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ABSTRACT 

We present a way to automatically plan student-oriented learning contents in Moodle. 
Rather than offering the same contents for all students, we provide personalized 
contents according to the students’ background and learning objectives. Although 
curriculum personalization can be faced in several ways, we focus on Artificial 
Intelligence (AI) planning as a very useful formalism for mapping actions, i.e. learning 
contents, in terms of preconditions (precedence relationships) and causal effects to find 
plans, i.e. learning paths that best fit the needs of each student. A key feature is that the 
learning path is generated and shown in Moodle in a seamless way for both the teacher 
and student, respectively. We also include some experimental results to demonstrate the 
scalability and viability of our approach. 
 
Keywords: E-learning; personalization of learning paths; Moodle; intelligent planning; 
Artificial Intelligence.  

 

1. Introduction  

 E-learning is increasingly widespread in the educational world by taking advantage of 
information, computing and telecommunication technology, together with a wide range 
of electronic multimedia uses. The validity of online assessment methods has already 
been demonstrated in (Hewson, 2012). Furthermore, the application of multimedia tools 
have a great impact on education, training and, in general, on curricula considerations. 
These tools support (and facilitate) learning, and their usage within e-learning makes the 
learning process friendly to students, who interact with teachers in a better way than in 
traditional classroom teaching (Martín-Blas & Serrano, 2009). In fact, e-learning 
permits us to remove the barriers of time and space, which are characteristic of 
traditional teaching worldwide, because the access to a course is now possible by a 
simple connection to Internet. In addition, e-learning makes it possible better monitor 



the learning progress of the students. This is very valuable for students and teachers 
because they can realize students’ learning state in a very easy way. 
 
1.1. Learning Management Systems 

E-learning requires two kinds of activities: communication activities (e-mail, forums, 
conferences, on-line blogs, etc.), and exploration activities (mainly navigation of 
contents). These activities usually take place on a LMS (Learning Management 
System). A LMS is a platform for administrating, documenting and delivering e-
learning contents, which offers the enrolled students a vast number of courses with 
highly customizable capabilities. Many of these platforms, such as Moodle, Sakai, 
Docebo, Atutor, Ilias, .LRN, etc., are increasingly being used in schools and universities 
as a powerful support and improvement for teaching activities. Although LMSs are a 
fraction of educational ecosystems where different platforms (LMSs, e-portfolios, 
assessment systems, curricula management systems, etc.) live together and collectively 
support e-learning, the great risk here is not to exploit LMSs up to their full potential. 
On the contrary, LMSs are traditionally used simply as mere “repositories” of learning 
contents. For the best use of these contents, it is fundamental not to consider them in an 
isolated way (and, consequently, not to consider a LMS just as a simple database), but 
as part of a much larger system in which contents are aggregated for the construction of 
courses that can be fully personalized. Intuitively, the underlying idea is to build 
student-oriented learning paths by combining appropriate learning contents, where a 
learning path is a set of activities that a student needs to perform to achieve a certain 
level of knowledge.  
It is important to note that each student has his/her own characteristics (profile, learning 
style, prior background and learning objectives). These individual traits are very useful 
to provide each student the most adequate learning path to attain his/her learning 
outcomes (Garrido & Onaindia, 2013; Papanikolaoum, Grigoriadou, Magoulas, & 
Kornilakis,  2002). In other words, it is not enough to plan a general learning path for all 
students but to personalize as much as possible each learning path. Therefore, what is 
essential for a LMS is, first, to identify a specific learning path for each student, and 
second, to provide the maximum possible autonomy to him/her. Thus, learning paths 
should be student-oriented, and planned to meet the individual characteristics of each 
student.  
 
1.2. Motivation 

We motivate the necessity of personalization by using a simple example. Let us imagine 
that two students, Paul and Kate, enroll on an Italian course. The course consists of 
three sequential modules (corresponding to three different learning levels): “Elementary 
module”, “Intermediate module” and “Advanced module”; and it is possible for a 
student to take the entire course or just a part of it. Let us suppose that Paul has 
sufficient knowledge of Italian and only wants to improve his grammar. Kate, however, 
has already a good level of Italian but wants to speak more fluently. Certainly, it makes 



no sense to design the same learning path for both students. It is necessary to plan for 
Paul a path that only includes the “Intermediate module” and for Kate a path that 
includes the “Advanced module”. Starting from these considerations, it is necessary to 
find (and to put it into practice within a LMS) the best learning path so that each student 
achieves his/her learning objective, starting from his/her initial characteristics.  
Although the sequence of the Italian course’s activities may seem unique, we consider 
the portions of the course assigned to Paul and Kate as two different learning paths. 
More generally, we can consider a course where the sequence of activities may be (or 
not) unique, but this does not necessarily mean the sequence of learning activities is the 
same because different students can skip parts of the course and take different  learning 
paths according to their specific needs. For example, in a course composed by n 
activities, we can have learning paths of n, n-1, n-2… 1 activities, and in different 
orderings. And the personalization can be even more flexible. If two activities achieve 
the same learning outcome (e.g. by means of a multimedia document and by reading a 
paper, respectively), one student could take the former and another student the latter. In 
other words, it is possible to find learning paths that involve, for example, the same 
number of learning activities but in a different sequence (in line with the course’s 
constraints of causality) or different sets of activities, depending on the specific learning 
outcomes and students’ profiles/learning styles. 
Consequently, we need planning to select the best sequence of learning activities (and in 
the right order), from the entire set of activities defined by the teacher, to satisfy each 
student’s learning goals. It is necessary to plan the steps to reach one or more goals 
because the steps cannot be a simple, arbitrary sequence of learning activities but what 
the student needs to do/learn in an adequate causal ordering. Also, although a student 
can tick some parts that she/he already knows, we still need planning. Perhaps in a long 
sequence of activities the student has a background on some parts, but this does not 
mean that we do not need to plan the remaining part of the sequence. In other words, the 
planner needs to plan the remaining part of the path to satisfy all the learning goals, and 
this can be significantly different from one student to another. 
Additionally, a good planning activity should be accompanied by a good monitoring 
activity of the learning paths. In fact, though a student is following a certain learning 
path, that path could eventually need to change, because of discrepancies between 
expected and real results, updates on the learning objectives, etc., and a re-planning of 
the path, in part or whole, may be necessary. 
 
1.3. Related work 

The need for systems that automatically build student-oriented learning paths by 
combining appropriate learning contents has become more and more intense in the last 
years (Baylari & Montazer, 2009; Chen, 2008; Garrido & Onaindia, 2013; Kontopoulos, 
Vrakas, Kokkoras, Bassiliades, & Vlahavas, 2008; Papanikolaoum, Grigoriadou, 
Magoulas, & Kornilakis, 2002). Generally speaking, literature abounds with works to 
exploit techniques on nearly all aspects of e-learning.  



There are a variety of studies that face the problem of curriculum personalization in 
different ways, without focusing on a specific LMS. For example, (Dorça, Lima, 
Fernandes, & Lopes, 2013) show three different strategies to automatically detect and 
exactly adjust students’ learning styles, by taking into account students’ performance. In 
another approach, (Thyagharajan & Nayak, 2007) suggest to address the automatic 
selection and integration of adequate learning materials for a student by using Web 
services based on student’s features as initial knowledge, objectives, preferences, etc. 
More generally, (Thyagharajan & Anbumani, 2009) propose a model to help teachers 
build an interactive courseware, without being experts in multimedia programming and 
Web technologies, to get the adaptive presentation of multimedia elements through 
streaming to the students by considering their specific needs.  
(Laurillard, Charlton, Craft, Dimakopoulos, Ljubojevic, Magoulas, Masterman, Pujadas, 
Whitley, & Whittlestone, 2013) highlight that the use of digital technology in teaching 
is not always optimized and suggest the Learning Design Support Environment project 
as a way to enable the teachers to develop and test their learning ideas in terms of 
effective learning  design. (Chang & Ke, 2013; Chang, Hsieh, & Li, 2010; Tan, Shen, & 
Wang, 2012) apply a genetic algorithm approach to customize and personalize course 
generation. The results of these works are promising but their application to standard 
LMSs can be difficult. 
From a perspective based on the design, analysis and scoring of tests, the 
personalization of e-learning systems has been approached by using the Item Response 
Theory (PEL-IRT) which, by considering the difficulty of the learning materials to be 
provided and the ability of the students, finds personalized learning paths (Chen, Lee, & 
Chen, 2005). Another work based on the students’ results of pre-tests, has led to a 
genetic-based customized e-learning system which conducts to a personalized 
curriculum sequencing (Chen, 2008). Also, a real-time assessment of students’ 
productivity and interest in learning by using a Recommender System has been 
considered in (Kaklauskas et al., 2013). Other authors combine a personalized multi-
agent e-learning system based on item response theory with artificial neural networks 
and soft computing methods (Baylari & Montazer, 2009; Brusilovsky & Vassileva, 
2003; Idris, Yusof, & Saad, 2009).  
Like in our case, several works use AI methods in order to identify student-oriented 
learning contents. In particular, the prediction of the students’ behavior to help in the 
decision-making teaching procedures in open and distance education has been 
considered by using Bayesian networks (Xenos, 2003). Such a work takes into 
consideration general students’ behavior without focusing on specific learning contents. 
On the other hand, similarly to our idea, intelligent planning has been used for learning 
paths’ personalization (Kontopoulos, Vrakas, Kokkoras, Bassiliades, & Vlahavas, 
2008). That work focuses on creating a new planning ontology from the e-learning 
information and use standard planners to solve the problem. On the contrary, we do not 
create any new ontology, but we perform a knowledge engineering-based mapping from 
Moodle (Module Object-Oriented Dynamic Learning Environment) to standard PDDL 
(Planning Domain Definition Language) to make our compilation ready for any of the 
PDDL planners that are publicly available. 



Moodle has been considered by previous works such as (Romero, Ventura, & García, 
2008), which used data mining techniques in order to improve the course management 
(i.e. statistics, clustering, classification, visualization, etc.), without focusing on a real-
time planning activity. Additionally, some other papers such as (Martín-Blas & Serrano, 
2009) just focus on Moodle’s characteristics and consider this platform as a valid tool in 
order to perform learning/teaching activities. That kind of work is oriented to a specific 
course but does not focus on the possibility of a learning path’s planning activity in real-
time. 
In the line proposed by (Garrido, Fernández, Morales, Onaindía, Borrajo, & Castillo, 
2013), there are tools that use IMS structures such as SCORM or Learning Design in 
order to get the personalization. But this means to make important changes from the 
Moodle’s point of view. On the contrary, the idea that underpins our paper is to 
integrate the intelligent planning techniques within Moodle by making minimal changes 
to create a real time learning paths’ customization based on the specific students’ 
characteristics in relation with determined learning contents.  
 
1.4. Objectives of the paper 

This paper builds on the general work of (Garrido & Onaindia, 2013) and extends the 
results presented in (Caputi & Garrido, 2013) to offer now a thorough design, 
development, implementation and testing of intelligent personalization in Moodle. 
Particularly, in this paper the personalization of an e-learning path is faced from the 
point of view of AI planning through the automated compilation of e-learning models. 
We have fully adapted the knowledge engineering planning mapping introduced in 
(Garrido & Onaindia, 2013) to be directly used in Moodle, while trying to minimize the 
modifications in Moodle. It is important to highlight that our general idea of applying 
planning to e-learning personalization does not depend on any specific LMS. But when 
implementing it on top of a particular LMS, some specific technical issues are necessary 
to face and solve, which means that eventually there will be some LMS dependent 
changes. Moodle is a platform that includes a constructivist and social constructionist 
approach to education, emphasizing that students (and not just teachers) contribute to 
the educational experience. Consequently, Moodle facilitates the interaction among 
students in real time by permitting the exchange of views and sharing of knowledge and 
difficulties while taking the courses. 
We detail here an automated way to bridge the gap between the model of (e-learning) 
course implemented in Moodle and the planning model for supporting contents 
personalization, which means the generation of student-oriented learning paths. To our 
knowledge, there are three features that show essential to derive the greatest possible 
learning benefits: i) a transparent way to translate from the Moodle’s insights to the 
planning ones, and vice versa; ii) a seamless procedure to run an intelligent planner to 
personalize as much as possible each learning path, depending on each particular 
student; and iii) a simple way to monitor the progress of the students in their learning 
paths and the possibility to re-plan to adapt them to new scenarios. The thorough 



explanation of these features is the main goal of this paper, in which we also provide 
some experimental results to evaluate the scalability and feasibility of our work. 
 
 
2. Planning in the context of e-learning 

Most of human activities involve some kind of planning of tasks to reach an objective. 
According to Cambridge dictionary, planning is “the activity of thinking about and 
deciding what you are going to do or how you are going to do something”. Therefore, 
intuitively, planning is about taking decisions on what is the most adequate action to be 
done in every moment. From a more technical point of view, intelligent planning 
involves the representation of actions and world models, reasoning about the effects of 
actions, and techniques for efficiently searching the space of possible plans. In other 
words, given a domain of possible actions, intelligent planning selects a subset of them 
(e.g. a plan where actions are ordered according to their causal-effect relationships) that, 
after their execution, allow us to reach an objective state starting from an initial state 
(Ghallab, Nau, & Traverso, 2004). 
 
2.1. PDDL, a Planning Domain Definition Language 

Planning technology has witnessed incredible advances in the last decades. State-of-the-
art planning algorithms deal with problems with hundreds (and even thousands) of 
actions in a few minutes. In order to unify the definition of planning problems and 
promote an interchangeable use of planners, a standard Planning Domain Definition 
Language, PDDL, was agreed by the planning community (Ghallab, Nau, & Traverso, 
2004). 
The implicit formalism behind PDDL is the separation of the domain data, to describe a 
family of similar problems and enhance reutilization, from the problem data, thus 
requiring two plain text files. First, the domain file contains all the actions that could be 
applied. The semantics of each action is described in terms of: i) a name that, grounded 
with the values of the optional parameters, acts as a unique identifier; ii) an optional 
duration to model problems where actions have different duration -otherwise all 
durations are considered unitary; iii) a set of preconditions that must hold before the 
action execution, i.e. causal precedents; and iv) a set of effects that are asserted once the 
action is executed. Second, the problem file contains the initial state of the world, the 
goals that need to be achieved by using the actions of the domain and, optionally, a 
metric to be optimized such as makespan, number of actions, cost, etc. A planner takes 
these two files and returns a plan, as a set of ordered actions, which allows us to reach 
the objectives starting from the initial state in an optimal or suboptimal way. 
 
2.2. Planning vs. e-learning 

Metaphorically speaking, the personalization of e-learning paths is analogous to the 
execution of a planning process. The main elements of e-learning are: i) the background 
and student’s preferences, ii) the learning outcomes to achieve, iii) the learning contents 
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3. Personalization of learning paths and application to Moodle platform 

The personalization of learning paths involves the development of different activities, as 
explained in the following paragraph. 
 
3.1. General overview 

As shown in Fig. 3, once chosen the LMS platform on which to focus (Moodle in our 
case), the personalization of learning paths requires developing a number of activities. 
First of all we need to carry out a mapping of the different modules present in the 
platform. This activity includes the understanding of the relationships between the 
different modules and the study of the way in which each student can enter the platform 
information about his/her background and his/her learning objectives. The next step 
consists in building a course by using the most appropriate resources which Moodle 
offers. Once structured the course, it is necessary that students who take it fill into the 
platform information about their own initial states and learning goals. At this point we 
can proceed with the translation of the relationships between the course’s activities into 
actions of a PDDL domain, while the information about students’ initial states and 
learning goals has to be translated into a PDDL problem. PDDL domain and problem 
can be used by any standard planner, in order to generate a plan, or a set of learning 
paths, one for each student enrolled in the course. By using the tools available in the 
platform it is necessary to ensure that each student only visualizes and takes the portion 
of the course present in his/her own learning path. Finally, it is required to develop a 
monitoring activity that takes into account all the changes that can occur in the 
performance of each learning path and the possible variations of the students’ goals, in 
order to eventually re-plan the paths. 
 



 

Fig. 3. Activities required for personalized learning paths. 

3.2. Moodle’s description 

We have decided to use Moodle (http://www.moodle.org/), a Learning Management 
System implemented as a free, open-source PHP Web Application, to offer and conduct 
online learning contents (Fig. 4). There are many reasons to use Moodle. For example, 
it is a platform easy to be used (Moodle is very “user friendly” although, like in all 
computing platforms, it is required some prior IT knowledge) and, if necessary, it 
results easy to modify. Moodle works on all systems that support PHP, such as 
Windows, Linux and MacOS and can use databases in different formats such as Oracle, 
PostgreSQL and MySQL. Moodle is used all over the world in different universities, 
schools and companies, with excellent credibility, increased by the fact that there is a 
forum (https://moodle.org/forums/) that connects users and developers all around the 
world to share resources and ideas, support new users, etc.  
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learning goals of each student. So, it is important the consistency between the 
nomenclatures used in the definition of L0 and in the rest of the course. The 
dependencies between lessons are represented as continuous lines while the suggestions 
as broken lines. Fig. 8 also shows the duration of each lesson. In particular, we have to 
assign a minimum execution time for each lesson, so we suppose that fictitious lessons 
have duration of 1 minute (null times are not allowed in Moodle). 
Therefore, the result that we want to achieve in our system is that once a teacher defines 
a course each student (by simply completing an initial questionnaire) can already get a 
learning plan suited to his/her specific needs. 

 

 
 

Fig. 8. Structure of “Elementary module”. Durations in minutes between brackets, “activity 
links” as broken lines and “dependencies” as continuous lines. 

 
3.5. Compilation of a PDDL document from the database of Moodle 

When designing a personalized learning path we consider both the information about 
the course and each student who takes it. Course’s information has to be translated into 
PDDL actions, in order to define a PDDL domain. On the other hand, a PDDL problem 
is generated from the initial states and goals of each student. The PDDL domain does 
not depend on a specific PDDL problem, but describes a family of similar problems. 
In order to generate a correct learning path for each student, it is necessary the proper 
structuring of the course in terms of “dependency” links and “activity links” between 
lessons. In particular, it is necessary to establish these relationships so as to have the 
right analogies with the PDDL domain to be generated. 
As already mentioned, a course consists of a set of real lessons Lr=Lr1,…, Lrn, a set of 
fictitious lessons Lf=Lf1,…, Lfn and an initial questionnaire (that we named L0), that is 
a particular fictitious lesson. The constraints to be respected when structuring a course 
are the following:  

 L0 has not “dependency” constraints or “activity links” to any lesson; 



 Each Lri can depend on a real or fictitious lesson. If Lri allows us to reach a 
certain learning state, it is necessary to set in the Lri’s configuration page an 
“activity link” that leads to the fictitious lesson representative that state; 

 Each Lfj has only a “dependency” on L0 and does not have “activity links”. 

The features listed above become preconditions and effects for actions in the PDDL 
domain, as shown in Table 2.  
 
Table 2 
Mapping: from Moodle’s lessons to PDDL’s actions for a given student ?s 
Moodle lesson PDDL action 

Kind  dependency 
activity 
link 

preconditions effects 

L0 - - not (L0_done ?s) (L0_done ?s) 

Lri 

(allows 
to reach 
a Lfj) 

 
L0 
 
 
 
(Lrh, h≠i 
or 
Lfk k≠j) 

 
to 
Lfj 

 

not (Lri _done ?s) 
 
(L0_done ?s) 
 
 
((Lrh _done ?s) 
or 
(Lfk _done ?s)) 

(Lri _done ?s) 
and 
(Lfj _done ?s) 
 

(does 
not 
allow to 
reach a 
Lfj) 

L0 
 
 
 
(Lrh, h≠i 
or 
Lfk k≠j) 

- 

not (Lri _done ?s) 
 
(L0_done ?s) 
 
((Lrh _done ?s) 
or 
(Lfk _done ?s)) 

(Lri _done ?s) 
 

Lfj L0 - 
not (Lfj _done ?s) 
 
(L0_done ?s) 

(Lfj _done ?s) 
 

 
 
In order to clarify these concepts, Fig. 9 shows a real action and a fictitious action in the 
PDDL domain (which includes parameters, durations, preconditions and effects) of the 
“Elementary module” structured in Fig. 8.   
After the domain is generated, we need to compile a PDDL problem file with the 
information about the students. In particular, the choices made by the students when 
executing L0 will be the initial state and goals of the PDDL problem.  Let us imagine 
that four new students, Mark, Laura, David and Polly just took the “Elementary 
module” and the results arising from the L0’s execution are as shown in Table 3. For 
instance, Mark has a “very bad” initial knowledge and wants to achieve the “almost 
sufficient” state. L0’s results can be translated into the initial states and goals of the 
PDDL problem, as shown in Fig. 10.   
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FFig. 12. Howw to associatee activities too students in the “Elemenntary modulee” in Moodle
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invoking again the planner whenever it is deemed necessary, is indispensable to 
eventually (partially or completely) re-plan students’ learning paths. Every time we 
invoke the planner, the lessons already carried out by the student and any changes in 
his/her learning goals are considered respectively as part of the initial state and goals in 
a new PDDL problem. This problem, together with the PDDL domain (which can also 
change if the teacher modifies the course structure), is considered by the planner to 
generate a new student-oriented plan, which is shown to the student. 
 
 
5. Experiments 

We have first decided to perform a quantitative evaluation to measure the validity and 
scalability of the system by creating fictitious courses and students. Consequently, we 
carried out tests on three courses of different sizes: up to 9, 13 and 40 lessons named, 
“Small”, “Medium” and “Large”, respectively. We also created 500 fictitious students 
to whom we randomly assigned their initial states and learning objectives (in terms of 
real and fictitious lessons), depending on the specific course in question: in particular, 
up to 6 goals for the “Small” course, up to 10 goals for the “Medium” course and up to 
12 goals for the “Big” course. After the automated generation of the PDDL 
domains+problems, we used two different standard planners to assess the viability of 
the solving process by current planning technology. In particular, we use LPG 
(http://zeus.ing.unibs.it/lpg/) and SGPlan (http://www.sgplan.com/) because they have 
traditionally shown very effective in the International Planning Competitions (IPCs, 
http://ipc.icaps-conference.org/). We run all our experiments on an Intel Core i5 CPU 
(dual core 2.27 GHz processor) with 4 GB of RAM. All experiments were censored 
after 900 seconds. 
Fig. 14 and Table 4 show, respectively, the total number of solved plans and the 
percentage of solved problems by the two planners for the three courses. As can be 
seen, SGPlan is more effective than LPG in solving problems. Specifically, LPG has 
some limitations when dealing with courses with more than 100-150 students, which is 
indeed a promising number. Furthermore, SGPlan shows a very scalable behavior and 
has little problems in finding plans for all students in the three courses. This 
demonstrates that current planning technology is sufficient to solve the personalization 
planning problems we create in our approach. 
On the other hand, Fig. 15 shows the average time to solve plans depending on the total 
number of students. The plots show that LPG is very fast in the problems it manages to 
solve; LPG takes less than 5 seconds in finding plans for the “Small” and “Medium” 
courses, even for up to 500 students. SGPlan takes more time, but it also solves more 
problems. Big courses with 500 students are solved by SGPlan in less than 15 minutes, 
which is an excellent result. Clearly, personalization of learning paths does not usually 
need to involve such a high number of students because independent paths can be 
generated for much smaller groups of students, which means having many different 
problems but with no more than 20-50 students each. This means our experiments 



significantly exceed the usual requirements and, therefore, we prove that planning 
technology can successfully cope with very demanding courses. 
 

 

Fig. 14. Number of solved plans by LPG and SGPlan. 

 
Table 4 
Percentage of problems solved by LPG and SGPlan for the three courses 

Courses # generated problems LPG SGPlan 

Small  176 41.48 % 98.85 % 
Medium  396 34.08 % 98.99 % 
Big 539 19.11 % 98.32 % 
Total 1111 27.98 % 98.65 % 

 

Our second experiment focuses on a qualitative evaluation for planning e-learning 
contents. We have performed such an experimental evaluation by means of opinion 
questionnaires answered by a group of 10 teachers and 10 students to assess the 
consistency of the planned contents with respect to the course objectives, the quality of 
learning paths, their size/duration and their adequacy to the particular profiles. We 
structured a questionnaire for a qualitative evaluation of an AI course, as shown in 
Table 5. In particular, the questionnaire was divided into 3 blocks concerning, 
respectively, the course contents and structure; the teachers’ opinion on the learning 
contents, i.e. the elements used to define the course; and the students’ opinion on the 
course. Each question had 5 possible answers: Very little, Little, Neutral, Much and 
Very much. 
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Fig. 15. Average time (in seconds) to find plans by using LPG and SGPlan. 

 
Table 5 
Questionnaire for a qualitative evaluation of an AI course 

Block Questions 
1. Course contents 
and structure 

Q1. Is the sequence of contents consistent with the objectives of the 
course? 
Q2. Is the size (number of learning contents) of the course appropriate? 
Q3. Is the duration of the course appropriate? 
Q4. Do you think the learning path and contents are adapted to the 
student's profile? 

2. Teachers’ 
opinion on the 
learning contents 

Q1. How much experience do you need to deal with these learning 
contents? 
Q2. How much planning background is necessary? 
Q3. Do you consider this approach useful? 
Q4. Would you recommend this approach to other lecturers? 

3. Students’ 
opinion on the 
entire course 

Q1. Do you find e-learning as a positive and motivating experience versus 
traditional teaching? 
Q2. To which extent did the course fit your needs and constraints? 
Q3. Would you suggest some changes in the course structure? 
Q4. Would you recommend this approach to other students? 

 

Fig. 16 shows the summary results for each block of questions. It is possible to observe 
that teachers very much agree with the paths in terms of their form, size and adaptation 
to the students. However, some teachers recognize that it is hard to evaluate how 
learning paths fit to individual profiles. In short, teachers appreciate that kind of 
personalization, but in some cases they cannot reasonably answer why. On the other 
side, students find the experience highly positive because they feel the learning path is 
very student-oriented, and not the same path for everybody. It also helps learning in a 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

ti
m
e
 (
se
co
n
d
s)

students

LPG

Small Medium Big

0

100

200

300

400

500

600

700

800

900

1

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

ti
m
e
 (
se
co
n
d
s)

students

SGPlan

Small Medium Big



more
even
and b

 

As a
stude
some
corre
freely
partic
to ch
huma
work
deals
 

e personaliz
ntually, the f
both teacher

Fig

a summary, 
ents to be 
ewhat diffic
ect definitio
y available
cipate in th
hange their 
an planners
k, we are cu
s with a larg

zed way, w
final scores
rs and stude

g. 16. Percen

it is impor
fully concl
cult as it re
on of compl
e. Addition
his type of e

inertia in t
 rather than
urrently des
ger number 

which subse
. All in all, 
ents believe

ntages of give

rtant to hig
usive. How
quires the s
lete courses

nally, we h
entirely stud
their way o

n using auto
signing and
of teachers 

quently cou
that conten

e this approa

en answers fo

 

ghlight that 
wever, testin
strong colla
s in Moodle
have found 
dent-oriente
of teaching:
omated intel
d implemen

and studen

uld improve
nts personali
ach is viable

for our qualit

these tests
ng our app
aboration of
e which, un

that some
ed planning 
: they prefe
lligent plann
nting a Moo
nts. 

e the learni
ization is hi
e and very p

 

ative evaluat

require mo
proach to a 
f teachers, 
nfortunately
e teachers 

approach b
er using the
ners. As par
odle course 

ing process
ighly apprec
promising. 

tion 

ore teacher
larger exte

students an
y, are not al
are relucta

because it m
eir experien
rt of our ong

e on Physic

s and, 
ciated 

s and 
ent is 
nd the 
lways 
ant to 
means 
nce as 
going 
s that 



6. Conclusions  
 
In this paper we have faced the learning paths’ customization from an AI planning 
perspective to a LMS. The core about using planning technology by compiling a PDDL 
model based on the course definition (activities and their relationships) and students' 
features (profiles and background) is independent from the LMS used, and it is 
applicable to any LMS. In our work we adapt this idea to Moodle. Moodle is a LMS 
that allows us to manage and to deliver courses’ material in a simple and functional 
way. 
In order to get the maximum benefit from Moodle, we provide the design and a way to 
monitor student-oriented learning paths (according to students’ initial background and 
learning goals) to offer the best contents to the adequate person. In particular, by using a 
standard planner we generate a plan, i.e. a learning path for each student, and we 
monitor the plan’s execution by simply invoking the planner as often as necessary.  
We had to solve some implementation limitations in Moodle because this platform, as 
well as other LMSs, is not originally designed to provide students with personalized 
contents. In particular, we have faced problems concerning the impossibility of creating 
complex relationships between courses’ activities and the scarcity of information about 
the students’ profiles (background and learning goals) insertable into the platform. 
Another limitation that we had to solve concerns the impossibility to create separate 
course’s views only related to the content of specific learning paths. Consequently, 
there are some technical issues that are specific and, in some sense, fully Moodle 
dependent, such as the way the learning activities and "activity links" (i.e. the 
precedence relationships) are modeled, or the access to the particular database schemata 
of Moodle, which is different from other LMS. 
In order to be able to adapt the planning activity to the tools that Moodle provides we 
have developed a number of tasks that contribute with: 
 
1) A knowledge engineering mapping of lessons in Moodle to actions of a PDDL 
domain. Also, we have created some dummy lessons to model students’ profiles (in 
terms of initial background and learning goals) to be translated into initial states and 
goals of a PDDL problem. 
 
2) A PDDL standard model to be used by a PDDL-compliant planner. This permits us 
to easily generate customized learning paths in Moodle.  
 
3) A seamless integration to show only the adequate contents to each student in Moodle. 
 
4) A monitoring activity, indispensable to eventually re-plan students’ learning paths. 
 
5) Proof of the scalability of the system. Our tests have shown that for a reasonable time 
it is possible to find plans that include learning paths even for a large number of 
students and for a large number of lessons.  
 



As part of our ongoing work, we are working on the learning paths’ customization in 
Moodle by implementing additional real courses to be taken by a large number of 
students. The main advantage of our system relies on its flexible design, so that it can be 
adapted in a straightforward way to any type of educational content and, therefore, be 
used by a wide variety of users. All in all, the idea of generating a PDDL model from e-
learning aspects, using planning and giving feedback to the LMS to facilitate individual 
learning paths to the students is generic, and it can be implemented on top of any LMS 
by making some technical adaptation depending on the specific LMS’s features. 
Finally, there are two lines open for future work. First, although the main objective of 
our current approach is to manage the different curricula by simply using a LMS, we 
want to investigate the possibility to extend our idea to be included, for example, into a 
curricula management system, which integrates other tools to support e-learning. 
Second, we want to analyze the possibility to allocate tasks in time if the presence of 
some practical lessons becomes necessary (teachers giving face-to-face lessons in 
classrooms, exams in real labs, or any type of task that requires the use of  shared and 
limited resources). This possibility can be easily extended to the planning approach by 
including intelligent techniques on scheduling reasoning, though it would require more 
work for the contextualization in Moodle. 
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