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Abstract

We introduce a Bayesian approach for the adaptation of the log-linear weights
present in state-of-the-art statistical machine translation systems. Typically,
these weights are estimated by optimising a given translation quality criterion,
taking only into account a certain set of development data (e.g., the adaptation
data). In this article, we show that the Bayesian framework provides appropri-
ate estimates of such weights in conditions where adaptation data is scarce. The
theoretical framework is presented, alongside with a thorough experimentation
and comparison with other weight estimation methods. We provide a compar-
ison of different sampling strategies, including an effective heuristic strategy
and a theoretically sound Markov chain Monte-Carlo algorithm. Experimental
results show that Bayesian predictive adaptation (BPA) outperforms the re-
estimation from scratch in conditions where adaptation data is scarce. Further
analysis reveals that the improvements obtained are due to the greater stability
of the estimation procedure. In addition, the proposed BPA framework has a
much lower computational cost than raw re-estimation.

Keywords: Bayesian methods, adaptation, natural language processing,
machine translation

1. Introduction

Adaptation has become a very popular issue in natural language process-
ing [1, 2, 3], and more specifically in statistical machine translation (SMT) [4].
Typically, the adaptation problem arises when two very different sets of training
data are available, yielding two different sets of model parameters. The first set
of data, the training data T (e.g., obtained from the European Parliament or the
United Nations) is often very large and rather generic in domain. The second
set of data, the adaptation data A, belongs to the specific task of interest, such
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as printer manuals or medical diagnoses, and is usually overwhelmingly smaller
than T . Then, the challenge is to modify the SMT system appropriately by
taking into consideration both T and A: on the one hand, T is should provide
robustness in the estimation of the model parameters θ, and on the other hand
A should introduce a certain bias towards the specific task.

This definition of adaptation is specially appropriate for the Bayesian learn-
ing paradigm, where the model parameters θ are treated as (hidden) random
variables governed by some kind of a priori distribution p(θ). This distribu-
tion represents our prior knowledge about what values for θ should be good
estimates. Estimating p(θ) by using a sufficiently large collection of data T
allows us to obtain a canonical model with parameters θT , and it can be as-
sumed that such estimation is a robust estimation. As further evidence arrives
in form of adaptation data A, that such estimations are revised so that they
reflect the newly arrived data. Considering A within the Bayesian predictive
distribution leads precisely to a scenario in which the decision regarding the
output sentence includes a bias towards A, but is still guided by p(θT ) (i.e., the
prior distribution given T ). Hence, under the Bayesian predictive adaptation
(BPA) framework, the final translation is not computed by considering only the
topic-specific data (i.e., A), which could lead to over-trained estimations of θ: if
the amount of data available is small, the parameter prior p(θ) will compensate
this, providing robustness [5]. However, the effect of this prior knowledge fades
when incorporating further evidence, until a point in which the contribution of
the parameter prior towards the complete model distribution is negligible. In
addition, the Bayesian learning paradigm does not attempt to obtain a single
best point estimate of θ, but rather relies on considering all possible param-
eter values, allowing uncertainty regarding what the best estimations of such
parameters might be. In this paper, we focus on the Bayesian adaptation of the
weights of the log-linear combination of features present in state-of-the-art SMT
systems. Even though these weights are not very numerous (generally in the
range of 10 or 20), providing the system with appropriate estimates for these
weights is critical [6].

The rest of this paper is structured as follows: the related literature is re-
viewed in Section 2. The formal derivation of Bayesian predictive adaptation
for SMT is presented in Section 3. Since the equation obtained is very costly to
apply in practise, different sampling strategies are presented in Section 4. The
experiments performed are detailed together with their results and the related
analysis in Section 5. Finally, conclusions are presented in Section 6.

2. Related work

Adaptation in SMT is a research field that has been receiving increasing
attention. Following the ideas in [1], one of the first works was performed
in [7], where the authors added cache language and translation models to an
interactive machine translation system. In [3], different ways to combine the
available data belonging to two different sources were studied. The work in
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[8] explores alignment model mixtures as a way of performing topic adapta-
tion. Other authors [9, 10], have proposed the use of information retrieval and
clustering techniques in order to extract the sub-domains of a large corpus,
and [11, 12] proposed to select as training data only those sentences which can
be considered topic-specific. Corpus weighting strategies were analysed in [13],
and instance weighting techniques were applied in [14] in order to weight out-of-
domain phrase pairs. Recently, sequential Bayesian methods were applied with
the purpose of adapting the word alignments present in most state-of-the-art
SMT systems [15]. In such work, the authors confront the problem of adapting
the probabilities of the single-word models that are used for phrase extraction.
In contrast, in this work we attempt to adapt the final translation model di-
rectly. Note that none of these works confront the problem of adapting the
log-linear weights λ of the SMT system, but rather attempt to adapt either the
underlying word alignments or the final translation model features h, and com-
parison with such strategies is not suitable. Hence, re-estimating λ from scratch
is, to the best of our knowledge, the most common approach when adapting λ.
This work intends to fill this gap, and can be seen as complementary to the
adaptation approaches cited above.

Although only recently applied to SMT, Bayesian adaptation has been suc-
cessfully applied in other natural language processing areas, such as speech
recognition [2]. In fact, work done in this direction is very broad, covering both
batch [16] and online adaptation [17]. Variational Bayes approaches have also
been studied [18], which attempt to find a lower bound to approximate the in-
tractable marginal likelihood, yielding point estimates of the model parameters.
Alternatively, BPA attempts to approximate the marginal likelihood directly
by sampling from the posterior distribution, and usually leads to more robust
estimates [16].

With respect to BPA in SMT, to our knowledge the only work published
as of yet in this direction is [19]. In that article, only the idea was introduced,
together with preliminary experiments. Here, such preliminary work is widely
extended both in depth and in range:

• Bayesian predictive adaptation is presented as an appropriate formal frame-
work for model adaptation in SMT.

• Positive results concerning the adaptation of scaling factors are presented,
for a standard adaptation task [20] with four different domains.

• Comparison with different λ re-estimation strategies, such as Minimum
Error Rate Training (MERT) [21], batch Margin Infused Relaxed Algo-
rithm (MIRA) [22] and Pairwise Ranking Optimisation (PRO) [23].

• Different sampling strategies are compared within BPA.

• Computational cost comparison among the methods presented.

• As a derived contribution, we also perform an in-depth analysis of the
stability of the most common optimisation algorithms used in SMT, as a
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function of development set size. To the best of our knowledge, no such
study has been published as of yet.

3. Bayesian predictive adaptation for SMT

We first introduce the typical formulation of SMT [4]. In state-of-the-art
SMT systems, it is quite common to have a log-linear combination of features
h, weighted by scaling factors λ. Then, the probability of the output sentence
e given the input sentence f is computed as1

p(e | f) =
exp

∑
m λmhm(f , e)∑

e′ exp
∑

m λmhm(f , e′)
, (1)

and the decision rule is given by the expression

ê = argmax
e

∑
m

λmhm(f , e). (2)

Typically, the weights λ of the log-linear combination are estimated on a
development set by means of error-driven algorithms such as MERT [21] or
MIRA [22], which have proven to provide good estimates if the amount of
data available is sufficient and the characteristics of the data to be translated
match approximately those of the development set. However, if either of these
two premises are not fulfilled, over-fitting to the specific characteristics of the
development set occurs and such algorithms fail to provide appropriate esti-
mates [11, 6].

In this article, we propose to reformulate the decision rule whenever the
following conditions are met:

• A development set for a given “old” domain is available, or a canonical
estimation of λ is readily available.

• The text to be translated belongs to a different “new” domain.

• A small set of development data is available for the new domain, but such
set is insufficient for a proper estimation of λ.

The meaning of “sufficient” in this context depends mainly on the target domain,
but also on the estimation method to be used. This will be analysed more in
depth in the experiments section.

Under the circumstances described above, we consider adapting λ, instead
of performing a full re-estimation. For this purpose, we propose the use of the
Bayesian paradigm [24], in which parameters are viewed as random variables
with some kind of underlying distribution. Considering T as the training data,

1For readability purposes, we directly instantiate the model parameters θ to the parameters
we intend to adapt, i.e., λ.
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and A as an additional adaptation set, Equation 1 is rewritten by means of the
predictive distribution as

p(e | f ; T ,A) =

∫
p(e,λ | f ; T ,A)dλ (3)

≈
∫
p(λ | T ,A) p(e | f ,λ)dλ. (4)

From Equation 3 to Equation 4 it has been assumed that the probability of the
output sentence e does not depend on A and T , whenever the model parameters
λ are known. It has also been assumed that λ is independent from the actual
input sentence f . Such simplifications lead to a decomposition of the integral in
two parts: the first one, p(λ | T ,A), will assess how good the model parameters
are, and the second one, p(e | f ,λ), will account for the quality of the translation
e given λ. The integral will force the model to take into account all possible
parameter values, although the parameter prior will bias the final distribution
towards our prior knowledge.

Operating with the probability of λ, we obtain:

p(λ | T ,A) =
p(A | λ; T ) p(λ | T )∫

p(A | λ′; T ) p(λ′ | T ) dλ′
. (5)

In order to simplify Equation 5, and focusing on the probability of the adapta-
tion data A, of a given size |A|, we obtain:

p(A | λ; T ) ≈ p(A | λ) =

|A|∏
a=1

p(fa | λ) p(ea | fa,λ), (6)

where the probability of A has been assumed to be independent of T , given that
λ is known, and has been modelled as the probability of each bilingual sample
(fa, ea) ∈ A being generated independently by a given translation model.

For modelling the prior over the model parameters, i.e., p(λ | T ), we will
assume that λ follows a normal distribution centred on λT , i.e., the parameter
values estimated on the training data (T ), and with a diagonal covariance matrix
I · σT with variance σT bounded for all parameters, yielding

p(e |f ; T ,A) ≈ Z
∫
p(A | λ; T ) p(λ | T ) p(e | f ,λ) dλ

≈Z
∫ |A|∏

a=1

p(ea | fa,λ)N (λ;λT , I ·σT )p(e | f ,λ) dλ. (7)

Z is the normalisation constant ensuring that p(e | f ; T ,A) defines a probability
distribution. The term p(fa | λ) present in Equation 6 can be simplified if
p(A | λ; T ) is plugged into Equation 5 and if fa can be assumed independent of
λ.
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Plugging in the log-linear model described in Equation 1:

p(e | f ; T ,A) ∝ Z
∫ |A|∏

a=1

exp
∑

m λmhm(fa, ea)∑
e′ exp

∑
m λmhm(fa, e′)

exp

{
−||λ− λT ||2

2σT

}
exp

∑
m λmhm(f , e)∑

e′ exp
∑

m λmhm(f , e′)
dλ, (8)

and, finally, the decision rule will be given by the maximisation of the previous
equation, i.e.,

ê = argmax
e

p(e | f ; T ,A). (9)

Note that, in this case, the denominators in Equation 8 cannot be easily ne-
glected, as was the case in Equation 2, since they are affected by the integral.

In the next section, different strategies for approximating the integral in
Equation 8 are presented. However, before carrying on with the presentation
of these strategies, there are several approximations that need to be performed
so that the predictive distribution can be computed. Firstly, p(A | λ; T ) and
p(e | f ,λ) contain in their denominator sums over all possible sentences of the
target language, which is not computable. For this reason,

∑
e′ is approximated

as the sum over all the hypotheses within the n-best list generated during the
regular decoding process. Coherently, instead of performing a full search of the
best possible translation we will only consider eligible the ones present in such
n-best list, leading to

p(e | f ; T ,A) ∝ Z
∫ |A|∏

a=1

exp
∑
m

λmhm(fa, ea)∑
e′∈Γn(fa)

exp
∑
m

λmhm(fa, e
′)

exp

{
−||λ− λT ||2

2σT

}
exp

∑
m

λmhm(f , e)∑
e′∈Γn(f)

exp
∑
m

λmhm(f , e′)
dλ, (10)

where Γn(f) represents the set of n best translation hypotheses that can be
generated for sentence f .

In addition, typical state-of-the-art SMT systems do not guarantee complete
coverage of all possible sentence pairs due to the great number of heuristic
decisions involved, and out-of-vocabulary words may imply that the SMT model
is unable to explain a certain bilingual sentence completely. Hence, instead of
using the true reference present in A, we will use the best possible translation e∗
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generated during the decoding process, i.e., the best translation within Γn(fa).
e∗ is often referred to as oracle derivation in related work [22].

The formulation presented would also allow considering as model parameters
the feature functions h(·, ·). However, in the present article we will only consider
the adaptation of λ, since adapting h is much more costly and is left as future
work.

4. Sampling methods

Computing the integral over the complete parametric space, as described in
Equation 8, is often computationally unfeasible. Moreover, the function to be
integrated might not even be integrable. Hence, it is often approximated by
a discrete sum over a sampling of such parameters. For simplicity S(λT ) will
denote a specific sampling of λ, starting from λT .

4.1. Heuristic sampling

As a first approach, the close neighbourhood of λT was explored. For doing
this, each one of the components of λ was perturbed by a random amount,
successively:

Input λT , the parameter mean vector of size Q
Output S(λT ), a (pseudo-)random sampling of λT
Initialise S(λT ) = {λT }
For s in {1, . . . , NS} do

λs = λT
k = s mod Q
λs,k = λs,k + rand(−0.5, 0.5)
λs = λs/

∑
k |λs,k|

S(λT ) = S(λT ) ∪ {λs}

where NS is the amount of sampled λ desired, λs = [λs,1, . . . , λs,M ]T is a single
one of those samples, |c| denotes the absolute value of c, and rand(a, b) is a
random value obtained from a uniform distribution in the interval [a, b]. Bear
in mind that, although each λk may not be on the same scale, typical state-of-
the-art systems such as Moses [25] use normalised weights (i.e.,

∑
k |λk| = 1).

Such normalisation was found to be an important step during the experimental
phase, since it implies that the range [−0.5, 0.5] is large enough so as to provide
variability to the samples obtained.

Although this algorithm involves a series of heuristic decisions, it has one
main advantage: the sample S(λT ) produced is not a function of A. This means
that most terms in Equation 7 can be precomputed, except for p(e | f ,λ), and
S(λT ) does not need to be recomputed for every A, which would be far too
costly when applying BPA in an online scenario. In next section, we present a
sampling strategy more theoretically sound, but which does need to recompute
S(λT ) for each A.
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However, the approximation provided by this heuristic algorithm is sensible
to normalisation. This can be seen e.g. in Equation 8: dropping the normali-
sation constant Z leads to a product of probabilities, which implies that larger
amounts of adaptation data will lead to smaller numeric values, and the relative
importance of p(A | λ; T ) will fade when more evidence arrives. To compen-
sate this fact, after replacing the integral by a finite summation, Equation 7 is
complemented with a leveraging factor δ, such that

p(e | f ; T ,A) ≈
∑

λ∈S(λT )

(p(A | λ; T )p(e | f ,λ))
1
δ p(λ | T ). (11)

4.2. Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods [24] obtain samples S(λT )
of a variable (in this case λ) assumed to follow a certain distribution, i.e.,
p(λ | T ,A). MCMC methods are specially suited for sampling distributions
where the normalisation constant cannot be evaluated [24]. For doing this, a
(first order) Markov chain is established, where each new sample λ∗ depends
on the previous sample λ′. Specifically, in this article we will be using the
Metropolis-Hastings (MH) algorithm [26], which consists in drawing a sample
λ∗ from a given proposal distribution q(λ | λ′). Then, λ∗ is accepted with
probability

A(λ∗,λ′) = min

(
1,
p̃(λ∗)q(λ′ | λ∗)
p̃(λ′)q(λ∗ | λ′)

)
, (12)

with p(λ) = p̃(λ)/Zp being the distribution from which we intend to sample,
and Zp being the normalisation term for p(λ). In Equation 12, p̃(λ) can be safely
used instead of p(λ), since Zp would be simplified. If the proposal distribution
is symmetric, terms q(· | ·) can also be simplified.

The proposal distribution is often set as a normal distributionN (λ;λ′, I ·σo),
with mean vector λ′ and covariance matrix a diagonal matrix with main diagonal
σo. Establishing σo is critical, since too small values will lead to a high rejection
rate and the sampling chain will most likely get stuck at a local maximum,
while too big values will lead to a chaotic chain which will not sample the
density function appropriately.

Another aspect that needs to be taken into account when building a MCMC
chain is the burn-in phase [24], which is the number of samples that need to
be drawn in order to assume independence from the initial state of the Markov
chain.

Once S(λT ) has been obtained from p(λ | T ,A) (or, dropping the nor-
malisation constant in Equation 5, from p(A | λ; T )p(λ | T )), Equation 7 is
approximated, again according to the Strong Law of Large Numbers [24], as

p(e | f ; T ,A) ≈ Z ′
∑

λ∈S(λT )

p(e | f ,λ), (13)

where δ is not required either. Although the right hand of Equation 13 seems
independent from T and A, this is only a notation issue, since such dependency

8



is hidden within S(λT ), and S(λT ) must be recomputed for every adaptation
set A.

5. Experiments

Experiments were performed by means of the open-source MT toolkit Moses
[25]2 (version 0.91) in its default non-monotonic configuration, which includes 5
translation models (direct- and inverse- translation and lexicalised models and
the phrase-penalty), 7 re-ordering models (an exponential model and the six
models included within the msd-reordering-fe model [27]), the word-penalty
and a word-based language model, i.e., |λ| = 14. The language model used
was a 5-gram with modified Kneser-Ney smoothing [28], built with the SRILM
toolkit [29].

Translation quality will be assessed mainly by means of single-reference
TER [30]. TER (Translation Error Rate) is an error metric (i.e., the lower
the better) that computes the minimum number of edits required to modify
the system hypotheses so that they match the reference. Possible edits include
insertion, deletion and substitution of single words, as well as shifts of word
sequences. Some results will also be presented in terms of BLEU [31], with the
purpose of assessing whether the improvements in TER also correspond to im-
provements in BLEU. BLEU (BiLingual Evaluation Understudy) is a precision
metric (i.e., the higher the better) that measures n-gram (n ≤ 4) coverage of the
system hypotheses with respect to the reference, with a penalty for sentences
that are too short. For computing the best possible hypothesis e∗ as described
in Section 3, TER will be used, since BLEU is not always well defined at the
sentence level, given that it implements a geometrical average which is zero
whenever there is no common 4-gram between hypothesis and reference, e.g., a
3-word sentence. Selecting e∗ with smoothed versions of BLEU is planned as
future work.

The points in the plots presented in this section display the average of ten ex-
periments, in which A was re-drawn each time with replacement. Unless stated
otherwise, the x-axis will always be in logarithmic scale and display |S(λT )|.
The scale of the y-axis will be linear whenever the plot displays translation qual-
ity, and logarithmic in the case of the confidence interval sizes (in TER points
unless stated otherwise). These confidence intervals present the 95% confidence
level and were computed as 2σ, where σ is the empirical standard deviation
observed in the 10 repetitions. Note that the full confidence interval would be
4σ, i.e., ±2σ. Confidence intervals are displayed in different plots, instead of
using error bars, because otherwise the translation quality plots would present
vertical lines across the complete plot, rendering it unreadable. For analysing
the effect of the different meta-parameters in BPA, we performed experiments
on all the available domains (explained in next section). We only present here
the clearest plot, for readability purposes. For simplicity purposes, the size n

2Available from http://www.statmt.org/moses/
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of the n-best lists in Equation 10 was the same for both Γn(f) and Γn(fa) in all
experiments, and was set to 500 in all experiments, unless stated otherwise.

In the following subsections, we will first present the corpora used (Section
5.1). Then, we will analyse the effect of the different meta-parameters involved
in the BPA samplings (Section 5.3 for the heuristic sampling, Section 5.4 for
the MCMC sampling). This being done, we compare both sampling approaches
in terms of final translation quality (Section 5.5). Next, in Section 5.6, we
compare the best performing BPA approach, namely MCMC, with other re-
estimation approaches present in the literature, and a final analysis of the results
is performed in Section 5.7.

5.1. Corpora

The experiments conducted in this paper were carried out on five differ-
ent corpora, belonging to different domains, all of them stemming from the
domain adaptation Summer workshop carried out at the John Hopkins Uni-
versity in 2012 [20]. In this workshop, the task was to adapt French→English
translation models. The out-of-domain corpus provided originated in the par-
liamentary domain (Canadian Hansards), and the in-domain corpora included
the medical domain (henceforth referred to as EMEA), the general news domain
(henceforth referred to as NEWS), the press domain (NRC), and the subtitle
domain (SUBS). Statistics of the out-of-domain corpus are provided in Table 1,
and statistics of the in-domain corpora are provided in Table 2. Even though
it might seem odd that the SUBS in-domain training data is larger than the
Hansards out-of-domain training data, this is how the task was designed. Note
that this task was intended for an adaptation problem involving many more
parameters, i.e., feature function adaptation, which requires much more data
than the problem of scaling factor adaptation. We will only make use of much
less data, since it is common knowledge that scaling factors are already well
estimated with about 2000 sentences. However, the amount of data available
allows us to perform several random extractions of the adaptation set A.

Training (T ) Development (D)
French English French English

Hansards

Sentences 8.1M 2000
Run. words 163M 144M 40.1k 35.8k
Vocab/OoV 191.4k 186.8k 15 26
Avg. length 19.9 17.8 20.1 17.9

Table 1: Main figures of the out-of-domain corpus. OoV stands for Out-of-Vocabulary words
(types) with respect to T .

The standard features h were estimated on the training partition of the
Hansards corpus T , whereas a canonical λT was estimated on the development
subset D (i.e., a held-out subset of T used to estimate h) by means of the default
MERT implementation within Moses. Translation quality will be estimated on
the different in-domain test subsets.
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Training (A) Test
French English French English

EMEA

Sentences 472k 2045
Run. words 6.5M 5.9M 29k 25k
Vocab/OoV 35k 30k 1115 1073
Avg. length 13.9 12.5 14.2 12.0

NEWS

Sentences 136k 2489
Run. words 3.9M 3.3M 69k 62k
Vocab/OoV 63k 53k 1098 1040
Avg. length 28.9 24.6 27.9 24.8

NRC

Sentences 66k 1982
Run. words 2.2M 1.7M 65k 52k
Vocab/OoV 79k 78k 2587 2869
Avg. length 32.7 26.3 32.8 26.4

SUBS

Sentences 19M 3306
Run. words 155M 174M 32k 36k
Vocab/OoV 362k 293k 599 385
Avg. length 8.1 9.1 9.7 10.9

Table 2: Main figures of the in-domain corpora. OoV stands for Out-of-Vocabulary words
(types) with respect to T .

5.2. Experimental setup

Whenever reporting translation quality of a BPA experiment, the (full) ex-
perimental setup involves:

1. Obtain n-best lists from the corresponding test set, with hT estimated on
the training partition of the Hansards corpus and the λD estimated on
the development subset of the Hansards corpus.

2. Obtain n-best lists from the adaptation data, similarly as done for the
test.

3. Compute sentence-level TER scores for each one of the n-best hypotheses
for both test and adaptation.

4. Rerank the n-best lists obtained according to Equation 11 or Equation 13,
accordingly.

Whenever reporting translation quality of a re-estimation experiment, the
(full) experimental setup involves:

1. Initialize the λ estimation procedure with the λD estimated on the devel-
opment subset of the Hansards corpus, hT estimated on T .

2. Run the corresponding λ estimation algorithm on the adaptation data,
obtaining λA.

3. Decode the final test set using λA.

In both cases, these will also be the steps considered when reporting adap-
tation times (Section 5.7), without including the time taken by the initial hT
and λD estimation procedures, since these are common steps.
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Figure 1: Effect of the δ leveraging factor (left) and of the prior variance σT (right) on
translation quality (TER) in BPA with heuristic sampling. In the left plot, σT = 0.1 was
used. In the right plot, δ = 4.

5.3. Heuristic sampling experiments

Results for this kind of sampling are shown in Figure 1, for different values
of the δ leveraging factor and different values for the prior distribution variance
σT in Equation 8. As shown, the BPA approach is able to improve over the
unadapted system from the very beginning. The results show that smaller values
of δ lead to a slight degradation in translation quality when the size ofA becomes
larger. The reason for this can be explained by looking at Equation 11. Since
p(A | λ; T ) is implemented as a product of probabilities, the more adaptation
samples the smaller becomes p(A | λ; T ), and a higher value of δ is needed to
compensate this fact. The differences between different δ values were, although
small, found to be coherent in all the other experiments conducted.

As for the effect of the prior distribution variance σT , it was observed to
have a very similar effect than δ. On the one hand, smaller values of σT entail
that the adaptation procedure is practically de-activated for a small amount of
adaptation samples. Since N (λ;λT , I · σT ) is the more “peaky” the smaller
σT is, less variability for the different λ ∈ S(λT ) is allowed for small values
of σT . However, this implies that a certain σ will be “assigned” by the prior
a numerically much smaller probability even if it is not very far away from
σT . This explains the fact that smaller values of σT behave better when the
amount of adaptation data increases, since, as seen for the leveraging factor δ,
p(A | λ; T ) also has a numerically smaller value in those cases.

Although not shown here for space reasons, increasing the number of sampled
parameters |S(λT )|, did not have any effect on the average translation quality,
as expected. However, it did provide further robustness to the results, and
confidence intervals tended to be smaller for larger values of |S(λT )|, specially
when the size of A was small. When increasing |S(λT )| from 1000 to 2000,
the improvements in stability were already very scarce, and were probably not
worth the computational overhead.
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Figure 2: Effect of the different prior variance σT and proposal variance σo (left) and number
of weight samples (nws in the right plot) on translation quality (TER) in BPA with MCMC
sampling.

5.4. MCMC sampling

First, appropriate values for the variance of the prior distribution σT and of
the proposal distribution σo were analysed (Figure 2 left). Note that σo is tightly
related to σT , since they both control how much variation is introduced into the
predictive distribution of BPA. The best values for σo seemed to appear when
setting σo ≈ 0.1 · σT , and considering σo > σT seemed to lead to non-adaptive
systems. In the rest this Section, σT = 0.1 and σo = 0.01 were adopted.

Different S(λT ) sizes, i.e., different MCMC chain lengths, had an important
effect on the confidence intervals, and also to some extent on average translation
quality (Figure 2 right). As shown, the improvements achieved when moving
from |S(λT )| = 1000 to |S(λT )| = 5000 might not be worth the computational
overhead (let alone values larger than 5000). Although not reported here in
order to avoid including too many plots, the duration of the burn-in phase was
not found to be specially critical. A slight gain in stability was observed for
small S(λT ) sizes, although no real conclusion could be drawn. Nevertheless,
burn-in length was set to 500 in the rest of the experiments involving MCMC.

5.5. Sampling comparison

Once the effect of the different meta-parameters of the two different sampling
approaches have been analysed, we now pursue to compare these two approaches
among each other. In addition, with the purpose of analysing the effect of
considering the integral (or finite sum in practise) over the complete parametric
space (or parameter sampling in practise), instead of just a point estimate of the
parameters, we performed a series of experiments by replacing the integral by
an argmax operation. This means that, instead of computing the probability of
a given output sentence as the complete integral, we only consider that specific
λ̂ that yields the highest probability according to p(A | λ; T )p(λ | T )p(e |
f ,λ), following a Viterbi-like approach. The results are shown in Figure 3. As
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Figure 3: Batch adaptation with the Viterbi approach and different amount of adaptation
set sizes. The top two plots display translation quality, while the lower two display confidence
interval size.

shown, the MCMC sampling seems to perform better for the EMEA corpus,
but worse for the SUBS corpus. Because the way in which the samples are
extracted, heur relies much more on the parameter prior than MCMC, and it
must be concluded that the test set chosen presents a different composition
than the adaptation data. MCMC also presented a better behaviour for the
NRC and NEWS corpora (not shown here for space reasons). On the other
hand, the heur-vit setup proved to be extremely stable for |A| > 100 for the
SUBS, NRC and NEWS corpora. In addition, when looking at the translation
quality of the SUBS corpus, it stands out that both vit curves behave specially
poorly for small amounts of adaptation data. This elucidates precisely the effect
of the integral: as already discussed above, the test set of the SUBS corpus
seems to be quite different from the adaptation data, which means that, when
|A| is small, over-training towards the adaptation data is more prone to occur.
However, considering the integral over the complete parametric space tends to
compensate this, providing robustness in case that adaptation and test data do
not match. Hence, it can be said that, although heur-vit is more stable in
some situations, its behaviour is less predictable. Lastly the mcmc-vit setting
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is not really noteworthy, since it simply performs worse than the mcmc setting,
as could be expected.

5.6. Comparison between BPA and parameter re-estimation

To synthesise the different strategies, the different SMT systems compared
in this section when adapting λ are:

• Baseline system: Phrase-pairs extracted from the Hansards training cor-
pus, i.e., h estimated on T . Scaling factors λT estimated on D by means
of MERT.

• MCMC: Initial setup identical to the baseline system. Adaptation samples
A were randomly extracted from the training partitions of the in-domain
corpora (i.e., EMEA, NEWS, NRC or SUBS). λT within p(λ | T ) esti-
mated on D with MERT. The sampling strategy used within BPA was
MCMC.

• MERT: Initial setup identical to the baseline system. The adaptation
samples A described above were used for estimating a new set of scaling
factors using MERT.

• MIRA: As MERT, but scaling factors are estimated by means of MIRA.
Note that MIRA is an incremental estimation strategy, and λT were pro-
vided for the MIRA starting point. Hence, MIRA could also be considered
a sort of adaptation strategy (i.e., not full re-estimation).

• PRO: As MERT, but scaling factors are estimated by means of pairwise
optimisation.

• MERT+: Initial setup identical to the baseline system. Then, λ was
re-estimated on A and D, concatenated.

In addition, we also conducted experiments by concatenating A and D, and
using the result for estimating λ by means of MERT. However, such strategy
performed consistently worse in terms of TER than the other re-estimation
strategies analysed here. For this reason, this setup was removed from the final
comparison in order to avoid clogging the plots with too many curves.

It must be emphasised, however, that the re-estimation strategies are not
really a fair comparison, since they are all by far much more costly than BPA
(computational cost is analysed in Section 5.7). In addition, they involve several
translation steps, each of which re-computes the n-best list, and have better
chances to obtain better hypotheses, whereas the BPA strategies implemented
rely on a pre-computed n-best list of fixed size (in this Section, n-best size was
set to 500).

Results of such comparison can be seen in Figure 4. There are several things
that should be noted:

• For small amounts of adaptation data, BPA is the strategy that performs
the best in all cases except for the NRC corpus.
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Figure 4: Performance comparison across the different corpora analysed and with the different
λ estimation strategies. The four plots on the left display TER, while the four plots on the
right display the size of the confidence intervals.
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• MERT and PRO display a very unstable behaviour for small |S(λT )| sizes,
and MIRA seems to exhibit better performance. This is not surprising,
since MIRA can also be seen as an adaptation strategy, as discussed above.

• The SUBS corpus appears to be a specially difficult corpus. In the first
place, TER scores are specially high. In addition, neither the MERT and
MIRA strategies are able to improve over the unadapted baseline.

• For small amounts of adaptation data, the confidence intervals of PRO,
MIRA and MERT may be as big as 10-20 TER points. When taking into
account a baseline of about 65 TER points, 10 points may well imply the
difference between the output being useful or being completely useless.
In contrast, BPA seldom yields confidence intervals of more than 2 TER
points.

• MERT+ yields estimations which are as stable as BPA, but yields worse
performance in most settings (i.e., except for the SUBS corpus). We con-
sider this point important, since the stability achieved by BPA reveals
precisely that BPA is an appropriate adaptation strategy for this prob-
lem: the size of the confidence intervals can be seen as a measure of how
prone is a given algorithm to over-training, and BPA proves to be able to
provide quite stable estimations even for very small amounts of data.

From these observations, it can be concluded that BPA is an effective adap-
tation strategy. An adaptation strategy only is useful when the amount of
adaptation data is small, and BPA proves to perform well under such circum-
stances. If the amount of adaptation data is larger (> 100), BPA still yields an
acceptable behaviour, although the pure re-estimation strategies do yield better
estimates of λ.

Since BLEU is a more standard evaluation metric than TER among the SMT
community, we also report some BLEU results in Figure 5. The overall analysis
varies little with respect to the one done with TER. However, two things are
noteworthy: firstly, BPA tends to perform slightly worse in terms of BLEU.
This is actually expected, since the best possible hypothesis hypothesis e∗ is
selected according to TER, and BLEU includes a brevity penalty witch TER
does not take into account. Second, the size of the confidence intervals obtained
is nearly the same as in the case of TER, and BPA tends to achieve smaller
confidence intervals, specially in the case of small amounts of adaptation data.
It is also interesting to see that the re-estimation approaches need more than
100 adaptation samples in order to achieve the performance that the heuristic
version of BPA achieves with only 10 samples. As in the case of the experiments
involving TER, the results for NEWS and NRC were similar to those obtained
with the EMEA corpus, and SUBS seems to be specially difficult.

5.7. Analysis

Given that adapting λ is a rather coarse-grained adaptation strategy, it is
important to analyse where the improvements come from, and whether such
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Figure 5: Performance comparison across the different corpora analysed and with the different
λ estimation strategies. The four plots on the left display BLEU, while four plots on the right
display the size of the confidence intervals.
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Figure 6: Time consumed by the different approaches compared. In the case of BPA,
|S(λT )| = 1000 and |n−best| = 500. NRC corpus considered.

improvements may be due only to a re-adjustment in sentence length. For this
reason, we analysed the n-gram precision and the brevity penalty implemented
within BLEU. For a certain n, n-gram precision is computed as the proportion of
n-grams that match between the candidate hypotheses and the references. The
brevity penalty is defined as min(1, r), being r the ratio between hypothesis and
reference lengths. In Table 3, average n-gram precision for all 10 repetitions is
shown for two of the corpora analysed. Since we are interested in analysing the
behaviour in conditions where there is a very small amount of data available,
and when there is more data available, we studied n-gram precision with 10 and
with 100 adaptation samples. Interestingly, it is observed that, as a matter of
fact, sentence length is actually penalising rather heavily the BPA approach:
for the EMEA corpus, BPA is the only strategy to be penalised by the brevity
penalty, meaning that it is the one that performs worst when only taking into
account sentence length. This is actually expected, since BPA selects the best
hypothesis according to TER. However, in terms of n-gram precision, it clearly
outperforms the other approaches for 10 adaptation samples, and also for 100
adaptation samples in the lower order n-grams. In the higher order n-grams,
BPA seems to perform a bit worse. When considering the SUBS corpus, two
facts stand out: on the first place, that MCMC and MIRA yield the best n-
gram precision for |A| = 10, but also suffer a very heavy penalisation in terms
of sentence length. When considering |A| = 100, all four methods are very
heavily penalised by the brevity penalty. This points towards a big mismatch
between the SUBS adaptation data and the SUBS test data, which explains as
well the fact that all methods studied yield pretty poor results. Such mismatch
can already be observed when looking at the average sentence length of the
sentences, shown in Table 2, where the SUBS corpus is the one that presents
the most mismatch between A and test. All in all, n-gram precision seems to
signal that improvements obtained by BPA are due to a better lexical choice of
the phrases involved, and not to a side-effect of adjusting the output sentence
length.
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EMEA
base- 10 adaptation samples 100 adaptation samples
line MCMCMERTMIRAPRO MCMCMERTMIRAPRO

1-gram 54.6 56.1 50.5 53.5 46.9 56.6 55.3 56.0 55.8
2-gram 25.9 25.8 17.4 25.0 16.8 27.1 26.6 27.2 27.4
3-gram 14.8 14.5 7.3 14.4 7.6 15.6 15.5 16.0 16.2
4-gram 8.9 8.6 3.3 8.8 3.9 9.4 9.6 9.9 9.9
BP 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00

SUBS
base- 10 adaptation samples 100 adaptation samples
line MCMCMERTMIRAPRO MCMCMERTMIRAPRO

1-gram 54.6 50.5 41.3 51.4 38.2 51.0 50.6 49.4 49.1
2-gram 25.9 19.5 12.2 18.5 12.0 20.7 19.7 20.3 20.0
3-gram 14.8 9.6 4.8 8.6 4.7 10.5 9.7 10.4 10.1
4-gram 8.9 4.8 1.9 4.3 1.8 5.5 5.1 5.5 5.3
BP 1.00 0.74 0.93 0.73 0.97 0.75 0.73 0.84 0.86

Table 3: n-gram precision and brevity penalty (BP) for |A| = 10 and |A| = 100, MCMC
sampling for BPA and the different re-estimation strategies.

Regarding computational time, Figure 6 reports the time consumed by each
one of the approaches reported in Figure 4. Note that, in this case, both axes
are plotted in logarithmic scale. Computational time was measured in single-
threaded runs of the algorithms presented on 64 bit machines with Intel Xeon
CPUs at 2.50GHz with 6MB cache. In the case of BPA, the number of sampled
weights was 1000, and the time reported also includes the time required for
generating the n-best lists of A and the sentence-level TER counts. In fact, the
time taken only by BPA ranges from 10 to 20 minutes. As shown, the heuristic
BPA approach is the fastest one, and both BPA approaches are about one order
of magnitude faster than MERT, MIRA and PRO. Although somewhat hidden by
the logarithmic scale, it must be noted that MIRA and PRO present very steep
curves for |A| = 1000 and |A| = 2000, and the difference in computational cost
between these two and MERT is noteworthy.

Lastly we also analysed the effect of varying the size of the n-best list con-
sidered (Figure 7). Again, BPA is able to cope well with additional input infor-
mation, and additional hypotheses in the n-best list imply that BPA is able to
select better hypothesis without incurring into over-trained solutions.

6. Conclusions and future work

In this paper, Bayesian predictive adaptation has been thoroughly analysed
for its application to log-linear weight adaptation in statistical machine trans-
lation. On the one hand, the theoretical framework for adapting the scaling
factors present in most state-of-the-art SMT systems has been developed. On
the other hand, experimental results analysing the effectiveness of such adapta-
tion procedures have been reported.

Results show that BPA is able to provide consistent improvements in trans-
lation quality over the baseline systems, as measured by TER, with as few as
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Figure 7: Translation quality with heuristic and MCMC sampling with different sizes of
n-best, represented as N in the plot. NRC corpus considered.

10 adaptation samples, and up to an amount of adaptation data that allows a
complete re-estimation of the model parameters. In addition, BPA proves to
be more stable than most re-estimation strategies, which rely heavily on the
amount of adaptation data. It should be emphasised that an adaptation tech-
nique, by nature, is only useful whenever the amount of adaptation data is low,
and BPA proves to behave well in such context. Whenever the amount of adap-
tation data is high, the best thing that one can do is to re-estimate the model
parameters from scratch, although such re-estimation is often very costly. From
a computational point of view, the Bayesian adaptation technique presented
does not imply a significant computational overhead, and most terms can be
precomputed in the case of heuristic sampling. Hence, we consider that it could
be easily implemented within the decoder itself without a significant increase
in computational complexity. Nevertheless, it must be taken into account that
the search space explored by a given n-best list is much more restrained than
the one that the decoder will take into account. This means that, if BPA is to
be implemented within the decoder (instead of by re-scoring n-best lists), the
number of n-best considered by BPA in the term p(A | λ; T ) must be sufficiently
large. We plan to explore this in future work.

Different parameter sampling strategies have been studied when applying
BPA to the adaptation of the scaling factors, such as the theoretically sound
Markov chain Monte Carlo and an ad-hoc heuristic sampling strategy and the
Viterbi approach. It emerges that the heuristic sampling strategy performs
slightly worse than MCMC, but is computationally less expensive and most
terms can be precomputed. In addition, MCMC yields slightly larger confidence
intervals.

As future work, we plan to analyse the possibility of adapting the log-linear
features of the translation model, and to extend the current BPA implementa-
tion so that it is able to deal with more feature-rich SMT models.
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