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Evolutionary signals of selection on cognition
from the great tit genome and methylome
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For over 50 years, the great tit (Parus major) has been a model species for research in
evolutionary, ecological and behavioural research; in particular, learning and cognition have
been intensively studied. Here, to provide further insight into the molecular mechanisms
behind these important traits, we de novo assemble a great tit reference genome and
whole-genome re-sequence another 29 individuals from across Europe. We show an
overrepresentation of genes related to neuronal functions, learning and cognition in regions
under positive selection, as well as increased CpG methylation in these regions. In addition,
great tit neuronal non-CpG methylation patterns are very similar to those observed in
mammals, suggesting a universal role in neuronal epigenetic regulation which can affect
learning-, memory- and experience-induced plasticity. The high-quality great tit genome
assembly will play an instrumental role in furthering the integration of ecological,
evolutionary, behavioural and genomic approaches in this model species.
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heory predicts that the ability to perceive, assess and learn

from others should have fitness benefits under a wide range

of conditions'. However, we know little about whether, or
how, natural selection acts on cognitive traits related to social
living in any species®. Great tits learn socially in the wild®, solve
complex learning tasks* and there is evidence that cognitive
abilities may have important fitness implications®. A literature
survey of records of technical (for example, tool use) and
opportunistic (for example, exploring novel food items)
innovation spanning 803 bird species from 76 families shows
that great tits are among the top avian species in terms of overall
number and diversity of foraging innovations®. This suggests
rapid evolution in the great tit lineage of learning and cognition-
associated traits compared with many other birds, making great
tits an excellent model for studying complex social-cognitive
behaviour.

In addition to studies of cognitive and learning abilities of
great tits>>, great tit research has contributed significantly to
our general understanding of life history evolution’, the effects
of climate change on natural populations®’, the allocation
of resources to breeding'® including trade-offs between
reproduction and immunity'!, the extent and consequences
of individual variation in rates of ageing'?, inbreeding and
inbreeding depression!®!4, host-parasite coevolution'®, territorial
and foraging behaviour!®!” and the impact of variation in
personality traits on other life history characters'®. This
considerable contribution of studies of great tits to our
understanding of basic ecological and evolutionary processes is
largely due to work on numerous long-term study systems
throughout Europe.

To explore the molecular basis for learning and cognition, we
developed a complete set of de novo molecular genomic tools to
ascertain evidence of natural selection on genetic and epigenetic
variation in great tits. Here, we test the hypothesis that learning
and cognition have been important targets of selection in great tit
evolution by exploring footprints of selection in the great tit
genome. We find an overrepresentation of genes related to
neuronal functions, learning and cognition in regions under
positive selection, as well as increased CpG methylation in these
regions. In addition, great tit neuronal non-CpG methylation
patterns are very similar to those observed in mammals. The
development of high-quality genomic resources for great tits
provides tools that will allow the integration of genomics into
ecological, evolutionary and behavioural research in wild
populations in this important study system.

Results

Genome sequencing, assembly and annotation. We selected a
male great tit (hereafter the reference bird) from a recent captive
population (four generations in captivity) in the Netherlands for
genome sequencing and de novo assembly (see Methods and
Supplementary Information for a detailed description of genome
assembly and annotation). We generated a total of 114 Gb of
Mlumina HiSeq sequence data; after gap-filling and removal of
adaptor sequences, the assembly consisted of a total of 2,066
scaffolds with an N50 scaffold length of over 7.7 Mb and an N50
contig length of 133kb. Taken together, the assembled contigs
span 1.0 Gb. We were able to assign 98% of the assembled bases
to a chromosomal location using the recently described high-
density linkage map'® (Supplementary Data 1). The total number
of chromosomes covered by the assembly is 29 with three
additional linkage groups (Chr25LG1, Chr25LG2 and LGE22).
The assignment of chromosomal locations to the majority of the
assembly resulted in a very high quality reference genome and
enabled detailed comparisons with other bird genomes.
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A comparison between the genomes of the great tit and zebra
finch (Taeniopygia guttata)*® (see Supplementary Fig. 1) showed
only intra-chromosomal inversions, and not a single inter-
chromosomal rearrangement, confirming high synteny in birds.
For the genome annotation step, we combined RNA sequencing
data from eight different tissues of the reference bird with gene
models from chicken (Gallus gallus)21 and zebra finch?. The final
annotation resulted in a total of 21,057 transcripts for 13,036
high-confidence gene predictions.

Population genomics. To obtain further insight into the evolu-
tionary genetics of the great tit, an additional 29 wild individuals
from across Europe were re-sequenced at an average depth of
10 x (Supplementary Data 2, Fig. la). We found very little
differentiation among populations (Fsy<0.02; Supplementary
Data 3) which is in line with previous phylogenetic analyses of the
spatial genetic structure of great tits in Europe using mtDNA
markers®?. This suggests a largely panmictic European great tit
population??, Pairwise sequential Markovian coalescent analysis
(PSMC)?? of the reference individual suggested a large effective
population size that increased from an already large ~2 x 10°
individuals 1 Myr ago to ~5.7 x 10° individuals 70 Kyr ago
(Fig. 1b). There was evidence that the expansion was interrupted
by a very mild decline in population size beginning ~110 Kyr
ago, coinciding with the start of the last glacial period in Europe,
followed by a quick recovery. Consistent with expectation for a
population that has undergone a recent increase, there is a
genome-wide excess of low-frequency variation, as indicated by
negative Tajima’s D values (Fig. 2b).

Selective sweeps. We found that several regions with reduced
diversity coincide with regions of extremely negative Tajima’s D
(Fig. 2a,b), indicative of recent selective sweeps. To investigate the
role of recent positive selection in greater detail, we conducted a
genome-wide scan for selective sweeps and identified 813
genomic regions (Fig. 2, Supplementary Data 4) compromising
roughly 0.2% of the genome. We extracted 460 genes that had
human orthologues from these regions and assessed their
functional importance by performing a gene ontology (GO)
enrichment analysis. Thirteen different GO categories were
overrepresented in these selected regions relative to the rest of the
genome (Fig. 3, Supplementary Data 5a). Among these categories
were dendrite, cognition and several other categories related to
neuronal function. Therefore genes related to neuronal function
are likely to have been targets of recent positive selection.

Learning and cognition. One of the striking genes presented in
the learning/cognition category was early growth response
protein 1 (EGRI), whose gene expression has been particularly
well studied within vocal communication and social contexts in
Passerines’*2°, EGRI is one of the immediate early genes, which
are known to be important in learning and memory®S. In zebra
finches, its expression has been shown to be correlated with son;
learning and practice and is social context dependent*>?’.
To further investigate the role of EGRI in great tit evolution,
we obtained additional EGR1 sequences from 45 bird species
(Supplementary Data 6). We found that rapid evolution of EGRI
is specific to the tit lineage (as signified by an elevated ratio of
non-synonymous to synonymous substitution rate (dN/dS)) and
has occurred after the split with the nearest sequenced relative,
the ground tit and that this is not a feature related to the captive
nature of the reference bird (Supplementary Fig. 2). These results
are consistent with EGRI being subject to frequent, recurrent
positive selection. Another relevant gene from this category was
the forkhead box protein P2 (FOXP2), a well-studied gene that
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affects speech and language development in humans®® and linked
to song learning in birds?>*, The combination of these song-
related genes and the other neuronal genes within sweep areas
points to a role of these genes in the evolution of song learning
and memory in great tits.

Rates of molecular evolution. To examine whether the identified
GO categories in general play an important role in great tit
evolution, we extracted all great tit genes that are associated
with the enriched GO terms of the sweep regions (Fig. 3,
Supplementary Data 5a) and conducted evolutionary rate
(dN/dS) analyses by using orthologous genes from chicken and
zebra finch. We found that median dN/dS for genes associated
with the identified GO terms is reduced compared with all other
GO-annotated genes (0.066 versus 0.087, P=1.4x10" %
Mann-Whitney U-test), and yet these genes have significantly
more targets of probable positive selection based on a site test of
positive selection (P=1.84 x 103, %> test; see Methods for
details). Moreover, on a genome-wide scale, ~1% of the genes in
the great tit genome show evidence for positive selection based on
their long-term evolutionary rates. These genes are generally
enriched for neuronal traits, such as cerebellar Purkinje cell layer

a

b

70

formation and axon extension (Supplementary Data 5b). Taken
together, it becomes apparent that selection on traits for brain
function has played a major role in the evolution of great tits.

The great tit methylome. Epigenetic control of gene expression is
increasingly recognized as playing a major role in many different
cellular processes affecting a large variety of traits’!, with DNA
methylation of cytosines being the most widely studied epigenetic
mark. Great tit DNA methylation patterns were investigated by
performing whole-genome bisulfite sequencing in whole brain
and blood tissue of the reference bird. A total of 10.2 million CpG
sites, representing 66.7% of all CpG sites, could be called in both
tissues. The observed genome-wide methylation patterns in both
tissues, including reduced methylation within CpG islands and at
transcription start sites (TSS), are consistent with previous
findings in human and mouse cells*>33(Supplementary Fig. 3).
We also observed low, but significant non-CpG methylation in
the brain tissue that was not observed in the blood (Fig. 4a). The
neuronal non-CpG methylation patterns seen at 167.4 million
sites (42% of all non-CpG sites) display similar genome-wide
patterns to those seen for CpG methylation, including reduced
methylation within CpG islands and at TSS, albeit at a much
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Figure 1| The 29 re-sequenced great tits and their demographic history. (a) Map of the sampling locations of the 29 re-sequenced great tits (black)
and reference individual (red). (b) Pairwise sequential Markovian coalescent analysis (PSMC) of the reference genome. The red line represents the
average and the black lines indicate the confidence interval as determined by bootstrapping (100 x ).
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Figure 2 | Genome-wide test statistics obtained from 29 re-sequenced great tits. (a) Genome-wide distribution of Watterson's ® and (b) Tajima's D
measured in sliding window sizes of 50 kB and step size of 10kB, as well as (¢) CLR (composite likelihood score, measured as the sum of neighbouring
sweep targets, see Methods) from the sweep analysis with labelled cognition-related genes (see Fig. 3 and Supplementary Data 5a) that were among the
top 3% of gene-associated sweep targets (indicated by the dashed line). Chromosomes are separated by colour in ascending order according to their
chromosome number. The Z chromosome is the furthest right. The solid lines in the upper two panels denote smoothing splines.

GO annotation Pvalue  Percentage of genes with this GO category
Dendrite 3.53x1078
Cytoskeleton organization 3.98x10~3 | —
Protein oligomerization 1. A3 02 |
Synaptic transmission 3.07x10 2 | ——
Regulation of phosphatase activity 3151 02|
Synaptic membrane 4.99x1072
Cognition 5.61x1072 | —
lon channel activity 8.04x1072
Cell cycle phase transition 1,181 0" | |
Cilium 1,871 0 | —
Phosphatidylinositol-mediated signalling | 1.81x10-"
Cellular protein complex assembly 2.82x 10~ | —
GTPase binding 1.26x10~1 | —
0 1 3 4 5 6 7 8

Figure 3 | Gene ontology (GO) enrichment analysis of sweep area genes by using human gene ontologies. The GO enrichment analysis detected 13
functional groups of GO terms across all sweep areas (first column). P value denotes the corrected P value by using Bonferroni step-down method.

lower level. Similar non-CpG methylation has recently been
found in embryonic stem cells and oocytes of many mammalian
species>»®, as well as in the neuronal tissue of humans and
mice?33%,

Both CpG and non-CpG methylation has been shown to
negatively correlate with gene expression at TSS and in gene
bodies in mouse neurons>, while hypomethylation of both CpG
and non-CpG sites in gene bodies has been reported in highly
expressed genes of human neurons®. Consistent with these
results, both CpG and non-CpG methylation were negatively
correlated with gene expression within gene bodies and at TSS in
the great tit brain (Spearman’s tho < —0.23, P<1.0 x 10 =% for
all comparisons, Fig. 4b,c). In addition, the negative correlation
between non-CpG methylation and expression was observed in
the regions directly upstream and downstream of gene bodies
(Spearman’s rho < —0.22, P<0.0001 for all comparisons,
Fig. 4c). Therefore, our findings now extend a potential
functional role of non-CpG methylation in neuronal tissue to
Aves, suggesting evolutionary conservation of this epigenetic
regulation in brains.

Methylation is correlated with rates of molecular evolution. To
investigate the potential adaptive and evolutionary role of DNA

methylation, we first assessed the methylation patterns of selective
sweep genes in the brain. We observed higher CpG methylation
at sweep gene bodies (Linear Mixed effect Model, LMM;
13 =394.61, P=9.2x 10-%) and in regions upstream
(LMM; X% = 148.94, P=3.0 x 10~ %) and downstream (LMM;
72 =292.70, P=1.8 x 10 ~ %) of gene bodies compared with the
same regions in genes outside sweep regions (Fig. 4d). In
addition, lower non-CpG methylation in sweep gene bodies
(LMM; x% =57.17, P=4.0x 10" %) and in regions upstream
(LMM; »2=10.10, P=0.001) and downstream (LMM;
7} =31.88, P=164x10"8) of gene bodies was observed
compared with the same regions in genes outside sweep regions
(Fig. 4e). These patterns are not due to systematic differences in
expression levels between sweep and non-sweep genes because
the observed CpG and non-CpG methylation differences are in
opposing directions. In addition, although the overall expression
profiles reveal a higher proportion of non-sweep genes with no or
low expression (Supplementary Fig. 4e), differences seen between
CpG and non-CpG methylation in sweep gene regions were also
observed when comparing genes with similar expression levels
(Supplementary Fig. 4a-d). While previous studies in chickens
and humans have also shown altered CpG methylation in regions
under selective pressure®, it is unclear what causes the observed
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Figure 4 | DNA methylation patterns across genomic features. (a) Non-CpG methylation patterns associated with CpG islands and gene bodies.

(b) Neuronal CpG methylation in gene bodies and at TSS is negatively correlated with expression (Spearman'’s rank correlation, Spearman’s rho < — 0.23,
P<1.0 x 10~ 95 for all comparisons), presented as fragments per kilobase of transcript per million fragments mapped (FPKM). (€) Neuronal non-CpG
methylation at TSS, gene bodies and adjacent upstream and downstream regions is negatively correlated with expression (Spearman'’s rho < —0.23,
P<1.0 x 10~ 95 for all comparisons). (d) Increased neuronal CpG methylation at sweep gene bodies (Linear Mixed Effect Model, LMM; 17 =394.61,
P=9.2x10~88) and adjacent upstream (LMM; 3 = 148.94, P=3.0 x 10 ~3%) and downstream regions (LMM; 33 = 292.70, P=1.8 x 10~ 6%).

(e) Decreased neuronal non-CpG methylation in sweep gene bodies (LMM; 32 = 57.17, P=4.0 x 10~ ™) and adjacent upstream (LMM; 72 =10.10,
P=0.001) and downstream regions (LMM; qu =31.88, P=1.64 x 10 ~8). Shaded areas denote variances.

higher CpG and lower non-CpG methylation in great tit sweep
regions. In addition, lowly methylated genes in the brain were
found to evolve significantly slower in comparison with highly
methylated genes as shown by differences in the rate of
nonsynonymous mutations between the two groups of genes
(P<0.001 for all pairwise comparisons, U-test, Supplementary
Fig. 5). This pattern was observed for both CpG and non-CpG
methylation at TSS and within gene bodies. Overall these results
not only show, for the first time, conserved neuronal non-CpG
methylation patterns between birds and mammals, but also
extend them by showing that methylation is correlated with rates
of molecular evolution, thereby suggesting an important role for
DNA methylation in evolution.

Discussion

We have generated a high quality de novo assembled and
annotated genome for the great tit, a model organism in ecology
and evolutionary biology. Our study adds to the growing number
of rgpresentative genomes sequenced across the bird family
tree’”38, Further, unlike these recent genome studies, we
assembled the great tit genome into chromosomes, which was
useful for determining chromosomal regions of selective sweeps
and larger-scale synteny conservation across species. The great tit
genome assembly represents a powerful tool, especially when
combined with the extensive availability of individual phenotypes
of known birds for which DNA is available via routine blood
sampling. Using sequence analysis of birds from a wide range of
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European populations, we identified selective sweep areas
enriched with genes related to learning and cognition. Using
whole-genome methylation data, we not only revealed conserved
non-CpG methylation patterns between birds and mammals, but
also extended these observations by showing that methylation is
correlated with rates of molecular evolution, thereby suggesting
an important role for DNA methylation in evolution. Our de novo
assembled genome will help us to reveal the genetic basis of
phenotypic evolution, which is essential for understanding how
wild species have adapted to our changing planet.

Methods

Genome sequence assembly and annotation. A blood sample from a male Parus
major was obtained for whole-genome sequencing and stored in queens buffer.
This reference bird originated from a captive population that was derived from
wild-caught birds from the Netherlands four generations ago and has since been
artificially selected for avian personality®. In the great tit genome assembling,
we relied on the creation of de Bruijn graphical structures, a directed graph that
evolves from defined sequence length (kmer) progression (see Supplementary
Methods for a detailed description of genome assembly and annotation). In brief,
our genome assembling involved four principal steps that progressed from
sequence quality revisions, to forming contigs from these sequence reads, to
connecting contigs into scaffolds using paired-end sequence of large fragments
(jumping libraries) and finally gap filling. In this study, the total input genome
coverage of lllumina HiSeq sequences was ~ 95 x (fragments, 3 and 8 kb spanning
inserts) based on a genome size estimate of 1.2 Gb. The combined sequence reads
were assembled using the ALLPATHS software*’. This draft assembly was referred
to as Parus_major 1.0.1. This version has been gap filled and cleaned of
contaminating contigs. The assembly is made up of a total of 2,066 scaffolds with
an N50 scaffold length of over 7.7 Mb (N50 contig length was 133kb). The total
assembled contigs spans 1.0 Gb, and has an assembled coverage of 40 x using
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fragment reads aligned to the assembly. The final assembly (Pmajor1.04) has been
deposited at DDBJ/EMBL/GenBank under the accession JRXK00000000. The
version described in this paper is version JRXK01000000. The genome is also
publicly available in https://genomes.bioinf.nioo.knaw.nl/.

Assembly chromosome builds. Assembled scaffolds were assigned to specific
chromosomes using two Parus major linkage maps!® constructed from different
populations; one at Wytham Woods, Oxford (UK) and the other at de Hoge
Veluwe (Netherlands), which is the population that the reference bird descended
from. Flanking sequences of single-nucleotide polymorphisms (SNPs) positioned
on the linkage map were aligned against the assembled scaffolds using BLAT.
Scaffolds that contained multiple SNP markers were then oriented and positioned
on the basis of the positions of the SNP markers on the linkage map. The order of
the SNP markers on the scaffolds and the linkage map were in good agreement
(Supplementary Fig. 6). Regardless of whether the Netherlands or UK map was
used, the Spearman rank correlation coefficient between the linkage map marker
order and the assembly marker order was 0.99 or greater for nearly all the
chromosomes. Exceptions were only on microchromosomes with just a few
markers, for example, linkage group 25LG22. If anything, correlation coefficients
were slightly higher when the UK map was used, despite the genome assembly
being performed on a Netherlands bird. This indicates that the assembly is equally
applicable to other great tit populations as it is to the ‘source’ population. Most
discrepancies between the orders on the sequence and linkage map were caused by
the lower resolution of the linkage map involving SNPs that were less than 1 <M
apart. Two scaffolds (22 and 28) appeared to be chimeric and were manually split
between contigs Contig22.251-Contig22.250 and contigs Contig28.53-Contig28.51,
respectively. Because of a lack of any genetic marker on Contig28.52, this contig
was not assigned to a specific chromosome.

Small scaffolds that were assigned to a chromosome based on only a single
marker were oriented based on the zebra finch-great tit comparative map, taking
into account the orientation of the flanking scaffolds assigned to that chromosome.
Next, we used MUMMER to align all unassigned scaffolds against the zebra finch
genome?® and larger scaffolds that unambiguously mapped to a specific region of
the zebra finch genome at a location between assigned scaffolds were assigned to
that location in the genome. The orientation of these scaffolds was chosen in
relation to the adjacent mapped scaffolds, thus minimizing the number of
rearrangements. In total, 300 scaffolds could be assigned to a chromosomal
location based on the linkage map!? totalling 975,330,736 bp and 124 scaffolds
were assigned to a chromosomal location based on the alignment with the zebra
finch genome, totalling 23,489,268 bp (Supplementary Data 1). Although the final
genome assembly therefore is not completely de novo, these contigs only represent
2.4% of the assembled sequence and 97.6% of the assembly represents a truly
de novo genome assembly.

RNA sequencing and assembly. RNA was extracted from eight tissues (bone
marrow, homogenized half of the brain, breast filet, higher intestine, kidney, liver,
lung and testis) from the reference bird and was then used to prepare tissue-specific
tagged Illumina sequencing libraries. The tagged libraries were pooled and
sequenced using five lanes on one flowcell of Illumina HiSeq 2000 (same run on the
machine). This resulted in 100 bp paired-end unstranded RNA sequencing data.
The number of reads per tissue ranged from 98 to 229 million with a total number
of 1.25 billion paired-end reads (Supplementary Data 7). The sequence reads were
checked for quality with FastQC (http://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc/) and low-quality sequences were trimmed with Fastq-Mcf*! resulting
in a final number of 1,096,140,415 paired-end reads that were used for the
annotation. The RNA sequencing data per individual tissue has been submitted to
Genbank (GT_BoneMarrow SRS863935, GT_Brain SRS866013, GT_BreastFilet
SRS86603, GT_HigherIntestine SRS866033, GT_Liver SRS866035, GT_Kidney
SRS866036, GT_Lung SRS866044, GT_Testis SRS866048).

The combined 1 billion reads from all eight tissues were simultaneously de novo
assembled using the Trinity software package?? v. r2013-02-25. Because of the high
depth of the RNA sequencing data, we first normalized the data. Following the
normalization, the Trinity assembly was subsequently run using the default
settings. We obtained a total of 101,289 assembled transcripts ranging in size from
201 to 16,061 bp, with an average size of 1,335bp. We also did a reference-based
RNA assembling by using the normalized RNA sequencing data in Tophat version
v2.0.10 (ref. 43; Bowtie v2.1.0 (ref. 44)).

Genome annotation. For the genome annotation, both PASA v. 2-r20130605
(ref. 45) and MAKER v. 2.31.5 (ref. 46) pipelines were used (Supplementary Fig. 7).
First PASA (program to assemble spliced alignments) was used for the identifi-
cation of spliced transcripts and the grouping of the identified transcripts belonging
to the same gene. PASA was run using the assembled Trinity transcripts and the
Cufflinks gtf output file from Tophat/Bowtie as input. Alignment within PASA was
done using gmap. The PASA analysis resulted in a total of 74,229 different
assembled transcripts with an average size of 1,564 bp. A comparison (using blast)
with the annotated transcriptomes of chicken?!, zebra finch?’, flycatcher®” and
ground tit48 (derived from Ensembl release 75 or NCBI refseq release 66) indicated
that these transcripts represented 13,626 different genes in these other birds.
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In the MAKER pipeline, the output of PASA was used as EST evidence. From
the ab initio predictors, AUGUSTUS version 3.0.2 (ref. 49) was applied by using
the chicken gene model. The same RNA-seq de novo assembly as used in PASA was
included in MAKER. In addition to de novo assembly, reference-based RNA-seq
assembly was used. Last, protein evidence from zebra finch (version 3.2.4.75) and
chicken (version 4.75) obtained from Ensembl version 75 was aligned to the great
tit genome. By combining these two pipelines, we obtained 21,057 transcripts for
13,036 great tit genes. See additional information about functional annotation and
repeat/RNA masking in Supplementary Information and Supplementary Data 8.

Resequencing and SNP calling. We analysed 29 wild great tit individuals
(Supplementary Data 2) covering a wide range of the species distribution (Fig. 1);
10 individuals were from the Wytham population in Oxford (UK), and the
remaining 19 birds were sampled from 15 European populations. Each bird was
sequenced to 10 x coverage. Paired-end sequencing libraries of each sample
were built with an insert size of 300 bp and sequencing was performed on a HiSeq
2000 platform with a read length of 100 bp. The raw reads were trimmed and
filtered with Sickle (https://github.com/najoshi/sickle) using default parameters and
a length restriction of 75. We then used the Burrows-Wheeler Aligner®® to map the
filtered raw reads onto the assembled great tit reference genome. Subsequently,
we removed duplicates and conducted local realignments following the best
practices of the GATK pipeline®!. We used ANGSD*? to call SNPs based on the
genotype likelihoods estimated by the GATK model from the mapped reads®'; this
approach has been shown to produce more accurate estimates of the Site Frequency
Spectrum (SFS) than other widely used SNP-calling pipelines when sequencing
coverage is low (<10 x )3, which is critical for our analysis because our average
coverage is 10 x . However, for comparison, we also called SNPs using three
additional approaches: (1) GATK using data from each individual separately

(the ‘Single’ approach); (2) GATK using data from all individuals simultaneously
(the ‘Multi’ approach); (3) Platypus, which calls SNPs directly from the
Burrows-Wheeler Aligner alignments, independent of the GATK pipeline®*,

We also tested the reliability of the SNP data, see details in Supplementary
Information and Supplementary Data 9 and 10 and Supplementary Fig. 9.

Population differentiation and demography. We found very little differentiation
among populations (Fgr<0.015; Supplementary Data 3). The most differentiated
population pairs were Spain-UK (ES versus WW, UK; Fig. 1) and France-Spain
(FR-ES; Fig. 1) with Fgp=0.012.

We analysed the demographic history with pairwise sequential Markovian
coalescent analysis (PSMC 3). PSMC estimates rates of coalescent events across a
single genome and uses these to infer N, (the effective population size) in the
past?3. The model relies significantly on confidently called polymorphic sites and
requires that both alleles are called. Therefore we conducted this analysis with
variants called on the high coverage reference genome sequence. We set the
mutation rate to 2.0 x 10 ~? per year per site and the generation time to 2 years.

Genome-wide diversity and Tajima's D. We obtained genome-wide sliding
window estimates (step size 10 kb, window size 50 kb) of Watterson’s ® (Fig. 2)
and Tajima’s D (Fig. 2) along each chromosome based on the SNP calls from
ANGSD. For most macrochromosomes, diversity is increased towards the
chromosome ends, and there are remarkable local drops of diversity on chromo-
somes 3, 6 and Z (Fig. 2; more details about low diversity in chromosome Z

in Supplementary Information and Supplementary Fig. 10). By calculating
Watterson’s ® for synonymous sites in protein-coding genes we found a

clear negative correlation between chromosome length and diversity levels
(Supplementary Fig. 8); we observed the same pattern when diversity was
estimated using all sites (Supplementary Fig. 8).

Selective sweep detection. We scanned the genome for target regions of positive
selection using Sweepfinder® which uses local deviations of the site frequency
spectrum (SFS) compared with a standard neutral model or chromosome/genome-
wide reference to infer the action of positive selection. We used SNP calls from the
ANGSD pipeline to construct SFS. ANGSD assumes that each variable position is
biallelic and determines allele frequencies based on the genotype likelihoods®.
Whole-genome alignments constructed with MAUVE® for zebra finch?’,
flycatcher?”, ground tit*® and chicken?! were used to infer the ancestral state
based on maximum parsimony. Sites for which the ancestral state could not be
reconstructed with confidence were included in the analysis as folded sites
(unpolarized). The chromosome-wide SFS was used as reference for each
chromosome as recommended by Sweepfinder, which helps to reduce false
positives caused by past demographic changes. We used a dense grid size of 100 bp
and extracted sweep targets that had a composite likelihood score (CLR) within the
top 1%. Neighbouring sweep targets were merged to sweep regions, with the total
CLR score of a sweep region being the sum of the CLR score of each sweep target.
The top 3% of genes that overlapped with or were near (within 5kB flanking the
sweep region) sweep regions larger than 300 bp were extracted (Supplementary
Data 4). Targets for positive selection included the low diversity region of
chromosome 3, 6 and Z. Further details of the Sweepfinder pipeline can be found in
the Supplementary Materials and Methods.
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Multiple alighment construction for substitution rate analyses. Natural
selection affects the composition of genomes and we were interested in estimating
gene-specific rates of molecular evolution (dN/dS) and finding evidence for the
action of positive selection in protein coding genes. Since alignment quality is
crucial for reliably conducting tests of positive selection using substitution rate
analyses, we chose a very conservative approach. We used homologous genes from
zebra finch and chicken, the two best annotated bird genomes to date. We only
analysed §enes with a homologue in both, and used MUSCLE®® along with
ZORRO™ to exclude positions of low alignment certainty. To obtain the
corresponding multiple DNA codon alignments, protein ali%nments along with the
unaligned DNA sequences were prepared with PAL2NAL®. Altogether, we
constructed & 11,107 triplet alignments. Substitution rates were calculated using
PAMLO! to obtain the nonsynonymous to synonymous substitution rate ratio
(dN/dS = ). w values <1, =1 and >1 indicate purifying selection, neutral
evolution and diversifying (positive) selection, respectively. Rates of molecular
evolution (dN/dS) for each gene were obtained from the one-ratio model MO from
PAML that assumes a constant o for the whole gene phylogeny. In addition, a site
test was used to detect positive selection. Specifically, we compared the likelihoods
calculated using model M8, which assumes a proportion of sites to evolve under
positive selection, and model M7, which does not assume a site class with @
exceeding one. Positive selection was inferred when the model M7 and M8 were
significantly different as assessed by a likelihood-ratio test that assumes that 2AInL
(twice the log likelihood difference) is % distributed with two degrees of freedom.
The P values were adjusted for multiple testing (Benjamini and Hochberg) with a
false discovery rate of 0.2; y? test results for an enrichment of positively selected
genes were qualitatively similar for FDRs = 0.1, 0.3, 0.4 and 0.5 (P=2.17 x 10 5,
3.97 x 1073, 2.58 x 103 and 2.17 x 10 73, respectively).

GO enrichment analyses. Human orthologues were obtained for the great tit
genes by using a combination of Ensembl and Uniprot databases. In the sweep
areas, orthologues were found for 460 genes. Functional relatedness of GO terms
was done using the Cytoscape plugin ClueGo 2.1.4 (ref. 62). ClueGo constructs
and compares networks of functionally related GO terms with kappa statistics.

A two-sided hypergeometric test (enrichment/depletion) was applied with GO
term fusion, network specificity was set to ‘medium’ and false discovery correction
was carried out using the Bonferroni step-down method. We used both human
(08.10.2015) and chicken gene ontologies (08.10.2015) for comparison. With
human gene ontologies, we detected 13 functional groups of GO terms across all
sweep areas (Supplementary Data 5a). These groups were largely involved in
functions concerning dendrite, cytoskeleton organization, protein oligomerization,
synaptic transmission, regulation of phosphatase activity, synaptic membrane and
cognition. We also did a GO enrichment analysis for the positively selected genes,
as defined by the PAML-based analysis, in the same way as for the sweep genes,
and obtained 12 functional GO groups (Supplementary Data 5b). When using the
chicken orthologues for both sweep and positively selected genes, the results were
comparable but with lower significance levels (Supplementary Data 5¢,d) because
the chicken genes were not as well GO annotated as the human ones.

To further confirm our GO enrichment results, we randomly selected 50 sets of
genes from outside the sweep area, each containing ~460 genes (the same number
as in our selective sweep set), and analysed them using the same Cluego settings.
We found that the GO term groups significantly enriched in our selective sweep set
appeared no more than three times except for phosphatidylinositol-mediated
signalling GO group which appeared seven times. This additional analysis further
supports the robustness of our results.

Test of accelerated evolution in great tit EGR1. We used BLAST to obtain
orthologous sequences of the EGRI gene from 45 additional bird species®”-38
downloaded from Ensembl version 75 or from Gigascience (http://gigadb.org/
dataset/101000, Supplementary Fig. 2, detailed species list provided in
Supplementary Data 6) to test whether there was additional evidence for the action
of positive selection during the evolution of EGRI in birds. Pairwise dN/dS rates
revealed that there is a substantial increase in dN/dS between great tit and ground
tit relative to other pairwise values (Supplementary Fig. 2, upper panel). We also
tested whether the increased fixations are unique to the captive reference bird by
using variable positions from the 29 re-sequenced birds, the reference bird and
the ground tit genome and found no evidence for this (Supplementary Fig. 2
lower panel).

Brain gene expression. To compare expression levels and methylation in the
brain, 200,793,186 trimmed paired-end reads from the brain were aligned against
the assembled genome using Tophat version v2.0.10 (ref. 43; Bowtie v2.1.0

(ref. 44)) with the same settings as described above, except that multiple hits were
prefiltered against the genome (-M option) and the reads were first aligned against
the final annotation (-G option). The brain Tophat alignment was analysed with
Cufflinks v2.2.0 using the same settings as above, except that the annotation was
also included (-g option). Expression levels of brain genes were extracted from the
Cufflinks output.

Methylation analysis. Blood and brain DNA libraries were constructed according
to the Epitect whole-genome bisulfite sequencing workflow (Illumina) with 18 PCR

cycles. Whole-genome sequencing data were generated using the Illumina HiSeq
2,500 platform at Business Unit Bioscience, Wageningen UR. The number of
paired-end reads (101 bp) were 358M and 292M for the brain and the blood,
respectively. Raw sequencing reads were trimmed for quality (>20) and adaptor
sequence using trim_galore v.0.1.4 (http://www.bioinformatics.babraham.ac.uk/
projects/trim_galore/). The methylation data has been submitted to NCBI with
accession numbers SRR2070790 and SRR2070791 for the brain and the blood,
respectively. Trimmed sequences were aligned to the reference genome using
BSseeker2 v2.0.6 (ref. 63) with Bowtie2 v.2.1.0 (ref. 44) in the local alignment
mode. A total, 97.63% and 99.93% of the genome was covered to an average depth
of 31.88 x and 33.04 x in brain and blood, respectively. Methylation levels for
each site were determined using the BSseeker2 methylation call script. All the
analyses were done using sites covered by a minimum of 10 reads in both the
samples. Only genes found to be 1:1:1 orthologues with chicken and zebra finch
were used for methylation analysis. Gene bodies (annotated gene boundaries
excluding the 5’ 5% of genes) and TSS (300 bp upstream to 50 bp downstream of
the annotated starting position of each gene) for which we had information from at
least 50% of the potential methylation sites were used in the dN/dS and expression
correlation analysis. Average methylation levels for TSS and gene bodies were
calculated for each individual gene. The upper (highly methylated) and lower
(lowly methylated) quartiles were compared for differences in their evolutionary
rates (dN/dS) using a Mann-Whitney U-test. Correlations between the average
methylation level of a given region (TSS or gene body) per gene with expression
were performed using Spearman’s rank correlation. A sliding window approach
was used to infer differences in methylation levels between sweep and non-sweep
gene regions. Non-sweep genes located on scaffolds were not included in the
analysis, as these regions were not tested for sweeps. For this, genes were divided
into different regions: the gene body (described above), 10kb upstream and 10 kb
downstream of the gene body and the TSS region (described above). Each gene
body was subdivided into 40 bins, with the length of each bin therefore depending
on the length of the gene. We calculated the mean methylation levels of these 40
bins with an overlap between neighbouring bins of 250 bp. Upstream and down-
stream regions were divided into bins of exactly 250 bp with an overlap of 125 bp
between consecutive bins.

To compare TSS methylation between sweep and non-sweep genes, we
conducted a t-test with equal variance assumed. Only TSS regions with a minimum
of 10 covered sites were used for comparative analysis. To compare methylation
levels between sweep and non-sweep genes for other gene regions, we conducted
LMM analyses with methylation level as the dependent variable, sweep (yes or no)
as a fixed factor and bin as a random factor. A likelihood-ratio test was conducted
comparing the model with and without sweep as a fixed factor. All criteria were
met for conducting parametric analyses.
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Additional information

Accession Codes: The raw sequences of reference great tit have been deposited to

the NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra) under the
accession number SRS1185780. The final assembly (Pmajor1.04) has been deposited in
DDBJ/EMBL/GenBank under the accession JRXK00000000. The version described in
this paper is version JRXK01000000. The RNAseq reads for the eight tissues have
been deposited to the NCBI Sequence Read Archive under the accession numbers
GT_BoneMarrow SRS863935, GT_Brain SRS866013, GT_BreastFilet SRS866031,
GT_HigherIntestine SRS866033, GT_Liver SRS866035, GT_Kidney SRS866036,
GT_Lung SRS866044, GT_Testis SRS866048. The whole-genome bisulfite sequencing
reads for the two tissues have been deposited to the NCBI Sequence Read Archive under
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the accession numbers GT_Brain_BS SRS964344 and GT_Blood_BS SRS964345. The How to cite this article: Laine, V. N. ef al. Evolutionary signals of selection on
reads for the 29 re-sequenced birds have been deposited to the NCBI Sequence Read cognition from the great tit genome and methylome. Nat. Commun. 7:10474
Archive under the accession number SRP066678. doi: 10.1038/ncomms10474 (2016).
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