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Abstract. The matrix exponential plays a fundamental role in linear differential equations
arising in engineering, mechanics, and control theory. The most widely used, and the most generally
efficient, technique for calculating the matrix exponential is a combination of “scaling and squaring”
with a Padé approximation. For alternative scaling and squaring methods based on Taylor series,
we present two modifications that provably reduce the number of matrix multiplications needed to
satisfy the required accuracy bounds, and a detailed comparison of the several algorithmic variants
is provided.
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1. Introduction. Many engineering and physics phenomena are governed by
systems of linear first-order ordinary differential equations with constant coefficients,
whose solution is given in terms of the matrix exponential exp(A), A ∈ Cn×n. Thus,
the matrix exponential plays an important role in many areas of science and technol-
ogy: control theory, electrodynamic theory of stratified media, the theory of multi-
mode electric power lines, etc. [HLS98, CM02, KT05, IHAR09]. Numerous methods
have been proposed for matrix exponential computation [MV03, Hig08]. Of all the
methods, Padé approximation in combination with the scaling and squaring technique
is the most popular general method [Hig05]. This paper presents two modifications of
a Taylor-based scaling and squaring algorithm that are designed to reduce computa-
tional costs while preserving accuracy. A previous unpublished and extended version
of this work can be found in [SIDR09].

Throughout this paper Rn×n and Cn×n denote the sets of real and complex ma-
trices of size n × n, respectively, and I denotes the identity matrix for both sets. N

denotes the set of positive integers and the matrix norm ‖·‖ denotes any subordi-
nate matrix norm, and in particular ‖·‖1, the 1-norm. ⌈x⌉ denotes the lowest integer
not less than x and ⌊x⌋ denotes the highest integer not exceeding x. This paper is
organized as follows. Section 2 presents a state of the art on matrix exponential com-
putation. Section 3 deals with the proposed improvements. Numerical experiments
are presented in section 4. Finally, the conclusions are given in section 5.

2. State of the art. Given a complex matrix A, exp(A) can be well approxi-
mated by either a Padé or Taylor series approximation if ‖A‖ is small enough. This
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s/n, Valencia 46022, Spain (edefez@imm.upv.es).

A439

D
o
w

n
lo

ad
ed

 0
2
/1

6
/1

5
 t

o
 1

5
8
.4

2
.2

4
7
.1

0
2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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suggests exploiting the relation

(2.1) exp(A) =
(
exp(2−sA)

)2s
,

where s is a nonnegative integer scaling parameter. Based on (2.1), the idea of a
scaling and squaring method is to choose s so that ‖2−sA‖ is sufficiently small, to
use Padé or Taylor series to approximate exp(2−sA), and finally to square the result
s times, in the so-called squaring phase. It is well known that the squaring phase can
be badly affected by rounding errors (see [Hig08, p. 248]) and it is therefore desirable
to keep s as small as possible.

2.1. Taylor and Padé series. The Taylor series approximation to exp(A), dis-
cussed in [Wes90, GV96, MV03], [PCK91, p. 210] is

(2.2) Tm(A) =
m∑

i=0

Ai

i!
,

where m is the degree of the matrix polynomial Tm(A), and the total number of
terms in the series is m+1. In general, a larger value of m will improve accuracy, i.e.,
reduce the absolute error. From now on, we refer to m as the order of the approxima-
tion. A naive use of Taylor series is well known to produce serious cancellation error
[GV96, p. 567], [MV03, p. 10]. Taylor series approximations, the topic of this paper,
are discussed in more detail in section 2.2.

Padé approximants [War77, GV96, MV03, Hig05, Hig08] are basic tools for com-
puting the matrix exponential. The [k/l] Padé approximant rkl(A) of the matrix
exponential is defined by

rkl(A) = pkl(A) (qkl(A))
−1 ,

where

pkl(A) =

k∑

j=0

(k + l − j)!k!

(k + l)!(k − j)!j!
Aj , qkl(A) =

k∑

j=0

(−1)j(k + l − j)!l!

(k + l)!(l − j)!j!
Aj .

Diagonal approximants (k = l) are preferred because rmm is more accurate than rkl
with k 6= l but can be evaluated at the same cost. A Padé-based scaling and squaring
algorithm is given in [Hig05].

For reasons discussed in [Hig05] and [HiAM10], the most popular techniques for
computing the matrix exponential are based on scaling and squaring using a Padé
approximation, which, in general, produces acceptable accuracy with less work than
a Taylor-series method.

2.2. Details about Taylor series approximants. Algorithm GSQT summa-
rizes the general structure of a Taylor-based scaling and squaring algorithm for com-
puting the matrix exponential, where preprocessing and postprocessing (see [War77])
have been omitted.

The proposed modifications affect Algorithms Order-scale (see section 3.1) and
Taylor-eval (section 3.2).
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Algorithm GSQT (general scaling and squaring Taylor algorithm).
% Input: An n× n matrix A, preprocessed if appropriate;

% K, the maximum allowed number of matrix products; and
% {mk}, k = 1 : K, the orders of the associated polynomials, from Table 2.

Step 1. Execute Algorithm Order-scale, which selects the order and scaling parameter
of the Taylor polynomial.
Step 2. Execute Algorithm Taylor-eval to evaluate the Taylor polynomial in the
scaled matrix.
Step 3. Execute the appropriate number of squaring steps of the Taylor polynomial.

2.2.1. Relations between the order and the computational effort. The
principles that underlie implementation of the Order-scale choice in Algorithm GSQT
are based on [PS73, GV96, Hig05], and [Hig08, pp. 72–74]. Given a matrix A, a scaling
parameter s, and relative machine precision u (typically, IEEE double precision),
[Hig05] shows how to define a sequence {θm} such that an (m,m) diagonal Padé
approximation to exp(A) produces an acceptable backward error bound if ‖2−sA‖ ≤
θm. Applying an analogous procedure to Taylor series, [SIDR09] calculated a sequence
{Θm} such that, if

(2.3)
∥∥2−sA

∥∥ ≤ Θm,

using an order-m Taylor series approximation gives an acceptable relative backward
error bound using IEEE double precision. Table 1 displays values of {θm} and {Θm}.

The work associated with approximating the matrix exponential using Padé or
Taylor series is measured by convention as the number of matrix products. A matrix
polynomial can be evaluated in a straightforward way using Horner’s nested multi-
plication method (see, e.g., [GV96, p. 574]). [Hig05] and [Hig08] show how Horner’s
technique can be combined with a method due to Paterson and Stockmeyer [PS73] to
produce the smallest number of matrix products, denoted by πm, needed to calculate
the (m,m) diagonal Padé approximant.

As described in [SIDR09], an analogous procedure can be applied to a degree-
m Taylor approximation of exp(A). In the Paterson–Stockmeyer method, a positive
integer q < m is chosen and the polynomial (2.2) is written as a degree-r polynomial
in Aq with r = ⌊m/q⌋:

(2.4) Tm(A) =

r∑

k=0

Bk (A
q)

k
, r = ⌊m/q⌋,

Table 1
Comparison of Padé and Taylor approximations.

Padé Taylor
m θm πm m Θm Πm

3 1.5e-2 2 3 1.39e-5 2
4 8.5e-2 3 4 3.40e-4 2
5 2.5e-1 3 5 2.40e-3 3
6 5.4e-1 4 6 9.07e-3 3
7 9.5e-1 4 7 2.38e-2 4
8 1.5e0 5 8 5.00e-2 4
9 2.1e0 5 9 8.96e-2 4
10 2.8e0 6 10 1.44e-1 5
11 3.6e0 6 11 2.14e-1 5
12 4.5e0 6 12 3.00e-1 5
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where the Paterson–Stockmeyer coefficients {Bk}, k = 0, . . . , r, are themselves matrix
polynomials:

(2.5) Bk =

q−1∑

j=0

bqk+jA
j , k = 0, . . . , r − 1, and Br = bqrI + · · ·+ bmA

m−qr.

Note that, with this form, each Bk, k = 0, . . . , r−1, contains q terms, whereas Br

contains m − qr + 1 terms. The Paterson–Stockmeyer form is recursively evaluated
as follows with the Horner technique, where F0 gives the final result.

Fr = Br;
for j = r − 1 : −1 : 0, Fj = Bj +Aq × Fj+1; end for

In general, forming a degree-m Taylor polynomial in this way with the Horner–
Paterson–Stockmeyer technique requires q+r−1 matrix products, with q−1 of these
used to form A2, . . . , Aq, plus r = ⌊m/q⌋ matrix products to compute the sequence
{Fj}. However, in the special case when q divides m (i.e., when m = qr), then only
r− 1 matrix products are needed to apply Horner’s technique because the Paterson–
Stockmeyer coefficient Br = bmI is a multiple of the identity; hence forming Fr−1

does not involve a matrix product.
Given q < m, the number of matrix products needed to compute Tm using the

Horner–Paterson–Stockmeyer procedure is thus given by q + ⌊m/q⌋ − 1 − ψ(q,m),
where ψ(q,m) = 1 if q divides m and 0 otherwise. The value of q for which Tm can be
computed with the smallest number of matrix products is obtained by approximately
minimizing q+m/q, giving q = ⌊√m⌋. We use Πm to denote the associated “optimal”
number of matrix multiplications:

Πm = ⌊
√
m⌋+ ⌊m/

√
m⌋.

Calculation of the Taylor-based sequences {Θm} (2.3) and {Πm} is summarized

in [SIDR09] and in an appendix of [HiAM10], with θ̃m denoting Θm and π̃m denoting
Πm. For selected values of m, Table 1 displays θm and πm for Padé approximants,
and Θm and Πm for Taylor approximants.

Comparing πm and Πm, keeping in mind that θm > Θm for each m, we see that,
as noted in [SIDR09] and the Appendix of [HiAM10], a Padé approximation requires
fewer matrix products except when ‖A‖ lies in the following three intervals:

‖A‖ ≤ 9.07e− 3 (Θ6),

1.50e− 2 (θ3) ≤ ‖A‖ ≤ 8.96e− 2 (Θ9), and(2.6)

2.54e− 1 (θ5) ≤ ‖A‖ ≤ 3.00e− 1 (Θ12).

2.2.2. Maximizing the order. Combining the analysis of [Hig05] and the re-
sults of Table 1 when k is a specified number of matrix products, [SIDR09] shows
how to define mk, the highest-order Taylor approximation that can be obtained with
k matrix products when ‖A‖ ≤ Θmk

. For k = 1 : 11, Table 2 shows mk, qk, and rk
(the associated Paterson–Stockmeyer indices), Πmk

, and Θmk
.

Assuming that ‖A‖ ≤ Θmk
, Table 2 shows that for even k, the largest Taylor

polynomial order achievable with k matrix products is mk = (k + 2)2/4, with qk =
rk = (k + 2)/2 and mk+1 = mk + qk, so that allowing one additional matrix product
increases the order of the Taylor polynomial by qk. For an odd number k of matrix
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Table 2
k, mk, qk, rk, Θmk

, and Πmk
.

k mk qk rk Θmk
Πmk

1 2 1 2 2.58e-8 1
2 4 2 2 3.40e-4 2
3 6 2 3 9.07e-3 3
4 9 3 3 8.96e-2 4
5 12 3 4 3.00e-1 5
6 16 4 4 7.80e-1 6
7 20 4 5 1.44e0 7
8 25 5 5 2.43e0 8
9 30 5 6 3.54e0 9
10 36 6 6 4.97e0 10
11 42 6 7 6.48e0 11

products, where qk = (k + 1)/2 and rk = qk + 1, the order of the Taylor polynomial
increases by qk + 1 if k + 1 matrix products are allowed.

In all cases of interest to us, mk = qkrk. This means that the Paterson–
Stockmeyer form of Tm (2.4) can be expressed as an equivalent polynomial of degree
r − 1 in Aq, giving the following expression in which the “extra” term b0I is added
separately:

(2.7) Tm(A) = b0I +
r−1∑

k=0

B̄k(A
q)k with B̄k =

q∑

j=1

bqk+jA
j , k = 0, . . . , r − 1.

Note that, as distinct from (2.4), the Paterson–Stockmeyer coefficients are barred,
and that every B̄k, k = 0, . . . , r − 1, contains q terms.

The following three pseudocode fragments show explicitly how the Taylor poly-
nomial Tm(A) is evaluated using (2.7) when m = qr. The reader should note in
particular the ranges of the indices k and j.

Algorithm Taylor-eval.
% Horner–Paterson–Stockmeyer evaluation of the order-m Taylor polynomial
% of exp(A) with m = qr.
% Input parameters: m; q; r; {Aj = Aj}, j = 1 : q; {bi}, i = 0 : m.
Execute Algorithm PS-coeff; % calculate {B̄j}, j = 0 : r − 1;
Execute Algorithm HPS-eval; % calculate Tm(A);
end % Taylor-eval

Algorithm PS-coeff.
% calculation of the r Paterson–Stockmeyer coefficients {B̄k} in (2.7), where bi = 1/i!.
% Input: q; r; {Aj = Aj}, j = 1 : q; {bi}, i = 0 : qr.
for k = 0 : r − 1

B̄k = 0;
for j = 1 : q

B̄k = B̄k + bqk+jAj ;
end for j

end for k
end % PS-coeff
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Table 3
Overall cost (2.8) as a function of Taylor order m.

k 2 3 4 5 6 7 8 9
mk 4 6 9 12 16 20 25 30
Γmk

13.52 9.79 7.48 6.74 6.36 6.48 6.72 7.18

Algorithm HPS-eval.
% Horner–Paterson–Stockmeyer evaluation of the order-m Taylor polynomial
% of exp(A) with m = qr, from (2.7).
% Input: r; b0; Aq = Aq; {B̄k}, k = 0 : r − 1.
F = B̄r−1;
for j = r − 1 : −1 : 1

F = B̄j−1 +Aq × F ;
end for j
F = F + b0I;
end % HPS-eval

2.2.3. Estimating the total cost. Based on [Hig05], the following approach
can be used to estimate the cost of calculating the matrix exponential as a function of
the order m. For Taylor series, if ‖A‖ > Θm for some order m, the scaling parameter
s can be chosen as the smallest value of s such that ‖A/2s‖ ≤ Θm, namely, s =
⌈log2(‖A‖/Θm)⌉. After calculating the order-m Taylor approximant of exp(A/2s),
the result will be squared s times, so that the total number of matrix multiplications
required to calculate the order-m Taylor approximation is Πm+⌈log2(‖A‖/Θm)⌉. An
approximation of this value that depends only on m, denoted by Γm, is obtained by
omitting the ceiling operation and the constant ‖A‖:

(2.8) Γm = Πm − log2(Θm).

When estimating the total for Padé approximations, [Hig05] rules out m = 1
and m = 2 because of the unfavorable numerical consequences resulting from the
need for a large s to make ‖A/2s‖ small enough. The same argument applies to
very low-order Taylor polynomials, and we therefore show the values of Γmk

(2.8) in
Table 3 only for k ≥ 2. Table 3 shows that, as measured by Γ, six matrix products,
corresponding to order m6 = 16, produce the minimum computational cost for a
Taylor-based approximation.

The usual practice in Taylor-based methods is to decide in advance on the max-
imum allowed number of matrix products, denoted by K. Based on this practice,
Algorithm Order-scale-1 summarizes the procedures for choosing the order m̂ and the
scaling parameter ŝ in a standard Taylor-based method when K is given.

Algorithm order-scale-1.
% Standard technique for choosing the order m̂ and the scaling parameter ŝ
% to compute a Taylor approximation to exp(A).
% Input: K, the maximum number of matrix products allowed to evaluate

the polynomial; {mk} and Θmk
from Table 2.

% Output: k̂, m̂, and ŝ (the values needed).

m̂ = mK ; k̂ = K;
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if ‖A‖ > ΘmK
then

ŝ = ⌈(log2(‖A‖/ΘmK
)⌉

else

ŝ = 0;
for k = 1 : K

if ‖A‖ ≤ Θmk
then m̂ = mk; k̂ = k; break; end if

end for k
end if

end % Order-scale-1

In the remainder of this paper, we consider new strategies designed to reduce the
number of matrix multiplications while preserving accuracy.

3. Proposed modifications. We propose two modifications to the standard
Taylor-based method presented in section 2.2. The first modification, described in
section 3.1, replaces Algorithm Order-scale-1 with a method that changes the order
and the scaling parameter if another combination of these values reduces the number
of matrix products. The second modification, discussed in section 3.2, neglects higher-
order terms in the Taylor series based on relative error bounds.

3.1. Modification of the choices for order and scaling. Two modifications
are proposed of Algorithm Order-scale-1 for choosing the order and scaling parameter.
The motivation for the first change is based on the logic of Algorithm Order-scale-1.
If ‖A‖ ≤ ΘmK

, k̂ is taken as the largest value such that ‖A‖ ≤ Θm
k̂
with m̂ = m

k̂
and

ŝ = 0; evaluation of the Taylor polynomial then requires k̂ matrix products. When
‖A‖ > ΘmK

, then k̂ = K, m̂ = mK , and

(3.1) ŝ =

⌈
log2

( ‖A‖
ΘmK

)⌉
.

We know in this case that ŝ ≥ 1 and, by definition of ŝ, that

(3.2)
1

2
ΘmK

<
‖A‖
2ŝ

≤ ΘmK
.

With these latter choices, a Taylor approximation of order mK to exp(A) can be
computed with K + ŝ matrix products.

But it is possible in some cases to reduce this number. If K, ŝ, and ‖A‖ are such
that ‖A‖/2ŝ ≤ ΘmK−1

, then we can take k∗ = K − 1, so that the order of the Taylor
polynomial ismK−1, keeping s

∗ = ŝ. Thus the number of matrix products isK−1+ŝ,
one smaller than with the original choices. It follows from (3.2) that this situation
is possible only when ΘmK−1

> 1
2
ΘmK

, which is true only for K ≥ 7 (see Table 2).
The strategy just described corresponds to executing Algorithm Order-scale-2, shown
below, with option = 1.

If one is prepared to accept additional squarings, the idea can be generalized in
a limited way for certain values of ‖A‖ when K = 8 and K = 9, as implemented
in Algorithm Order-scale-2. The idea is to find k∗ < K − 1 and s∗ > ŝ such that
‖A‖/2s∗ < Θmk∗

and k∗+ s∗ < K − 1+ ŝ, meaning that, using order mk∗ and scaling
parameter s∗, the total number of matrix products is smaller than with option = 1.
Allowing such changes corresponds to option = 2 in Algorithm Order-scale-2.

The pseudocode for Algorithm Order-scale-2 assumes that K ≤ 9, since it is
straightforward to show (see [SIDR09]) that performing the analogue of option 2 with
K > 9 does not reduce the number of matrix products.
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Algorithm order-scale-2.
% Two alternative ways to choose the order m∗ of a Taylor approximation
% to exp(A) and the scaling parameter s∗;
% Input: option, set to 0, 1, or 2; K, the maximum number of matrix products
% allowed in evaluating the polynomial; {mk} and {Θmk

} from Table 2.
% Output: k∗, m∗, and s∗.
m∗ = mK ; k∗ = K;
if ‖A‖ ≤ ΘmK

then

s∗ = 0; ŝ = 0;
for k = 1 : K

if ‖A‖ ≤ Θmk
then m∗ = mk; k

∗ = k; break; end if

end for

if option = 2 then

if k ≥ 8 and ‖A‖ ≤ 2Θmk−2
then k∗ = k − 2; m∗ = mk∗ ; s∗ = 1;

else if k = 9 and ‖A‖ ≤ 4Θmk−3
then k∗ = k − 3; m∗ = mk∗ ; s∗ = 2;

end if

end if % end logic for option = 2
else % here, it must be true that ‖A‖ > ΘmK

ŝ = ⌈log2(‖A‖/ΘmK
)⌉; s∗ = ŝ;

if option > 0 then % possibly change the order and scale
if K ≥ 7 and ‖A‖/2ŝ ≤ ΘmK−1

then k∗ = K − 1; m∗ = mk∗ ;
else if option = 2 then

if K ≥ 8 and ‖A‖/2ŝ ≤ 2ΘmK−2
then k∗ = K−2; m∗ = mk∗ ; s∗ = ŝ+1;

else if K = 9 and ‖A‖/2ŝ ≤ 4ΘmK−3
then

k∗ = K − 3; m∗ = mk∗ ; s∗ = ŝ+ 2;
end if

end if % end logic for option = 2
end if % end logic for option > 0

end if % end logic for ‖A‖ > ΘmK

end % Order-scale-2

When K ≥ 7, assuming that ŝ is defined by (3.1), Table 4 shows the number of
matrix products needed with option 0 (the standard method), option 1, and option 2
to approximate exp(A) when ‖A‖/2ŝ lies in the intervals shown.

For certain intervals of ‖A‖, the total number of matrix products needed to form
the Taylor polynomial with option 2 can be lower than with option 1. However, in
those cases the number s∗ of squarings is larger, possibly leading to more numerical
error. Numerical tests that explore this issue are given in section 4.

3.2. Neglecting higher-order terms of the Taylor polynomial. The mo-
tivation for the second modification is that, in some circumstances, the highest-order
terms in the Taylor polynomial are negligible relative to ‖ exp(A)‖, where “negligible”
is defined in terms of the level of rounding error.

Recall from Algorithm Taylor-eval in section 2.2 that, given a number of multipli-
cations k, the Taylor approximation of order mk is defined by applying the recursive
Horner–Paterson–Stockmeyer procedure, where there are rk Paterson–Stockmeyer co-
efficients, B̄0, B̄1, . . . , B̄rk−1, each a matrix polynomial in A of degree qk (see Algo-
rithm PS-coeff). It follows from the discussion in section 2.2.2 that reducing the
number of matrix multiplications from k to k − 1 implies a reduction by qk in order
of the Taylor polynomial (see Table 2).
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Table 4
Matrix products needed when using options 0, 1, and 2 in Algorithm Order-scale-2 for K ≥ 7

to approximate exp(A) when ‖A‖/2ŝ lies in the intervals shown, where ŝ is defined by (3.1).

K Option Interval of ‖A‖/2ŝ k∗ m∗ s∗ Matrix products

7 0 ( 1
2
Θ20,Θ20] = (0.72, 1.44] 7 20 ŝ 7 + ŝ

7 1 ( 1
2
Θ20,Θ16] = (0.72, 0.781] 6 16 ŝ 6 + ŝ

7 1 (Θ16,Θ20] = (0.781, 1.44] 7 20 ŝ 7 + ŝ

8 0 ( 1
2
Θ25,Θ25] = (1.215, 2.43] 8 25 ŝ 8 + ŝ

8 1 ( 1
2
Θ25,Θ20] = (1.215, 1.44] 7 20 ŝ 7 + ŝ

8 1 (Θ20,Θ25] = (1.44, 2.43] 8 25 ŝ 8 + ŝ

8 2 ( 1
2
Θ25,Θ20] = (1.215, 1.44] 7 20 ŝ 7 + ŝ

8 2 (Θ20, 2Θ16] = (1.44, 1.562] 6 16 ŝ+ 1 7 + ŝ
8 2 (2Θ16,Θ25] = (1.562, 2.43] 8 25 ŝ 8 + ŝ

9 0 ( 1
2
Θ30,Θ30] = (1.77, 3.54] 9 30 ŝ 9 + ŝ

9 1 ( 1
2
Θ30,Θ25] = (1.77, 2.43] 8 25 ŝ 8 + ŝ

9 1 (Θ25,Θ30] = (2.43, 3.54] 9 30 ŝ 9 + ŝ

9 2 ( 1
2
Θ30,Θ25] = (1.77, 2.43] 8 25 ŝ 8 + ŝ

9 2 (Θ25, 2Θ20] = (2.43, 2.88] 7 20 ŝ+ 1 8 + ŝ
9 2 (2Θ20, 4Θ16] = (2.88, 3.124] 6 16 ŝ+ 2 8 + ŝ
9 2 (4Θ16,Θ30] = (3.124, 3.54] 9 30 ŝ 9 + ŝ

Let k̂ denote a number of matrix products, with m̂, q̂, and r̂ the associated values,
so that m̂ = q̂r̂. From Algorithms PS-coeff and HPS-eval, the q̂ highest-degree terms
in Tm̂(A) can be expressed as

(3.3) Hq̂,r̂(A) = B̄r̂−1(A
q̂)r̂−1.

These terms need not be formed or included in the Taylor polynomial if

(3.4) ‖e−AHq̂,r̂(A)‖ ≤ u,

where u is unit roundoff, since then

(3.5) ‖Hq̂,r̂(A)‖ = ‖eAe−AHq̂,r̂(A)‖ ≤ ‖eA‖u.

In this case, the desired accuracy can be achieved by omitting these q̂ terms, thereby
using k̂ − 1 matrix products to form a Taylor polynomial of order m

k̂−1
= (r̂ − 1)q̂,

since, using (3.5), it follows that the difference between Tm
k̂−1

(A) and Tm
k̂
(A) satisfies

(3.6) ‖Tm
k̂−1

(A) − Tm
k̂
(A)‖/‖eA‖ = ‖Hq̂,r̂(A)‖/‖eA‖ ≤ u,

and then it is not significant for machine precision. A practical test of whether (3.4)
holds can be based on obtaining bounds on the separate factors of ‖Hq̂,r̂(A)‖:

(3.7) ‖Hq̂,r̂(A)‖ ≤ ‖B̄r̂−1‖‖Aq̂‖r̂−1,

where computing the norm of B̄r̂−1 does not involve any matrix products beyond those
needed to compute the coefficient itself. Thus satisfaction of the following relationship
shows that the desired accuracy can be achieved while reducing the number of matrix
products by one:

(3.8) ‖e−A‖‖B̄r̂−1‖‖Aq̂‖r̂−1 ≤ u.
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If ‖A‖ ≤ Θm
k̂
, since ‖ −A‖ = ‖A‖, then e−A ≈ Tm

k̂
(−A). Thus, using (2.7) we can

obtain the following bound for ‖e−A‖, denoted by bexp,

(3.9) ‖e−A‖ ≈ ‖Tm
k̂
(−A)‖ ≤ bexp = ‖b0I + B̂0‖+

r−1∑

l=1

‖B̂l||Aq̂‖l,

where B̂l =
∑q

j=1(−1)ql+jbql+jA
j , l = 0, . . . , r − 1. Bound (3.9) can be evaluated

with no matrix products reusing the matrix powers Aj , j = 2, 3, . . . , q̂, computed for
evaluating Tm

k̂
(A) in the following algorithm.

Algorithm bexp-bound.
% Calculation of bound bexp of ‖ exp(−A)‖ from (3.9), with m = qr.
% Input: q; r; {Aj = Aj}, j = 1 : q; {bi = (−1)i/i!}, i = 0 : qr.

Execute Algorithm PS-coeff with bi = (−1)i/i! % calculate {B̂l}, l = 0 : r − 1;
bexp = ‖B̂r−1‖;
for l = r − 1 : −1 : 2

bexp = ‖B̂l−1‖+ ‖Aq‖ × bexp;
end for l
bexp = ‖b0I + B̂0‖+ ‖Aq‖ × bexp;
end % bexp-Bound

Note that, since ‖A‖ ≤ Θm
k̂
then

(3.10) bexp ≤
m

k̂∑

i=0

‖A‖i/i! = Tm
k̂
(‖A‖) ≈ e‖A‖,

and bexp is strictly lower than e‖A‖ for some matrices, e.g., for matrix

(3.11) A =

(
1.25 1.25
1.25 1.25

)
,

it follows that ‖A‖1 = 2.5, Θ25 < ‖A‖1 < Θ30, and then, Algorithm Order-Scale-2
with K = 9 and option = 1 gives m∗ = 30 and s∗ = 0. Then, from Table 2 it follows
that q = 5 and r = 6. Computing symbolically the exact value of e−A and using the
1-norm in (3.9) gives

(3.12) ‖e−A‖1 = 1 < bexp = 1.25 < e‖A‖1 = 12.18,

and bexp‖B̄5‖1‖A5‖51 = 7.57e− 17 < u ≈ 1.11e− 16 (IEEE double precision), showing
that (3.8) holds and the number of matrix products can be reduced. However, using
bound ‖e−A‖ ≤ e‖A‖ in (3.8) gives e‖A‖1‖B̄5‖1‖A5‖51 = 7.39e− 16 > u and condition
(3.8) is not guaranteed. Hence, since bound bexp is not greater than e‖A‖ and can be
lower for some matrices, we use it in (3.8) to give the final condition

(3.13) bexp‖B̄r̂−1‖‖Aq̂‖r̂−1 ≤ u.

Similar tests can be devised and applied recursively, eliminating sets of q̂ terms
each time: if bexp‖B̄r̂−j‖‖Aq̂‖r̂−j ≤ u with j = 2, then the number of matrix products

can be reduced to k̂ − 2 computing a Taylor polynomial of order m̂ = (r̂ − 2)q̂, and
so on with j = 3, 4, . . . , r̂ − 1 computing Taylor polynomials of orders m̂ = (r̂ − j)q̂

with k̂ − j matrix products.
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Table 5
k, mk, Θmk

, Θ′
mk

, and ϑmk
.

k mk Θmk
Θ′

mk
ϑmk

1 2 2.5810e-8 8.7334e-6 8.7334e-6
2 4 3.3972e-4 1.6778e-3 1.6778e-3
3 6 9.0657e-3 1.7720e-2 1.7720e-2
4 9 8.9578e-2 1.1354e-1 1.1354e-1
5 12 2.9962e-1 3.2690e-1 3.2690e-1
6 16 7.8029e-1 7.8738e-1 7.8738e-1
7 20 1.4383e0 1.4070e0 1.4383e0
8 25 2.4286e0 2.3392e0 2.4286e0
9 30 3.5397e0 3.3908e0 3.5397e0

The next theorem establishes that (3.8) holds for matrices whose norm lies in
certain intervals, so the number of matrix products can be reduced for those matrices.

Theorem 3.1. Let mk = qkrk, where qk = rk = (k + 2)/2 for even k > 0, and
qk = (k + 1)/2 and rk = qk + 1 for odd k > 0. Let A ∈ Cn×n, let Hqk,rk(A) be the qk
highest-degree terms in Tmk

(A) =
∑mk

i=0A
i/i!, let u be the relative machine precision,

and let Θ′
mk−1

be the values such that

(3.14) Θ′
mk−1

= max{θ, eθHqk,rk(θ) ≤ u}.

Then, if ‖A‖ ≤ Θ′
mk−1

then condition (3.8) holds and ‖Tmk
(A)− Tmk−1

(A)‖/‖eA‖ ≤
u.

Proof. Using (3.8), (3.3), (2.7), and (3.14), since ‖e−A‖ ≤ e‖A‖, if ‖A‖ ≤ Θ′
mk−1

it follows that

(3.15) ‖e−A‖‖B̄rk−1‖‖Aqk‖rk−1 ≤ e‖A‖Hqk,rk(‖A‖) ≤ e
Θ′

m
k−1Hqk,rk(Θ

′
mk−1

) ≤ u,

and condition (3.8) holds. Hence, from (3.3)–(3.5) it follows that (3.6) holds.
Using a zero finder we computed the values Θ′

mk
, k = 1, . . . , 9, presented in

Table 5. Note that Θ′
mk

> Θmk
for k = 1, . . . , 6. Thus, if k and ‖A‖ are such

that Θmk−1
< ‖A‖ ≤ Θ′

mk−1
, then, Theorem 3.1 states that we can omit the last

q terms of Tmk
(A) and compute Taylor polynomial Tmk−1

(A) instead, reducing the
number of matrix products by one. Hence, taking ϑmk

= max{Θmk
,Θ′

mk
}, see Table

5, and substituting Θmk
with ϑmk

in Algorithm Order-scale-2, the number of matrix
products is reduced with respect to the original Algorithm Order-scale-2 for matrices
with Θm < ‖A‖ ≤ Θ′

m, m = 2, 4, 6, 9, 12, 16, and Θ16 < ‖A‖/2s∗ ≤ Θ′
16, where s

∗ is
the scaling parameter obtained by Order-scale-2 with the new ϑmk

values.
Taking into account the new values ϑmk

from Table 5 and proceeding in a way
similar to [SIDR09], the intervals of ‖A‖, where a Taylor approximation requires
fewer matrix products than Padé approximation, increase with respect to those given
in (2.6): ‖A‖ ≤ 0.11 (ϑ9) and 0.25 (θ5) < ‖A‖ ≤ 0.33 (ϑ12).

Note that Θmk
> Θ′

mk
for mk = 20, 25, 30. However, using (3.10) it follows that

condition (3.13) is less restrictive than (3.15), and the example was given above of
the matrix from (3.11) where condition (3.13) holds with m = 30 for ‖A‖1 = 2.5 >
Θ25 > Θ′

25.
Algorithm HPS-eval-2 is analogous to HPS-eval, but implements the performance

of bound tests based on (3.13) to reduce the number of matrix products.
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Algorithm HPS-eval-2.
% Horner–Paterson–Stockmeyer evaluation of the order-m Taylor polynomial
% of exp(A) with m = qr, performing bound tests to check if the higher-order
% terms of the Taylor series can be neglected.
% Input: s; q; r; {bi}, i = 0 : qr; {Aj = Aj}, j = 1 : q; {B̄k}, k = 0 : r − 1; u.
% Output: F = Tm(A).
Execute Algorithm bexp-Bound; % Compute bound bexp
F = B̄r−1;
for j = r − 1 : −1 : 1

if (bexp‖F‖1‖Aq‖j1 ≤ u) then
F = B̄j−1; % Reduction of one matrix product

else

F = B̄j−1 +Aq × F ;
end if

end for j
F = F + b0I;
end % HPS-eval-2

Taking into account the two proposed modifications, in the next section we test
the following versions of the Taylor Algorithm GSQT presented in section 2.2:

• TSTD (Taylor standard) uses Algorithm Order-scale-2 with option 0 and
Taylor-eval. Cost k∗ + s∗ matrix products (see Order-scale-2).

• TPS (Taylor Paterson–Stockmeyer) uses Algorithm Order-scale-2 with option
1 and Taylor-eval. Cost k∗ + s∗ matrix products.

• OTPS (Optimal TPS) uses Algorithm Order-scale-2 with option 2 and Taylor-
eval. Cost k∗ + s∗ matrix products.

• TPSBT (TPS performing Bound Tests) is analogous to TPS except for the
use of the new ϑm values in Algorithm Order-scale-2, and the Algorithm
HPS-eval-2 instead of HPS-eval in Taylor-eval to perform the bound tests.
Cost less than or equal to k∗ + s∗ matrix products.

• OTPSBT (Optimal TPSBS) is analogous to TPSBT using option 2 in Algo-
rithm Order-scale-2. Cost less than or equal to k∗ + s∗ matrix products.

Finally, we analyze the rounding error for the proposed Taylor algorithms. The
effect of rounding errors in the evaluation of the Taylor matrix polynomial can be
bounded similarly to the numerator of Padé approximants [Hig05, p. 1185]. Since
e−‖A‖ ≤ ‖eA‖, using Theorem 2.2 of [Hig05, p. 1184] with ‖A‖1 ≤ υm, where υm = Θm

for TSTD, TPS, and OTPS, and υm = ϑm for TPSBT and OTPSBT, and noting that
all the coefficients in the Taylor matrix polynomial are positive, it follows that

∥∥∥Tm(A)− T̂m(A)
∥∥∥
1
≤ γ̃mnTm (‖A‖1) ≈ γ̃mne

‖A‖
1 ≤ γ̃mn

∥∥eA
∥∥
1
e2‖A‖

1

≃ γ̃mn ‖Tm(A)‖1 e2‖A‖
1 ≤ γ̃mn ‖Tm(A)‖1 e2υm ,(3.16)

where A ∈ C
n×n, T̂m(A) is the computed Taylor approximation, and γ̃k =

cku/(1 − cku), where c is a small integer constant [Hig02]. Hence, the relative er-
ror is bounded approximately by γ̃mne

2υm , which is a satisfactory bound taking into
account the values of Θm and ϑm given in Table 5 (see [Hig05, p. 1185]), and there is
no rounding error contribution of solving multiple linear systems as in Padé methods.
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Table 6
Total number of matrix products P computed by each function to evaluate the exponentials of

all the test matrices from Case Study 1.

mK TSTD TPS OTPS TPSBT OTPSBT max. m expm expm

20 724 719 719 668 668 13 635.67
25 739 724 719 673 672 17 637.67
30 757 739 719 677 672 21 649.67

4. Numerical experiments. MATLAB implementations of Algorithms TPS,
TPSBT, OTPS, and OTPSBT with mK = 20, 25, and 30 were compared to the stan-
dard Taylor algorithm TSTD, and the MATLAB scaling and squaring Padé function
expm with maximum orders m = 13, 17, and 21; see [Hig05]. Tests were done on
an 2.8 GHz Intel Xeon processor with 4 GB main memory and MATLAB 7.7. Ac-
curacy was tested by computing relative error E = ‖eA − X̃‖1/‖eA‖1, where X̃ is
the computed solution, and the “exact” value eA was computed using the Symbolic
Math Toolbox of MATLAB and a [33/33] Padé method with scaling and squaring,
at 1000-digit decimal arithmetic for Case Study 1 (small matrices), 250-digit dec-
imal arithmetic for Case Study 2 (matrices 50 × 50), and quadruple precision in
Case Study 2 (matrices 500 × 500). An extra output parameter P was added to
all tested functions to return the number of matrix products. 4/3 products were
added in function expm for each solution of a multiple right-hand side linear system
[BD99].

4.1. Case Study 1. In this test we considered the same test matrices as in
[Hig05], except for three matrices where expm gave infinite results in MATLAB,
i.e., matrices 17 “ipjfact,” 42 “invhilb,” and 44 “pascal” with size 8 × 8, from the
matrix function given in the Matrix Function Toolbox [Hig08, Appendix D], and
matrix 43 “magic,” which was repeated as matrix 49. Table 6 shows the total number
of matrix products P computed by each function to evaluate the matrix exponential
of the 62 test matrices. It shows that the proposed Taylor algorithms, and espe-
cially TPSBT and OTPSBT, need fewer matrix products than the standard Taylor
algorithm TSTD, and between 5.08% and 6.50% more matrix products than expm.
The cost of OTPSBT is very similar for mK = 20, 25, 30, as expected; see Algo-
rithm Order-scale-2. Thus, from now on we consider only mK = 30 for OTPSBT.
Figure 1(a) shows the relative error ratios of all proposed Taylor functions with respect
to the standard TSTD for mK = 30. This figure shows that the TPS and TPSBT
errors are similar to that of the standard TSTD for all matrices. However, OTPS and
OTPSBT errors are greater for some matrices, confirming that the extra squaring in
both algorithms can lead to more numerical error; see subsection 3.1. Figure 1(a)
also shows that TPS error and TPSBT error are similar for all matrices. The same
happens with OTPS and OTPSBT. This fact is supported by (3.6), which shows that
the norm of the neglected terms in functions TPSBT and OTPSBT, relative to the
exact value exp(A), is not significant for machine precision.

Figure 1(b) presents the relative error ratios for the most efficient Taylor functions
TPSBT and OTPSBT with mK = 30, and expm with optimal maximum order m =
13 [Hig05]. Figure 1(b) shows that OTPSBT and TPSBT displayed error comparable
to expm. Figure 1(c) shows the performances [DM02] of TPSBT and OTPSBT, and
expm with maximum orders m = 13, 17, 21 (see [Hig05]), where the α coordinate
varies between 1 and 5 in steps equal to 0.1, and the p coordinate is the probability
that the considered algorithm has a relative error lower than or equal to α-times the
smallest error over all the methods, where probabilities are defined over all matrices.
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Fig. 1. Comparison results, Case Study 1.

Figure 1(c) shows that in this case study the most accurate function was TPSBT with
mK = 30 followed by OTPSBT with mK = 30 confirming that the extra squaring in
OTPSBT can yield a lower accuracy.

To test numerical stability we plotted the normwise relative errors of the consid-
ered functions. Figure 1(d) shows the relative errors of all implementations, and a
solid line that represents the unit roundoff multiplied by the relative condition number
of the exponential function at X [Hig08, p. 56],

condexp(X) = lim
ε→0

sup
‖E‖≤ε

∥∥eX+E − eX
∥∥

ε

‖X‖
‖eX‖ .

Relative condition number was computed using the MATLAB function expm cond

from the Matrix Function Toolbox [Hig08, Appendix D] (http://www.ma.man.ac.uk/
˜higham/mftoolbox). For a method to perform in a backward and forward stable
manner, its error should lie not far above this line on the graph [Hig05, p. 1188].
Figure 1(d) shows that all functions performed in a numerically stable way.

4.2. Case Study 2. In this case study 39 matrices of dimension n = 50 and
36 matrices of dimension n = 500 from MATLAB function matrix in the Matrix
Computation Toolbox were used as the test battery (matrices whose exponential
cannot be represented in double precision because overflow errors were excluded from
the 52 total possible matrices). Fortran versions of functions TSTD, TPS, OTPS,
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Table 7
Total number of matrix products P computed by each function to evaluate the exponentials of

all 50× 50 matrices from Case Study 2.

mK TSTD TPS OTPS TPSBT OTPSBT max. expm order expm

20 469 465 465 430 430 13 408.67
25 479 469 465 432 431 17 412.33
30 487 479 465 429 431 21 416.33

Table 8
Total number of matrix products P to compute the exponential of all 500 × 500 matrices from

Case Study 2. Mean and standard deviation of total execution time t in seconds for 100 repetitions
of the experiment, with mK = 30 in Taylor functions, and the optimal maximum order m = 13 in
expm; see [Hig05].

TSTD TPS OTPS TPSBT OTPSBT expm

P 506 487 479 440 439 425
mean(t) (seconds) 829.97 787.39 782.67 692.28 694.59 762.58

standard deviation(t) 2.51 2.31 2.33 2.11 1.99 2.26

TPSBT, OTPSBT with mK = 30 and expm with maximum order m = 13 [Hig05]
were implemented, and made available online in [FORT], to measure execution times
for the 500×500 matrices. Tables 7 and 8 present the total number of matrix products
P computed to evaluate the exponential of all matrices, and Table 8 also presents the
mean and standard deviation of the total execution time t in seconds to compute
the exponential of all 500× 500 matrices with 100 repetitions of the experiment. We
omitted plotting the normwise relative errors for the 500× 500 matrices because they
were too large to compute the relative condition number.

Similar conclusions to those from Case Study 1 are obtained from Tables 7 and
8 and Figure 2: TPSBT and OTPSBT with mK = 30 had a lower cost than TSTD,
and between 3.29% and 5.46% more matrix products than expm with maximum
order m = 13, and TPSBT and OTPSBT execution times for the 500× 500 matri-
ces were 9.21% and 8.91% lower than expm, respectively. TPS and TPSBT errors
were similar to TSTD error in all cases. OTPS and OTPSBT errors were greater
than TSTD error in some cases, as expected because of the extra squaring. In the
majority of tests TPS and OTPS had similar errors to TPSBT and OTPSBT, re-
spectively, as supported by (3.6). The performance profiles show that TPSBT with
mK = 30 was the most accurate function in both the 50 × 50 and the 500 × 500
matrices.

5. Conclusions. This work developed four new Taylor algorithms TPS, OTPS,
TPSBT, and OTPSBT to compute the matrix exponential based on two modifications
to the standard algorithm that reduce computational cost and preserve accuracy. The
first modification changes the order and the scaling parameter of the standard scaling
algorithm if another combination of these values reduces the number of matrix prod-
ucts. The second modification neglects higher-order terms in the Taylor series based
on relative error bounds. Finally, a detailed comparison of the several algorithmic
variants was provided.

Acknowledgment. We are grateful for the referees’ valuable suggestions.
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Fig. 2. Comparison results, Case Study 2.
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[DM02] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance
profiles, Math. Program., 91 (2002), pp. 201–213.

[FORT] Fortran Versions of Functions TSTD, TPS, OTPS, TPSBT, OTPSBT, and expm,
http://personales.upv.es/∼jorsasma/FORTRAN.zip

[GV96] G.H. Golub and C. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins Stud.
Math. Sci., The Johns Hopkins University Press, Baltimore, MD, 1996.

[Hig02] N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadel-
phia, 2002.

[Hig05] N.J. Higham, The scaling and squaring method for the matrix exponential revisited,
SIAM J. Matrix Anal. Appl., 26 (2005), pp. 1179–1193.

[Hig08] N.J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia,
2008.

[HiAM10] N.J. Higham and A.H. Al-Mohy, Computing matrix functions, Acta Numer., 19
(2010), pp. 159–208.

[HLS98] M. Hochbruck, C. Lubich, and H. Selhofer, Exponential integrators for large sys-
tems of differential equations, SIAM J. Sci. Comput., 19 (1998), pp. 1552–1574.
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