TABLE OF CONTENTS

INTRODUCTION (EN) 12
INTRODUÇÃO (PT) 12

CHAPTER 1 30
1. Conventional materials and manufacturing techniques employed in bicycle frame manufacture. 30
 1.1. Steel Bicycle Frames 32
 1.2. Typical diamond frame configuration 32
 1.2.1. Advantages of the lugged frame 35
 1.2.2. Disadvantages of the lugged frame 35
 1.3. Fillet brazed frames 35
 1.3.1. Advantages of fillet brazed frames 37
 1.3.2. Disadvantages of fillet brazed frames 37
 1.4. Welded frames 37
 1.4.1. Advantages of welded frames 39
 1.4.2. Disadvantages of welded frames 39
 1.5. Frame Design 40
 1.5.1. Human factors and differentiation 40
 1.5.2. Steering Forks 44
 1.5.3. The lugged frame today 45
 1.6. Aluminium framed bicycles 47
 1.7. Composite bicycle frame construction 51
 1.8. Bicycle Types and Evolution 53
 1.8.1. Bicycle sub-type history and evolution 53
 1.8.2. Bicycle Categories 53
 1.9. Typology and Differentiation - Review 72
 1.10. Children’s Bicycle 73
 1.11. Characterisation by wheel size 73
 1.12. Tyre standards 74
 1.13. Wheel manufacture 74
 1.14. Transmission typology 75
4. Specialised parts design 239
 4.1. Custom made parts for Xylonbikes wooden framed prototype bicycles 240
 4.1.1. Specialised Part: Rear Dropouts 240
 4.1.1.1. Design of production bicycle dropouts 242
 4.1.2. Brakes 248
 4.1.2.1. Specialised part: Bottom bracket shell 253
 4.1.2.2. Development of bottom bracket 253
 4.1.2.3. Specialised part: Seat post clamp 256
 4.1.3. Innovative XYLON seat clamp design 260
 4.1.4. Metal seat post clamp 266
 4.2. Finishes 267
 4.2.1. Applied finishes 267
 4.2.2. Oiled finish 268
 4.2.3. Waxes 268
 4.2.4. Shellac and boiled linseed oil 268
 4.2.5. Varnishes 269
 4.2.5.1. Yacht varnish 269
 4.2.5.2. Satin finish furniture varnish 269
 4.2.5.3. Clear Synthetic varnish aerosol 270
 4.2.6. Two component automotive lacquer 270
 4.2.7. Anti-fungal and anti-insect treatment 271
 4.3. Finishes - Conclusion 271
CHAPTER 5 272
 5. Commercial acceptance of wooden framed bicycles 272
 5.1. Case Study - The Governor’s Island Project 272
 5.2. Viable solution 280
 5.3. Assembly Procedure 281
CHAPTER 6 284
 6. Analysis of Wooden Framed Bicycles 284
 6.1. Disadvantages of a wooden framed bicycle 284
 6.2. Disadvantages in the production of a wooden bicycle frame. 284
7.5.2. Sponsorship 322
7.6. Plywood fibre orientation 322
7.7. Aging 323
7.8. Renovation 325
7.9. Special care 326
7.10. Waste of material 326
7.11. Disposal of plywood waste and offcuts 329
7.12. Conclusion: Factors to be taken into consideration when assessing the viability of a wooden framed bicycle. 329

CONCLUSIONS, RECOMMENDATIONS AND FUTURE INVESTIGATION. 335
REFERENCES 368

LIST OF ILLUSTRATIONS

Figure 1. Xylon Eclipse Bicycle Publicity Photograph - Natalia Błaszczyk 2008 iv
Figure 2. Bicycle frame/component interface 22
Figure 3. Seat post sizer 23
Figure 4. Lugged Bottom Bracket 25
Figure 5. Horizontal Rear Dropouts 26
Figure 6. Bicycle Frame Geometry 27
Figure 7. Raleigh D1 bicycle, men’s’ model circa 1950 (Women’s frame inset) (Brown) 31
Figure 8. Typical diamond frame bicycle showing the main parts (Easterling K.E.) 31
Figure 9. Steel and brass frame lugs 32
Figure 10. Typical Diamond Frame 33
Figure 11. Fillet brazed frame joint 36
Figure 12. Welded steel tube frame joint 38
Figure 13. Woman on bicycle circa 1900 41
Figure 14. A Royal Sunbeam ladies loop frame bicycle, circa 1910 41
Figure 15. Dutch Oma-Fiets circa 2015 42
Figure 16. Dutch bicycle frame designs circa 1900 43
Figure 17. Indian Bicycle with Double Top Tubes 44
Figure 18. Contemporary lugged steel frame Rivendale Bicycles 47
Figure 19. Caminargent Aluminium Bicycle Frame 48
Figure 20. Welded and fettled aluminium bicycle frame 49
Figure 21. Welded aluminium frame head tube with reinforcement fillets. 50
Figure 22. Exxon Carbon Fibre and Steel Graftek frame. 51
Figure 23. Trek Y Foil Carbon Frame Bicycle 1998 52
Figure 24. Trek road bicycle 54
Figure 25. Track bicycle 55
Figure 26. Dutch City Bicycle 56
Figure 27. Modern delivery bicycle. 57
Figure 28. BMX Bicycle 58
Figure 29. Unusual shaft drive mountain bicycle 59
Figure 30. Trek Hybrid Bicycle 60
Figure 31. Touring bicycle 61
Figure 32. Comfort bicycle with low step-over frame 62
Figure 33. Dayton Streamline 193863
Figure 34. Modern Cruiser Bicycle 64
Figure 35. Women’s Beach Cruiser Bicycle 65
Figure 36. Man’s Beach Cruiser Bicycle 66
Figure 37. Customised Paint on a Women’s Beach Cruiser Bicycle 67
Figure 38. Italian Alpine troops with folding bicycles early 20th Century 68
Figure 39. Montague Paratrooper Folding Bicycle (Folded) 69
Figure 40. Montague Paratrooper Folding Bicycle (Ready to Ride) 69
Figure 41. Strida compact folding bicycle http://www.strida.com 70
Figure 42. Modern Brompton folding compact bicycle 71
Figure 43. Child’s safety bicycle circa 1897, Smithsonian Institute – Bicycle Collection 73
Figure 44. Chain and front sprocket with front derailleur 76
Figure 45. Shaft drive bicycle circa. 1897 78
Figure 46. Tribune Shaft drive Bicycle 190379
Figure 47. Toothed belt rear hub 80
Figure 48. Drawing from patent application for treadle drive vehicle
Figure 49. Comparison of Straight, Single, Double, and Triple Butted Steel Tubes
Figure 50. Itera Plastic Bicycle - Sweden
Figure 51. Itera Plastic Bicycle Fitted with Conventional Handlebars
Figure 52. Frij recycled Plastic Bicycle – Dror Pelag
Figure 53. Innervision Plastic Bicycle – Matt Clark
Figure 54. Brooks leather saddles
Figure 55. Telescopic Sprung Seat Post Patent Application 1901
Figure 56. BodyFloat Bike Suspension Seat Post
Figure 57. Bottom bracket – lugged frame
Figure 58. Cottered Bottom Bracket Spindle with Bearing Cups
Figure 59. 9.5mm Crank Cotter
Figure 60. Cottered cranks on a 1970s bicycle
Figure 61. Advertisement for Conloy Cotterless Cranks 1937
Figure 62. Park Tools Universal Crank Puller for Square Taper and Splined Cranks
Figure 63. Bottom Bracket Axle Sealed Cartridge
Figure 64. Bicycle pedals with rubber inserts and reflectors
Figure 65. Nitto "Moustache" Handlebar
Figure 66. Aluminium Dropped handlebar wound with Leather tape
Figure 67. Laminated and curved Wooden Handlebars
Figure 68. Vintage Japanese celluloid bicycle grips
Figure 69. Headset for threaded forks – Sheldon Brown
Figure 70. 22mm Diameter Quill Stems
Figure 71. Threadless Aluminium Stem
Figure 72. Seat post detail – Campagnolo equipped bicycle
Figure 73. Three, two, and single rail saddle clamps for 22mm seat posts
Figure 74. Stein Seat-post Sizing Rod Set - Stein
Figure 75. Surly Constrictor Seat Post Clamp - Surly
Figure 76. Dursley Pedersen Bicycle 1902
Figure 77. Model T Ford circa 1910
Figure 78. BMC “Mini” circa 1961
Figure 79. Standard Moulton bicycle circa 1965
Figure 80. Raleigh RSW 16 - 1967
Figure 81. Bowden Spacelander 1946
Figure 82. Bowden Spacelander Bicycle
Figure 83. Itera Plastic Bicycle, Sweden 1980
Figure 84. 'SOUPLETTE' Bicycle with bent wood frame France circa 1898
Figure 85. Contemporary wooden bicycle – Unknown Author
Figure 86. Lady’s Bamboo bicycle, National Cycle Collection – Llandrindod Wells
Figure 87. Contemporary Bamboo Bicycle Frame – Calfee D Published June 20, 2014
Figure 88. Contemporary Bamboo Bicycle
Figure 89. Wood and metal framed bicycle circa 1910 – Sterba Bike CZ
Figure 90. Stripped and Unstripped Batang Cane
Figure 91. Hickory loop framed bicycle circa 1910
Figure 92. Alfons Mucha Publicity Poster – Perfecta Cycles
Figure 93. Hickory Diamond framed Bicycle circa 1910
Figure 94. Plywood Childs “Likeabike”
Figure 95. Flatframesystems Women’s Bicycle.
Figure 96. Flat Panel Bicycle
Figure 97. The Sandwich Bike
Figure 98. The Sandwich Bike flat pack by Pedalfactory
Figure 99. Exploded view of the Sandwichbike DIY flat-pack wooden bicycles
Figure 100. Plywood bicycle. Constructor unknown
Figure 101. Contemporary Connor wooden bicycle.
Figure 102. Bough Bikes Oak Framed Bicycle 2013
Figure 103. The standard Bough Bikes bicycle retail for approximately 1,500 euros
Figure 104. Figure 101 Wooden bicycle developed by Cyclowood UK
Figure 105. Cyclowood “Beach Cruiser”
Figure 106. Grainworks Custom Holzfahrrad AnalogOne.
Figure 107. Laminated Wood Head Tube Detail - AnalogOne
Figure 108. Angel MDF Bicycle Made in Portugal
Figure 109. The Embira Bicycle Thomas Pascoli Scott, Brazil 151
Figure 110. The Waldmeister Bicycle, Germany 152
Figure 111. Whalen and Janssen laminated wood frame bicycle. 153
Figure 112. 1939 Patent Application for Steel Elgin Bicycle Frame 154
Figure 113. Wooden Bicycle produced by Tino Sana 155
Figure 114. Renovo Bicycles Laminated Wood Frame (Left hand side) 156
Figure 115. An Original Bamboo Bicycle circa 1895 157
Figure 116. Bent wood and Metal Bicycle with Wooden Wheels circa 1900 159
Figure 117. Initial Design Sketches for Wooden Bicycle – Nick Taylor 162
Figure 118. Preliminary Wooden Frame Bicycle Design Sketches – Nick Taylor 2004 163
Figure 119. Original Wooden Bicycle Mock-up – Nick Taylor 2004 164
Figure 120. Illustration Showing Wooden Bicycle Steering Idea – Nick Taylor 2004 165
Figure 121. Tabbed Wheel Spindle Safety Washer. Nick Taylor 166
Figure 122. Illustration of Possible Wooden Forks Design and Wooden Handlebars 2005 169
Figure 123. Initial Design Sketches for Wooden Bicycle – Nick Taylor 2005 170
Figure 124. Main Body of Wooden Bicycle Frame Mock-up – Nick Taylor 2005 171
Figure 125. Typical Crankset showing Crank Arm Length 174
Figure 126. Full Scale Simulation of Wooden Frame Bicycle minus Forks –2005 176
Figure 127. Initial Design Sketches for Head Tube Fitting – Nick Taylor 2005 178
Figure 128. Top View of Wooden Core – Grain Direction and Steerer Tube Position 179
Figure 129. Measuring Standard Bottom Bracket Widths 180
Figure 130. Two-piece Bottom Bracket Shell Prototype with Flanges – Xylonbikes 2005 183
Figure 131. Two-piece Bottom Bracket Shell with Flanges Trial Fitting to Xylon #1 –2005 183
Figure 132. Two-piece Bottom Bracket Shell with Flanges Trial Fitting to Xylon #1 –2005 184
Figure 133. American to European Bottom Bracket Adaptor - TruVativ 186
Figure 134. Steel Bottom Bracket Shell – Generic Part 187
Figure 135. Threadless Bottom Bracket Cartridge 188
Figure 136. Eccentric Bottom Bracket 189
Figure 193. Torque Arm Mounting Bar - Nick Taylor 2015 252
Figure 194. Two part flanged bottom bracket fabricated and brazed. Nick Taylor 2005 254
Figure 195. Aluminium Two Part Bottom Bracket Housing Prototype (L/h & R/h) 2006 255
Figure 196. Xylon Two Part Bottom Bracket with Sealed Cartridge Unit in Position –2015 256
Figure 197. Axle Stands with Drilled Tube and Pin 258
Figure 198. Axle Stands with Drilled Tube, Drilled Support, and Pin 258
Figure 199. Axle Stand with Drilled Square Tube, Drilled Support and Double Pin 259
Figure 200. Xylon Wooden Seat post Clamp Prototype #1 - Nick Taylor 2005 262
Figure 201. Xylon Wooden Seat post Clamp Prototype #2. Nick Taylor 2006 263
Figure 202. Expanding MS Threaded Brass Inserts 265
Figure 203. Xylon Wooden Seat post Clamp Prototype #2 in Position on Seat-post. 2010 265
Figure 204. Turned Aluminium Seatpost Clamp 266
Figure 205. Governor’s Island Prototype Wooden Bicycle – (West 8) 273
Figure 206. Custom made bicycle hanger racks - West 8 wooden bike share - 273
Figure 207. West 8’s proposed wooden bicycle with basket incorporated simulation 277
Figure 208. Xylon Klassic after head on collision with “conventional” steel bicycle. 2008 288
Figure 209. Xylon Klassic in the Frankfurt Eurobike Show - Thora Bleckwedel 2008 289
Figure 210. Unvarnished Xylon Frame with Pyrography Designs – Kenneth Dayton 293
Figure 211. Xylon Frame with Pyrography Design Fields Coloured – Kenneth Dayton 294
Figure 212. Decorated Frame Complete Bicycle – Kenneth Dayton 295
Figure 213. Pampero Rum Promotional Bicycle – Leonel Mateus 296
Figure 214. Xylon Klassic with simulated Romantic Artwork 297
Figure 215. The Xylonbikes Fleet. Nick Taylor 2009 299
Figure 216. Lightened Chainwheel 301
Figure 217. Lightened Plywood Aircraft Bulkheads 302
Figure 218. Xylon Cell on Display at the ESTGAD Finalists exhibition – Caldas da Rainha 303
Figure 219. Bough Wooden Bicycle with Battery pack – Bough Bikes 309
LIST OF TABLES

Table 1. Pros and cons of possible solutions to improve the seat post clamp functionality. 264
Table 2. Xylon Bikes wooden bicycle specifications for West 8. 275
Table 3. General usage comparisons of wood, steel, aluminium or carbon bicycle frames. 286
Table 4. Effects of aging: control models compared with test models 324
Table 5. Most commonly used bottom bracket thread specifications 346
Table 6. Bottom bracket specification nomenclature 348
Table 7. Plywood - Relevant standards and projects 349
Table 8. Plywood – Nominal dimensions of plywood 352
Table 9. Steering bearing cup nomenclature and dimensions. Park Tools. 354
Table 10. ETRTO Tyre and wheel sizes 356

INDEX OF APPENDICES

Appendix i - Bottom bracket dimensions 346
Appendix ii - Park Tool Bottom Bracket Data 347
Appendix iii - Types of Engineered Wood considered for the making of a wooden bicycle: 349
Appendix iv - Steering bearing cup nomenclature and dimensions. 354
Appendix v - Tyre and Wheel Sizing 356
Appendix vi - E-bike battery specifications 361
Appendix vii - Rattan Cane 362
Appendix viii - Supermarket bicycles and Value Engineering. 366