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Abstract 

Damage to fresh citrus caused  by impact of fruits onto collecting surfaces has restricted the adoption of 

mechanical harvesting. Two different experiments were developed in this research work: citrus free 

dropping experiment and shock absorbing capacity experiment. In the citrus fruit free dropping 

experiment, mandarin, orange and lemon fruit damage was studied. Three reception surfaces were studied 

(concrete floor, elevated canvases provided with a frame and wheels and concrete floor covered with 

shock absorber canvases). Three dropping heights were studied. In the shock absorbing capacity 

experiment, an electronic sphere and a triaxial accelerometer  were used to measure the shocking capacity 

of seven reception surfaces (ground, ground covered with shock absorber canvases, ground covered with 

weeds, ground covered with “mulch” and elevated canvases provided with a frame and wheels). Elevated 

canvases had the higher shock absorbing capacity compared to the other surfaces (260  m s
 -2

 maximum 

acceleration compared with 1753 m s
 -2

 to 2772 m s
 -2

 ). Weeds, mulch and shock absorbing canvases 

showed significantly higher shock absorbing capacity than the field ground.   Besides, shock absorber 

canvases covering concrete floor reduce impact and fruit damage (1866 m s
 -2

 maximum acceleration 

compared to 2477 m s
 -2

). Citrus damage susceptibility during harvest depend on the variety. Elevated 

canvases and shock absorber canvases could be used as reception systems in fresh market citrus 

mechanical harvesting. 

Keywords: mechanical harvesting, citrus, fruit damage, electronic sphere, reception surface, logistic 

regression 

Nomenclature 

 

B 

C 

CC 

W 

G 

GC 

Mu 

E 

 

 

Blank sample 

Concrete floor 

Concrete floor covered with the shock absorbing canvases 

Ground covered with weeds  

Ground  

Ground covered with the shock absorbing canvases  

Ground covered with “mulch”  

Elevated canvases with frame and wheels  

1. Introduction  

The number of fresh market crops currently mechanically harvested is small. Mechanical harvester-based 

production systems are evolving to reduce field losses and fruit damage (Glancey, 2005). In Spain, all 

citrus harvesting is performed by hand (Torregrosa, Gil, Ortiz, Ortí, 2009). It accounts for half the total 

crop production costs. Citrus farmer incomes have decreased by more than 20% in the last 5 years.  A 

reduction of the high harvesting costs could help to maintain the crop profitability. Mechanical harvesting 

could be an alternative to traditional harvesting in order to reduce harvesting costs. However, fresh 

market citrus damage during reception restricts mechanical harvesting. Thus is necessary to assess fruit 

damage during harvesting. 

Citrus fruit damage during harvest and postharvest handling could be due to impacts, compressions or 

frictions. Citrus fruit damages are difficult to measure in an external quality assessment. However, 

friction damages are easier to detect due to the olecellosis or oil spotting (Fornes, Moltó, Juste, 1994).  
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Juste, Gracia, Molto, Ibañez and Castillo (1988) tested citrus fruit physical properties for fresh fruit 

mechanical harvesting. Puncture tests were carried out during four harvesting times along the growth 

season. It is important to determine the safe handling limits for citrus fruit during harvesting.  Menesatti, 

Paglia, Solaini, Niciarelli and  D’Andrea (2005) measured firmness and elasticity of different citrus fruits. 

Mandarins presented less firmness and elasticity than oranges and lemons. Significant differences were 

found between different varieties. It is necessary to provide growers with the information to choose fresh 

market citrus varieties acceptable to consumers and resistant to mechanical handling. Flood, 

Burks,Texeira (2006) studied the physical properties of oranges using puncture and burst tests, a model 

was developed that relates punch diameter to puncture force. Recommendations were made in order to 

design a grasping robotic citrus harvester end-effector.  

Pang, Studman, Banks and  Baas (1996) proposed  a method for rapid assessment of bruise damage in 

order to assess in laboratory the susceptibility of apples to bruising with field experience during handling,  

The method involves dropping fruit from a geometrically increasing series of heights onto a flat steel 

surface using a pendulum, and counting the number of bruises observed with skin impact. The resulting 

number is termed the bruise factor, to distinguish it from other measurements of bruising. The bruise 

factor test requires a sample of 20 fruit. 

Timm and Guyer (1998) developed drop tests to evaluate cherry firmness sensitivity and identified 

cushion materials that could reduce firmness loss during mechanical harvesting. They tested four different 

cushion materials and compared them to a hard surface. Firmness loss averaged 28% for a 0.9 m drop 

onto a hard surface compared to 6 to 10% for the four cushion materials.  

Lu and Wang (2007) compared the conventional testing methods and free-fall dropping tests. Free-fall 

dropping tests with a series of drop heights were conducted on fresh Gala apples. The dropping impact 

acceleration, velocity, and deformation change during contact at various drop heights were obtained. The 

relationship between bruising deformation and theoretical deformation of the samples was determined. 

The results showed there were obvious differences between dropping bruise boundary of apples and 

conventional damage boundary of products.  

Scherrer Montero et al. (2009) evaluated mechanical damage of tangerines by visual and chemical quality 

assessment. Harvested tangerines were submitted to different degrees of impact by letting the fruit fall 

from 0.4 m, 0.6 m, 0.8 m and 1.0 m heights. Each fruit was dropped twice from the same height onto a 

rigid ceramic surface. There were three replicates, with six fruits for each experimental unit for each 

cultivar. The main modifications produced by impact on the fruit were losses of citric acid and soluble 

solids. 

In Valencia (Spain), due to the citrus fresh market and the orchard conditions, canopy shakers and citrus 

fruit picking-up machines (Bora & Ehsani, 2009) could not be used for mechanical harvesting. Trunk 

shakers have been studied and adapted for citrus mechanical harvesting. However, fruit reception is not 

already achieved. In peaches, elevated canvases provided with a frame and wheels have been developed 

to catch the fruit (Torregrosa, Martín, Ortiz, Chaparro, 2008). The experiments were carried out on a crop 

of Caterina peaches. Three catching systems were tested: A) a pair of canvases, B) a catching trailer with 

extendable flat planes, and C) a pair of canvases with direct discharge to boxes. Less than 2.4% of the 

fruits were severely injured. System C was also tested to harvest fresh market Tardivel  peaches, in this 

case 13% of the fruits were damaged to some extent (severe and slight) and this was not acceptable for 

the producers. Fruit damage during harvesting is due to the branch impacts when falling and to the impact 

on the reception surface 

In fruit harvest and postharvest handling systems, cushioning and velocity control devices are used to 

avoid bruising (Amrstrong, Brown, Timm, 1995). A cushioning material must provide effective energy 

absorption and dissipation and not create the critical stress/strain level in the produce tissue that will 

initiate bruising.  

In agricultural engineering, electronic spheres (or electronic fruits) are commonly used to evaluate fruits 

damage during mechanical handling (harvest and postharvest).  

  

http://tais3.cc.upv.es/V/72FIYXL1KMERX6RGPK3FFHEIUL912S7UADKRT3TM9U676JAK4V-18202?func=meta-3&short-format=002&set_number=002649&set_entry=000002&format=999
http://tais3.cc.upv.es/V/72FIYXL1KMERX6RGPK3FFHEIUL912S7UADKRT3TM9U676JAK4V-18202?func=meta-3&short-format=002&set_number=002649&set_entry=000002&format=999
http://tais3.cc.upv.es/V/72FIYXL1KMERX6RGPK3FFHEIUL912S7UADKRT3TM9U676JAK4V-18202?func=meta-3&short-format=002&set_number=002649&set_entry=000002&format=999
http://tais3.cc.upv.es/V/72FIYXL1KMERX6RGPK3FFHEIUL912S7UADKRT3TM9U676JAK4V-18202?func=meta-3&short-format=002&set_number=002649&set_entry=000002&format=999
http://tais3.cc.upv.es/V/EVSHYT6M55SYNG89DBF7XEUU5P9QB6DY6YE5K9BTJDRMYF3CL1-11865?func=meta-3&short-format=002&set_number=000719&set_entry=000001&format=999
http://tais3.cc.upv.es/V/EVSHYT6M55SYNG89DBF7XEUU5P9QB6DY6YE5K9BTJDRMYF3CL1-11865?func=meta-3&short-format=002&set_number=000719&set_entry=000001&format=999
http://tais3.cc.upv.es/V/EVSHYT6M55SYNG89DBF7XEUU5P9QB6DY6YE5K9BTJDRMYF3CL1-11865?func=meta-3&short-format=002&set_number=000719&set_entry=000001&format=999
http://tais3.cc.upv.es/V/EVSHYT6M55SYNG89DBF7XEUU5P9QB6DY6YE5K9BTJDRMYF3CL1-11865?func=meta-3&short-format=002&set_number=000719&set_entry=000001&format=999
http://tais3.cc.upv.es/V/EVSHYT6M55SYNG89DBF7XEUU5P9QB6DY6YE5K9BTJDRMYF3CL1-11865?func=meta-3&short-format=002&set_number=000719&set_entry=000001&format=999
http://tais3.cc.upv.es/V/EVSHYT6M55SYNG89DBF7XEUU5P9QB6DY6YE5K9BTJDRMYF3CL1-11865?func=meta-3&short-format=002&set_number=000719&set_entry=000001&format=999
http://tais3.cc.upv.es/V/EVSHYT6M55SYNG89DBF7XEUU5P9QB6DY6YE5K9BTJDRMYF3CL1-11865?func=meta-3&short-format=002&set_number=000719&set_entry=000001&format=999
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Van Canney, Tijkens, Ramon, Verschoe and Sonck (2003) studied the measuring characteristics of a PTR 

200 electronic sphere when impacting five materials, frequently used on commercial potato harvesters. 

Hard materials with little energy absorption and soft materials with strong cushioning effects were 

chosen. Different heights from 0.1 m to 1 m were studied depending on the cushioning effect of the 

material. 

 

Hernández (2000) tried to compare citrus fruit damage and electronic sphere data.  An impact electronic 

sphere IS100 and a pressure electronic sphere PMS60 were used. Clauselina mandarin and Navelina 

orange damage were tested letting the fruit fall from different heights. Mandarins were dropped from 0.08 

m to 1.48 m over a steel surface, fruits dropped from less than 0.7 m did not presented olleocelosis 

damage. Oranges were dropped from 0.10 m to 0.75 m over a ceramic surface.  

Garcia-Ramos, Ruiz-Altisent and Ortiz-Cañavate (2004) studied different types of orange packing 

systems (packing table, box filler and net filler) using an instrumented sphere IS 100 in four orange 

packing lines in the Valencia region (Spain). Ortiz et al. (2007) studied the damage susceptibility of two 

different surfaces used for fruit harvesting. An electronic sphere was used to compare the shock absorbing 

capacity of different materials used in two different systems: a pair of canvases and a catching trailer with 

extendable flat planes. Fisher, Ferreira, Spósito and Amorim (2009) characterized postharvest injuries in 

Valencia oranges and Murcott tangors after different processing stages in a packinghouse and compared 

them to the acceleration registered with an instrumented sphere. Impacts in the processing line were 

caused mainly by drops on hard surfaces. 

2. Objective 

To assess citrus fruit damage during mechanical harvesting according to the reception surface and to 

determine the shock absorbing capacity of different reception surfaces for citrus mechanical harvesting. 

To compare the usefulness of an electronic sphere PTR200 and a ceramic triaxial accelerometer to assess 

the shock absorbing capacity of different reception surfaces for citrus mechanical harvesting. 

3. Materials y methods 

Two different experiments were carried out:  

(1) Citrus free dropping tests   

(2) Shock absorbing capacity tests  

3.1. Citrus free dropping tests 

Mandarin (Orogrande and Clemenules), orange (Navel Lane Late) and lemon (Fino) fruit damage was 

studied during harvesting reception.  Citrus were manually detached two hours before the dropping test 

was carried out. Mandarin and orange varieties were collected when the commercial harvesting 

operations were carried out in the orchards. Two sets of Fino lemons were tested: green unripe set and 

yellow ripe set. Two factors were studied: reception surface and drop height. Citrus were dropped over 

three reception surfaces: concrete floor (C), elevated canvases provided with a frame and wheels (E) and 

concrete floor covered with shock absorber canvases (CC).  

The elevated canvases are rectangular shape canvases (3 m x 3m), made of flexible waterproof 

material. They are attached with elastic ropes to a tubular aluminium structure and provided 

with four wheels to ensure easy movement and to be adjustable to different heights (from 0.25 

m to 0.75 m). 

  

http://tais3.cc.upv.es/V/EVSHYT6M55SYNG89DBF7XEUU5P9QB6DY6YE5K9BTJDRMYF3CL1-11865?func=meta-3&short-format=002&set_number=000719&set_entry=000001&format=999
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Fruits were dropped from three different drop heights: 0.5 m, 1 m and 2 m (in Valencia, citrus trees have 

a maximum height of 2.5-3 m). Fruits were stored under room conditions (20ºC and 60% RH).  

Slightly damaged fruit percentage and rotten fruit percentage were evaluated according to the local 

market standards, after two weeks storage. 

Thirty fruits were studied in each sample. One sample from each variety was used as blank sample. Thirty 

more fruits from each variety were used to measure weight, soluble solid content and acidity. 

3.2. Shock absorbing capacity tests  

An impact electronic sphere or electronic sphere PTR 200 (a digital electronic potato for impact 

detection, 168 g, three axis, percentage scale, www.martinlishman.com) and a ceramic triaxial 

accelerometer (Kistler type 8763A500; range ± 500 G; sensitivity 10 mV/G;  weight 3.3 g; mini cube 

design 0.01 m length; www.kistler.com) were used to study the shock absorbing capacity of different 

reception surfaces.  

Figure 1. The triaxial accelerometer and the electronic sphere. 

The triaxial accelerometer was located on the top part of the electronic sphere and was stuck to the 

electronic sphere wrapped with tape (Figure 1). The electronic sphere was dropped fifteen times for 0.5 

m, 1 m and 2 m over the surfaces: concrete floor (C); concrete floor covered with shock absorber 

canvases, plastic canvas with cushioning bubble material (CC); ground, natural field soil surface (G); 

ground covered with shock absorber canvases (GC); ground covered with weeds (W); ground covered 

with “mulch” (Mu) and elevated canvases provided with frame and wheels, rectangular aluminium tube 

structure (4 x 3 m, 0.04 m diameter), with plastic material canvases tightened with elastic ropes (E).  

It was not possible to register data from 1 m and to 2 m height dropping over C and CC due to the damage 

that could be caused to the electronic sphere devise. The electronic sphere is not able to register more than 

100% of its range.  

The electronic sphere impact percentage and the accelerometer maximum acceleration were measured. 

In the citrus free dropping tests, a logistic regression analysis (Kleinbaum and Klein, 2002) was used to 

assess fruit damage (0= not damaged, 1= damaged) according to the dropping height and the reception 

surface. 

In the shock absorbing capacity tests, one-way analysis of variance and two-way analysis of variance 

were developed to study the effect of the dropping height and the reception surface in the shocking 

absorbing capacity measured with the electronic sphere and the accelerometer. Duncan multiple range 

tests (Jobson, 1991) were carried out to study the different effects of the surfaces. 

Statistical analyses were performed using a commercially available statistics package (Statgraphics Plus, 

version 5.1., STSC Inc., Rockville, MD, USA). 

  

http://www.martinlishman.com/
http://www.kistler.com/
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4. Results and discussion 

 

4.1. Fruit dropping tests 

The tests have shown that citrus damage susceptibility depend on variety and  ripeness stage (Table 1), as 

found by Menesatti et al. (2005), therefore we are going to analyse the results based on variety.  

Table 1. Rotten fruit percentage according to variety, dropping height and reception surface.  

*According to the harvest date 

Mandarin Orogrande dropped from a height of 0.5 m and 1 m over the shock absorber canvases placed on 

the concrete floor and directly over the concrete floor did not present any damage after two weeks 

storage. The ones dropped from 2 m over CC had 17 % of slightly damaged fruits and 3 % of rotten fruits. 

Those samples dropped directly over the concrete floor had 30 % of slightly damaged fruits and 13 % of 

rotten fruits.  

Mandarins Clemenules dropped from a height of 1 m presented a 23% of slightly damaged fruits and 

those dropped from a height of 2 m over the concrete floor showed considerable damage (7 % of rotten 

fruits). 

Navel Lane Late was the variety most susceptible to damage among the ones studied. Most of the fruits 

were broken when impacting the surface and its elevated damage susceptibility was related to its overripe 

ripeness stage according to the harvesting date. 

Navel Lane Late oranges dropped over the concrete floor (C) and over this covered with shock absorber 

canvases (CC) presented damages for all the dropping heights. In the case of 2 m height, the rotten 

percentage of the oranges dropped over C was 75% and over CC was 60%. Most of the damage was 

produced by the broken of the fruit when impacting the surface. The logistic regression model 

(1=damage; 0= no damage) showed a significant effect of the factors height and surface, as well as, a high 

goodness fit between the observed and the model predicted frequencies  (Table 2). 

As it was expected, height has a high effect on damage percentage (estimated coefficient= 2.9). Blank 

sample was the surface most different to concrete floor (the reference surface), with less effect on fruit 

damage (estimated coefficient = -17.4), followed by the elevated canvases (estimated coefficient = -4.3), 

and the concrete floor covered (estimated coefficient = -0.7). The model also evidences significant 

differences in the damage produced with the three surfaces. 

  

 0.5 m 1 m 2 m 

 B E 

 

CC  

 

C 

  

B E 

 

CC  

 

C 

  

B E 

 

CC  

 

C 

  

Orogrande 0 0 0 0 0 0 0 0 0
 

0
 

3
 

13
 

Clemenules 0 0 0 0 0 0 0 0 0
 

0
 

0
 

7
 

Navel Lane  Late 0 0 4 8 0 0 4 8 0
 

4
 

60
 

75
 

Unripe Fino*  0 0 0 0 0 0 0 0 0
 

0
 

0
 

0
 

Ripe Fino* 0 0 0 0 0 0 0 0 0
 

0
 

3
 

7
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Table 2.  Logistic regression adjusted model for Navel Lane Late oranges.   

 Estimated coefficient Likelihood ratio test (significance) 

Constant -4.7  

Height 2.9 Chi-square=66.1, df=1, p-value<0.01 

 

Surface 

CC -0.7  

Chi-square=68.0, df=3, p-value<0.01 E -4.3 

B -17.4 

Goodness fit: Hosmer-Lemeshow Chi-square = 2.0, df= 3, p-value = 0.57 

Fino lemons harvested in the green stage did not present any damage, even those dropped from 2 m 

directly over the concrete floor. However, ripe lemons dropped from 2 m height presented a 3% of rotten 

fruits over CC and 7% over C.  

Fruit dropped over the elevated canvases did not show any damage, with the exception of Navel Lane 

Late oranges dropped from 2 m height. The citrus caught with this reception surface showed a similar 

level of damage as manual harvesting (blank sample) even when they were dropped from 2 m height. 

They could be used as reception systems in fresh market citrus mechanical harvesting as the average 

citrus tree height is 2.5 m 

4.2. Shock absorbing capacity tests  

Elevated canvases had the higher shock absorbing capacity (average accelerometer measurement below 

500 ms
-2

 and average impact value under 15%). The weeds shock absorbing capacity was higher than the 

“mulch” and the ground covered with canvases. The shock absorbing canvases lightly increase the shock 

absorbing capacity of the concrete floor measured by the accelerometer for 0.5 m dropping height. The 

ground showed a higher shock absorbing capacity than the concrete floor. The ground covered with shock 

absorbing canvases did not increase the shock absorbing capacity for 1 m and 2 m heights as compared 

with bare concrete. 

The electronic sphere could not be used to measure C and CC from higher than 0.5 dropping height, 

because the devise could be damaged.  When data from 0.5 m dropping height is analyzed, the factor 

surface has a high significant effect on the electronic sphere impact percentage (ANOVA analysis, Table 

3). In the same way, surface has a significant effect on the accelerometer maximum acceleration 

(ANOVA analysis, Table 4).  

Table 3. One-way analysis of variance of the surface in the electronic sphere impact percentage (0.5 m 

height data). 

Source 

Sum of 

Squares df Mean Square F-ratio p-value 

Surface 106941.0 6 17823.5 49.8 0.000 

Residual 33318.0 93 358.3 

  
Total 140259.0 99 

    

Table 4. One-way analysis of variance of the surface in the accelerometer maximum acceleration (0.5 m 

height data). 

Source 

Sum of 

Squares df Mean Square F-ratio p-value 

Surface 47318300.0 6 7886390.0 27.2 0.000 

Residual 26925900.0 93 289526.0 

  
Total 74244300.0 99 

   
 

In table 5 it is shown, for 0.5 m dropping height, the Duncan multiple range test of the electronic sphere 

impact and the accelerometer maximum acceleration according to the reception surface. The electronic 

sphere and the accelerometer showed that the elevated canvases (E) reduced significantly the impacts 

with respect to the other surfaces.  
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Neither the accelerometer nor the electronic sphere showed significant differences between the ground 

covered with weeds (W), the ground covered with “mulch” (Mu) and the ground covered with shock 

absorber canvases (GC).  

The electronic sphere was not able to discriminate between concrete floor (C) and concrete floor covered 

with shock absorber canvases (CC) due to the sensor saturation in the most severe impacts.  

The accelerometer showed that, for 0.5 m, the elevated canvases had significantly the lowest acceleration 

(97 m s
 -2

), while the concrete floor had significantly the highest (2477 m s
 -2

). When this very damaging 

surface (C) was covered with a shock absorber canvases (CC) the measured acceleration was significantly 

lower (1866 m s
-2

). 

Table 5.  Duncan multiple range test of the electronic sphere impact and the accelerometer maximum 

acceleration according to the reception surface for 0.5 m dropping height. Significant differences between 

the reception surfaces according to the impact measurement. “X” in the same column indicates no 

significant differences (p > 0.05)  
  Mean Statistical 

significance 
  Mean  Statistical 

significance 

 

 

Electronic 

Sphere (%) 

 

E 7.9 X  

 

Accelerometer 

(m s -2) 

E 99.9 X 

W 25.4   X W 1200.0    X 

Mu 33.4   X Mu 1336.9    XX  

GC 34.3   X GC 1432.6    XXX 

G 72.8      X G 1728.6       XX 

CC 86.6      XX CC 1865.8          X 

C 100.0         X C 2477.3            X 

The two factors (surface and height) and their interaction have a significant effect on the electronic sphere 

impact percentage (ANOVA analysis, Table 6). In the same way, surface and height and their interaction 

have a high significant effect on the accelerometer maximum acceleration (ANOVA analysis, Table 7). 

However, in both cases, the interaction effect was considerably lower than the effect of the factors. 

Therefore, Duncan multiple range tests were carried out for the qualitative factor (surface). 

Table 6. Two-ways analysis of variance of surface and height (and their interaction) in the electronic 

sphere impact percentage. 

Source 

Sum of 

Squares df Mean Square F-ratio p-value 

Surface 4738.1 2 23690.6 62.4 0.000 

 Height 112208.0 4 28052.0 73.9 0.000 

Surface*Height 17258.4 8 2157.3 5.7 0.000 

Residuals 73238.3  193 379.5 

  
Total 270487.0 207 

    

Table 7.  Two-way analysis of variance of surface and height (and their interaction) in the accelerometer 

maximum acceleration. 

Source 

Sum of 

Squares df Mean Square F-ratio p-value 

Surface 65344400.0 2 32672200.0 103.9 0.000 

 Height 138084000.0 4 34521100.0 109.8 0.000 

Surface*Height 17034000.0 8 2129250.0 6.8 0.000 

Residuals 60675100.0 193 314379.0 

  
Total 316934000.0 207 

   

In table 8 it is shown the Duncan multiple range test of the electronic sphere impact and the accelerometer 

maximum acceleration according to the reception surface and the dropping height, without the concrete 

floor and the concrete floor covered with shock absorber canvases data. 
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Table 8. Duncan multiple range test of the electronic sphere impact and the accelerometer maximum 

acceleration according to the reception surface and the dropping height. Significant differences between 

the reception surfaces and the heights according to the impact measurement. “X” in the same column 

indicates no significant differences (p > 0.05)  
   Mean Statistical 

significance 
   Mean Statistical 

significance 

 

Electronic 

Sphere (%) 

 

Surface 

E 11.5 X  

 

Accelerometer 

(m s -2) 

 

 

Surface 

E 259.7 X 

W 61.1    X W 1752.9    X 

Mu 63.6    X Mu 2056.6       X 

GC 67.9    X GC 2410.4         X 

G 81.8        X G 2772.4           X 

 

The elevated canvases had significantly the lowest impact value compared to the other surfaces, measured 

by the electronic sphere and the accelerometer (11,5%  and  259.7 m s
 -2

 respectively). However, the 

electronic sphere was not able to discriminate between ground covered with weeds, ground covered with 

“mulch” and ground covered with shock absorber canvases due to the high variability of the sensor 

measurements. The electronic sphere discriminant ability between the surfaces is lower than the 

accelerometer one. These results agreed those found by Van Canney et al.(2003) about the strongly 

varying results due to anisotropic mechanical 

properties, varying damping characteristics and geometry of the PTR 200 sensor zones.  It is also 

necessary to mark the impossibility of using the electronic sphere in measuring the most severe impacts.  

The accelerometer showed that the surfaces W, Mu and GC have significantly lower acceleration than G. 

This result confirms the shocking capacity of shock absorber canvases, weeds and “mulch” when they are 

covering field ground.   Weeds showed higher shock absorbing capacity covering the field ground than 

“mulch” and shock absorbing canvases. And “mulch” showed higher shock absorbing capacity than 

shock absorbing canvases. 

Values registered with the two devises showed that the damage produced from the three dropping heights 

was significantly different according to the reception surface, as it is shown in the interaction plots 

(Figure 2).  

 

Figure 2. Interaction plots. Average accelerometer measurement (ms
-2

, above) and average electronic 

sphere impact (%, below) for the reception surfaces. 

Damage increase does not evolve in a similar way in the different surfaces. Ground covered with shock 

absorber canvases and ground covered with “mulch” showed a convex tendency compared to the linear 

tendency of the elevated canvases and the ground. 

5. Conclusions 

Citrus damage susceptibility during harvest depends on the variety. 

Fruit damage tests evidenced that concrete floor was the most damaging surface, elevated canvases were 

the lowest and shock absorbing canvases could reduce fruit damaging. 

Elevated canvases had significantly the highest shock absorbing capacity, and it had the lowest 

accelerations (260  m s
 -2

 maximum acceleration compared with 1753 m s
 -2

 to 2772 m s
 -2

). Weeds, mulch 

and shock absorbing canvases showed significantly higher shock absorbing capacity than the field 

ground.  

The accelerometer showed that for 0.5 m height the acceleration over the concrete floor covered with 

canvases was significantly lower than over the concrete floor (1866 m s
 -2

 maximum acceleration 

compared to 2477 m s
 -2

).  

The PTR200 electronic sphere has some limitations measuring the most severe impacts. The 

accelerometer has a higher discriminant ability to segregate different shocking materials and could be 

used to measure impacts from higher heights over hard surfaces.  

Elevated canvases have a clear effect on avoiding fruit damage when dropping from 2 m heights. They 

could be used as reception systems in fresh market citrus mechanical harvesting. Weeds, mulch and shock 
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absorbing canvases could reduce impact when they are covering field ground in citrus mechanical 

harvesting. 
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