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ABSTRACT

Airplane stability theory was born at the end of the XI1X Century and matured around 100
years ago, when airplanes were hardly controllable yet. The success and safety of flights in
the pioneer years depended upon largely unknown stability and control characteristics.
Understanding the modes of airplane motion has been of paramount importance for the
development of aviation. The contributions made by a few scientists in the decades preceding
and following the first flight by the Wright brothers set the concepts and equations that, with
minor notation aspects, have remained almost unchanged till present day.
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1. INTRODUCTION

The history of science, from its early times in classical Greece to the XXI Century has
witnessed the coexistence of two cultures: on the one hand, a group of educated people who
tried to advance knowledge and intellectual capacities; and, on the other hand, the craftsmen
who attempted to design and make things without a formal previous idea. In general both
cultures evolved apart and had little or no interaction [1].

This vision is also applicable to flight. During the 19" Century the fundamentals of Fluid
Mechanics, Thermodynamics, Electricity, Strength of Materials, etc were laid down by
numerous scientists: Cauchy, Helmholz, Maxwell, Stokes...; but this was too the era of
Cayley, Henson, Stringfellow, Phillips, du Temple, Maxim or Ader [1, 2].

By the time the Wright brothers flew, all the science and mathematics needed to understand
and prepare the flight existed in literature [3]. That is why Bryan stated in 1897 [4]: “If any
experimenter can so thoroughly master the control of a machine sailing down-hill under
gravity as to increase the size of the machine and make it large enough to carry a light motor,
and if, further, this motor can be made of sufficient horse-power, combined with lightness, to
convert a downward into a horizontal or upward motion, the problem of flight will be solved”.
Since everything was ready at the turn of century, if the Wright brothers had not performed
the first successful flight in December 1903, an airplane would have been flown by someone
else sooner or later. As a matter of fact, new designs appeared in the following years: Santos-
Dumont, Curtiss, Bleriot, Latham, Farman ... However, the pioneers faced considerable
control troubles since the flying qualities of their aircraft were often less than satisfactory [5,
6]. It was the era of “Those Crazy Young Men and Their Flying Machines” [7].

An excellent survey of Aerodynamics and Control in these early times can be found in
Bairstow [8]. Let’s mention a few of the main contributors: Bairstow, Bryan, Caldwell, Eiffel,
Glauert, Hunsaker, Jones, Lanchester, Prandtl, Riabouchinsky and VVon Karman.

Coming back to the XIX Century’s visionaries, pioneer glider builders recognized the critical
influence of airplane stability. They empirically learned that some degree of stability was
essential for the success of their flights [1, 9]. Otto Lilienthal, half-way between visionaries
and scientists, contributed with numerous aerodynamic measurements that were collected in
his book called “Bird flight as the basis of aviation” [10]; he exhaustively reported many
manned glider flights, stabilized by small shifts of his own body to properly locate the center



of gravity; his death put many enthusiasts and inventors (Chanute, Langley, Pilcher, the
Wright brothers) in the right path for the first powered flight.

Stability and control come always together, as modern Flight Dynamics teaches [11, 12].
Thus, understanding the modes of motion is of fundamental importance for the flight success
and safety. However, the equations governing the airplane motion are so complex that useful
exact analytical solutions are not available, even after one century of intensive search [13].
Flight Dynamics requires concepts and tools from Mathematics, Mechanics, Aerodynamics,
instrumentation, simulation, pilot handling, ergonomics, etc [14]. This multidisciplinarity
emphasizes the crucial value of the first contributors in the decades just preceding and
following the first flight.

The next chapter presents an overview of the pioneer stability theories, namely those
developed by Zhukowsky, Bryan and Williams, Lanchester, Painlevé and Bothezat. For
various reasons their models were incomplete, included errors or hardly reached the Flight
Dynamics community. Then, it was Bryan, in 1911, with his book called “Stability in
Aviation” [15], who created the definitive basis of our current Flight Dynamics. As it will be
shown in the third section of this paper, except for minor notation aspects, his equations have
remained unchanged and perfectly useful for aerospace scientific and engineering purposes.

2. PIONEERS OF AIRCRAFT STABILITY

The mathematical language, with its concepts and tools, has been developed earlier than the
physical theories it serves. That may explain why many great scientists were, actually, applied
mathematicians who efficiently contributed to the advancement of Science. As it will be
shown in the next paragraphs this was also the case with pioneer theories of airplane stability.
Among the contributions made by scientists and engineers in the decades just preceding and
following the first successful powered flight, this section will be focused on six works that
were particularly remarkable, for its intrinsic value or its influence in later developments of
Flight Dynamics: Zhukowsky (twice), Bryan and Williams, Lanchester, Painlevé and
Bothezat. The definitive book by Bryan in 1911 will be more extensively described in Section
3. Only key ideas will be presented, slightly modified in nomenclature to facilitate its
understanding. Other coetaneous works by Zahm, Penaud, Crocco, etc will not be considered
here, but the interested reader can find detailed historical overviews in refs 5 and 7.

2.1 Zhukowsky (1891)

In 1891, the Russian physicists Nicolai Zhukowsky published his first paper related to flight
with the suggesting tittle of “On soaring of birds” [16]. The paper was not a mere
phenomenological description of bird flight, but a mathematical analysis of acting forces and
resulting motion.

Zhukowsky idealized the wing as a flat plate and studied the center of gravity motion under
the effect of weight and the aerodynamic forces, acting along and perpendicular to the
trajectory, as shown in Fig.1.

The dynamic equilibrium along and normal to the trajectory provides
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Where F and N are the components of the aerodynamic forces (drag and lift in today’s
nomenclature), m is mass, V speed, ds the differential element along the trajectory, r its radius
of curvature and y its glide slope.

The study included the hypotheses of small, constant angle of attack i, negligible effect of the
aerodynamic drag, F, and initial height and speed hy and Vo, respectively. These hypotheses
allowed rearranging Eqs 1 and 2 as
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. dy gcosy
A+siny—=—A——2"— 5
™ 29(z+hy) ©)

that was integrated as

M(Cosyo 2 Aho)

3

cos;/zz—:?(z +hy )+

(6)

Z+h,

The same equation was later published by Lanchester in his “Aerodonetics” [17].

It must be noticed that since Zhukowsky was mainly interested in the center of gravity motion
he did not included any equation on pitching. Depending upon the values of parameter A, Eq
6 represents a variety of solutions, as depicted in Fig. 2. In particular, the semicircular arcs of
trajectory E correspond to the stability limit. In spite of its intrinsic relationship to flight
stability, Zhukowsky did not mention such circumstances in his paper.

2.2 Bryan and Williams (1904)

Professor George Bryan was an eminent applied mathematician, highly interested in physics
[6, 7]. After an earlier career on Thermodynamics [18], he discovered manned gliders thanks
to his friend Percy Pilcher, one of Lilienthal’s disciples, and devoted part of his working
capability to the analysis of natural and artificial flight [4, 18]. The tragic death of his friend,
Pilcher, three years after that of his German mentor, prompted Bryan into the study of flight
stability and safety. Then, with one of his students, Williams, published a fairly complete
analysis entitled “The longitudinal stability of aerial flights” [19].

As in Zhukowsky’s analysis, Bryan and Williams considered the glide of a flat plate, but they
introduced a third equation to account for the pitching motion of the plate around its center of
gravity. Following Prof Routh’s nomenclature [20] they wrote the flight dynamic equations as
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where m is mass, u, v and w the horizontal longitudinal, traverse and vertical speed
components, respectively, and p, q and r the angular velocities with respect to the three
coordinate axes.

The main contribution of Bryan and Williams was the study of small oscillations around a
generic equilibrium, of steady motion, following the classical linear expansion of the acting
aerodynamic forces. After rearranging the equations they arrived at the stability matrix
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whose determinant equaled to zero provided

det[SM]=1* +B2* +C 2> +DA+E =0 (11)

To ensure that the oscillations are stable, B, C, D, and E must be positive and the parameter
D(BC-D)-BE? must also be positive [21].

Bryan and Williams used Langley’s expressions [22] for the relationship between
aerodynamic force, R, and speed, V, as

R=KSV? f(a) (12)
S being the flat plate area and « the angle of attack. For small angles of attack

f (a) ~Sina .
The center of pressure is assumed to be located, as suggested by Joessel [23].
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Since the only force interaction between air and plate is due to pressure, the resulting
aerodynamic force is perpendicular to that one.
The main conclusions drawn from ref.19 are:

e Small oscillations of a gliding flight are determined by the roots of a quartic equation
and the conditions prescribed by Routh;

e The coefficients of the quartic equation depend on the physical features of the glider
and on the partial derivatives of the aerodynamic forces and moments with respect to
the horizontal and vertical speeds and to the angular pitching speed;

e When the glider is composed of a number of wings, the various contributions can be
considered separately and then added to find the overall forces and moments, and the
location of the center of pressure;

e The longitudinal stability of gliders can be investigated mathematically. The method
shown should be applied to any new flying machine before attempting actual flights;
and

e The conditions for stable straight glides can be represented as V*>K a, where a
depends on the linear dimensions of the glider and K on the aspect ratio, glide angle
and law of aerodynamic force.

Interestingly, the first four conclusions are still valid more than a hundred years after they
were written [8].

2.3 Zhukowsky (1906)

Fifteen years after his first paper on stability, Zhukowsky published a second work with
important contributions to both Aerodynamics and Stability. He analyzed the motion of a
rectangular flat plate, falling while rotating around an axis parallel to its longer side in calm
air, idealizing the flow as indicated in Fig. 3 [24]. Due to the combined effect of glide and
rotation, the streamlines surrounding the plate close at a point downstream, somehow like an
airfoil. He provided a crucial link between aerodynamic lift and plate rotation in the well-
known form of

% VT (15)

where L is lift, b the plate span, p air density, V speed and gamma the circulation due to the
rotation effect.
Zhukowsky assumed that the plate center of gravity followed an almost straight trajectory as:
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To analyze the stability of such a motion, he introduced two approximations:
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and rearranged the perturbed form of Egs. 16 and 17 into
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Since the natural motion is a descending glide, the motion is always stable. With the current
nomenclature and a parabolic wing drag polar we could write

I =(—§p—r: 0 iiﬁj 25)

The period of oscillation would be
T, =722 (26)
g

Which is the value given by Lanchester for the phugoid oscillation in “Aerodonetics” [17].
Equation 25 also shows the damping effect of the aerodynamic drag. Although these last
results did not explicitly appear in the paper, they constitute a proof of the high value of
Zhukowsky’s contributions.



2.4 Lanchester (1908)

Frederick W. Lanchester was not actually a scientist, but a mechanical engineer with a great
enthusiasm for mechanical devices. He devoted most of his efforts to the construction of
innovative motor cars, but also oriented his inventive mind towards free-flying gliders [9]. He
investigated too into practical Aerodynamics and speculated over the relationship between the
vortex wake and the drag due to lift, but was not able to set up a suitable theory to quantify
that relationship. He largely debated with Prandtl over the authorship of the induced drag
dependence [25, 26].

However, his main contributions were in the field of flying machine stability. Lanchester
published detailed accounts of his flying experiments in “Aerodonetics” [17] and wrote a
companion book on “Aerodynamics” [27]. Lanchester’s pine wood hand gliders were
inherently stable and exhibited an undulating path that he named “phugoid”. He noted that if
the glider was launched at a certain “natural speed” it would glide as if on rails, but in general
the glider followed an oscillatory motion as depicted in Fig. 4 [7]. He deduced that this
behavior involved an interchange between kinetic and potential energies.

The glider stability analysis was based on four hypotheses: 1) the flight is symmetric, in a
vertical plane, with three degrees of freedom (two linear coordinates on the plane and the
pitching angle); 2) the motion is conservative (i.e. either there is no drag or it is permanently
compensated by thrust); 3) there is no inertia moment with respect to the pitching motion; and
4) the size of the glider is much smaller than the radius of curvature of the trajectory.
Lanchester arrived at the same differential equation proposed by Zhukowsky (Eg. 6) but with
his own nomenclature as

d(cos@(H)) _coso(H) i
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The particular case when C=0 corresponds to semicircular trajectories, numbered 4 in the plot
of Fig. 5. Smaller oscillations are naturally damped. However, for very large oscillations the
path is completely perturbed, denoting that the stability limits have been exceeded [17].
Although, as indicated earlier, Zhukowsky had implicitly obtained some of the main features
of the phugoid mode, it was Lanchester in 1908 who published the first approximation of the
phugoid frequency [28] as

W, =0 g (29)

Lanchester was aware of the limitations of his theory and identified some improvements to
achieve more realistic results. Thus, the aerodynamic drag produces a damping effect whilst
the inertia moment amplifies the natural perturbations. The corrections had phenomenological
rather than mathematical basis.

The beauty of Lanchester’s work, and the origin of his enduring success, was its practicality
and its theoretical simplicity [6].

2.5 Painleveé (1909) and Bothezat (1911)



Paul Painleve, a French mathematician, was Professor of Applied Mechanics and Machines at
Ecole Polytechnique during the pioneer years of aviation. Most of his works were devoted to
Algebra and Differential Equations but, as many educated French men of this time, he became
enthusiast of balloons and gliders, due to the ambiance created by scientific journals and
popular technical magazines. During the first decade of the XX century he worked on the
fluid mechanics and stability of flight [29-31]. Of particular interest for this historical review
is the “Theory of airplanes”, included in his course on Mechanics and Machines [29].
Interestingly, after the First World War he was deeply involved in politics and became
Minister and Primer minister several times.

On its side, Georges de Bothezat, a Russian engineer, went to Paris for his Doctorate studies
and elaborated a Thesis on airplane stability [32], under the guidance of Paul Painlevé. He
later returned to Russia, but fled to the United States after the Revolution, to continue his
research on propellers and helicopters, finally becoming a businessman [33-36].

Coming back to Painlevé, he analyzed the glide of a lifting plate, as sketched in Fig. 6. He
assumed Joessel’s hypothesis [23] for the centre of pressure, and stated that the stability of the
gliding motion required the decline of all transients. Let’s be F the aerodynamic drag and N
the aerodynamic force normal to speed, formulated according to Eiffel’s expressions [37, 38].

F=-V?(1a?+u) (30)

N=AVZa (31)

In the former equations A and u are constant coefficients. The aerodynamic pitching moment
is expressed as

v=AoV?(a-a,) (32)

where a; is the “right” (i.e. equilibrium) angle of attack and ¢ a constant, positive if the

airplane is stable.
The centre of gravity and pitching motions obey the intrinsic equations
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The term 2hV dé/dt, in Eq. 35 introduces certain pitching damping. If Equations 33 and 34 are
linearized around an equilibrium state, the longitudinal and normal equations, with the current
definition of C_ and Cp, become
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Painlevé’s solutions corresponding to constant glide angle (dy/dt=0) provide
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This equation, known as “Painlevé’s theorem”, indicates that the motion is stable in speed if
the airplane flies at small angles of attack, but unstable at high angles of attack.

Bothezat worked further on Painlevé’s equations, with a six degrees of freedom motion
model, completely independent from that one studied by Bryan [15] which appeared several
months later than Bothezat’s Thesis.



Figure 7 shows the airplane used for the stability studies, consisting of a fixed horizontal
stabiliser at the rear, the wing and a separated, all moving elevator at the front of the aircraft.
His longitudinal stability findings are very complete and contradictory to previous hypotheses
and results. For example, Bothezat states that the airplane longitudinal stability needs not any
particular hypothesis on the centre of pressure location, such as the Joessel’s model: it is
enough that the horizontal tail incidence is smaller than that of the wing. The results include
diverse types of perturbation decay as shown in Fig. 8. Although he studied the lateral-
directional stability too, in the last chapter, the scope and depth of this section is of lesser
interest.

3. BRYAN’S DYNAMIC AIRPLANE STABILITY

As stated above, Prof. Bryan was a brilliant applied mathematician who became enthusiast of
flight and its problems [6, 7] and, eventually, after the death of his friend Pilcher, decided to
aim his efforts towards airplane stability and safety. The interested reader can find a highly
detailed account of his prolific life and contributions in ref. 18.

When Prof Bryan wrote his 1904 paper on the stability of aerial flights [19] the Wright
brothers had just performed their first set of powered flights, but this crucial event was kept
hidden. However, within a few years a number of intrepid flyers (Santos-Dumont, Farman,
Curtiss, Bleriot, Graham White, Fernandez and many others) were able to fly. The Wright
brothers traveled to Europe to counterbalance the growing activity and to show that they were
well ahead other designers. Albeit most machines were hardly controllable, Bleriot was
capable of crossing the English Channel on 25 July 1909 and many inventors participated
with great expectation and success in the Reims Aviation Week one month later.

During these years Zhukowsky, Lanchester and others put some pieces of the stability puzzle,
but Prof Bryan realized that it was far from complete and took the initiative of elaborating a
definitive and more rigorous treatise on airplane stability [39].

Bryan adopted the modern concept of stability, unveiled a few decades earlier: “a dynamical
system is said to be stable or to possess stability if, when slightly disturbed from a state of
equilibrium, it tends to return to and remain in that state, the disturbance acting only for a
finite time” [5].

3.1 Equations and modes

According to Bryan, the motion of an aircraft and its stability and control could be determined
completely by dynamical principles. His formulation was based on two key assumptions [40]:
first, the aerodynamic forces and moments depend only on instantaneous values of the motion
variables; and, second, the aerodynamic forces and moments could be linearized with respect
to the motion variables.

Following the rigid body dynamics, the airplane motion is studied through six equations,
corresponding to the six degrees of freedom: three linear space coordinates, plus three angular
coordinates.

With the assumption of both inertial and aerodynamic symmetry, and the aircraft being
subjected only to symmetric disturbances, the lateral asymmetric motion can be separated
from the longitudinal motion if the asymmetric perturbations are small. In other words, once
the equations are linearized, the airplane motion can be decomposed into the longitudinal and
lateral-directional modes [7]. Only the longitudinal stability will be considered here.

Bryan introduced the concept of “rotative” derivative, to mean partial derivative with respect
to the pitching angular velocity
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Since Bryan followed Joessel’s aerodynamic formulations (see Eqs. 13 and 14), he arrived at
the conclusion that the glide of a simple flat plate could only be stable if the center of pressure
shifted rearwards on increasing the angle of attack.

But airplanes were not conceived as wing-alone aircraft. Instead, all airplanes had a horizontal
stabilizer as shown in Fig. 9, modified from ref. 15. To avoid any pitching moment in the
equilibrium flight, the center of pressure must coincide with the center of gravity. Bryan knew
the downwash effect on the rear plane but did not take it into account to avoid entangling the
formulas. Another limitation of Bryan’s theory is that the lift curve slope of wing and
tailplane are equal, which overestimate his stability results.

The longitudinal stability quartic was simplified by Bryan in several steps that provided
interesting physical insight into the oscillation modes. For example, to ensure airplane
stability, the distance from wing to tailplane, I;, should be

! K 8i(8148,) 2 (41)
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where K is the constant appearing in the aerodynamic force formula (Eg. 12) and k the y-axis
inertia moment radius.

Bryan realized that there were two different modes: the “slow” or “long oscillation mode” and
the “short oscillation mode”. For the long oscillation mode (equivalent to Lanchester’s
phugoid) the imaginary part of the root is, in first approximation,

Ay =%i | =2 (42)

E and C being the independent and A coefficients of Eq. 11, respectively. This result easily
becomes

Ty =27 % (43)
0

that can be converted into

A =iiﬁui (35)
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This last result was not published by Bryan, although it was implicit in his analysis.
Regarding the damping of the long oscillation, Bryan obtained the following expression
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which, with current nomenclature of aerodynamic drag, can be expressed as
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The former equations constitute just an example of Bryan’s analysis of airplane stability. He
had the vision on how to study the problem and how to solve control troubles in new designs.
Albeit the book appeared one hundred years ago, the notation used is perfectly understandable
nowadays [5]. Bryan emphasized that all approximations to the longitudinal modes should
satisfy the fourth-order longitudinal characteristic polynomial, to be both reliable and useful
[41].

4. CONCLUDING REMARKS

Flight Dynamics has played a crucial role in the continuing development of the frontiers of
aerospace. Knowing the preliminary stability concepts is important to understand the current
status of the discipline. The weak and strong points of their contributions may provide some
clues to foster science and technology a step forward.

Although better known for his works on Aerodynamics, Zhukowsky was the first to elaborate
a mathematically sound study on the stability of glider flight. His equations showed in 1891
the oscillatory nature of the longitudinal motion and, in 1906, provided an implicit value for
the phugoid frequency. However, he was not aware of the importance of his findings and
stopped the analysis just before realizing and discussing the stability limits. His works were
not fully appreciated until the 20s, when the contributions by Lanchester and Bryan had
already been widely disseminated. Similarly, Painlevé’s and Bothezat’s works on airplane
stability were almost unknown by the Flight Dynamics community in early times, probably
because they were written in French but for other reasons too. Painlevé left Academia and is
much more known for his political career. On another side, Bothezat had to stop his
promising research in Russia, emigrate to USA and devote his capabilities to new
undertakings. Although he was the first to conceive and solve the six-degrees of freedom
model of airplane motion, his name is not duly recognised among the stability pioneers.
Conversely, Lanchester and Bryan are common references in current research work and text
books [3, 5-9, 14, 28, 39-44]. Lanchester, mainly for his early description of the phugoid
mode, soon accepted and widely known through literature. Bryan, for developing the general
equations of airplane motion, applied to a six degrees of freedom aircraft, thus providing a
solid mathematical basis for two and three-dimensional analysis of flight. He did not only
discussed and improved Lanchester’s analysis of the slow oscillatory phugoid motion, but
unveiled the existence of a short period mode. Because of his papers and his seminal book, he
is recognized as the real originator of Flight Dynamics [5-9]. Bryan’s equations, with very
few changes, are still in everyday use and are the basis of closed-loop control applications as
well as of the design of flight simulators, among other recent developments [9].

Bryan’s “Stability in Aviation” [15] and Lanchester’s “Aerodonetics” [17] are examples of
that small category of books that continue to be widely referenced and in their plenitude,
although rarely read, a hundred years after its publication [18].
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FIGURE CAPTIONS

Figure 1. Motion of flat plate AB under the effect of aerodynamic forces (F, N) and weight
(mg), gliding at constant angle of attack i, according to Zhukowsky [16].

Figure 2. Center of gravity trajectories as obtained from Eq. 6. The variety of solutions
depends upon inertia and aerodynamic conditions through parameter A. The legends are
Zhukowsky’s originals [16].



Figure 3. Idealized flowfield around a rectangular flat plate falling while rotating in calm air,
according to Zhukowsky [24].

Figure 4. Undulating trajectory of a hand glider’s center of gravity, as suggested by
Lanchester [7, 17].

Figure 5. Center of gravity trajectories as obtained by Lanchester through Eq. 28 [17].
Semicircular trajectories, numbered 4 in the picture, represent the stability limit (see similarity
with Fig.2).

Figure 6. Sketch of flat plate gliding at angle y, showing the speed V and angle of attack a in
Painlevé’s stability analysis [29].

Figure 7. Sketch of complex, three-lifting-surface aircraft (canard elevator, wing and fixed
horizontal stabilizer) used by Bothezat in his six degrees of freedom stability studies [32].

Figure 8. Different types of perturbation damping shown in Bothezat’s Thesis [32].

Figure 9. Sketch of airplane, with wing (S1 in the picture) and horizontal tailplane (S2), as
idealized by Bryan in his stability studies [15].



