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Abstract—Mobile Ad-hoc Networks (MANETs) assume that
mobile nodes voluntary cooperate in order to work properly.
This cooperation is a cost-intensive activity and some nodes can
refuse to cooperate, leading to a selfish node behaviour. Thus,
the overall network performance could be seriously affected.
The use of watchdogs is a well-known mechanism to detect
selfish nodes. However, the detection process performed by
watchdogs can fail, generating false positives and false negatives
that can induce to wrong operations. Moreover, relying on local
watchdogs alone can lead to poor performance when detecting
selfish nodes, in term of precision and speed. This is specially
important on networks with sporadic contacts, such as Delay
Tolerant Networks (DTNs), where sometimes watchdogs lack of
enough time or information to detect the selfish nodes. Thus, we
propose CoCoWa (Collaborative Contact-based Watchdog) as a
collaborative approach based on the diffusion of local selfish
nodes awareness when a contact occurs, so that information
about selfish nodes is quickly propagated. As shown in the paper,
this collaborative approach reduces the time and increases the
precision when detecting selfish nodes.

Index Terms—Wireless networks, MANETs, Opportunistic and
Delay Tolerant Networks, Selfish Nodes, Performance Evaluation.

I. INTRODUCTION

Cooperative networking is currently receiving significant
attention as an emerging network design strategy for future
mobile wireless networks. Successful cooperative networking
can prompt the development of advanced wireless networks to
cost-effectively provide services and applications in contexts
such as vehicular ad hoc networks (VANETs) or mobile social
networks. Two of the basic technologies that are considered
as the core for these types of networks are Mobile Ad-Hoc
Networks (MANETs) and Opportunistic and Delay Tolerant
Networks (DTNs).

The cooperation on these networks is usually contact-based.
Mobile nodes can directly communicate with each other if
a contact occurs (that is, if they are within communication
range). Supporting this cooperation is a cost intensive activity
for mobile nodes. Thus, in the real world, nodes could have
a selfish behaviour, being unwilling to forward packets for
others. Selfishness means that some nodes refuse to forward
other nodes’ packets to save their own resources.

The literature provides two main strategies to deal with
selfish behaviour: a) motivation or incentive based approaches,
and b) detection and exclusion. The first approach, tries to
motivate nodes to actively participate in the forwarding activ-
ities. These approaches are usually based on virtual currency

and/or game theory models [4], [5], [9], [36]. The detection
and exclusion approach is a straight-forward way to cope
with selfish nodes and several solutions have been presented
[3], [14], [19], [22]–[25], [28], [34]. In CoCoWa, we do not
attempt to implement any strategy to exclude selfish nodes
or to incentivize their participation; instead, we focus on the
detection of selfish nodes.

The impact of node selfishness on MANETs has been stud-
ied in [30]–[32]. In [32] it is shown that when no selfishness
prevention mechanism is present, the packet delivery rates
become seriously degraded, from a rate of 80% when the
selfish node ratio is 0, to 30% when the selfish node ratio
is 50%. The survey [31] shows similar results: the number
of packet losses is increased by 500% when the selfish node
ratio increases from 0% to 40%. A more detailed study
[30] shows that a moderate concentration of node selfishness
(starting from a 20% level) has a huge impact on the overall
performance of MANETs, such as the average hop count,
the number of packets dropped, the offered throughput, and
the probability of reachability. In DTNs, selfish nodes can
seriously degrade the performance of packet transmission. For
example, in two-hop relay schemes, if a packet is transmitted
to a selfish node, the packet is not re-transmitted, therefore
being lost.

Therefore, detecting such nodes quickly and accurately is
essential for the overall performance of the network. Previ-
ous works have demonstrated that watchdogs are appropriate
mechanisms to detect misbehaving and selfish nodes. Essen-
tially, watchdog systems overhear wireless traffic and analyse
it to decide whether neighbour nodes are behaving in a selfish
manner [16]. When the watchdog detects a selfish node it is
marked as a positive detection (or a negative detection, if it
is detected as a non selfish node). Nevertheless, watchdogs
can fail on this detection, generating false positives and false
negatives that seriously degrade the behaviour of the system.

Another source of problems for cooperative approaches is
the presence of colluding or malicious nodes. In this case,
the effect can even be more harmful, since these nodes try
to intentionally disturb the correct behaviour of the network.
For example, one harmful malicious node can be lying about
the status of other nodes, producing a fast diffusion of false
negatives or false positives. Malicious nodes are hard to
detect using watchdogs, as they can intentionally participate
in network communication with the only goal to hide their
behaviour from the network. Thus, since we assume that
these nodes may be present on the network, evaluating their
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influence becomes a very relevant matter.
This paper introduces CoCoWa (Collaborative Contact-

based Watchdog) as a new scheme for detecting selfish nodes
that combines local watchdog detections and the dissemination
of this information on the network. If one node has previously
detected a selfish node it can transmit this information to other
nodes when a contact occurs. This way, nodes have second
hand information about the selfish nodes in the network. The
goal of our approach is to reduce the detection time and to
improve the precision by reducing the effect of both false
negatives and false positives. Although some of the aforemen-
tioned papers (such as [3], [28]) introduced some degree of
collaboration on their watchdog schemes, the diffusion is very
costly since they are based on periodic message dissemination.

The diffusion of information about positive or negative
detections of selfish nodes introduces several issues about the
reputation of the neighbour nodes. The first issue is the con-
solidation of information, that is, the trust about neighbour’s
positive and negative detections, specially when it does not
match with the local watchdog detection. Another issue is the
case of malicious nodes. Thus, this paper extends our previous
approaches [12], [13] to also cope with malicious nodes using
a reputation scheme.

In order to evaluate the efficiency of CoCoWa we first
introduce an analytical performance model. We model the
network as a Continuous Time Markov Chain (CTMC) and de-
rive expressions for obtaining the time and overhead (cost) of
detection of selfish nodes under the influence of false positives,
false negatives and malicious nodes. In general, the analytical
evaluation shows a significant reduction of the detection time
of selfish nodes with a reduced overhead when comparing
CoCoWa against a traditional watchdog. The impact of false
negatives and false positives is also greatly reduced. Finally,
the pernicious effect of malicious nodes can be reduced using
the reputation detection scheme. We also evaluate CoCoWa
with real mobility scenarios using well known human and
vehicular mobility traces. These experimental results confirm
that our approach is very efficient.

The rest of the paper is organised as follows. We first
introduce the architecture of CoCoWa in section II. Section
III discusses the characterisation of contact occurrence. Then,
section IV presents a performance model for evaluating our ap-
proach. Section V presents the evaluation of CoCoWa in terms
of detection time and overhead using the analytical model. The
CoCoWa approach is also experimentally evaluated using real
mobility traces in section VI. After presenting and evaluating
our proposal we present some related work in section VII.
Finally, section VIII presents the concluding remarks.

II. ARCHITECTURE OVERVIEW

A selfish node usually denies packet forwarding in order to
save its own resources. This behaviour implies that a selfish
node neither participates in routing nor relays data packets
[21]. A common technique to detect this selfish behaviour is
network monitoring using local watchdogs. A node’s watchdog
consists on overhearing the packets transmitted and received
by its neighbours in order to detect anomalies, such as the
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Fig. 1: An example of how CoCoWa works. a) Initially all nodes have no
information about the selfish node. b) Node 2 detects the selfish node using
its own watchdog. c) Node 2 contacts with node 3 and it transmits the positive
about the selfish node. d) The local watchdog of Node 4 fails to detect the
selfish node and it generates a negative detection (a false negative).

ratio between packets received to packets being re-transmitted
[15]. By using this technique, the local watchdog can generate
a positive (or negative) detection in case the node is acting
selfishly (or not).

An example of how CoCoWa works is outlined in figure 1.
It is based on the combination of a local watchdog and the
diffusion of information when contacts between pairs of nodes
occurs. A contact is defined as an opportunity of transmission
between a pair of nodes (that is, two nodes have enough time
to communicate between them). Assuming that there is only
one selfish node, the figure shows how initially no node has
information about the selfish node. When a node detects a
selfish node using its watchdog, it is marked as a positive,
and if it is detected as a non selfish node, it is marked as a
negative. Later on, when this node contacts another node, it
can transmit this information to it; so, from that moment on,
both nodes store information about this positive (or negative)
detections. Therefore, a node can become aware about selfish
nodes directly (using its watchdog) or indirectly, through the
collaborative transmission of information that is provided by
other nodes.

Under this scheme, the uncontrolled diffusion of positive
and negative detections can produce the fast diffusion of wrong
information, and therefore, a poor network performance. For
example, in figure 1, on the last state d), node two and
three have a positive detection and node four has a negative
detection (a false negative). Now, node one, which has no
information about the selfish node, has several possibilities: if
it contacts the selfish node it may be able to detect it; if it
contacts node two or three it can get a positive detection; but
if it contacts node four, it can get a false negative.

Figure 2 shows the functional structure of CoCoWa and we
now detail its three main components.

The Local Watchdog has two functions: the detection of
selfish nodes and the detection of new contacts. The local
watchdog can generate the following events about neighbour
nodes: PosEvt (positive event) when the watchdog detects
a selfish node, NegEvt (negative event) when the watchdog
detects that a node is not selfish, and NoDetEvt (no detection
event) when the watchdog does not have enough information
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about a node (for example if the contact time is very low or
it does not overhear enough messages). The detection of new
contacts is based on neighbourhood packet overhearing; thus,
when the watchdog overhears packets from a new node it is
assumed to be a new contact, and so it generates an event to
the network information module.

The Diffusion module has two functions: the transmission
as well as the reception of positive (and negative) detections.
A key issue of our approach is the diffusion of information.
As the number of selfish nodes is low compared to the total
number of nodes, positive detections can always be transmitted
with a low overhead. However, transmitting only positive
detections has a serious drawback: false positives can be
spread over the network very fast. Thus, the transmission
of negative detections is necessary to neutralise the effect of
these false positives, but sending all known negative detections
can be troublesome, producing excessive messaging or the
fast diffusion of false negatives. Consequently, we introduce
a negative diffusion factor γ, that is the ratio of negative
detections that are actually transmitted. This value ranges from
0 (no negative detections are transmitted) to 1 (all negative
detections are transmitted). We will show in the evaluation
section that a low value for the γ factor is enough to neutralise
the effect of false positives and false negatives. Finally, when
the diffusion module receives a new contact event from the
watchdog, it transmits a message including this information to
the new neighbour node. When the neighbour node receives
a message, it generates an event to the network information
module with the list of these positive (and negative) detections.

Updating or consolidating the information is another key
issue. This is the function of the Information Update module.
A node can have the following internal information about other
nodes: NoInfo state, Positive state and Negative state.
A NoInfo state means that it has no information about a
node, a Positive state means it believes that a node is
selfish, and a Negative state means it believes that a node is
not selfish. A node can have direct information (from the local
watchdog) and indirect information (from neighbour nodes).
CoCoWa is event driven, so the state of a node is updated when
the PosEvt or NegEvt events are received from the local
watchdog and diffusion modules. In particular, these events
updates a reputation value ρ using the following expression:

ρ = ρ+ ∆ ∆ =


+δ (PosEvt,Local)

+1 (PosEvt, Indirect)

−δ (NegEvt,Local)

−1 (NegEvt, Indirect)

δ ≥ 1 (1)

In general, a PosEvt event increments the reputation value
while a NegEvt event decrements it. Defining θ as a threshold
and using the reputation value ρ, the state of the node changes
to Positive if ρ ≥ θ, and to Negative if ρ ≤ −θ.
Otherwise, the state is NoInfo. The combination of δ and θ
parameters allows a very flexible and dynamic behaviour. First,
if θ > 1 and δ < θ we need several events in order to change
the state. For example, starting from the NoInfo state, if
θ = 2 and δ = 1, at least a local and an indirect event is needed
to change the state, but if θ = 1, only one event is needed.
Second, we can give more trust to the local watchdog or to
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Fig. 2: CoCoWa Architecture

indirect information. For example, a value of δ = 2 and θ = 3,
means that we need one local event and one indirect event,
or three indirect events, to change the state. This approach
can compensate wrong local decisions: for example, a local
NegEvt can be compensated by 2δ + θ indirect PosEvt
events, and in order to change from Positive to Negative
states (or vice-versa) we need twice the events.

The advantages of this updating strategy are twofold. First,
with the threshold θ we can reduce the fast diffusion of false
positive and false negatives. Nevertheless, this can produce a
delay on the detection (more events are needed to get a better
decision). Second, the decision about a selfish node is taken
using the most recent information. For example, if a node had
contact with the selfish node a long time ago (so it had a
Positive state) and now receives several NegEvt in a row
from other nodes, the state is updated to Negative.

Finally, the network information about the nodes has an
expiration time, so after some time without contacts it is
updated. The implementation of this mechanism is straight-
forward. When an event is received, it is marked with a time
stamp, so in a given timeout an opposite event is generated,
in order to update the value of ρ.

III. CHARACTERISING INTER-CONTACT TIMES

Characterising inter-contact times (or inter-meeting times)
between pairs of nodes is essential for analysing the perfor-
mance of contact-based protocols in cooperative networking.
The inter-contact times distribution is obtained by aggregating
the individual pair distribution of all combinations of pairs
of nodes in the network. The individual pair distribution is
defined as the distribution of the time elapsed between two
consecutive contacts between the same pair of nodes [27].

The assumption that the aggregated inter-contact time fol-
lows an exponential distribution with rate λ has been shown to
hold in several mobility scenarios of both humans and vehicles
[11], [23], [37]. For example, in [11] it is shown that, for
the random waypoint and random direction mobility models,
parameter λ is related to the mean speed of nodes v, through
an empirical expression. There is some controversy about
whether this exponential distribution relates to real mobility
patterns. Empirical results have shown that the aggregated
inter-contact time distribution follows a power-law and has
a long tail [7], meaning that there are some pairs of nodes
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that barely experience contact. In [6] it is shown that in a
bounded domain, such as the one selected along this paper, the
inter-contact distribution is exponential, but in an unbounded
domain the distribution is power-law. The dichotomy of this
distribution is described in [18]: a truncated power law with
exponential decay appearing in its tail after some cutoff point.
A recent paper [27] presents the dependence between the
individual pair distribution and the aggregated distribution.
It is stated that, starting from the exponential individual
pair distribution, the aggregated is distributed according to
a Pareto law. It also verifies the dichotomy property of the
aggregate distribution analytically. The work in [10] analysed
some popular mobility traces and found that over 85% of the
individual pair distributions fit an exponential distribution.

Therefore, we consider that using an exponential fit is a
valid assumption to model inter-contact times. Our analytical
model assumes an exponential distributed inter-contact rate
between nodes and, therefore, it is suited for modelling the
contacts in MANETs and DTNs networks.

IV. SYSTEM MODEL

The network is modelled as a set of N wireless mobile
nodes, with C collaborative nodes, M malicious nodes and S
selfish nodes (N = C + M + S). Our goal is to obtain the
time and overhead that a set of D ≤ C nodes need to detect
the selfish nodes in the network. The overhead is the number
of information messages transmitted up to the detection time.

Note that the following models evaluate the detection of a
single selfish node. The effect of having several selfish nodes
in a network is easy to evaluate, and it does not require
a specific model. If we assume that selfish nodes are not
cooperative, we can analyse the impact of each selfish node
on the network independently. In the case of several selfish
nodes (S > 1) on a network with N nodes, we can assume
that there are C = N − S cooperative nodes.

A. The model for the CoCoWa architecture

The goal of this subsection is to model the behaviour of the
different modules of our architecture (see figure 2). The local
watchdog is modelled using three parameters: the probability
of detection pd, the ratio of false positives pfp, and the ratio
of false negatives pfn. The first parameter, the probability
of detection (pd), reflects the probability that, when a node
contacts another node, the watchdog has enough information
to generate a PosEvt or NegEvt event. This value depends
on the effectiveness of the watchdog, the traffic load, and the
mobility pattern of nodes. For example, for Opportunistic Net-
works or DTNs where the contacts are sporadic and have low
duration, this value is lower than for MANETs. Furthermore,
the watchdog can generate false positives and false negatives.
A false positive is when the watchdog generates a positive
detection for a node that is not a selfish node. A false negative
is generated when a selfish node is marked as a negative
detection. In order to measure the performance of a watchdog,
these values can be expressed as a ratio or probability: pfp
is the ratio (or probability) of false positives generated when
a node contacts a non-selfish node, and pfn is the ratio (or

probability) of false negatives generated when a node contacts
a selfish node. Using the previous parameters we can model the
probability of generating local PosEvt and NegEvt events
when a contact occurs:
• PosEvt event: the node contacts with the selfish node

and the watchdog detects it, with probability pd(1−pfn).
Note that a false positive can also be generated with
probability pd · pfp.

• NegEvt event: the node contacts with a non-selfish node
and detect it with probability pd(1−pfp). A false negative
can also be generated when it contacts with the selfish
node with probability pd · pfn.

The diffusion module can generate indirect events when a
contact with neighbour nodes occurs. Nevertheless, a contact
does not always imply collaboration, so we model this proba-
bility of collaboration as pc. The degree of collaboration is a
global parameter, and it is used to reflect that either a message
with the information about the selfish node is lost, or that a
node temporally does not collaborate (for example, due to a
failure or simply because it is switched off). In real networks,
full collaboration (pc = 1) is almost impossible. Finally, the
probability of generating the indirect events are the following:
• PosEvt event: a contact with another node that has a
Positive state of the selfish node with probability pc.

• NegEvt event: a contact with another node that has a
Negative state, being the probability γ · pc. Note that
not all Negative states are transmitted, it depends on
the diffusion factor γ.

The information update module is driven by the previous
local and indirect events. These events update the reputation
ρ about a node, and are used to finally decide if a node is
selfish or not using the threshold θ.

B. Malicious nodes and attacker model

Malicious nodes attemp to attack the CoCoWa system by
generating wrong information about the nodes. Thus, the
attacker model addresses the behaviour or capabilities of these
malicious nodes. A malicious node attack consists of trying
to send a positive about a node that is not a selfish node, or
a negative about a selfish node, with the goal of producing
false positives and false negatives on the rest of nodes. In
order to do this, it must have some knowledge about the way
CoCoWa works. The effectiveness of this behaviour clearly
depends on the rate and precision that malicious nodes can
generate wrong information. Malicious nodes are assumed to
have a communications hardware similar to the rest of nodes,
so they can hear all neighbour messages in a similar range
than the rest of nodes. Nevertheless, the attacker could use
high-gain antennas to increase its communications range and
thus disseminate false information in a more effective manner.

Regarding the diffusion of information on the network, our
approach does not assume any security measures, such as
message cyphering or node authentification. Nevertheless, if
these measures exist, the effect of malicious nodes in CoCoWo
will be very reduced or even non-existent. The diffusion
module can also accepts messages from every node, including
from malicious ones. Thus, we assume that malicious nodes
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can be active, and use this information in order to generate
wrong positives/negatives about other nodes. Nevertheless, we
assume that malicious nodes cannot impersonate other nodes
and do not collude with other malicious nodes (that is, they
do not cooperate among them). Another problem is the Sybil
attack [8]. Since malicious nodes can create and control more
than one identity on a single physical device, it can have a
serious impact on CoCoWa. Thus, a specific security measure
is needed, such as the one presented in [1].

The behaviour of malicious nodes is modeled from the
receiver perspective, which is based on the probability of
receiving wrong information about a given node when a
contact with a malicious node occurs (that is, it receives a
Negative about the selfish node, and a Positive about the
other nodes). We denote this behaviour as the maliciousness
probability pm. Below we detail several aspects that can affect
this probability:

1) The reception of information, considering that not all
contacts produce this reception. This aspect is similar to
the collaboration degree (that is, the pc parameter), but an
increase of communication range of the malicious nodes
will increase the information reception.

2) The malicious nodes do not have information about all
nodes; so, in order to send a positive/negative about a
node, they must have contacted this node previously or
have received a message from other nodes.

3) Another issue to consider is the proper generation of
wrong information, for example when receiving a positive
of a node that is not a selfish node. From the receiver
point of view, a perfect malicious node will always
provide wrong information. In this case, the malicious
node, in order to send wrong information, must know the
state of each node. In other words it must have a perfect
local watchdog (about the node it contacts).

Summing up, this parameter reflects the average intensity
or effectiveness of the attack of the malicious nodes.

C. The model for the detection of selfish nodes

In this subsection we introduce an analytical model for
evaluating the performance of CoCoWa. The goal is to obtain
the detection time (and overhead) of a selfish node in a
network. This model takes into account the effect of false
negatives. False positives do not affect the detection time of
the selfish node, so pfp is not introduced in this model.

Using λ as the contact rate between nodes, we can model
the network using a 4D Continuous Time Markov chain (4D-
CTMC). For modelling purposes, the collaborative nodes are
divided into two sets: a set with D destination nodes, and
a set of E = C − D intermediate nodes. The destination
and intermediate nodes have the same behaviour (both are
collaborative nodes). The only purpose of this division is to
analytically obtain the time and the overhead required for
the subset of destination nodes to detect the selfish node.
Thus, the 4D-CTMC states are: (dp(t), dn(t), ep(t), en(t)),
where ep(t) represents the number of intermediate nodes
that have a Positive state, en(t) the intermediate nodes
with a Negative state, dp(t) the destination nodes with

a Positive state and dn(t) the destination nodes with a
Negative state. Note that, in this model, a Negative is a
false negative. The states must verify the following conditions:
dp(t) + dn(t) ≤ D and ep(t) + en(t) ≤ E. Our 4D-CTMC
model has an initial state (0, 0, 0, 0) (that is, all nodes have no
information). The final (absorbing) states are when dp(t) = D.
We define υ as the number absorbing states, that are all
possible permutations of states ({(D, 0, ∗, ∗)}) that sum E.
It is easy to derive that υ = PS(E) = 0.5(E + 1)(E + 2).
The number of transient states τ is obtained in a similar way:
τ = (PS(D) − 1)PS(E). This model can be expressed using
the following generator matrix Q:

Q =

(
T R
0 0

)
(2)

where T is a τ × τ matrix with elements qij denoting the
transition rate from transient state si to transient state sj , R
is a τ×υ matrix with elements qij denoting the transition rate
from transient state si to the absorbing state sj , the left 0 is
a υ × τ zero matrix, and the right 0 is a υ × υ zero matrix.

Now, we derive the transition rates qij . Given the state si =
(ep, en, dp, dn)1, we have:

qij =



Rp(E − ep − en) ep+

Rfn(E − ep − en) en+

Rfnep ep−
Rpen en−
Rp(D − dp − dn) dp+

Rfn(D − dp − dn) dn+

Rfndp dp−
Rpdn dn−

(3)

where x+ represents a transition from state (· · · , x, · · · ) to
(· · · , x + 1, · · · ), and x− represents a transition from state
(· · · , x+ 1, · · · ) to (· · · , x, · · · ). Finally, qii = −

∑
i 6=j qij .

The first transition ep+ is when a intermediate collabo-
rative node changes from NoInfo state to a Positive
state ((dp, dn, ep, en) to (dp, dn, ep + 1, en)). The rate of
change depends on the updating of ρ, and on the δ and θ
parameters. The reputation value ρ increments according to
expression 1. This update can be generated by local events
and indirect events. First, the local watchdog can generate a
local PosEvt with rate λpd(1 − pfn) so the reputation is
incremented by δ. Then, the rate of increment due to local
events is λδpd(1 − pfn). Second, updating from an indirect
event depends on the number of nodes with Positive
and Negative states and the probability of collaboration:
λpc(cp−γcn) where cp = ep+dp and cn = en+dn. Malicious
nodes affect this updating by generating indirect NegEvt with
a rate λMpm. Since we are evaluating the increment, this
term must be positive. So, the final rate due to indirect events
is λmax(pc(cp − γcn) −Mpm). All the previous terms are
divided by threshold θ in order to obtain the rate of changing
when a node contacts with a collaborative node:

Rp = λ(δpd(1−pfn)+max(pc(cp−γcn)−Mpm, 0))/θ (4)

Finally, there are (E− ep− en) nodes with the NoInfo state
so the final transition rate is Rp(E − ep − en).

1For simplicity, we omit the time in the states.
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The second transition, en+, is when a intermediate collab-
orative node changes from (dp, dn, ep, en) to (dp, dn, ep, en+
1). This means that a intermediate collaborative node changes
to a Negative state (a false negative). We can derive a sim-
ilar expression for the rate of change to a (false) Negative
state RfN . In this case, when a node contacts with the selfish
node, the reputation is decreased with rate λδpdpfn, and also
by indirect events with rate λ(pc(γcn− cp) +Mpm). Finally,
we have:

Rfn = λ(δpdpfn + max(pc(γcn − cp) +Mpm, 0))/θ (5)

and the transition is Rfn(E − ep − en).
The transition ep− is when a intermediate collaborative

node that has a Positive state changes to NoInfo. This
event is similar to en+ and the transition rate is similar:
Rfnep. Note that in this case we multiply by the number of
nodes that have a Positive state instead of the number of
pending nodes. In a similar way, the transition en+ occurs
when a intermediate collaborative node that has a Negative
state changes to NoInfo. So, the transition rate is Rpen.
For transitions regarding destination nodes, the rates are very
similar to the previous ones, as seen in expression 3. Finally,
all these transitions retain the exponential distribution of
useful contacts (that is, the contacts that produce a transition),
preserving the Markovian nature of the process.

Using the generator matrix Q we can derive two different
expressions: one for the detection time Td and another for
the overall overhead (or cost) Od. Starting with the detection
time, from the 4D-CTMC we can obtain how long it will take
for the process to be absorbed. Using the fundamental matrix
N = −T−1, we can obtain a vector t of the expected time
to absorption as t = Nv, where v is a column vector of
ones (v = [1, 1, . . . , 1]T ). Each entry ti of t represents the
expected time to absorption from state si. Since we only need
the expected time from state s1 = (0, 0, 0, 0) to absorption
(that is, the expected time for all destination nodes to have a
Positive state), the detection time Td, is:

Td = E[T ] = v1Nv (6)

where T is a random variable denoting the detection time for
all nodes and v1 = [1, 0, . . . , 0]. Concerning the overhead we
need to obtain the number of transmitted messages for each
state si. First, the duration of each state si can be obtained
using the fundamental matrix N. By definition, the elements of
the first row of N are the expected times in each state starting
from state 0. Then, the duration of state si is fi = N(1, i).

Now, we calculate the expected number of messages mi.
The number of messages depends on the diffusion model. For
an easier exposition, we start with γ = 0, that is, only the
positive detections are transmitted. From state s1 = (0, 0, 0, 0)
to sE+1=(0, 0, 0, E) no node has a Positive state, so
no messages are transmitted and m1 = 0. From states
sE+2 = (0, 0, 1, 0) to s2E+1 = (0, 0, 1, E − 1), one node
has a Positive state. In these cases, the Positive can
be transmitted to all nodes (except itself) for the duration
of each state i (N(1, i)) with a rate λ and probability pc.
Then, the expected number of messages can be obtained as
mi = N(1, i)λ(C − 1)pc. From states s2E+2 = (0, 0, 2, 0) to

s3E+1 = (0, 0, 2, E − 2), we have two possible senders and
mi = 2N(1, i)λ(C − 1)pc. Considering both types of nodes
(destination and intermediate), the number of nodes with a
Positive for state si is Φ(si) = dp + ep. Summarizing, the
overhead of transmission (number of messages) is:

Od = E[Msg] = λ(C − 1)pc

τ∑
i=1

Φ(si)N(1, i) (7)

Finally, for γ > 0, the ratio of nodes cn that will transmit a
Negative is precisely γ, so Φ(si) = dp + ep + γ(dn + en).

Using the previous model, we can also evaluate the time
when destination nodes D have a ”false negative” about the
selfish node. In this case the absorbing states are {0, D, ∗, ∗},
that is, when dn = D. A high rate of false negatives and
malicious nodes may cause a false negative state to be reached
in less time than a true positive detection. This situation (and
the solution) is studied in subsection V-B.

D. The model for false positives

We now develop a model for evaluating the effect of false
positives. This model evaluates how fast a false positive
spreads in the network (the diffusion time). Thus, in this case,
a greater diffusion time stands for a lower impact of false
positives. The diffusion time is similar to the detection time
of true positives described in the previous subsection, and it
can be obtained in a similar way. Following the same process
that in the previous model for the false negatives, we have
a 4D-CMTC with the same states (dp, dn, ep, en), but in this
case cp = dp+ep represents the number of nodes with a false
positive, and cn = dn + en the number of nodes with a (true)
negative detection. We can derive expressions similar to 4 and
5, for the case of false positives. In this case, RfP represents
the rate of a false positive, and it is derived in a similar way:

Rfp = λ(δpdpfp + max(pc(cp − γcn) +Mpm, 0))/θ (8)

and Rn represents the rate of negative detection:

Rn = λ(δpd(1−pfp)+max(pc(γcn−cp)−Mpm, 0))/θ (9)

Using these expressions, the transition rates (qij) of the
generator matrix Q are similar to expression 3, substituting
RP and Rfn by Rfp and Rn, respectively. Finally, using
equations 6 and 7 described in our previous model, we can
obtain the diffusion time and the overhead.

V. ANALYTICAL EVALUATION

This section is devoted to evaluate the performance of
CoCoWa. The analytical model introduced in section IV has
several parameters, so in this paper we focus on those parame-
ters that clearly affect performance. First, we study the global
performance of our approach considering the collaborative
issues. Then, we focus our study on the impact of false nega-
tives, false positives, and malicious nodes. Finally, we compare
our approach to the classic periodic diffusion model. Note
that, since λ is a multiplying factor of all transition rates in
matrix Q (except for qii), the concluding results of this section
are valid for any value of λ (a greater value of λ will affect
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Fig. 3: Global performance evaluation in the absence of false negatives, false positives and malicious nodes. a) detection time depending on collaboration in
a network of N = 25, b) detection time depending on the number of nodes, c) number of destination nodes that have detected the selfish nodes depending
on the detection time, d) detection time depending on the parameters of the detection function (θ and δ). In these plots, the continuous line represents the
overhead and the dashed line the detection time.

only on a reduction of the detection time). For the evaluations
that follow, we consider a λ value of 0.01 contacts/s, which
has been shown to be a valid value in vehicular scenarios
[37]. The following evaluations also consider the experimental
ranges of several parameters obtained from previous works of
our research group [16], [29]. In particular, the probability of
detection is low because the local watchdog needs enough
packets to generate a positive (or negative) detection of a
selfish node pd ∼ [0.1, 0.3], and the ratio of false negatives
and false positives are related to pd; for the range considered
the former take the following values: pfn ∼ [0.05, 0.25] and
pfp ∼ [0.1, 0.3].

A. Global performance evaluation

In the experiments of this subsection we assume ideal
conditions: there are no false positives, no false negatives
and no malicious nodes: pfn = pfp = M = pm = 0,
and only positive detections are transmitted: γ = 0. The first
evaluation analyse the impact that the degree of collaboration
(pc) has over the efficiency of CoCoWa. The number of selfish
nodes is one (S = 1) and the detection parameters are:
θ = δ = 1. Figure 3a shows the detection time and overhead
for all nodes in a network with 25 nodes (N = 25, D = 24)
with different probabilities of detection (pd), ranging from a
low detection ratio (0.1), typical of DTNs and Opportunistic
Networks, to greater detection ratios (0.3) typical of MANETs

[16], [29]. We observe that, when increasing the degree of
collaboration from 0 to 0.2, the detection time is reduced
exponentially and the overhead is increased. The effect of
pd is the expected: for greater values of pd, the detection
time is reduced. For example, for pd = 0.1, the detection
time with no collaboration (pc = 0) is 3775s. This value can
be greatly reduced by using CoCoWa. Thus, even for a low
collaboration rate (pc = 0.2), the detection time for all nodes is
reduced to 181s with an overhead of just 82 messages, which
represents an improvement of about 2000% on the detection
time. Regarding the detection probability (pd), we can see that
the detection time is greatly reduced even for low values, so
CoCoWa is useful in both Opportunistic Networks and DTNs.
The previous results show that, when using the local watchdog
alone, the detection time is very high (close to one hour).
The implications are important. A one hour detection is not
useful, because it is equivalent to no detection. Thus, when
using collaboration, the detection time is reduced from hours
to seconds, meaning that nodes can take appropriate actions in
time to avoid the selfish nodes, thereby improving the network
performance.

We now evaluate the impact that the number of nodes
has on performance. For the following experiments, we set
pd = pc = 0.2. In the first experiment the value of N
ranges from 10 to 100 (see figure 3b) while also varying the
number of destination nodes. A value of D = N−1 evaluates
the detection for all collaborative nodes in the network (the
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overall detection), and D = 1 evaluates the detection time for
only one node (the individual detection). Thus, the overall
detection evaluates the performance of the entire network,
while the individual detection evaluates the performance seen
from an arbitrary node. We observe that, in general, the greater
the number of nodes, the smaller the detection time and the
greater the number of messages. The main reason is that,
when the number of nodes is greater, the number of contacts
increases and so the information about the positive detection
is disseminated more quickly. The cost is directly proportional
to N .

Finally, as expected, for D = 1 the detection time is less
than for D > 1, but this increase is not exponential with
D. We can evaluate this through the dynamics of the overall
detection process. Figure 3c shows the number of destination
nodes (D) informed about the selfish nodes depending on time
with diferent network sizes. The figure shows that, when the
number of nodes is low (N ≤ 20), the first detection takes
more time, and the next detections have also a low rate. The
reason is that, when N is low, the number of contacts is also
low, and so the diffusion of the positives becomes very slow.
On the other hand, in a network with more nodes, there are
more contacts, meaning that this diffusion is faster (that is, the
process runs faster).

Now, we are going to evaluate the detection function, that
is the impact of the θ and δ parameters. We expect that greater
θ values imply greater detection times and overhead, due to
the number of events required to make a decision. This is
confirmed in the results shown in figure 3d. In this plot we
can also observe that increasing δ, that is, giving more trust
to local events, implies a reduction of both detection time and
overhead (which is logical, since less events are needed). The
significance of these detection parameters will become more
evident when handling malicious nodes.

Finally, the effect of having several selfish nodes S > 1
is easy to evaluate. Since the number of cooperative nodes is
reduced when S increases (C = N − S), the effect is similar
to reducing the number of nodes in the network. For example,
a network with N = 100 and S = 5 has a behaviour similar to
a network with N = 96 and S = 1. Thus, the harmful effect
of selfish nodes depends mainly on the number of remaining
collaborative nodes. If this number is very low (below 20), as
shown in figure 3b, the cooperation is greatly reduced and the
detection time increases exponentially.

In the following subsections, we evaluate the impact of
false negatives, false positives and malicious nodes. Since we
are evaluating the performance of the node’s collaborative
watchdog, we choose to evaluate the performance from an
arbitray node (that is, we set D = 1).

B. Impact of false negatives

The goal of the following experiments is to evaluate the
impact of false negatives. In all the experiments we used
pd = 0.1, M = pm = 0, D = 1, N = 25. We are going
to evaluate how the detection time (and overhead) increases
depending on the ratio of false negatives (pfn). The first
experiment evaluates the influence of collaboration for several
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Fig. 4: Evaluation of the impact of false negatives, a) for γ = 0, b) for γ = 1

values of pc when only positive detections are transmitted
(that is γ = 0). The detection parameters were θ = 1 and
δ = 1. We can see in figure 4a that the detection time
increases with the ratio of false negatives. This figure also
shows the effect of collaboration: the greater the collaboration
the lesser the detection time. This means that, even a low
degree of collaboration reduces the impact of these local false
negatives. Regarding the overhead, the experiment showed
little influence on the number of messages, which is always
close to 20 messages. Since only positive detections are
transmitted, the effect of collaboration is always favourable.
Thus, the only effect of increasing the detection parameters (θ)
is an increment on the detection time, while it fails at reducing
the impact of false negatives.

Now, we are going to evaluate the effect of transmitting
all negative detections (γ = 1). Figure 4b shows the results
for γ = 1. The results when pfn is zero are very similar to
the ”positive detections only” diffusion case (γ = 0). However,
when pfn is greater than zero we can observe that the detection
time for values of pc > 0 increases exponentially being greater
than the detection time with no collaboration (the dashed red
line). We evaluate the time the destination node reaches a
false negative state to confirm this effect. When pfn is near to
0.5, the model shows that this false negative state is reached
before a true positive state.

Summing up, if only positive detections are transmitted,
the detection time is greatly reduced and the impact of false
negatives is also reduced; however, when all known negative



9

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12
x 10

7

Probability of false positives (p
fp

)

D
if
fu

s
io

n
 t

im
e

 (
s
)

p
c
=0

p
c
=0.1

p
c
=0.2

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5
x 10

8

Probability of false positives (p
fp

)

D
if
fu

s
io

n
 t

im
e

 (
s
)

p
c
=0

p
c
=0.1

p
c
=0.2

p
c
=0.4

p
c
=0.3

(b)

Fig. 5: Evaluation of the impact of false positives: diffusion time of false
positives (the higher the best). a) when only positives are transmitted (γ = 0),
b) when positives and negative are transmitted γ = 1.

detections are transmitted, collaboration amplifies the effect of
false negatives, which is clearly undesirable.

C. Impact of false positives

In this subsection we evaluate the influence of false positives
using the model developed in section IV-D. This model eval-
uates how fast a false positive spreads in the network. Thus,
higher values of time imply slower diffusion of false positives.
In this case, we expect that the diffusion of negative detections
(that is, γ = 1) will reduce the influence of false positives and
that when γ is zero, the influence of false positives will be
amplified. Figure 5a shows the diffusion time for γ = 0,
using the same parameters of figure 4a. We observe, that
for the curves where pc > 0, the effect of false positives is
indeed amplified, leading to a drastic reduction of the diffusion
time. This means that these false positives are spread on
the network rather quickly, as if they were ”true” positives.
Consequently, we need to transmit the negative detections in
order to compensate for these false positives. Figure 5b shows
the results for γ = 1. In this case, we can see that the detection
time is highly increased when the collaboration increases and
so the effect of false positives is reduced.

One way to reduce this effect is to increase the reputation
threshold θ. The results confirm that the diffusion time is in-
creased and so the harmful impact of false positives is reduced.
Nevertheless, the best approach to reduce this effect is to use
the diffusion factor. As shown, we have the inverse effect

that in the false negatives case. If only positive detections are
transmitted the effect of false positives is magnified and so the
transmission of negative detections is needed in order to reduce
the impact of false positives. This effect can be regulated using
the γ factor. Thus, we evaluated the same scenario of figures 4
and 5 for γ = 0.1. For the detection time the resulting graph is
very similar to figure 4a, confirming that the detection time is
reduced, even if the ratio of false negatives is high. Regarding
the diffusion time, the resulting graph is similar to figure 5a,
that is, the diffusion time is increased when the collaboration
increases, effectively reducing the effect of false positives.
Summing up, the γ value must be tuned properly in order
to achieve the desired behavior. A γ value near zero greatly
reduces the detection time of selfish nodes, but it increases
the diffusion of false positives. A value near one increases
the detection time (due to the effect of false negatives),
but it reduces the diffusion of false positives. For practical
implementations, and based on the results of our experiments,
γ values from 0.05 to 0.25 represent good options.

D. Impact of malicious nodes

In the following experiments we evaluate the effect of
malicious nodes. Figure 6a shows the detection time of a
selfish node depending on the maliciousness probability of
one node (M = 1). This ratio range from 0 (no malicious
behaviour) to 0.5 (a very malicious behaviour). The parameters
used are similar to previous experiments (N = 25, D = 1,
pfn = pd = 0.1, θ = δ = 1, γ = 0.1). We can conclude that
when pm increases the detection time increases. This effect
is reduced for greater degrees of collaboration. Nevertheless,
for values of pm < 0.3, the impact is very reduced, meaning
that collaboration reduces the impact of malicious nodes. The
impact on the diffusion of a false positive is shown in figure 6b
when pfp is 0.2. We can see that the diffusion time is reduced
when pm increases, so a false positive has a faster diffusion.
Increasing the degree of collaboration reduces this diffusion
for low values of pm.

The previous experiments show that collaboration cannot
reduce the impact of malicious nodes for pm > 0.2. Therefore,
in order to reduce this impact we need to adjust the values of
the detection parameters. In this case, we need to give more
trust to the local watchdog (that is, the δ parameter). This is
confirmed by the results shown in figure 7a using pc = 0.2.
The best results are obtained for δ = θ = 2 and δ = θ = 3.
Although the detection time is greater compared to δ = θ = 1
for low values of pm, when pm is high, the detection time
does not increase exponentially as for δ = 1. Greater values
of δ and θ (not shown in the graph), increases the detection
time. Thus, given too much trust to the local watchdog is a
way to elude collaboration, so the detection time is increased.
Finally, regarding the diffusion of false positives, we can see
in figure 7b that by increasing θ this diffusion is only slightly
reduced.

Finally, the effect of the number of malicious nodes M
depends on the number of nodes evaluated. If the ratio M/N
is low, the impact can be controlled using collaboration and
reputation mechanisms, but if the ratio M/N is high, the
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Fig. 6: Impact of malicious nodes a) detection time of selfish node for γ =
0.1, b) diffusion time of false positives for γ = 0.1

performance of the network can be very low. Our experiments
showed that the limit is about 0.1 (that is, one malicious node
for each ten collaborative nodes). This contrasts to the effect of
selfish nodes, that only depends on the remaining cooperative
nodes, and has less impact on network performance. These
results are coherent, as they highlight the different behaviour
of selfish and malicious nodes.

VI. EXPERIMENTAL EVALUATION

This section introduces several experimental results of Co-
CoWa using two realistic scenarios. It also compares CoCoWa
with previous approaches. But first, based on the previous
analytical results, we provide some experimental guidelines
to optimise CoCoWa.

A. Guidelines to CoCoWa optimisation

The goal of this section is twofold: it is a guideline for
selecting the correct configuration of CoCoWa for improving
the global performance and it also summarises the results
obtained in the experiments presented along this paper (and
from other experiments not include here).

The main criteria for tuning and adjusting CoCoWa are
shown on table I. Each row describes the influence of the
different factors on attaining a given performance goal. In
general, reducing the impact of false negatives and false
positives depends on the γ factor, and in this case, reducing
both implies adjusting the diffusion factor, as shown in the
table. Regarding the detection parameters, the best results are
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Fig. 7: Reduction of the impact of malicious nodes using different detection
parameters a) detection time of selfish nodes, b) diffusion time of false
positives.

Performance goal Parameter tuning
Reduce Detection

time
Increase detection ratio (pd). Increase precision
(reduce local False Negative (FN) ratio (pfn))

Reduce Overhead Indirectly, reducing the detection ratio (pd).
Reduce diffusion factor γ

Reduce Impact of
False Positives

Increase precision (reduce local False Positives
(FP), pfp). Reduce diffusion factor γ

Reduce Impact of
False Negatives

Increase precision (reduce local FN, pfn).
Increase diffusion factor γ

Reduce Impact of
both FN and FP

Increase precision (reduce local FN and FP).
Set diffusion factor γ in [0.05,025] range

Reduce Impact of
Malicious Nodes

If the degree of maliciousness is high
(pm > 0.2) or/and the number of malicious
nodes is high (M/N > 0.1), give more trust to
local watchdog (δ = θ = {2, 3})

TABLE I: Criteria for the selection of parameters. This table resumes the
main factors that have impact on the consecution of the goals. Some of the
factors can be network dependent, so we need to adjust another parameters
(if it is possible).

obtained when δ = θ = 1. Nevertheless, if the number of
malicious nodes or their probability (pm) is high, we must
use δ = θ = {2, 3} in order to assign more trust to local
watchdogs.

Thus, the procedure for CoCoWa optimisation is the follow-
ing: first, we need to obtain the network characteristics such
as number of nodes, contact rate and degree of collaboration.
These values can be experimentally measured or estimated.
The performance of the local watchdog is also measured (or
estimated), and it can depend on the network characteristics.
Note that this local watchdog can be adjusted in terms of
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Cambridge Shanghai

Type Human Vehicle
Device iMote GPS+GPRS

Network Type Bluetooth WiFi
Duration (hours) 274 24

Resolution (s) 120 60
Nodes 36 2288

Contacts (C) 21200 1262498
Contact Rate λ (contacts/hour) 0.101 0.012

TABLE II: Description of contact traces. For the inter-contact rates (λ) we
used the sames values of [23].

detection and precision (usually, the greater the precision, the
lesser the detection ratio, as the local watchdog needs more
packet overhearing to generate a more precise detection). For
example, in order to reduce the detection time in a network
with a given contact rate and collaboration, the only solution is
to increase the performance of the local watchdog module (if it
is possible). Other network characteristics, such as the number
(or ratio) of selfish and malicious nodes, can be evaluated
using several scenarios, such as the worst case scenario.

B. Real mobility scenarios

In this subsection we are going to evaluate CoCoWa using
real mobility scenarios. One of the drawback of the analytical
model is the representativity of the mobility model. Although
it is shown to be an excellent approximation, it is important
to evaluate CoCoWa using both human and vehicular mobility
traces. In the following experiments we used some well known
real contact traces (see table II). The Cambridge mobility set
trace [17] was gathered from a set of undergraduate students
from the University of Cambridge carrying small devices
(iMotes) in 2005. The Shanghai Taxis GPS Trace [37] was
collected from 2100 taxis in Shanghai city during February of
2007. This trace does not contain the contacts (it contains GPS
locations), so a pre-process for obtaining the contact trace is
needed. Following the method used in [37] we assume that
a contact occurs if both vehicles are within WiFi range (100
meters). The result of processing the previous mobility traces
is a contact trace.

We did four experiments with different watchdog and ma-
liciousness parameters for each set of traces (see table III).
The parameter N is set to the number of nodes on each
network. In all experiments, we obtain the time and overhead
for detecting one selfish node (S = 1) by one of the nodes
in the network (D = 1), assuming collaboration (pc = 0.3)
and no collaboration (pc = 0), so we can clearly evaluate
the benefits of using CoCoWa. The simulator is the one
described in appendix A, but in this case we used a real
contact trace as the input. For each experiment, we performed
1000 simulations where the destination node and the selfish
node were randomly selected from all posible nodes. The
final result for each experiment is the mean detection time
(and overhead) with confidence intervals. Note that, for the
Shanghai experiment, our trace is limited to a 24 hour period.
So, in order to simulate more than a day (the mean detection
time is greater than 24 hours), we reuse the same trace for
every new day, randomly modifying node numbers. This is
a way to force all taxis to have a different route every day.

Experiment Parameters

1
No false negatives and positives (low detection ratio),
No malicious nodes (pfn = pfp = 0.0, pd = 0.1,
M = 0, δ = θ = 1, γ = 0.1)

2

Low ratio of false positives and negatives (higher
detection ratio), No Malicious nodes
(pfn = pfp = 0.1, pd = 0.2, M = 0, δ = θ = 1,
γ = 0.1)

3
Low ratio of false positives and negatives, Low ratio of
Malicious nodes (pfn = pfp = 0.1, pd = 0.2,
dM = N/50e, pm = 0.1, δ = θ = 1, γ = 0.1)

4

Worst scenario: Higher ratio of false positives and
negatives, Higher ratio of Malicious nodes and
maliciousness (pfn = pfp = 0.2, pd = 0.3,
dM = N/20e, pm = 0.1, δ = θ = 2, γ = 0.1)

TABLE III: Parameters of the different real mobility scenarios experiments.

Exp. Model Simulation Simulation (no colab.)
Cambridge

1 6.30 7.52 (2.12-12.14) 99.01 (40.36-140.53)
2 4.86 6.15 (2.05-11.02) 61.12 (38.92-99.80)
3 5.51 6.03 (1.12-12.14) 91.68 (43.12-139.60)
4 11.09 7.52 (2.12-12.14) 103.14 (80.48-159.17)

Shanghai
1 46.82 43.69 (20.06-53.63) 999.39 (614.79-1050.1)
2 36.58 34.93 (18.51-42.11) 605.18 (350.66-775.31)
3 40.77 45.81 (31.26-64.82) 997.77 (592.39-1050.6)
4 93.35 84.91 (50.61-124.5) 1191.45 (634.54-1502.6)

TABLE IV: Detection time in hours using several mobility scenarios. See
table III for the parameters of each experiment. In parenthesis are the 95%
confidence intervals.

Finally, using the contact rate (λ) of each trace (see table II),
we also calculated the detection time (and overhead) using
the 4D-CTMC analytical model, to check the precision of our
model.

Table IV shows the detection time for the four experiments
using both mobility traces. In general, we can see that our
approach greatly reduces the detection time of the selfish node
compared with a simple local watchdog solution. Even in the
worst scenario (low precision watchdog and high ratio of ma-
licious of nodes), the detection is greatly reduced. Regarding
the overhead, the results of the previous experiments confirm
the analytical results. For example, the overhead in CoCoWa
for experiment 2 for Cambridge was 31.5 (12.5-42.2)% using
simulation, and 34.2 using the analytical model, which is a
very reduced value. In general, the overhead is linear with the
number of nodes, so it is a scalable approach.

These experiments confirm the results of the previous
section based on the analytical model. We can see that the
detection time and the overhead values obtained with the
analytical model are close to the simulated ones, so these
experiments also validate our analytical model.

C. Comparison with other approaches

We now proceed by comparing the CoCoWa approach with
previous cooperative approaches that use periodic messages
for the diffusion of information about selfish node detections
(such as the ones presented in [20], [26], [28]). Note that
this comparison focuses only on the diffusion protocol. If a
node has information about a positive (or negative) detection,
it will periodically broadcast a message with a given period
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P . This message will be received by all nodes that are within
the communication range of the sender. The performance of
this protocol clearly depends on the period P . A short period
will reduce the detection time, but the number of messages
transmitted (the overhead) will be high. A large period will
increase the detection time by reducing the overhead.

The comparison of both protocols was based on a custom
simulator. This simulator reads a mobility trace and, knowing
the position of the network nodes beforehand, simulates the
periodic diffusion protocol, broadcasting a periodic message
to all nodes that are within communication range, as described
in the previous paragraph. Since our simulator can accept ns-
2 setdest command mobility traces, we generated different
mobility scenarios that are used to simulate both approaches.
The main parameters for the mobility model are mean-speed
= 5m/s, side-area = 1000 m, pause-interval = 1s and range
= 100m. Regarding CoCoWa, the watchdog parameters are
(pfp = 0.17, pfn = 0.08, pd = 0.11), that were obtained
based on a set of real testbed experiments from [16]. The
remaining parameters are pc = 0.2, γ = 0.1, θ = δ = 1 and
there are no malicious nodes (M = 0).

Figure 8a shows the detection time and overhead for the
periodic diffusion protocol when period P ranges from 1
to 30s on a network with 40 nodes. Results confirm that
increasing period P implies a higher detection time while
reducing the overhead. We compare these results with the
detection time and overhead values for CoCoWa. The periodic
diffusion for periods below 3s has a shorter detection time
than our model, but with a higher overhead. For example, for
P = 1s, the detection time is 823s (compared with 857s of
CoCoWa) and the overhead is 9791 messages (CoCoWa cost
is always 162). For P = 3s, the detection time is similar to
our approach, and the overhead is 3779 messages. In order
to clearly compare these approaches, figure 8b shows the
ratio between the detection time and overhead for both of
them. Three different numbers of nodes (N = 30, 40, 50) are
used. We can see that, for the periodic diffusion, the detection
time increases compared to the CoCoWa approach. Only for
reduced periods (P < 4) is the detection time lower or equal
than for CoCoWa. Regarding the overhead, we can see that
even when increasing the period, it is still 6 times greater
than with CoCoWa. Regarding false positives, in the periodic
model the diffusion time of false positives is reduced for low
values of P . For example, for N = 40 the detection time
of false positives is reduced from 15024s when there is no
diffusion of positive detections to 900s when P = 1.

Summarizing, although using periodic diffusion can reduce
the detection time slightly, this implies a large overhead and
the impact of false positives is very high, and so it is not a
viable strategy for low period values.

VII. RELATED WORK

There are two main strategies to deal with selfish behaviour
in cooperative networks. The first approach tries to motivate
the nodes to actively participate in the forwarding activities.
For example, in [4], [5] the authors presented a method using
a virtual currency called nuglet. Zhong et al. [36] proposed
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Fig. 8: Comparison of periodic diffusion and CoCoWa. a) Detection time
and overhead depending on period P for N = 40. The dotted lines around
the curves are the 95% confidence intervals. The confidence intervals for the
CoCoWa detection time and overhead, are not plotted in the graph and are
[625, 1021] and [102, 243] respectively. b) Plot of the ratio between the
detection time of periodic diffusion and CoCoWa (Td(P )/Td(CoCoWa))
and overhead (Od(P )/Od(CoCoWa))

SPRITE, a credit-based system to incentivate participation
of selfish nodes in MANET communication. These incenti-
vation methods present several problems, such as the need
for some kind of implementation infrastructure to maintain
the accounting and they usually rely on the use of some
kind of tamper-proof hardware. The COMMIT Protocol [9]
combines game-theoretic techniques to achieve truthfulness
and an incentivation payment scheme to reduce the impact of
selfish nodes on routing protocols. Regarding the detection and
exclusion approach, there are several solutions for MANETs
and DTNs. A first study about misbehaving nodes and how
watchdogs can be used to detect them was introduced in [25].
The authors proposed a Watchdog and Pathrater over the DSR
protocol to detect non-forwarding nodes, maintaining a rating
for every node. In [28] another scheme for detecting selfish
nodes based on context aware information was proposed.

In previous works it has been shown how some degree of
cooperation can improve the detection of selfish or misbe-
having nodes. The CONFIDENT protocol was proposed in
[3], which combines a watchdog, reputation systems, bayesian
filters and information obtained from a node and its neighbours
to securely detect misbehaving nodes. The system’s response
is to isolate those nodes from the network, punishing then
indefinitely. A distributed intrusion detection system (IDS) is
introduced in [35]. In this approach if a node locally detects
an intrusion with strong evidence, it can initiate a response.
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However, if a node detects an anomaly with weak evidence, it
can initiate a cooperative global intrusion detection procedure.
A similar approach is the Mobile Intrusion Detection System
described in [20]. In this case, local sensor ratings are peri-
odically flooded throughout the network in order to obtain a
global rating for each misbehaving node. Another approach
is CORE ”Collaborative Reputation Mechanism” [26]. The
CORE system is similar to the distributed IDS approaches de-
scribed below. It consists in local observation using watchdogs
that are combined and distributed to obtain a reputation for
each node. This reputation is used to determine whether a node
is allowed to participate (otherwise, it is excluded). Another
approach is OCEAN [2] where the reputation of a neighbour
is evaluated using only locally available information, avoiding
complex and potentially vulnerable techniques of reputation
propagation throughout the network. It is shown that, even
with direct neighbour observations, OCEAN performs almost
as well as those schemes that share second-hand reputation
information. In [14] an analytical selfish model (which is
tied specifically to the Ad hoc On-demand Distance Vector
(AODV) routing protocol) is proposed. A recent work [34],
introduces the Audit-based Misbehaviour Detection (AMD)
which isolates continuous and selective packet droppers. The
AMD system integrates reputation management, trustworthy
route discovery, and identification of misbehaving nodes based
on behavioural audits. This scheme also collects first and
second-hand information for obtaining the reputation of nodes.

More recently, papers have focused on DTNs. In [19], the
author introduces a model for DTN data relaying schemes
under the impact of node selfishness. A similar approach
is presented in [23] that shows the effect of socially self-
ish behaviour. Social selfishness is an extension of classical
selfishness (also called individual selfishness). A social selfish
node can cooperate with other nodes of the same group, and
it does not cooperate with other nodes outside the group.
The impact of social selfishness on routing in DTN has been
studied in [22].

Our approach presents similarities with the ones presented
in [20], [26]. Nevertheless, these approaches do not evaluate
the effect of false positives, false negatives and malicious
nodes. For example, the approach in [26] only transmits
positive detections. The problem, as shown in the evaluation
sections, is that if a false positive is generated it can spread
this wrong information very quickly on the network, isolating
nodes that are not selfish. Therefore, an approach that includes
the diffusion of negative detections as well becomes necessary.
Another problem is the impact of colluding or malicious
nodes. Although a reputation system, as the one presented in
[26], can be useful to mitigate the effect of malicious nodes, it
clearly depends on how are combined local and global ratings,
as shown in this paper. Another implementation issue is the
high imposed overhead due to the flooding process in order to
achieve a fast diffusion of the information. Since our approach
is based on contacts, it has been proven that the overhead is
greatly reduced.

VIII. CONCLUSIONS

This paper proposes CoCoWa as a collaborative contact-
based watchdog to reduce the time and improve the effective-
ness of detecting selfish nodes, reducing the harmful effect of
false positives, false negatives and malicious nodes. CoCoWa
is based on the diffusion of the known positive and negative
detections. When a contact occurs between two collaborative
nodes, the diffusion module transmits and processes the posi-
tive (and negative) detections.

Analytical and experimental results show that CoCoWa
can reduce the overall detection time with respect to the
original detection time when no collaboration scheme is used,
with a reduced overhead (message cost). This reduction is
very significant, ranging from 20% for very low degree of
collaboration to 99% for higher degrees of collaboration.
Regarding the overall precision we show how by selecting
a factor for the diffusion of negative detections the harmful
impact of both false negatives and false positives is diminished.
Finally, using CoCoWa we can reduce the effect of malicious
or collusive nodes. If malicious nodes spread false negatives
or false positives in the network CoCoWa is able to reduce
the effect of these malicious nodes quickly and effectively.
Additionally, we have shown that CoCoWa is also effective
in Opportunistic Networks and DTNs, where contacts are
sporadic and have short durations, and where the effectiveness
of using only local watchdogs can be very limited.

In short, the combined effect of collaboration and reputation
of our approach can reduce the detection time while increasing
the global accuracy using a moderate local precision watchdog.
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APPENDIX
MODEL VALIDATION

In this appendix we validate the models presented in section
IV. The validation procedure is similar to the one described
in [33]. We compare the results obtained with our analytical
model with those obtained using a simulator. The custom
simulator is driven by contacts and uses the same parameters
of the network model (N , C, D, S, M ) and CoCoWa (pd, pc,
pfp, pfn, pm, γ, δ, θ). This simulator reads the contact trace
and simulates the behaviour of the watchdog and diffusion
modules to change the state of a node. The simulation finishes
when all the destination nodes D have a Positive state,
obtaining the simulated detection time and cost (T ′d, O′d).

Figure 9 shows our validation process. A contact trace is
generated following the same model that was used in [33].
From the contact trace we fit the exponential distribution
in order to obtain the λ value required as the input of our
analytical model. We set the network and CoCoWa model
parameters to obtain the detection time and overhead (Td,Od).
Using the same network parameters we obtain time and
overhead using the contact-based simulation. This simulation
is repeated 1000 times in order to obtain a confidence interval
for the mean detection time and overhead (T ′d, O′d).

The validation process was based on a set of R repeated
random tests. The tests have different parameter values that are
randomly generated from a defined range of possible values
(see table V). For each test i, a relative modelling error of the
detection time and cost were obtained (ε(i)Td

, ε(i)Od
):

ε(i)Td
=
Td(i)− T ′d(i)

Td(i)
, ε(i)Od

=
Od(i)−O′d(i)

Od(i)
(10)

After running 1000 tests we obtained the mean error (and
95% confidence intervals). For the detection time the mean
relative error was 4.32 (0.31-8.74)%, and for the overhead
it was 5.92 (0.31-11.15)%. These results validate the model
proposed in this paper. Using this simulator, we also validated
that the distribution between transitions follows an exponential
distribution, preserving the Markovian nature of the process.
Finally, our model was also validated using real mobility
traces, as shown in subsection VI-B.
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Fig. 9: Validation of the model. The input of the simulator and the models
are the network parameters and the system parameters.

Parameters Range
Random Waypoint Model

Node speed (v) U(5, 15)
Communication Range (r) U(100, 250)

Side area (l) U(500, 1500)
Walk time (w) U(10, 200)

Network Parameters
Nodes (N ) I(5, 100)

Selfish nodes (S) I(1, dN/5e)
Malicious nodes (M ) I(0, dN/5e)

Collaborative nodes (C) N −M − S
Destination nodes (D) I(1, C)

CoCoWa Parameters
Probability of detection (pd) U(0.05, 0.3)

Collaboration degree (pc) U(0.05, 0.3)
Rate of false positives (pfp) U(0, 0.3)

Rate of false negatives (pfn) U(0, 0.25)
Maliciousness Probability (pm) U(0, 0.5)

Diffusion factor (γ) U(0, 1)
Local trust factor (δ) I(1, 5)

Threshold (θ) I(0, 5) + δ

TABLE V: Validation scenarios. U(a, b) stands for the uniform distribution
(over interval (a, b)) and I(a, b) for an uniform integer distribution.


