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Abstract 

 
A domain-specific language (DSL) aims to support software development by offering abstractions 
to a particular domain. It is expected that DSLs improve the maintainability of artifacts otherwise 
produced with general-purpose languages. However, the maintainability of the DSL artifacts and, 
hence, their adoption in mainstream development, is largely dependent on the usability of the 
language itself. Unfortunately, it is often hard to identify their usability strengths and weaknesses 
early, as there is no guidance on how to objectively reveal them. Usability is a multi-faceted 
quality characteristic, which is challenging to quantify beforehand by DSL stakeholders. There is 
even less support on how to quantitatively evaluate the usability of DSLs used in maintenance 
tasks. In this context, this paper reports a study to compare the usability of textual DSLs under the 
perspective of software maintenance. A usability measurement framework was developed based 
on the Cognitive Dimensions of Notations. The framework was evaluated both qualitatively and 
quantitatively using two DSLs in the context of two evolving object-oriented systems. The results 
suggested that the proposed metrics were useful: (1) to early identify DSL usability limitations, 
(2) to reveal specific DSL features favoring maintenance tasks, and (3) to successfully analyze 
eight critical DSL usability dimensions. 
Keywords: DSL; architectural degradation; code anomalies; usability; CDN framework; metrics 
 

1. INTRODUCTION 

A domain-specific language (DSL) aims to facilitate construction of software artifacts through 
specialized abstractions and notations [18]. DSLs are increasingly being used in many software 
engineering activities, including designing and checking architectural rules (e.g. [4, 9]). 
Nevertheless, the difficulties of using DSLs have become more apparent when exposed to 
software maintenance circumstances [10, 25]. Several studies [10, 18, 19, 25, 39] concluded that 
these difficulties might adversely lead to higher maintenance effort. An important factor that 
contributes to increased maintenance effort is the low usability of such DSLs [38]. The usability 
of a DSL artifact (e.g., a specification built using the DSL) is the quality that makes it easy for 
users to understand, learn, and interact with it [18, 38]. 

Recently, we observed some studies concerned with analyzing the usability of DSLs from 
several point of views [10, 12, 19]. There is, however, a lack of studies which rely on quantitative 
analysis to complement the qualitative analysis of the DSLs usability. The creation of a metric 
suite to support the quantitative analysis of DSLs would allow an objective comparison between 
DSLs [38, 40, 41], therefore complementing the qualitative analysis approaches found in the 
literature [22, 30, 31, 32]. The results would be more reliable and provide extra information at 
early design stages of a DSL than approaches without any quantitative analysis. Moreover, such a 
metric suite would support the early evaluation of DSL usability in order to help choose the most 
appropriate DSL given the nature of the software maintenance tasks. 

Concerned with the aforementioned issues, we report a study conducted to compare the 
usability of textual DSLs1 for detecting architectural problems [4, 9, 14, 37]. In particular, we 
defined a usability metrics suite that was developed based on the Cognitive Dimensions of 
Notations (CDN) framework [20]. We instantiated these cognitive dimensions for evaluating 
DSLs and assessed them by a qualitative process. These instantiations of the CDN capture 
usability aspects of DSL artifacts relevant to software maintenance tasks. Data were collected 
from two DSLs [4, 9] for detecting architectural problems. The two chosen DSLs explicitly 
embed constructs to define architectural design rules so that they can be checked in the source 
                                                
1 From hereafter, we use the term “DSLs” to refer only to textual DSLs. 
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code. In addition, both DSLs were designed for different categories of stakeholders, including 
software architects, programmers and code reviewers.  

The remainder of this paper is organized as follows: Section 2 gives some background 
information needed to better understand the scope of this paper. Section 3 describes the steps 
required to create the metrics. Section 4 describes the design of a qualitative study aimed at 
assessing the proposed instantiation of the cognitive dimensions. Section 5 describes the metrics 
suite developed to analyze the usability of DSLs. Section 6 describes the design of an exploratory 
study aimed at comparing the two textual DSLs and assessing the usefulness of the proposed 
metrics. The results of the study are analyzed and discussed in Section 7. Section 8 describes the 
threats to the validity of our study. Section 9 discusses related work. Finally, Section 10 concludes 
the work and suggests future developments. 

2. BACKGROUND 

A Domain-Specific Language (DSL) is a type of programming language or specification language 
in software development dedicated to a particular problem or solution domain [10, 12, 13]. A DSL 
facilitates software development through appropriate abstractions and notations. Several studies 
[10, 11, 12, 15] identify various benefits of using DSLs in the area of software engineering, 
including the provision of an idiom at the level of abstraction of the problem domain. These 
studies also show how the expressive power of DSLs is significant when they are properly 
designed for one specific domain.  

In our study, we selected the domain of architectural rules. In this domain, DSLs are used by 
software architects, programmers and code reviewers to specify and check the adherence of the 
source code with respect to architectural rules. It is particularly challenging to design a usable 
DSL in this domain for several reasons [2, 5, 26], including: (1) it needs to offer a concise set of 
abstractions in order to enable architects to express the high-level design rules, (2) it needs to be 
concise and expressive enough in order to support programmers and code reviewers in 
understanding which program elements are affected by the architectural rules, and (3) it needs to 
be expressive enough to allow users to tailor the architecture rules as they implement, maintain 
and evolve modules of a program.  

Thus, the next subsection briefly describes the framework used for developing the usability 
metrics suite. This framework characterizes important usability properties to be assessed in the 
design of languages, such as DSLs (Section 2.1).  
 
2.1. CDN Framework 

The Cognitive Dimensions of Notations (CDN) framework is “a set of discussion tools for use by 
designers and people evaluating designs” [20]. We chose this framework because we found that it 
is a widely used technique to support usability evaluation in the literature [6, 21, 24]. This 
framework provides cognitive dimensions2 of general use in different domains, as shown in Table 
I. These CDs are conceptual tools defined to help the designer or evaluator to reason about the 
system or language being assessed [6, 20]. In addition, these CDs allow “to improve the exchange 
of experience, opinions, criticism and suggestions” [6]. This framework was originally proposed 
to evaluate notational systems for designing artifacts, aiming “to improve the quality of 
discussion” [20, p.107]. These CDs cover a wide range of issues and, consequently, their 
definitions may lead to different interpretations. Previous work has employed this framework to 
qualitatively evaluate the design of DSLs in different contexts [6, 21]. 

However, to the best of our knowledge, no previous study has defined a CDN-based metrics 
suite to support a quantitative evaluation of DSLs. We selected a subset of the CDs to support the 
                                                
2 From hereafter, we use the term “CDs” to refer cognitive dimensions 
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evaluation of DSLs in evolving systems (Section 3). According to the literature, DSLs comprise 
four important aspects: expressiveness, conciseness, integration, and performance [12]. However, 
only the first two characteristics are considered in this paper, since they are important in terms of 
the language itself. In other words, we aim to evaluate the specifications that the user-developer 
needs to understand and/or produce and not the interaction of the language with some tool. These 
two characteristics are defined as: (1) DSL Expressiveness, which refers to the extent a domain-
specific language allows to directly represent the elements of a domain, and (2) DSL 
Conciseness, which refers to the economy of terms without harming the artifact comprehension. 
 

Table I. Cognitive Dimensions Originally Defined by CDN [20, p.116-8] 

Cognitive Dimension Description 
Viscosity  Resistance to change 
Visibility  Ability to view entities easily 
Premature Commitment  Constraints on the order of doing things 
Hidden Dependencies Relevant relations between entities are not visible 
Role-Expressiveness  The purpose of an entity is readily inferred 
Error-Proneness  The notation invites mistakes and the system gives little 

protection 
Abstraction  Types and availability of abstraction mechanisms 
Secondary Notation  Extra information in means other than formal syntax 
Closeness of Mapping  Closeness of representation to domain 
Consistency  Similar semantics are expressed in similar syntactic forms 
Diffuseness  Verbosity of language 
Hard Mental Operations  High demand on cognitive resources 
Provisionality  Degree of commitment to actions or marks 
Progressive Evaluation Work-to-date can be checked at any time 
 
2.2. DSL for detecting architectural problems  

Nowadays there are currently hundreds of DSLs, in a wide range of domains in the context of 
software systems, engineering, and telecommunications, among others [10]. In particular, there 
are several DSLs in software engineering particularly intended to support developers in specifying 
design rules at different levels of abstraction (e.g. [4, 8, 9, 34, 35, 36]). For instance, some DSLs 
are intended to support programmers in defining low-level design rules that are relevant at the 
implementation level (e.g. [8, 36]). As mentioned in Section 2, we chose to apply our study to the 
domain of architecture-level design rules. In addition, several studies have reported that existing 
languages for defining design rules are not expressive and concise enough, in particular, when 
rule changes need to be made through software maintenance and evolution [8, 12, 37]. Moreover, 
DSLs for defining architectural rules have been recently proposed [4, 9, 14, 37]. Nevertheless, 
these DSLs have not yet been explicitly assessed with regard to usability. We have not found 
many DSLs that provide support for a wide range of architectural design rules, in particular for 
the detection of architectural anomalies. DSLs, such as TamDera or Detex, were created to fill this 
gap [4, 14]. Moreover, according to Humm and Engelschall [12], most of the existing DSLs for 
detecting architectural anomalies have low conciseness in general, because they follow Java-like 
or SQL-like syntax [12]. Examples like F#, Ruby, Groovy, and Scala fall in this category [12]. In 
this context, we are interested in evaluating the usability of DSLs in this domain, from the point of 
view of software architects, programmers and code reviewers when using DSL specifications. We 
focus on the expressiveness and conciseness attributes of the DSLs as criteria that define a usable 
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DSL for detecting architectural anomalies. The selected DSLs for our study are described in 
Section 6.2. 

Nowadays, several studies point out that maintainability is one of the main cost factors in 
software development projects [27, 28, 29]. This factor made software architects, programmers 
and code reviewers be concerned with architectural degradation and the problems it would bring 
to software maintainability. Many studies [2, 5, 7] confirmed how software architecture would 
eventually degrade with several undisciplined changes throughout software maintenance and 
evolution. These studies have been conducted to investigate the relationship between the 
architectural degradation, and the so-called architectural anomalies (drift and erosion anomalies).  

Architectural erosion is defined as “the process of introducing a decision into a system that 
violates dependency rules of elements defined in the system's intended architecture” [7]; a simple 
example is an unintended dependency established in a program between code elements realizing 
two architectural components. In other words, the dependencies in the implemented architecture 
diverge from the dependencies defined in the intended architecture. Architectural drift is “the 
introduction of design decisions into a system that were not included in the intended architecture, 
albeit they do not violate any of the prescribed dependency rules” [7]. Typical examples of drift 
anomalies are related to architecture rules realizing design principles, such as narrow component 
interface, low-coupled components or single responsibility assigned to each component [23]. 

It is prohibitive to check all anti-erosion and anti-drift rules in an ad hoc fashion as systems are 
developed and maintained. In this context, software architects need to specify strategies for 
detecting both types of architectural anomalies, in order to support the software architecture 
maintenance. Programmers and code reviewers also need to be informed when their 
implementation changes violate one or more anti-drift and anti-erosion rules. A common strategy 
relies on tools (e.g. [4, 9]) that use a unified DSL, which helps them specify software design rules. 
Anti-erosion rules in these DSLs define dependency constraints between code elements realizing 
architectural elements. Anti-drift rules define constraints related to attributes of code elements 
realizing architectural elements. They are based on the use of metrics and thresholds to identify 
the violation of design attributes. For instance, they rely on coupling metrics to identify the 
coupling of classes realizing a particular architectural element. Section 3 will further discuss the 
key characteristics of a DSL intended to support the specification and checking of architectural 
anomalies in a program. 

3. CDN INSTANTIATION FOR EVALUATING DSL USABILITY  

As mentioned in Section 2.1, the CDN framework provides general definitions for its CDs and, 
therefore, they need to be refined to particular contexts. The interpretation of the CDs might lead 
to ambiguous and overlapping definitions [6]. For example, suppose a situation where the user 
wants to write an artifact with the DSL in a constant and similar manner. This type of situation 
can be interpreted as a case of either Consistency or Viscosity. This issue is important to keep in 
mind because it can bring additional challenges for those who instantiate usability evaluation 
frameworks, such as the one proposed here. Therefore, we noticed that we should clearly define 
the instantiation of the CDs, in our case to capture usability aspects of DSL artifacts relevant to 
software maintenance tasks. In addition, someone can reuse (or discard) our definitions if the 
instantiation satisfies (or not) the expectations about each CD in their context. 

To support this goal, we noticed the importance of first creating a metamodel that clearly 
defines all the characteristics of the DSLs for architectural degradation detection (Section 3.1). 
The metamodel supports the definition and interpretation of the CDs for our study domain. This 
metamodel was created because it formalizes the domain language [18], providing the DSL 
evaluator with a notation to identify key characteristics of the DSLs. This also provides them with 
the basis on to interpret each CD in terms of specific DSLs.  
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The next subsections describe our targeted interpretation in terms of DSLs (Section 3.1) and 
the interpretation of the CDs for DSLs (Section 3.2). 
 
3.1.  Metamodel of a DSL for detecting architecture degradation symptoms 

As aforementioned, we argue that is important to define a metamodel (Figure 1) that represents all 
DSLs properties found in our domain [9, 18]. In this way, it is possible to verify whether the 
properties of a particular DSL for detection of degradation are encompassed in this metamodel. 
Having this confirmation then it is possible to use the CDs to evaluate DSL expressiveness and 
conciseness. In Table II, we describe the metamodel and its interrelationships.  
 

  
Figure 1. A metamodel of a DSL for detecting architecture degradation symptoms. 

 
Table II. Basic terminology of the metamodel. 

Word Description 

AntiDriftRule Constraints governing the characteristics of architectural Concepts 

AntiErosionR
ule Constraints governing the Concepts of architectural interaction 

Concept 

Each Concept is a relevant concern to the software architect; it is realized by 
a set of module Elements in the architecture implementation. Each Concept 
has a set of rules, described in a DSL specification, exploiting multiple 
properties of module Elements to detect individual code anomalies or 
anomaly patterns 
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Concept 
Mapping 

It is an expression that describes how a Concept is realized in the source 
code by exploiting properties shared by module Elements realizing the 
Concept 

Element Aggregation of one or more rules that assemble a Concept 

Expression Aggregation of properties 

File  File where the Concepts with their possible dependencies are located 

Interaction Concepts that are imported, extended and inserted into another Concept 

Lexical  Rules that represent the vocabulary used to name a class, interface, method, 
field, or a parameter 

Metric  It is related to rules that are composed of a software metric, a mathematical 
operator and a value. These rules can also use threshold and fuzziness 

Module 
Elements  

Elements in the source code of a module; A range of classes and interfaces to 
inner members of modules, such as methods 

Operator Elements can be combined using multiple set operators including 
intersection, union, difference, inclusion, and negation 

Structural Rules that represent structure of a constituent (class, interface, method, field, 
parameter, etc) 

Property 
One of the three types of rule in an AntiDriftRule: Structural, Lexical or 
Metric 

Threshold List of threshold variables that can be defined. It can be numerical values or 
ordinal values used to define all the Concepts under analysis 

Value Cardinal value 

Relationship Relationships with other Concepts, such associations, aggregation and 
composition 

Related 
Portion Constructions with Concept inheritance 

 
In this metamodel the two most important entities are: Element and Concept. These two 

entities form all the rules necessary to define symptoms of architecture erosion and drift (Section 
2.2). Element is an aggregation of one or more rules that assemble a Concept (Table II). Each 
entity connected to Element represents a characteristic of a restriction, also known as a rule (Table 
III), for detecting architectural degradation. A Concept represents an architectural module of a 
system, such as a component. Each Concept is assembled of Elements, and different Concepts are 
included into one or more files (File).  

An Element can contain only one rule (SingleElement) or several rules (ComposableElement); 
the composition of rules is based on Operators of intersection, union, difference, inclusion, and 
negation (Table III). Element composition can contain other Element by extension or inheritance 
(Interaction) or with relationships (Relationship) such as association or aggregation. Elements can 
have two rule formats in terms of architectural degradation that undergo by a mapping 
(ConceptMapping): drift restrictions and erosion restrictions. Drift restriction (AntiDriftRule) is 
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an expression (Expression) that can have three properties (Property): (1) Structural, which is 
composed of properties that represent structural components (e.g., the detection of a global 
variable), (2) Lexical, which is composed of properties that represent the vocabulary used to 
realize a component in the implementation, such as classes, interfaces, methods or fields, and (3) 
Metric, which selects a measure and a threshold to enable the identification of a drift architecture 
anomaly (e.g., the maximum coupling that will be restricted to one or more architectural 
components of a system). Another type of constraint is the Erosion constraint (AntiErosionRule) 
where the user creates dependency restrictions to the Elements of a system. For example, 
prohibiting access of code Elements from the Graphical User Interface (GUI) layer to services 
provided by Data layer Elements.  

Figures 2 and 3 show two different DSLs rules aiming to detect the same architectural 
anomaly in the same system. In particular, the Concept Controller has drift restriction rules to 
constrain the number of lines in a method (LOC), and the Lack of Cohesion in Methods (LOCM) 
of its code elements. Figures 2 and 3 also show how the specification of DSLs can be different 
even when implementing the same rules to the same system. In this way, it is important to create a 
high level abstraction to allow us to evaluate different DSLs in a common ground. In other words, 
to analyze different DSLs, one may create a metamodel to represent the high level elements of 
DSLs.  For example, the entity Concept is defined in Line 1 of Figure 2 and Figure 3. However, 
this Concept is implemented in different ways in each DSL. Moreover, each Concept contains 
Elements that are represented in the following lines including the extension 
ControllerComponents  (line 1, 3 and 4 in Figure 2, and lines 2-5 in Figure 3). In addition, the 
extension ControllerComponents represents the identity Interaction in the metamodel when in the 
other DSL is not possible to represent. All the described Elements described above are used to 
create the same anti-drift rule in both DSLs. However, one can notice that TamDera used three 
Elements, already including the entity Interaction. On the other hand, in the Detex 
implementation, four elements including the entity Expression are necessary to implement the 
rule. Section 6.2 will further discuss the characteristics of the DSLs represented in Figures 2 and 
3. 
 

 
1 Concept Controller extends ControllerComponents 
2 { 
3 name:"lancs.mobilemedia.core.ui.controller" 
4 LOCM < 30 

  5 } 

Figure 2. A DSL rule for a Controller component implemented in TamDera. 
 

 
1 RULE_CARD : Controller {  
2 RULE : Layer {INTER LOCGuiLayer CLASSregExpr};  
3 RULE : LOCGuiLayer {(METRIC: LOC_CLASS, INF, 270,0) }; 
4 RULE :  LOCMController {(METRIC: LCOM, 1, INF, 30,0)};  
5 RULE : CLASSregExpr {(LEXIC: CLASSE_NAME, 

{lancs.mobilemedia.core.ui.controller})};  
6  }; 

Figure 3. A DSL rule for a Controller component implemented in Detex. 
 
3.2. Interpretation of the cognitive dimensions 

To be able to adequately interpret all the CDs in Table I, it is required to instantiate them for the 
purpose of our quantitative analysis. Quantification of a CD is only possible if there is a well-
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defined character of it in the target domain of study. Therefore, we used the definitions of the 
CDN framework [20] and we tailored them for DSLs of the domain analyzed in our study by 
using the metamodel presented on Section 3.1. The metamodel helped the instantiation of the CDs 
by showing important DSLs properties found in our domain. In this way, for instance, it is 
possible to know which properties/entities from the metamodel can be used to evaluate the DSLs 
using the instantiated CDs. Moreover, the instantiation of the CDs underwent a refining process 
through a qualitative evaluation study (Section 4). The qualitative evaluation was the process 
required to verify if our CDs interpretation was (or was not) acceptable to different users and 
experts in our context of study. 

Viscosity, the amount of required changes in the DSL specifications to adapt their Concepts to 
different purposes. This characteristic can be quantified by computing the number of Elements 
changed in the DSL specification from the previous DSL specification in each new version of the 
target applications. For example, every time some architectural component is added, changed or 
deleted in an evolution, the DSL specification may need to be changed. 

Visibility, how easy it is to visualize related portions of the DSL specifications. We consider 
how the Concepts of a DSL are distributed; in other words, in how many files the DSL 
specification is distributed. For example, for non-complex languages it is easier for the user to see 
all the DSL specifications without extensions or inheritances. In that way, the user can add and 
see all the Elements of the DSL specifications without changing files.  

Diffuseness, how many Elements including theirs interconnections are necessary to define the 
DSL specification. If a Concept needs additional elements defined in a DSL, we say that this 
Concept is more diffuse. For example, if a Concept can be written by using four Elements in a 
DSL, and it requires three Elements in other DSL, then we say that the DSL where it was used 
four Elements is more diffuse than the DSL where three Elements where used. 

Premature Commitment, the early steps required to create a given DSL specification. In 
other words, this dimension addresses all the necessary steps before defining a Concept, such as: 
applications analysis, definition of architectural concepts, etc. This cognitive dimension is not 
applicable to our investigation to evaluate expressiveness and conciseness, because DSLs for 
architectural degradation do not have this kind of characteristic..  

Hidden Dependencies, unexpressed architectural dependencies between different Concepts 
defined in the DSL specifications. This CD represents existing architectural dependencies that 
cannot be explicitly described in the DSL specification. For example, Concepts that use Elements 
from other Concepts which in turn extend other Elements. In this case, there are implicit 
dependencies that are not explicitly represented in the DSL specification.   

Error-Proneness, the amount of possible errors that cannot be detected in an early stage of 
the DSL specification process. Detection of Elements that can only be detected during the actual 
DSL specification. This occurs when the Concept created can inherit Elements of another 
Concept. This cognitive dimension was discarded because, in our interpretation of DSLs, we 
believe it has already been covered by another dimension, more precisely, Closeness of Mapping. 

Progressive Evaluation, the ability to test part of the DSL specifications during development. 
This cognitive dimension is not applicable to our investigation to evaluate expressiveness and 
conciseness. That happens because we are studying the language specification itself and not the 
interaction and execution of the DSL [12], which do not comprise the aspects of DSLs we are 
analyzing in this study. 

Role-Expressiveness, determines how many representations can be used to express the 
purpose of a Concept in a DSL specification. For this cognitive dimension, we identify the 
possible representations used to define the role of each Concept. For example, if in the DSL 
realization a Concept can be associated with a Class and a Method, then there are two possible 
representations for characterizing the purpose of a Concept in the DSL. 

Abstraction, the number of abstractions the developer must use or create to define a Concept. 
We consider that the abstractions in a DSL are the creation and use of Elements in the defined 
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Concepts. In other words, it is the total number of Elements that constitute each Concept. In our 
experience in analyzing DSLs, we noticed that same rules can be implemented by different DSLs 
with a different combination of elements. In this way, the number of elements used in each DSL 
may vary. For example, if one have to write an architectural rule for a package (coarse 
granularity), in one DSL, it would be necessary at least three Elements to encompass this package 
and only one Element in other DSL. On the other hand, if one write an architectural rule for a 
method (fine granularity), it is necessary just one Element in both languages. Therefore, we argue 
that more Elements may hamper the understanding (i.e.: the abstraction) of Concepts in the DSL 
specification. 

Closeness of Mapping, how close the DSL specification is to the architectural conceptual 
domain. A DSL specification may be distributed across different files. In this way, the number of 
Elements per Concept can be misleading. This happens because, if an Element inherits Elements 
from another Concept, they do not need to be set again, thus artificially reducing the number of 
Elements defined per Concept. Therefore, we need to compare two variables: (i) number of 
Concepts in the file with the DSL specification, and (ii) number of all concepts in the DSL 
specification. Moreover, it is important to consider that the number of concepts in the file with the 
DSL specification is the one which includes all extensions or inheritances. 

Consistency, how similar the DSL notations and abstractions in the DSL specification are. 
This cognitive dimension is not applicable to our study to evaluate expressiveness and 
conciseness, because DSLs for architectural degradation do not have this kind of characteristic.   

Hard Mental Operations, operations that require the developer to think about many DSL 
notations and abstractions at the same time. Some Elements that the developer seeks are scattered 
across different Concepts in the DSL specifications. In this way, the user needs to remember more 
information when implementing a new Concept. In other words, we considered hard as the 
number of Elements needed to reason about during the DSL specification. For example before 
defining a Concept “View”, in a system with MVC architecture, we need to reason about if the 
Elements in this Concept do not interfere with other Concepts in our DSL specification. 
Otherwise can have Elements being implemented in the Concept “View” (for a example an 
extension) without the developer knowing or wanting. 

Provisionality, the ability to change/adapt parts of the DSL specification in the future. We see 
change/adaptations in DSLs as Elements that are needed to be modified in each Concept. In this 
way this CD shows the necessary Elements to be implemented per Concept. This CD was 
discarded because, in our interpretation of DSLs, it has already been covered by another 
dimension (i.e., Abstraction). 

Secondary Notation, the support for additional DSL notations and abstractions information 
without formal syntax. It involves the extra information of Element distribution in a DSL 
specification. In other words, if the DSL supports comments in the DSL specification. This CD 
was discarded, because DSLs for defining architectural rules generally lack properties that make 
this type of CD reveal important characteristics. 

4. QUALITATIVE EVALUATION 

As mentioned in Section 3, the CDs of the CDN framework need to be refined to particular 
contexts. The CDs instantiation is required given the general and overlapping definitions of the 
CDs [6]. However, the interpretation of the CDs also tends to be subjective and multiple 
interpretations may be framed by different experts working in the same field. Thus, an assessment 
was required to verify if our interpretation of the CDs was (or was not) acceptable and valuable to 
different experts in our context of study. With this requirement in mind, we decided to conduct a 
qualitative evaluation to assess our proposed cognitive dimension. This qualitative evaluation 
gave us insights on the CDs interpretation by practitioners directly involved in the use or 
development of DSLs. Their experience was also useful to give us additional insights on DSL 
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usability evaluation we had not thought of beforehand. As a consequence, we could check to what 
extent our interpretation of the CDs could accommodate different viewpoints, and, if required, 
perform refinements in the CDs instantiation.  

Another step of the qualitative evaluation was to use our CDs instantiation in order to evaluate 
DSLs usability. This step was performed to analyze whether the participants would be able to 
evaluate correctly all the instantiation of the CDs. Therefore, this gave us information to compare 
with the data obtained in the quantitative evaluation (Section 7). As a result, we could check to 
what extent our metrics were effective to evaluate DSLs usability. In the following, we first 
describe the goals of the qualitative evaluation as well as the data collection procedure (Section 
4.1), and then we analyze and discuss the results obtained (Section 4.2). 

 
4.1. Qualitative evaluation goal and procedures 

Our research goal was to assess with experts of the field our instantiation of the CDN framework 
(Section 3.2) and use those proposed CDs to evaluate the usability of two DSLs. The assessment 
focused on analyzing whether the proposed CDs: (1) were properly framed to our particular 
context, and (2) were useful for analyzing DSLs usability.  

The procedures involved the recruitment of four participants with experience in either using or 
developing DSLs, shown in Table IV. All values in Table IV range from: none, little, moderate 
and expert. Two of them had developed DSLs focused on supporting software development tasks 
(B and C); the other two (A and D) have practical experience in using DSLs specifically aimed at 
detecting architectural degradation symptoms in large-scale software projects. All the participants 
had extensive theoretical knowledge about architectural anomalies. Moreover, the participants 
have diverse experience in software development projects (from two to seven years). This 
heterogeneity helped gather a wider perspective on the assessment of our propositions related to 
the CDs.  

Table IV – Description of the subjects. 
Participant Software 

Evolution 
Architectural 
Anomalies 

DSL Experience in Software 
Development 

Companies (Years) 
A Moderate Moderate Moderate 1-2 
B Moderate Moderate Little 3 
C Moderate Moderate Little 7 
D Little Moderate Moderate 2 

During the two steps of the qualitative evaluation we provided to the participants, as support 
material: (i) the metamodel, (ii) two files with the DSL specification adapted to the two DSLs of 
the study, and (iii) their respective BNFs. We designed a survey to the participants in order to find 
out what was their rate of agreement in relation to the CDs instantiation. Therefore, in the survey 
we asked to the participants to develop their own interpretation of the CDs from the original 
definition of the CDN framework. This individual interpretation is important for the participants 
in order to have a basis for answering the following survey questions. During the survey the 
participants were encouraged to speak freely while answering the questions. After that, we 
conducted a semi-structured interview with the participants who had the lower rates of agreement 
in the survey, to get more information about the rationale about their disagreement. The 
interviews enabled us to identify improvements for the CDs instantiation from those practitioners. 
Finally, we also had to eliminate survey misunderstandings and confirm whether our 
interpretation of their answers was correct.  

The following steps were carried out to accomplish our qualitative evaluation:  
• Defining goals and define the process of this assessment;  
• Selecting practitioners who have some experience in DSLs and architectural anomalies;  
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• Conducting surveys with the practitioners using structured questions [42, 43, 44]. All the 
surveys were recorded;  

• Conducting semi-structured interviews with practitioners [45, 46]. All interviews were 
recorded;  

• Conducting a qualitative evaluation of two DSLs with the instantiations of the CDs of 
CDN framework; 

• After each interview, we transcribed the interviews’ recorded content; 
• Data interpretation – analysis of each factor of influence.  
We used semi-structured and open questions in the interviews to allow a detailed investigation 

about the context in which the interviewees were immersed. This procedure allowed us to make 
explicit the interviewees’ tacit knowledge. Table V and Table VI show the questions asked in the 
survey and in the interview, respectively. The interviewees’ answers to such questions would give 
us information to guide the next steps of the research evaluation.  

 
Table V. Information required in the survey. 

Write your instantiation from the definition above  
Is the above Cognitive Dimension useful? (yes, maybe or no) 
What is the level of agreement of the instantiation? (1 = strongly disagree to 5 = strongly agree) 
 

Table VI. Questions used in the interview. 
What could be improved on the cognitive dimension with which you disagreed?  
What did you disagree on? Something in the instantiation or in its explanation? 
Do you think it is possible to evaluate this cognitive dimension for DSLs for detecting 
architectural anomalies? 
 

Each survey and interview were fully transcribed. By using the transcriptions, we were able to 
thoroughly analyze the interviewees’ knowledge and opinions.  We must point out that we have 
anonymized the transcriptions in order to preserve the participants’ identities.  

 
4.2. Data Analysis 

Table VII presents the overall results of the instantiation agreement in the survey. Each line 
represents a cognitive dimension. The columns represent the answers of each participant 
regarding our instantiation of the CDs of the CDN. The values range from one to five, where one 
represents a strong disagreement (lightest cell color), and five means a strong agreement (darkest 
cell color). It is also important to notice that the answer three in the Table VII means that 
participants neither agree nor disagree with the instantiation of a specific CD. This type of answer 
might happen due to the following reasons: (1) the participant was not able to interpret the 
instantiation of the CD within our context, or (2) the participant did not understand our proposed 
CD instantiation.  

In our analysis, we found a difference of values in our data related to the level of agreement in 
Table VII. This happened because we had 86% of agreement in the CDN instantiation by two 
participants that were previously classified as DSLs users (B and C). Moreover, we had a lower 
agreement by the participants that already have developed DSLs (A and D). These values 
indicated that further reflection or refinement for some CDs instantiation should be considered, as 
they imply the interpretation was different from DSL developers to users. Therefore, we observed 
that the heterogeneity of people’s views reflect in our user analysis. This understanding is an 
important one to consider while evaluating any particular DSL. In addition, from the survey and 
the interviews we found that it was not easy to reach a consensus in the refinement of some CDs. 
For example, the instantiation agreement for Role-Expressiveness in Table VII shows that two 
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participants disagreed on some point whereas the two others strongly agreed. Therefore, such 
information indicated that in our CDs instantiation there might still exist disagreement in the 
interpretation by some user or developer in the future. And once again a refinement is needed to 
close that gap as aforementioned.  

The CDs instantiation with the highest agreement (all answers were 4 or 5) for all the 
participants were: Viscosity, Hidden Dependencies, Abstraction, Diffuseness, Hard Mental 
Operations, and Progressive Evaluation. This indicated that our interpretations were strongly 
consistent with the participants’ point of view. Hence, this result indicated that these CDs 
instantiation:  (1) were closer to the DSLs developers’ and users’ interpretation, and (2) might be 
less sensitive to interpretation in our research domain. This understanding is very valuable to 
improve a given CDs instantiation, that is, to make it more useful and/or easier to use and, hence, 
more viable for DSL evaluation. Visibility and Provisionality were the CDs instantiation with 
mostly strong agreement, except for a medium agreement (answer 3). This indicated that the CDs 
instantiation was consistent with the point of view of the DSLs developers and users. However, 
the answers also showed that the CDs instantiation, despite being on the right path, needed some 
refinement to be used.  

The ones with divergent agreement were: Role-Expressiveness, Error-Proneness, 
Secondary Notation, Closeness of Mapping, and Consistency. This indicated that these CDs 
were more sensitive to interpretation by DSL developers and users. Such result becomes a 
problem when the CDs instantiation was made to provide one step to overcome this obstacle. 
However, even though there were divergent answers, all these instantiations had at least one 
strong agreement answer (answer 5). Therefore, for such cases, we decided to follow our 
interpretation and just do the refinement. We think that this is how we will reach a consensus. The 
only weak agreement (majority of the answers were below 3) we had on the CDs instantiation was 
regarding Premature Commitment. Although this CD did not obtain a higher score than a 
medium agreement (answer 3), all participants said that this cognitive dimension cannot be used 
to evaluate DSLs for our research domain. This indicated that this CD is unfit to evaluate DSLs 
for our research domain, regardless of its interpretation. Therefore, we changed it taking into 
consideration the participants’ answers, but we still considered it unfit to be used. Finally, we 
performed an open interview with two participants to analyze two DSLs with our instantiation of 
the CDs. We confirmed during the analysis that in some cases they were not sure about their 
answers. For example, in the case of the Viscosity and Abstraction CDs, it was hard for the 
participants to identify which DSL was better. This issue is further discussed in Section 7.  

All this information indicated that a qualitative evaluation is highly dependent on the 
participants’ experience, knowledge, and point of view. We believe that an ideal solution for the 
developers or new users of DSLs is to have a less subjective means to support an initial analysis 
of these CDs. If, for example, the developers could rely on a metrics suite, they would derive 
precise information, and thereby help the early assessment of DSLs. This would in turn help to 
support their qualitative evaluation, so that DSL developers and users can identify why a 
particular DSL may be unacceptable. In this way, DSL developers and users are able to pursue 
appropriate maintainability. 

Table VII. Instantiation agreement. 
 A B C D 
Viscosity 5 5 5 5 
Visibility 5 5 4 3 
Premature Commitment 2 3 3 2 
Hidden Dependencies 4 5 5 4 
Role-Expressiveness 2 2 5 5 
Error-Proneness 3 5 3 2 
Abstraction 4 5 5 5 
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Secondary Notation 1 5 5 5 
Closeness of Mapping 3 3 5 2 
Consistency 1 5 3 2 
Diffuseness 4 5 5 5 
Hard Mental Operations 4 5 5 4 
Provisionality 3 3 5 4 
Progressive Evaluation 5 5 5 5 
 

5. METRIC DEFINITION  

Once we refined the CDs (Section 4), we decided to use the GQM methodology [33] to help us 
support and create a metrics suite. We followed the GQM methodology by implementing the three 
steps: (1) we defined our goal, (2) we created questions to define our goal as completely as 
possible in DSL usability, and (3) we created metrics for each question with the CDs instantiation 
(Section 3.2). Following the described steps above, we identified our goal and its characteristics 
as shown below:  
 

• Goal: Identify the DSL usability limitations from the user’s viewpoint. 
• Question Q1: What is the DSL expressiveness? 

o Q1.1:  How many representations can be expressed? 
§ Measured Cognitive Dimensions: Hidden Dependencies and Role-

Expressiveness. 
o Q1.2: What is the level of abstraction that can be represented? 

§ Measured Cognitive Dimensions: Abstraction and Closeness of Mapping. 
• Question Q2: What is the DSL conciseness? 

o Q2.1: What is the number of Elements and Concepts to create/change the DSL 
specification? 

§ Measured Cognitive Dimensions: Viscosity and Diffuseness.  
o Q2.2: How fragmented is the DSL specification? 

§ Measured Cognitive Dimensions: Visibility and Hard Mental Operations. 
 

 During the GQM methodology, we noticed the need to specify the two questions we wanted 
to answer (questions Q1 and Q2). This happened because these questions use general definitions 
that might lead to ambiguous or different interpretations. These definitions are: (1) DSL 
Expressiveness, which refers to the extent a domain-specific language allows to directly 
represent the elements of a domain, and (2) DSL Conciseness, which refers to the economy of 
terms without harming the artifact comprehension. Therefore, we subdivided each question in two 
sub questions that we think capture the properties of those definitions. For the sub questions Q1.1 
and Q1.2, we have drawn on the definition of DSL Expressiveness. We identified that (1) the 
Expressiveness of a DSL must allow to express all the necessary logic for a given domain 
problem [12], which in other words would be the number of possible representations to be 
expressed (question Q1.1) and (2) the representations must have a sufficient level of abstraction to 
be able to solve domain problems [40] (question Q1.2). For the sub questions Q2.1 and Q2.2, we 
have drawn on the definition of DSL Conciseness. We identified that conciseness of a DSL should 
express all the domain statements adequately. In other words, the DSL representations must be 
concise as possible without causing the user to misunderstand them [12]. Thus, following the 
representations of our DSLs defined in the metamodel (Section 3.1) as Elements and Concepts, 
the DSL Conciseness becomes the number of Elements and Concepts necessary to create or 
modify a DSL specification (Question Q2.1). In addition, we identified that the DSL Conciseness 
can be influenced by the fragmentation of DSL specification [12, 40], thus influencing the user’s 
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understanding (Question Q2.2). Finally, we selected the instantiation of the CDs and divided them 
into two groups: CDs related to DSL Expressiveness and those related to DSL Conciseness 
(Figures 4 and 5). It is important to point out that we did not use certain CDs to analyze 
expressiveness and conciseness. We made this decision due to the following reasons: (1) some of 
the discarded CDs were already addressed by other dimensions that we are considering (Error-
Proneness and Provisionality in Figure 4), and (2) some CDs are not applicable to our 
investigation, to evaluate expressiveness and conciseness, as aforementioned.  

 

 
Figure 4. Cognitive dimensions of Expressiveness. 

 

  
Figure 5. Cognitive dimensions of Conciseness. 

 
Tables VIII and IX present the CDs considered in our study, with their respective descriptions. 

Table VIII shows the CDs related to DSL Expressiveness, while Table IX shows the CDs related 
to DSL Conciseness. These tables also show the metrics we propose to use for each cognitive 
dimension. To help understand the proposed metrics, we first explain what qualities we expected 
from the DSL metrics. The following criteria for DSL metrics were: 

• To be able to represent the characteristics from the CDs. 
•  To have as few parameters as possible to make the evaluations straightforward and the 

results comparable. 
•  To be clear, easily understandable by the DSL developers or users. 
•  To be general enough to allow comparison of most DSLs of our domain. 
•  To be few in number and yet expressive, so they may be used in large evaluations of 

DSLs. 
As aforementioned, each metric was based on the interpretation of the CDs (Section 3.2) for 
usability in DSLs, the characteristics represented in the metamodel (Section 3.1) and the qualities 
expected from the DSL metrics. For each CD we created a unique and direct metric. One reason 
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for that was the need to create a metric that was directly linked to the interpretation of the CD and 
that used the metamodel entities such as Element or Concept, in order to improve the 
comprehension of future data analysis. For the metric created for Abstraction, we considered that 
any abstraction would be our Element (abstract entity in the metamodel) by the number of 
Concepts. Therefore, the DSL developers and users can know how many abstractions exist and 
how these abstractions are scattered in the DSL specification.  

     For the metric for Closeness of Mapping, we considered that the conceptual domain is the 
relationship between the number of Concepts that DSL developers and users can observe and the 
actual number of Concepts actually used. So the DSL developers and users can visualize 
quantitatively the Concepts he is working on (conceptual domain). Finally, the metric for Hard 
Mental Operations was considered in such a way that all cognitive operations that the DSL 
developers and users had to do during the DSL specification were the number of Elements 
belonging to each Concept. Therefore, it may be possible to understand the mental effort realized 
by the DSL developers and users during the DSL specification.  
 

Table VIII. Expressiveness metrics (for question 1). 

Cognitive Dimension Description Metric 
Hidden 
Dependencies  

Unexpressed dependencies 
between different parts of the 
DSL specifications 

The number of unexpressed 
dependencies (ideal measure 
= 0) 

Role-Expressiveness How many representations 
can be used to express the 
purpose of a Concept in a 
DSL specification 

Number of used 
representations for the 
Concepts against number of 
possible representations for 
the Concepts 

Abstraction  
The number of abstractions 
the developer must use or 
create to define a Concept 

The total number of Elements 
that are required to be 
described against the number 
of Concepts 

Closeness of Mapping  How close the DSL 
specifications are to the 
architectural conceptual 
domain 

The number of Concepts that 
are required to be described 
against the real number of 
Concepts that need to be 
described and understood 

 

Table IX. Conciseness metrics (for question 2). 
Cognitive Dimension Description Metric 

Viscosity The amount of necessary 
changes in the DSL 
specifications to adapt it for a 
different use 

The number of Elements of 
the specification that must be 
modified in each Concept and 
its dependencies (ideal 
measure =1) 

Visibility How easy it is to visualize 
related portions of the DSL 
specifications 

The number of files and how 
many Concepts are in the 
specification 
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Diffuseness How many Elements are 
necessary to define the DSL 
specification 

The necessary number of 
Elements in the specification 
to do the Concepts and its 
dependencies  

Hard Mental Operations Operations that require the 
developer to think about 
many DSL notations and 
abstractions at the same time 

Average number of Elements 
in each Concept 

 

6. QUANTITATIVE EVALUATION 

After we created the metrics suite necessary to conduct an assessment of its usefulness, we 
selected two DSLs to perform the quantitative study using two applications. The purpose of this 
evaluation was to complement the qualitative study performed earlier. The qualitative evaluation 
presented in Section 4 was mainly targeted at assessing the adequacy of the CDs instantiation. 
However, the participants were also invited to judge the adequability of the metrics definition. In 
the following, we describe the goal (Section 6.1), the selected DSLs to be evaluated (Section 6.2), 
the selected applications with architecture rules represented using those DSLs (Section 6.3) and 
their versions (Section 6.4). 
 
6.1. Evaluation goal 

The study goal was to assess the usefulness of the proposed quantitative framework (metrics suite) 
for the usability evaluation of DSLs in software maintenance tasks (Section 5). Software 
maintenance tasks were applied to produce the applications’ versions, and usability metrics were 
applied to these versions. The assessment focused on analyzing to what extent the proposed 
metrics were useful: (1) to perform an early identification of DSL usability limitations that should 
be addressed (Section 6.2), and (2) to perform a usability comparison of DSLs designed to address 
the same software engineering problem. We analyzed whether the metrics helped to reveal when 
each of the DSLs should be employed, according to particular project settings (Section 6.3). We 
also checked whether the usability metrics and evaluations results were useful to support an in-
depth analysis of expressiveness and conciseness (Section 6.4).  

The study was conducted in the context of two DSLs recently designed to support the 
detection of architecture degradation symptoms (Section 6.2). The comparative assessment of 
these DSLs was based on their use in the versions of two systems (Sections 6.3 and 6.4). As 
mentioned above, artifacts were produced for each version as we were interested to assess their 
usability in the context of software maintenance. This procedure was required to enable us to 
better quantify and understand the impact of these DSLs in terms of their expressiveness and 
conciseness. This impact was observed as the architectures and implementations were changed 
along the version history of each system. Some of the CDs, by definition, require exposing the 
DSL artifacts to change. This is the case, for instance, of viscosity and hard mental operations 
(Section 3.2).  

 
6.2. Target DSLs 

We defined some criteria in order to select the DSLs in the domain of architecture rules checking. 
The chosen language should support the handling of architecture design rules by at least three 
categories of stakeholders: (1) architects, who use it to define and maintain the high-level 
software architecture rules; (2) programmers, who use it to specialize the rules in terms of source 
code elements realizing them; and (3) reviewers, who read the rules’ specification to check 
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whether the source code developed by the programmer violates any architectural rule. It is hard to 
design a language that is usable by all these different types of stakeholders, while satisfying all the 
usability dimensions. Unified DSLs supporting all forms of anti-degradation rules are just 
emerging [4, 9, 14]; i.e. the designs of these languages are still in progress (Section 2.2). This fact 
implies that is unlikely that a single DSL addresses well all the usability dimensions. Therefore, 
they would benefit from early usability indicators before being either adopted in mainstream 
projects or assessed in controlled experiments.  

We chose two DSLs explicitly designed with all the aforementioned categories of stakeholders 
in mind. The majority of the other DSLs in the field are mostly dedicated to programmers as they 
rely on syntaxes of programming languages (Section 2.2). In addition, the chosen DSLs explicitly 
embed constructs to define both anti-drift and anti-erosion rules. The first DSL chosen is called 
Detex, an instantiation of the method Decor, supported by the Ptidej tool [9, 14]. Detex allows the 
specification and detection of code anomalies, which are relevant to high-level designs. This DSL 
is well documented and it was already evaluated with respect to their usefulness to detect 
architecture anomalies in real software projects [16, 17]. The second DSL is called TamDera [4, 
44], which is also fully documented [4], and relies on a robust backend infrastructure, called 
Vespucci [26]. This DSL was also evaluated to detect architectural anomalies in existing software 
projects [4, 37]. 

 
6.3. Target applications 

We selected two applications for which it was possible to explore all (or almost all) of the 
constructs and mechanisms of the DSLs. We therefore looked for applications with a wide range 
of well-known architecture degradation symptoms. They should be from different domains, 
realize different architecture styles, and be designed by different developers. We also chose 
systems whose full set of architecture design rules were accessible. These rules should preferably 
be available to the community so that other researchers could replicate and extend our usability 
quantitative study in the future.  

Based on these criteria, we selected two systems: MobileMedia [1] and Health Watcher [3] 
(Table X). Health Watcher is a web system for registering complaints about health issues in public 
institutions [4]. MobileMedia is a product line that manages different types of media on mobile 
devices [4]. The former realizes the N-tier architecture style, while the latter implements the MVC 
style. These projects were already used in other architectural degradation studies, and their drift 
and erosion anomalies have been reported elsewhere [4, 5]. For example, Macia et al. [5] has 
identified that the HealthWatcher (HW) system presented a significant number of architectural 
violations that increased over time in this system [5]. The authors also revealed that the 
MobileMedia (MM) system presented a significant number of architectural drift symptoms that 
emerged along the system evolution. In particular, they were caused by the non-modular 
realization of new concerns progressively included in the latest system versions. 
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Table X – Characteristics of the systems used in our study. 

 MobileMedia HealthWatcher 

Application Type Software Product Line Web framework 

Programming Language Java Java 

# of Versions 3 3 

Avg. # of Packages 3 8 

Avg. # of Classes 30 105 

Avg. # of Methods 158 676 

Avg. NCSS 1277 5221 
 
6.4. Selection of the versions of the target applications 

Both DSLs are intended to improve the maintainability of design rules. Therefore, we evaluated 
their use through several versions of the two target systems (Section 6.3). The exposition of 
design rules to changes would enable us to assess to what extent they satisfy the usability 
dimensions in the presence of several changes. In addition, the evaluation of dimensions – such as 
viscosity, abstraction and hard mental operations – can be assessed with higher confidence when 
observing them upon actual changes, rather than estimating them based on single-version 
specifications.   

We considered all the versions of Health Watcher and Mobile Media. After their analysis, we 
selected a subset of them to present their results here. We focused on presenting three versions of 
each system: (1) versions 1, 4 and 8 of Health Watcher, and (2) versions 1, 4 and 7 of 
MobileMedia. We named these versions as HWv1, HWv4, HWv8, MMv1, MMv4 and MMv7, 
respectively. These versions are those that suffered from the most widely scoped changes in both 
implementation and architecture artifacts along the system’s evolution [5]. The other versions 
entailed minor or none architectural-level changes. 

We relied on the architecture documentation of both systems (available for the chosen 
versions) in order to produce the rule specifications with TamDera and Detex. In addition, from 
the work of Macia et al. [5] we obtained a list of architectural anomalies that were reported by the 
developers for each version of each system. Based on the list of reported anomalies, we wrote 
additional rules of architectural anomaly detection with each DSL considered in our study.  

7. DATA ANALYSIS AND DISCUSSION 

Aiming to compare the DSLs and to assess the usefulness of the proposed quantitative framework, 
we applied the usability metrics to the TamDera and Detex specifications. The metrics were 
computed for each version of the Health Watcher (HW) and MobileMedia (MM) specifications 
with both DSLs. The results are presented in Section 7.1. The discussion about the usefulness of 
the metrics and other findings with respect to our research goals (Section 6.1) are discussed in the 
following subsections. During the discussion of a particular CD, we highlight the CD name in 
boldface in order to facilitate the identification of points for discussion in the results and other 
broader discussions. The conceptual elements of the DSLs are also capitalized to facilitate 
reading. Note that, during the following data analysis, we report findings of the qualitative 
evaluation (Section 4) where we found relevant to do so. The combination of quantitative and 
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qualitative evidence provides a more convincing result on the usefulness of the DSL usability 
metrics. 
 
7.1. Usability measures 

The results shown in Tables XI and XII represent the obtained measures related to expressiveness 
and conciseness, respectively. For every cognitive dimension, parentheses and slashes are used for 
direct representation of the metric results, in the format indicated by the first column. Their use 
also facilitates the understanding of the CDs values in a proportional manner. For example, the 
measure for the CD Abstraction is presented in contrast to the number of Elements to the number 
of Concepts.  

The metric for each CD was applied to the specifications based on both DSLs, i.e. TamDera 
and Detex (in the first and second sub-line in the second column, respectively). The columns 3-8 
represent the results for each usability metric through the six versions of our case studies: three 
versions of HealthWatcher (versions v1, v4, v8), and three versions of Mobile Media (versions v1, 
v4, v7). All values of the versions of HW and MM represent absolute measures with respect to the 
size of a specification. The measure for Viscosity in version 1 of both systems (Table XII) has no 
data (-) because this metric is obtained from the analysis of Elements changed from one version to 
the next one. The metric Hard Mental Operations (Table XII) is the average of Elements per 
Concepts by specifying the Concept of architectural detection rules. 

 
Table XI. Results of the Expressiveness metrics. 

Cognitive 
Dimension 

DSL HW 
v1 

HW 
v4 

HW 
v8 

MM 
v1 

MM 
v4 

MM 
v7 

Hidden 
Dependencies 
(Unexpressed 
dependencies) 

TamDera 0 0 0 0 0 0 

Detex 0 0 0 0 0 0 

Role-
Expressiveness 
(Concept 
Representations3/ 
Total # of 
Concepts 
Representations) 

TamDera (P,C/4) (P,C/4) (P,C/4) (P,C/4) (P,C/4) (P,C/4) 

Detex (C/5) (C/5) (C/5) (C/5) (C/5) (C/5) 

Abstraction 
(Elements/ 
Concepts) 

TamDera (20/ 
11) 

(28/ 
17) 

(39/ 
28) 

(20/ 
11) 

(20/ 
10) 

(19/ 
11) 

Detex (38/ 
11) 

(46/ 
17) 

(61/ 
28) 

(36/ 
11) 

(37/ 
10) 

(33/ 
11) 

Closeness of 
Mapping 
(Concepts in 
File/ Total # of 
Concepts) 

TamDera (11/ 
18) 

(17/ 
26) 

(28/ 
38) 

(11/ 
19) 

(10/ 
18) 

(11/ 
19) 

Detex (11/ 
11) 

(17/ 
17) 

(28/ 
28 

(11/ 
11) 

(10/ 
10) 

(11/ 
11) 

 

                                                
3 P - Packages, C- Classes, I - Interfaces, M - Methods, F-Fields, Pa -Parameters 
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A first analysis of Tables XI and XII reveal that both DSLs share similar results. These results 
confirm that, even though both of them were recently designed, they already satisfy a wide range 
of usability dimensions. For instance, it was not observed a single feature of these languages 
leading to Hidden Dependencies in both systems (Table XI). It is of major importance for a DSL 
not to yield hidden dependencies in order to support developers with a higher degree of control of 
the DSL specifications. In the domain of architecture rules, dependencies can be classified in two 
categories: (i) dependencies between high-level rules, and (ii) dependencies between a high-level 
rule and the counterpart programming elements in the source code that should realize them. We 
noticed that both Detex and TamDera provide abstractions to explicitly define these types of 
dependencies. On the other hand, we observed the metrics were also useful to reveal particular 
usability strengths and weaknesses of each DSL. This information is discussed in the next 
subsections. 

Table XII. Results of the Conciseness metrics. 
Cognitive Dimension DSL HWv1 HWv4 HWv8 MMv1 MMv4 MMv7 
Viscosity 
(Elements) 

TamDera - 5 2 - 7 3 
Detex - 10 3 - 12 8 

Visibility 
(Files/ Concepts) 

TamDera (3/ 11) (3/ 17) (3/ 28) (3/ 11) (3/ 10) (3/ 11) 
Detex (1/ 11) (1/ 17) (1/ 28) (1/ 11) (1/ 10) (1/ 11) 

Diffuseness 
(Elements) 

TamDera 20 28 39 20 20 19 
Detex 38 46 61 36 37 33 

Hard Mental 
Operations (Average 
Elements per 
Concept) 

TamDera 1.8 1.6 1.4 1.8 2 1.7 
Detex 3.5 2.7 2.2 3.3 3.7 3 

 
7.2. Early indicators of usability strengths and weaknesses 

Tables XI and XII also highlight some differences between the two DLSs. The results of the 
second cognitive dimension analyzed, Role-Expressiveness (Table XI), reveal that TamDera 
support four representations (packages, classes, interfaces and methods) and Detex offers five 
(classes, interfaces, methods, fields, or parameters). Therefore, a first reaction would lead us to 
conclude that Detex outperformed TamDera for this CD. Even though the metric was useful to 
highlight a usability difference between the two DSLs, a higher (or lower) value does not always 
indicate a better (or worse) usability. Although Detex has more representations than TamDera, 
some of them seem to be rarely used for detecting architecture degradation symptoms. For 
instance, fields and parameters were never used in the definition of architecture rules in both case 
studies. On the other hand, we noticed that packages, as supported in TamDera, were often 
required to express architecture rules in both systems, as developers often decompose packages in 
terms of architectural Concepts.  

These observations may lead to two interpretations: (i) Detex specifications might be harder to 
be used by software architects as there are language representations rarely useful or meaningful 
for them, or (ii) Detex might be interesting to be used in projects where the architecture- and 
implementation-level design rules are specified by the same developers. We can also conclude 
that, even though Detex has more representations to express the Elements of architectural rules, 
TamDera offers more representations to the architects when it comes to defining anti-erosion and 
anti-drift rules. This conclusion was also reported during the assessment of this CD in the 
qualitative evaluation when one of the participants reported that creating architectural rules on the 
level of packages and classes is enough. The participant said that: “I always thought that 
specifying rules at the class level was enough. Specify rules at class level is complex. So, specify 
rules at a fine level of granularity as, for example, in a method level, it is even more complex and 
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challenging”. Therefore, this specific participant believes that creating architectural rules in lower 
levels of granularity (e.g. method, fields, and parameters) might be not simple or practical.   

The metric for quantifying Abstraction indicates the ratio of Elements per Concept in 
TamDera is much smaller than in Detex for both systems. When we analyze all the measures 
across all the versions, the superiority of TamDera was evident ranging from 90% (HW v1) to 
95% (MM v4). This difference reveals that users often need to understand and use many more 
Elements (per architectural Concept) in Detex to define an architecture rule. Examples shown in 
Figure 6 and Figure 7 illustrate why TamDera outperforms Detex in terms of Abstraction. When 
users are expressing architecture rules, they should focus on the rules of a particular context and 
on reusing general rules applicable to that particular context, abstracting away from other details. 
TamDera offers the reuse option (Figure 6, line 1), and even the possibility to change the reused 
Elements easily in the Concept. In Detex, we need to replicate the same rules in each Concept all 
over again. Also, it should be noted that the metric for Abstraction led to the same conclusion as 
the qualitative assessment for this CD by the participants. This demonstrates that the metric is 
aligned with the expectations of the developers or users. 

 
 
1  Concept BusinessFacade extends BusinessLayer 
2   { 
3   name:“healthwatcher.business.HealthWatcherFacade” 
4    LOCM < 20 
5   } 

Figure 6. Rules for Business Façade in TamDera. 
 

In Table XII, the metric for Viscosity reveals that the ratio of Elements per Concept (from one 
version to another) requiring changes by the users is lower in TamDera than in Detex. The 
measures indicate that the users would need to make from 50% to 100% more modifications in 
HW, and reaching the range of 71% to 167% additional modifications in MM through all the 
versions. These observations create a problem when users want to minimize the time and effort 
spent when expressing architecture rules. A key reason to explain this fact is the TamDera’s 
possibility to create rule extensions for a Concept.   
 

 
 1    RULE_CARD: BusinessFacade { 

   2    RULE: UnionregExpr {INTER CLASSExper    
         FacadeConstraints NoDeeperInheritanceTree 
LOCBLayer}; 
   3    RULE: CLASSExpr {(LEXIC: CLASSE_NAME       
        {healthwatcher.business.HealthWatcherFacade})}; 
   4    RULE: LOCMConstraint {(METRIC: LOCM, INF, 
20.0)}; 
   5    RULE: NoDeeperInheritanceTree{(METRIC: DIT,    
         INF_EQ, 5.0)}; 
   6    RULE: LOCLayer {(METRIC: LOC_CLASS, INF, 
600.0); 
   7     }; 

Figure 7. Rules for Business Façade in Detex. 
 
For example, Figure 6 (line 1) represents a TamDera extension of a Concept named 
BusinessLayer. With this extension mechanism available in TamDera, the user reduces the effort 
of changing some Elements within each reused Concept. This effort reduction happens because, in 
TamDera, whenever the user modifies something in the extended Concept, such change(s) will be 
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implicitly inherited by the different Concepts that extend the former. The same specifications of 
this extension in Detex are represented in Figure 7 (lines 5-6). When realizing the same behaviour 
in Detex the user would need to change all the Elements where the Concept BusinessLayer is 
used. Therefore, the extensibility of TamDera rules for a Concept via inheritance enables the users 
change fewer Elements in every edition when expressing architecture rules.  In addition, both 
programmers and code reviewers would need to read more terms when understanding the 
architectural rules in each Concept. This metric has also shown its added value if we consider the 
qualitative evaluation of the DSLs usability using this CD. This happened because the two 
participants, who took part in the qualitative evaluation of the DSLs, reported different answers 
for the Viscosity CD. One participant said that both DSLs were similar and the other said that the 
Viscosity in Detex was higher. They also confirmed that it is hard for the participants to analyze 
each DSL in terms of this CD. Finally, they confirmed that it would beneficial to have a metric to 
support that analysis. Therefore, they could rely on some concrete information with this metric to 
perform this CD analysis.   

The Diffuseness measurements indicate that Detex requires more Elements than TamDera in 
order to specify the same set of architectural rules. The number of Elements the user needs to 
create in order to define architecture rules are from 56% to 95% higher in Detex than in the 
TamDera specifications. In particular cases – i.e. v4 to v8 of MM – there is an increase of 95% of 
Elements in Detex. According to this point of view, this difference represents considerable effort 
spent by the user when changing the set of architecture rules. Once again, this difference can be 
explained by the rule extensions supported by TamDera mechanisms. For example, an analysis of 
Figure 6 shows that TamDera requires fewer Elements to represent the Concept BusinessFacade. 
TamDera only needs two Elements (Figure 6, lines 3-4) and one extension, in comparison to five 
Elements required by Detex (Figure 7, lines 2-6). This metric has also shown its added value if we 
consider the qualitative evaluation of the DSLs usability using this CD. Two participants, who 
took part of the qualitative evaluation of the DSLs, reported different answers for the Diffuseness 
CD. One participant reported that both DSLs were similar and the other said that the Diffuseness 
in Detex was higher than in TamDera. They confirm that it is hard for the participants to analyze 
each DSL in terms of this CD, and confirmed that they would benefit from a metric to support that 
analysis. Based on this metric, they could rely on some concrete information to perform this CD 
analysis. 

The metric for Hard Mental Operations shows that TamDera, on average, requires fewer 
Elements per Concept than Detex. The measures indicate the user needs to reason, on average, 
about 1.2 (HW) to 1.5 (MM) additional Elements per Concept. This value means the user needs to 
reason up from 57% to 94% more Elements for each mental operation based on a Detex 
specification. This difference makes it in turn much easier to perform upfront specification or 
maintenance operations in TamDera. This difference is already high if only the Concept is 
considered. However, if you consider the total number of Elements needed to express architecture 
rules, the difference can become even more significant. In particular, we have observed that the 
maintenance tasks often required the change of more than one Concept in both HW and MM. 
Once again, we can observe this in Figure 6 (lines 3-4), where the user just needs to think about 
two Elements in contrast to five Elements in the counterpart Detex specification (Figure 7, lines 2-
6). This metric has also shown its added value if we consider the qualitative evaluation of the 
DSLs usability using this CD. We observed, for instance, that one of the participants really 
struggled to analyze this CD and he was not sure what to answer. He confirmed that this CD is not 
easy to identify and that he would benefit from a metric to support the analysis of this CD. Based 
on this metric, he could rely on some concrete information to perform this CD analysis; an 
information to take as a starting point. 

In Table XI, the metric for quantifying Closeness of Mapping indicates that the number of 
Concepts for expressing architecture rules is the same as the total number of Concepts actually 
being used in Detex. It is different in TamDera because its feature for reuse can use Concepts of 



 24 

other files to express the architecture rules. The measures reveal that the TamDera user only 
expresses from 61% to 74% in HW and from 56% to 58% in MM of all possible Concepts. This 
fact can become a relevant problem for the user when reusing Concepts, because he does not have 
total control of all the Concepts when expressing architecture rules. For example, during the 
qualitative evaluation of the DSLs usability with this CD, a participant reported the results of this 
CD has revealed he was potentially wrong. He noticed that he had actually misinterpreted the 
meaning of the CD. He agreed the metric captured a useful quantifiable property associated with 
Closeness of Mapping. Therefore, this metric can provide a hint to the user on the understanding 
of the level of control of the Concepts he has during the DSL specification. 

The results of the metric employed for quantifying Visibility are presented in Table XII. This 
results reveal that it is easier to visualize or change the DSL specifications in Detex, because all 
the Concepts are in the same file. The measures show that the TamDera user has expressed the 
architecture rules in three files, against one file in Detex. This represents several problems for the 
user’s cognitive performance because the user is forced to change to different files in order to 
visualize some Concept. Once again, it is possible to notice in Figure 6 (line 1) that there is an 
extension of a Concept from another file in TamDera specification, whereas no additional files are 
required in Figure 7 for the counterpart Detex specification. Also, it should be noted that the 
metric for Visibility led to the same conclusion that the qualitative assessment for this CD by the 
participants. This demonstrates that the metric is aligned with the expectations of the developers 
or users. However, it is important to remember that the interpretation of the metric may vary. The 
reason for that is because of the user or the developer goal. For example, if one user defines that 
the visibility for some DSL is having fewer files because their perception is better this would 
mean that the lower the metric value, the better the visibility of a DSL. 

 
7.3. Usability in specific project settings 

This Section discusses our lessons learned on the use of our evaluation framework (Section 5) to 
support the expressiveness and conciseness analyses.  
 
Expressiveness analysis. An evaluation taking into consideration of the DSL expressiveness 
requires a joint analysis of the four CDs related to this attribute in order to lead us to broader and 
fair conclusions. The CDs Hidden Dependencies, Role-Expressiveness, Abstraction, and Concept 
Mapping together identify the level of expressive power that a language offers to represent the 
different rules of a DSL. It is not possible to analyze the expressiveness of a DSL without thinking 
of the four CDs together, because one dimension complements the others. More importantly, 
expressiveness trade-offs are revealed when all these attributes are analyzed.  

For example, the CDs Hidden Dependencies and Role-Expressiveness together show the level 
of control that a user has when implementing architectural rules. Someone could infer that 
TamDera has superior expressiveness, given the higher number of supported representations to 
express the architecture-level rules. This is somehow confirmed by the Abstraction metric. 
However, when the metric for Closeness of Mapping is considered, it becomes clear that the 
superior Abstraction and Role-Expressiveness of TamDera comes at a cost: more files need to be 
created, understood and maintained by architects, programmers and code reviewers.  

 
Conciseness analysis. The CDs Viscosity, Visibility, Diffuseness, and Hard Mental Operations 
together indicate the level of conciseness that a language offers to represent the different rules of a 
DSL. The joint analysis of all conciseness CDs led us to infer other interesting findings. For 
example, the TamDera reuse mechanisms are consistently the key factors to support more concise 
specifications of architectural rules. The conciseness benefits in TamDera tend to increase for all 
the metrics as new versions are generated. We also have noticed that Diffuseness plays a central 
role in conciseness evaluation. By reducing the number of Elements required to write a Concept, 
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all other conciseness CDs would be influenced. For example, if one reduces the Diffuseness 
degree in Detex or TamDera, the number of Hard Mental Operations would also be reduced. 

 
Expressiveness vs. Conciseness. To improve the expressiveness or conciseness of a DSL, both 
CDs groups must be considered. In our analysis, we have noticed that the improvement of a group 
influences the other. For example, if in Detex we improve the Closeness of Mapping by sharing 
different Concepts for some files, this will worsen the cognitive dimension Visibility but, in 
contrast, the cognitive dimension Hard Mental Operations will improve. This leads us to the 
conclusion that it is not possible to improve the expressiveness and conciseness of a DSL without 
considering the other CDs group. So, it is necessary to define the objectives of the DSLs or to set 
a degree of balance between the two groups before starting to develop new characteristics of a 
DSL. 
 
Suitability of the DSLs to different project settings. The use of different versions of HW and 
MM allowed us to infer circumstances in which it is better to use each of these two DSLs. For 
projects with a few versions dominated by stable, non-reusable rules or with a small set of 
architectural rules, the use of Detex seems more advisable than TamDera. The former allows the 
specification of the architecture rules in a single file, which is easier to learn by different 
stakeholders. Nevertheless, TamDera seems to be more advisable for large systems with many 
architectural rules or in projects with many planned versions. TamDera has also shown superior 
usability in cases where the DSL specification involves similar Concepts, where the differences 
can be expressed by inheritance and compositional reuse [4]. TamDera enables a better 
organization of rule specifications per Concept in different files. The language also allows 
stakeholders of different projects to work without needing to redefine rules or Concepts from the 
scratch or modify existing files from one project to another. 

8. STUDY LIMITATIONS 

In our study, a first limitation is related to the operational definition of the metrics to analyze the 
usability of the DSLs. To reduce the influence of this limitation, we proposed a metamodel that 
identifies the most important entities of a textual DSL in order to propose metrics based on this 
metamodel. It is worth to notice that, despite our metamodel not being instantiated for several 
DSLs used for detecting architectural anomalies, most of the entities of the metamodel are found 
in DSLs that support a subset of either anti-drift or anti-erosion rules [4]. The metamodel can also 
be extended in the future in case DSLs in this domain evolve, thereby allowing a better evolution 
of the usability metrics’ definitions. In addition, our study protocol can be reused to assess DSLs 
of several architectural rule-checking subdomains.  

Another limitation relies on the procedures for quantifying the values of the metrics. Since 
most of them needed to be extracted manually, they can be directly associated with the decisions 
made while extracting them. In order to ameliorate this issue, the quantification of metrics in each 
application was widely discussed among experienced developers before data analysis. We also 
consulted the designers and developers of Detex and TamDera to address certain doubts about the 
language features. For instance, we needed to confirm with them the full set of representations 
actually supported at the moment in both DSLs.  

Another threat resides on the choice of what must be analyzed in both chosen DSLs, since 
they have different capabilities regarding the detection of architectural degradation (Section 6.2). 
To reduce this threat, we performed a detailed analysis of the DSLs properties in order to reduce 
the difference between them and chose only common characteristics of both DSLs. Threats to 
external validity are conditions that allow the generalization of results. To address this kind of 
threat, we selected applications from different domains and developed by different research 
groups. These applications are representative of architectural degradation and maintenance tasks, 
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allowing us to use several constructions of the DSLs analyzed. Moreover, the applications have a 
significant size (Section 6.3) and they embrace different types of architecture-level changes. 

9. RELATED WORK 

In addition to the way we instantiated the CDN framework to evaluate the usability of DSLs for 
architectural rules checking, there are other instantiations in the community with different 
purposes. In [6], Maia et al. present the creation, description, and adaptation of the usability CDs 
to compare two middleware systems with regard to their flexibility. However, Maia describes a 
qualitative CDN-based method to analyze the cognitive effort made by programmers while 
adapting middleware implementations, more precisely OiL3 and Mico. They also show how both 
platforms designed for flexibility have been compared, and report the observations reported from 
two experts in middleware implementation and the programming languages used in these systems. 

Another instantiation [21] presents a study on the Nested Context Language (NCL), the 
standard declarative language of the Brazilian terrestrial digital TV system. This study shows the 
usability of its design and conceptual model in supporting reuse at a declarative level. The reuse 
can happen in static or running code, inside and between applications and reuse of code spans. For 
that, this study used CDN framework to analyze aspects of the NCL usability also in a qualitative 
manner. 

10. CONCLUSIONS AND FUTURE WORK 

In this work, we presented a study to compare the usability of textual DSLs under the perspective 
of software maintenance. We developed a usability metrics suite based on the CDN framework. 
We compared two textual DSLs to detect architectural problems through several versions of two 
evolving systems. 

The main results suggested that the proposed metrics were useful to early identify the DSL 
usability limitations, to reveal specific features of the DSLs favoring software maintenance tasks, 
and to successfully analyze eight usability dimensions that are critical in many DSLs. In this 
context, the results obtained are evidence that the metric suite created for quantitatively analyzing 
the usability of DSLs supports an objective comparison between DSLs, and therefore might help 
to improve them and to promote their acceptance. The proposed approach can also complement 
qualitative analyses approaches found in the literature. Moreover, the results also provided extra 
information of the tools that used those DSLs. The results of the metrics indicate that a constant 
communication between the stakeholders is fundamental. Therefore, tools for detection 
architectural anomalies need to enable constant communication between the stakeholders while 
developing an application. We believe this would allow a better specification of the architectural 
rules and faster learning of the application architecture by the programmers and code reviewers. 

To the best of our knowledge, this work is a first attempt to define an evaluation methodology 
for quantitatively analyzing the usability of DSLs. It needs further improvement and validation, 
although we believe it supports our argument that the use of quantitative analyses can be a 
valuable approach to understand the limitations of DSLs. So, in this context, we envision several 
directions in which this work can evolve, such as: (i) perform similar studies to evaluate the 
integration and performance of DSLs, (ii) repeat the instantiation process to evaluate DSLs in 
other domains (e.g.:  behavior control and coordination, software architectures, databases, etc) 
based on our instantiation process, (iii) add a neutral application and neutral elements, like 
Architecture Description Languages developed by others in order to obtain supplementary results 
(iv) extend the CDN with new dimensions to support deeper analysis of DSL usability, and (iv) 
investigate how qualitative and quantitative methods can be combined to provide a better 
understanding of usability in DSLs. We believe that the combination of a qualitative analysis with 
quantitative analysis is possible because the study itself has successfully integrated qualitative 
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with quantitative evaluation. However, we see two basic ways to integrate quantitative and 
qualitative analyses in the future: i) conduct two analyses in parallel, independently, and compare 
their results (this approach can even bring interesting results regarding the refinement of the 
quantitative analysis that was proposed), and ii) make an initial quantitative analysis, which would 
give inputs for a deeper qualitative analysis of points shown by quantitative analysis as being 
critical. 
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