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Abstract.

In this paper we present a simple experimental set-up to study the fall of a

rigid rod, which can freely rotate around an articulated joint at the lowest point.

The experimental set-up permits preparation of a laboratory session for Physics or

Engineering students. The analysis of the data is oriented at several degrees of

difficulty, in such a way that the same experimental set-up can be used with students

on different courses. The experimental data obtained with an electro-optical sensor are

fitted to the theoretical equation of motion, obtaining a very good agreement between

experiment and theory. In addition, direct measurement of the parameters involved

in the equations was carried out, showing a very good agreement with the calculated

parameters.

PACS numbers: 07.10.-h, 45.20.-d, 45.20.dc, 45.20.dh, 45.40.Cc
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1. Introduction

This paper is focused on the experimental study of the fall of a rigid rod, which can freely

rotate around an articulated joint at the lowest point, whose fundamental equations are

the same as for a pendulum. Analytical and approximate solutions for the differential

equation of the pendulum can be found in the literature (see for instance references

[1, 2, 3, 4, 5, 6, 7] among many others, and references therein). These solutions are

based on Jacobi elliptic functions[8].

For the experimental study of a falling rigid rod, a home-made experimental set-

up is presented, which consists of a rigid rod free to rotate in a vertical plane. This

experimental set-up is shown in Figure 1. The set-up permits preparation of a laboratory

session for Physics or Engineering students. The analysis of the data is oriented at

several degrees of difficulty, in such a way that the same experimental set-up can be

useful for students on different courses. In addition, the cost of the proposed system

is very cheap, except for the personal computer, which is used for data recording,

although this should not be an implementation difficulty as this is a very common

general equipment in Physics laboratories. Experimental measurements can also be

done by using a high speed camera, as reported in [9], where the movement of a rigid

rod is compared to the free fall of a ball, to find which hits earlier the ground, which

is commonly described as faster than gravity, faster than g, free fall paradox or simply

falling stick experiment.

The experimental set-up shown in Figure 1(a) consists of two rigid rods with an

articulated joint at the lowest point. These rigid rods can fall around the articulated

joint. At the end of the rod, two pieces of a sponge are placed to cushion the fall,

and to stop the system without being damaged (marked by a red circle in Figure 1a).

Between the rigid rods there is a wooden half circle protractor marked in degrees, with

18 holes, together with an electro-optical sensor for detecting light passing through the

holes. The holes have an angular size of 2 degrees. The first hole is placed at 7 degrees

due to the size of the detection system. The electro-optical sensor (see Figure 1(b)) is

composed of a light-emitting diode (led) and a receiver phototransistor placed one in

front of the other. When the system passes in front of the holes, the radiated light from

the led is received by the phototransistor producing a current which can be measured.

The wire of the electro-optical sensor has to be placed very carefully to avoid influencing

the mechanical motion of the system.

The system is connected to the mic-input of a sound-card [10] with a cable which

has a capacitor in series, so a signal is detected when it passes in front of the hole edges,

i.e. each 2 degrees, thus data about angular position vs. time can be measured (see

Figure 2 and Table 1 in the results section).
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JA Gómez-Tejedor, JA Monsoriu, European Journal of Physics 36 2015: 055036,

doi:10.1088/0143-0807/36/5/055036

Figure 1. (a) Experimental set-up for measuring the free fall of a rigid rod. (b)

Electro-optical sensor for detecting light passing through the holes. The red line

represents the emitted light from the diode integrated in the sensor.

2. Physical description of a falling rigid rod

The problem is schematically represented in Figure 1(a), where θ is the angle between

the vertical line and the rod. As commented in the introduction, the mathematical

and physical description of the problem can be analyzed in several ways in order to

adjust the problem to different student levels. In all cases, the assumption is made that

damping is small enough to be neglected from the equations and subsequent analysis.

This assumption will be discuss in section 4.

The potential energy of the system when the rod makes an angle θ with the vertical

line is given by

U = mgh = mgRCM cos θ, (1)

3
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where m is the total mass of the system, g is the gravitational acceleration, h is the

height of the center of mass and RCM is the distance from the articulated joint to the

center of mass of the system. The kinetic energy is given by

K =
1

2
Iθ̇2 =

1

2
mR2

gθ̇
2, (2)

where θ̇ is the angular velocity, I is the moment of inertia, and Rg is the radius of

gyration defined as

Rg =

√
I

m
. (3)

The system is dropped from an initial angle θ0, without initial velocity. Then, the

total initial energy, Ei, is given only by the potential energy at that position

Ei = mgRCM cos θ0. (4)

From the energy conservation of mechanical energy, this initial energy should be

equal to the total energy when the rod makes an angle θ with the vertical line,

mgRCM cos θ0 = mgRCM cos θ +
1

2
mR2

gθ̇
2. (5)

Therefore, we can obtain the angular velocity as

θ̇ =

√
2gRCM

R2
g

cos θ0 −
2gRCM

R2
g

cos θ. (6)

Defining the constant Ω2
0 as

Ω2
0 =

gRCM

R2
g

, (7)

Equation 6 can be reduced to

θ̇ = Ω0

√
2(cos θ0 − cos θ). (8)

3. Results

In this section, the experimental results obtained using the described experimental set-

up are summarized, together with the parameter calculations. All calculations are

carried out with Wolfram Mathematica R© software version 9.0.1.0.

The square of Equation 8 is given by

θ̇2 = (−2Ω2
0) cos θ + (2Ω2

0) cos θ0. (9)

Using this expression, students should measure the angular velocity as a function

of the angular position. The angular velocity can be approximately calculated as the

size of the hole (2 degrees = 0.0349 rad in the proposed set-up) divided by the time it

4
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takes to pass over the hole, which is measured with Audacity R© software version 2.0.5

[11]

θ̇ ≈ ∆θ

∆t
. (10)

Within this approximation, students should graphically represent the square of the

angular velocity vs. the cosine of the angle position, and a straight line should be

obtained. From this data, performing a linear fit, the slope of the straight line is

equal to −2Ω2
0. The y-intercept of the line is equal to 2Ω2

0 cos θ0, subsequently the

value of the initial angle can be calculated. This method is the simplest one of all

those proposed, therefore it should be appropriate for first year students of Physics or

Engineering degrees.

Figure 2. Example of a measurement with the Audacity R© software.

In Figure 2 a picture of the computer screen is shown, where the experimental results

can be observed. When the system detector passes in front of the edges of the hole, a

signal is recorded by the Audacity software. Then, positioning the cursor at the first

signal point (this point is taken as t=0) and the second cursor at the following points,

the time can be measured. For instance, in Figure 2, the first point is measured, with

a time interval between the first point and the second one of 1784 samples. Taking into

account that the system measures at a rate of 44100 samples per second, we obtain the

value of ∆t=1784/44100=40.5 ms. In order to make accurate measurements, the time

scale in the Audacity software has to be amplified. The complete set of data is shown

in Table 1, where the angle θ is the angle between the rod and the vertical line. For the

measurement of the angle, an error of 0.5 degrees is estimated. For time, the soundcard

records data at a rate of 44100 points per second. However, considering an error of

1/44100 s is completely unrealistic, therefore an error of 1.4 ms is estimated, which is

the minimum time that can be accurately measured using the Audacity software.

From the data shown in Table 1 and using Equation 10 the angular velocity can

be calculated. In Figure 3, the square of the angular velocity as a function of angular

position is represented. A linear fit has also been carried out in order to obtain the slope

5

http://doi.org/10.1088/0143-0807/36/5/055036
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Table 1. Experimental data measured with Audacity software.

(θ± 0.5) (t± 1.4) (θ± 0.5) (t± 1.4)

(degrees) (ms) (degrees) (ms)

7.0 0.0 9.0 40.5

11.0 73.9 13.0 95.9

15.0 116.4 17.0 132.1

19.0 149.3 21.0 162.5

23.0 175.0 25.0 186.0

27.0 197.4 29.0 207.2

31.0 216.1 33.0 224.7

35.0 232.9 37.0 240.7

39.0 247.9 41.0 254.9

43.0 261.2 45.0 267.8

47.0 273.7 49.0 279.7

51.0 285.4 53.0 290.9

55.0 296.1 57.0 301.3

59.0 306.1 61.0 311.0

63.0 315.8 65.0 320.4

67.0 324.8 69.0 328.9

71.0 333.2 73.0 337.2

75.0 341.2
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Figure 3. Angular velocity squared vs. cos θ. Crosses represent data points with

error bars, and solid lines the linear fit.
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and the y-intercept point, comparison with Equation 9, gives 2Ω2
0 = (103.7±1.2)(rad/s)2

and 2Ω2
0 cos θ0 = (103.3±0.9)(rad/s)2. From these results, the values of Ω0 and θ0 shown

in Figure 3 are obtained.

3.1. Analytical solution for a falling rigid rod

Returning to Equation 8, and taking into account that the angular velocity is equal to

the derivative of the angular position

dθ

dt
= Ω0

√
2(cos θ0 − cos θ), (11)

a separation of the variables obtains

dt =
dθ

Ω0

√
2(cos θ0 − cos θ)

. (12)

The integration of this equation from t = t0 where the rod makes an angle of θ0
with the vertical line, to a time t where the angle is equal to θ leads to

t− t0 =
1

Ω0

√
2

∫ θ(t)

θ0

dθ√
cos θ0 − cos θ

, (13)

t = t0 +

√
2

Ω0

√
cos(θ0)− 1

(
F

(
θ(t)

2
, csc

(
θ0
2

))
− F

(
θ0
2
, csc

(
θ0
2

)))
, (14)

where F (ϕ, k) is the elliptic integral of the first kind, defined as follows [2, 3, 8]:

F (ϕ, k) =

∫ ϕ

0

dθ√
1− k2 sin2 θ

(15)

where ϕ is the amplitude and k is the parameter. Equation 15 is real for arbitrary

value of ϕ if k2 < 1 and for |ϕ| < sin−1(1/k) if k2 ≥ 1. In this case, k2 = csc2
(
θ0
2

)
=

1/ sin2
(
θ0
2

)
≥ 1 and sin−1(1/k) = θ0/2, and therefore the elliptic integrals of Equation

14 are imaginary for θ(t) > θ0. Nevertheless, the final result of Equation 14 is always

real for θ(t) > θ0. Equation 14 gives the time t = t(θi, t0,Ω0, θ0) as a function of the

angle θ, where t0, Ω0 and θ0 are parameters which depend on the initial conditions.

In order to obtain these parameters, the method of least squares is used[12]. In the

least squares fitting method the objective function is defined by

χ2 =
N∑
i=1

(ti − t(θi, t0,Ω0, θ0))
2

∆t2i
, (16)

where N is de number of data points, t(θ, t0,Ω0, θ0) is the fit function given by Equation

14, and ∆ti is the error in the measurement of time, which in this case is constant for

all data points. Minimization of this function over the fit parameters t0, Ω0 and θ0
yields the least squares solution. This method is more complicated than the previous

one, therefore it is recommended for advanced undergraduate students of Physics or

Engineering degrees.
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Figure 4. Time as a function of position angle. Dots represent data points and the

solid line the analytical solution.

In Figure 4, time t as a function of the angle θ is represented, comparing the

experimental data with the analytical solution of time as a function of the angle

(Equation 14). By using the method of least squares, the parameters t0, Ω0 and θ0
are obtained. The results are shown in the Figure.

3.2. Numerical solution of the differential equation of a falling rigid rod

The equation of motion for a falling rigid rod is found by use of the Lagrangian function

L(qi, q̇i) = K(qi, q̇i) − U(qi), where qi, q̇i are the generalized coordinates and velocities,

and U and K the potential and kinetic energies introduced in Equations 1 and 2. The

differential equation of motion is given by Lagrange’s equation

d

dt

∂L(qi, q̇i)

∂q̇i
− ∂L(qi, q̇i)

∂qi
= 0. (17)

This problem has only one degree of freedom, qi = θ. Therefore, Lagrange’s

Equation 17 applied to Equations 1 and 2 yields the differential equation for θ

d2θ

dt2
− gRCM

R2
g

sin θ = 0, (18)

and introducing the constant Ω0 defined in Equation 7

d2θ

dt2
− Ω2

0 sin θ = 0, (19)
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which is the well known equation of the movement of a pendulum [13, 14, 15, 16], but

in this case in upward position. This equation could also be obtained by relating the

torque with the variation of the angular momentum with time, as it is done in reference

[9].

This differential equation can be solved analytically in a closed form with exact

solutions in terms of Jacobian Elliptic Functions [2, 17]. However, in this section, we

are interested in finding a numerical solution of this differential equation, with the initial

conditions for t = t0

θ(t = t0) = θ0, θ̇(t = t0) = 0. (20)

In this case, the free parameters t0, Ω0 and θ0 have to be fitted again. Therefore,

once more the least squared method is used to obtain these free parameters. In this

case, the objective function is defined as

χ2 =
N∑
i=1

(θi − θNS(ti, t0,Ω0, θ0))
2

∆θ2i
, (21)

where ∆θ2i is the measurement error of the angle θ which is also constant.

θNS(t, t0,Ω0, θ0) represents the numerical solution for θ of the differential Equation

19, which depends on time t and the parameters t0, Ω0 and θ0. This method is also

more complicated than the first one, therefore it is also recommended for advanced

undergraduate students of Physics or Engineering degrees. Simplified numerical

solutions are already possible at undergraduate level by using spreadsheet programs,

as it is done in reference [9].

In Figure 5, the angle θ is represented as a function of time t, and the numerical

solution of the differential equation of the movement is compared (Equation 19). The

results for parameters t0, Ω0 and θ0 are shown in the Figure.

3.3. Direct measurement and small oscillations

In order to compare the results obtained with the previously described methods, direct

measurement of the parameters can be performed by the students. For the angle θ0, the

initial position of the rod can be directly measured with the half circle protractor.

Equation 19 for small oscillations (sin θ ≈ θ) gives us the well known equation for

simple harmonic motion

d2θ

dt2
− Ω2

0θ = 0, (22)

where the Ω0 constant is related to the oscillation period, T , by Ω0 = 2π/T . This

equation of motion is the same for the pendulum in upward position as for the normal

position except by a sign, and therefore we can assume that this constant Ω0 should

be equal to the one calculated previously. Students can place the moving part of the

rigid rod in the normal pendulum position, and make it oscillates over its equilibrium

position. From the oscillation period, they can find an approximate value of the Ω0

9
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Figure 5. Position angle as a function of time. Dots represent data points, and the

solid line the numerical solution of the differential equation.

constant. This approximation can be use for small oscillations. For instance for an

initial oscillation amplitude of 20o, the discrepancy in the calculated period by this way

is approximately equal to 1% [2].

4. Discussion

The results obtained for the value of the parameters are very similar in all four methods

(see Table 2). Only the results of method A and D are slightly different compared to

the other two. The small differences obtained with method A can be attributed to

the approximation for the value of the angular velocity using Equation 10, which could

introduce some errors, and for this reason, some points in the graph vary slightly from

the trend line.

Table 2. Results obtained for the parameters using the three methods described in

the text, and direct measurement.

Ω0 (rad/s) θ0 (rad) t0 (s) R2

A. Angular velocity 7.20± 0.04 0.09± 0.23 0.9959

B. Analytical solution 7.402± 0.010 0.07420± 0.00017 −0.1458± 0.0005 1.0000

C. Numerical solution 7.359± 0.013 0.073± 0.005 −0.151± 0.010 1.0000

D. Direct measurement 7.09± 0.06 0.096± 0.009

Comparing methods B and C, it should be mentioned that the results for method

10
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B are slightly better than method C, which can be seen in Table 2 in the value of

the error of the parameters, which are smaller than method C. Also, it should be

mentioned that the value of the coefficient of determination R2 is closer to 1 for method

B (R2 = 0.99999999994) than for method C (R2 = 0.99997). In Table 2 five significant

figures are given for R2, and therefore this difference cannot be appreciated. This

difference between both methods can be attributed to the numerical errors that could

appear in the numerical solution of the differential equation in method C.

The initial angle θ0 was also measured directly on the half circle protractor,

obtaining the value θ0 = (0.096 ± 0.009) rad. The agreement of this result with the

results from previous methods is very good, especially for method A, although the error

for this parameter in method A is very large. The reason of this large error for the angle

θ0 in method A is due to the fact that in this method the value of cos θ0, which is very

close to 1, has been calculated. When the arccos of this number is calculated and the

propagation of error is performed, a large value for the error is obtained. For methods

B and C a slightly smaller value for the angle θ0 than the direct measurement of the

angle was found.

The value of Ω0 for the oscillation period was measured (method D), and a value of

Ω0 = (7.09± 0.06) rad/s was found under the small oscillations approximation. Again,

method A provides a better approach for the direct measurement of Ω0, while methods

B and C give a slightly greater value for the Ω0 constant. These small differences could

be caused by the existence of a slight damping not considered in the oscillatory motion

(Equation 22).

5. Conclusions

In this paper a home-made experimental set-up to measure the fall of a rigid rod,

which can freely rotate around an articulated joint at the lowest point, is presented.

This experimental set-up permits preparation of a laboratory session for Physics or

Engineering students. The data analysis was carried out using three different methods.

The first method is the simplest for students, and can be performed by students

in the first year of a Physics or Engineering degree. In this paper, all calculations are

performed using Wolfram Mathematica, but the calculations needed to obtain the free

parameters in the linear fit can be carried out with a spread-sheet or any linear fit

software. In spite of the approximation realized to calculate the angular velocity, a

very good agreement between the fitted parameters and direct measurement of these

parameters was found.

The second and third methods are more complicated, and greater mathematical

knowledge is needed to perform the required calculations. For this reason, the

authors consider that these two methods are more appropriate for advanced Physics or

Engineering students. Slight differences were found between the calculated parameters

in the fit and the direct measurement.

In all cases a very good agreement between experiment data and theory was found,
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with values for the coefficient of determination R2 equal to 1 within five significant

figures for methods B and C, and very close to 1 for method A.
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