal conductivity measurements in field and will improve the 
performance analysis of BHE in layered subsurface. 
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