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Unsegmented Dialogue Act Annotation and
Decoding with N-Gram Transducers

Carlos-D. Martı́nez-Hinarejos, José-Miguel Benedı́, Member, IEEE, Vicent Tamarit

Abstract—Most studies on dialogue corpora, as well as most
dialogue systems, employ dialogue acts as the basic units for
interpreting discourse structure, user input and system actions.
The definition of the discourse structure and the dialogue strategy
consequently require the tagging of dialogue corpora in terms of
dialogue acts. The tagging problem presents two basic variants: a
batch variant (annotation of whole dialogues, in order to define
dialogue strategy or study discourse structure) and an on-line
variant (decoding of the dialogue act sequence of a given turn,
in order to interpret user intentions). In the two variants is
unusual having the segmentation of each turn into the dialogue
meaningful units (segments) to which a dialogue act is assigned.
In this paper we present the use of the N-Gram Transducer
technique for tagging dialogues, without needing to provide a
prior segmentation, in these two different variants (dialogue
annotation and turn decoding). Experiments were performed in
two corpora of different nature and results show that N-Gram
Transducer models are suitable for these tasks and provide good
performance.

Index Terms—Spoken dialogue systems, dialogue annotation,
n-gram transducer

I. INTRODUCTION

Dialogue systems are computer systems that interact with
human users by means of dialogue, and are usually imple-
mented to solve a given task. In the last decade, there have
been many projects with the aim of developing a dialogue
system, such like Companions [1], Indigo [2], Classic [3], or
PARLANCE [4], among others. Most of the developed dialogue
systems are devoted to a specific task, although some projects
had as an initial aim developing dialogue systems for a variety
of purposes. Speech is the usual input, but the multimodal
paradigm is gaining attention in the last years [5], [6].

The core component of a dialogue system is the dialogue
manager. It decides, by using the so-called dialogue strategy,
how to manage the user input and which output must produce,
also taking into account the previous development of the
dialogue (dialogue history).

The definition of dialogue strategies can take benefits from
the study of dialogue structure. This is an important research
topic in the field of natural language processing. Although
those studies usually focus in human-human dialogues anal-
ysis [7], [8], [9], some of their results could be used in the
definition of dialogue systems.
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Dialogue structure is defined in the terms of the units that
form a dialogue. The most evident unit in a dialogue is a
turn, which can be defined as an interval of expression by a
single dialogue participant. Inside a turn, one or more segments
may appear. A dialogue segment (or utterance [10]) is any
subsequence in a dialogue turn that has a relevant paper in the
dialogue process.

There are many proposals for determining the dialogue
structure or the dialogue management, but they can usually be
divided into two classes by their approach to the resolution
of this problem: rule-based approximations and data-based
(or statistical) approximations. In the first case, there is a set
of manually defined rules which determine the structure and
govern the dialogue system. In the second case, a statistical
model is in charge of deciding the dialogue structure and the
system response. Both approximations have their advantages
and drawbacks: the rule-based approach does not require a
large amount of labelled data to define the dialogue strategy,
but it is hard to define and adapt the set of rules for a specific
task (it requires a human expert), whereas in the data-based
approach the inference of the models parameters are directly
derived from tagged dialogues, but requires a large set of
tagged dialogues.

The concept of dialogue tagging that arises in the data-based
approach consists of applying a set of labels that models the
discourse structure during the dialogue. These labels allow to
represent the current state of the dialogue and the possible
actions that can be performed by a dialogue system at each
point of the interaction. Therefore, it appears an association
between a label and a communicative function or a dialogue
situation, which allows the statistical models to become de-
fined in terms of the set of labels. Since only the relevant
information (from the dialogue viewpoint) is represented in
the label (and consequently used by the model), the models
become simpler. There have been many proposals to define the
set of labels, but the most widely accepted proposal is tagging
based on dialogue acts (DAs). A dialogue act is defined as a
label that represents the meaning of a dialogue segment.

The problem addressed in this work relates to the tagging
of dialogue units (whole dialogues or single turns) in terms of
DAs. Two different scenarios appear:
• Annotation: the final aim is to infer the parameters of

the models from a set of dialogues, which requires to tag
the training data following the proposed set of DAs; thus,
given a set of dialogues where segmentation is usually not
available but the whole dialogue transcription is available,
segments must be identified and DA labels must be
properly assigned to each segment; manual tagging of



2

dialogues is hard and time-consuming, and consequently
statistical models (inferred from a manually annotated
subset of dialogues) can be used for obtaining a draft
tagging of the dialogue corpus and reduce the global
tagging effort.

• Decoding: the final aim is to encode all the interactions
that appear during the dialogue system operation into
DAs; in this case, segmentation is unavailable as well,
and only the current and previous dialogue turns are
available; the labels sequence must be determined, but
their specific position is usually not necessary for the
dialogue strategy; this is usually the case of a human-
computer dialogue system in operation, where each user
input and each system action must be interpreted in terms
of DAs, and a model to decode user turns into DAs is
necessary.

This article presents the use of a statistical technique, the
N-Gram Transducer (NGT), in dialogue annotation and turn
decoding for speech input. This technique is based on the
GIATI technique [11] originally developed for Machine Trans-
lation. In contrast other techniques that use to employ gener-
ative models, NGT models the posterior probability. Previous
preliminary results where obtained for the NGT technique
for dialogue annotation [12], with competitive results with
respect to other more classic techniques, but no turn decoding
implementation has been described. Moreover, NGT can be
directly used for obtaining the DA sequence without using a
previous speech recognition (coupled decoding). In this work,
experiments on NGT were performed in both the annotation
and the decoding framework for two dialogue corpora of
different nature (human-human and human-computer).

Section II summarises the different systems, annotation
schemes, and statistical models that have been proposed for
dialogue annotation and turn decoding. Section III presents the
NGT technique. Section IV describes the data and Section V
the assessment measures. Section VI presents the baseline
system, whereas Section VII shows the experimental part for
a human-human dialogue corpus, and Section VIII defines the
experimental framework and results for a human-computer
dialogue corpus. Section IX offers the conclusions and the
future lines that can be explored for this technique.

II. RELATED WORK

A. Dialogue models

Dialogue models employed in dialogue analysis (especially
for human-human dialogues) and dialogue management are
usually divided into rule-based models and data-based models.
Rule-based models have been used in human-human dialogue
assignment for obtaining local dialogue structure and dialogue
acts [13] and for segmenting dialogues [14]. Rule-based mod-
els for dialogue management define the dialogue strategy by
means of hand-crafted rules, which is the case of that presented
in [15]. Some rule-based models employ hybrid approaches
that use a set of tagged dialogues to identify the current state
of the dialogue [16].

Data-based models have been used in human-human dia-
logue analysis in tasks like dialogue act assignment [10], style

detection [17], or disfluency detection [18]. Most of these pre-
vious works usually assume the segmentation of the dialogue
turns into dialogue segments. In dialogue management, data-
based models use probabilistic models to define the dialogue
strategy, i.e., given the dialogue history (including last user
interaction) and, possibly, other environmental factors, they are
given as inputs to a probabilistic model that provides as a result
which is the next action to be performed by the system. In
the last decade, the most used probabilistic models have been
Markov Decision Processes (MDP) [19], [20] and Partially
Observable MDP (POMDP) [21], [22], [23].

In this work we propose the use of the NGT model for tasks
such as dialogue act assignment in unsegmented dialogue turns
and dialogue act interpretation of user turns that can appear
during the use of a dialogue system. Dialogues annotated with
NGT models could be used in the estimation of the parameters
of the probabilistic models (as MDP and POMDP), whereas
DA interpretation of turns via NGT can be used as input of
these models in the dialogue system operation.

B. Annotation schemes

Most of the models described in Subsection II-A rely on
the interpretation of dialogue interactions (user input and
system actions for human-computer dialogues) in terms of
some dialogue-structure labels, which avoid redundant and
unimportant information for the dialogue. As presented in
Section I, the most usual approximation is tagging based on
dialogue acts [24], but there have been many other propos-
als [25], [26].

A DA set can be used in human-human and in human-
computer dialogues, and is usually tailored to the context of
the human-human dialogues or to the task of the corresponding
dialogue system. This fact caused the definition of different
DA tagging schemes in the last twenty years. Some examples
are DAMSL [27], VerbMobil [28], or DATE [29]. DAMSL
is one of the most popular schemes, and it has been adapted
for their use on the tagging of human-human corpora such as
SwitchBoard [30] (using the SWBD-DAMSL variant [31]) or
human-computer corpora such as AMITIÉS [32]. The DATE
scheme has been applied as well to human-human dialogues
and human-computer dialogues [33]. Therefore, adopting a
set of DAs does not limit its application to an only type of
dialogue corpus (human-human or human-computer).

Of course, different sets of DA tagging schemes can cause
different effects in the DA detection (as results in Sections VII
and VIII show), since estimating associations between di-
alogue situations and DA labels can be more difficult for
some schemes (e.g., large number of DAs or ambiguous
definition of DAs). In the last years, an effort on DA schemes
standardisation has been performed, and an ISO proposal
for a common set of DA labels and tagging rules has been
developed [34].

Our proposal based on NGT is not related to the final use of
the DA sequence, but to its correct detection in unsegmented
dialogue turns. Thus, it could be applied to human-human
dialogue studies and to human-computer dialogue systems,
where segmentation is not usually available.
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C. Automatic annotation and decoding

Whatever is the chosen DA scheme, two important tasks
(as described in Section I) appear when developing data-based
applications on dialogue: the annotation task (which is the aim
of works such as [10], [35], [36]) and the decoding task.

Most previous works assumed that the start and end of the
segments that compose the different turns are available, and
therefore only DA classification for each segment is necessary.
This segment classification can be done using different models.

In human-human dialogues, Stolcke et al. use in [10] a
classic approach based on Hidden Markov Models (HMM)
and n-grams on the SwitchBoard corpus [30], that is taken
as baseline for many experiments. Apart from this seminal
work, other proposals appeared in the latest years [37], [38],
[39]. In human-computer dialogues there are several proposed
models: Maximum Entropy [40], Spectral Clustering [41],
Bayesian Networks [42], regression trees [43], SVM and
Latent Semantic Analysis [44].

The assumption of the segmentation (i.e., knowing when the
dialogue segments start and end inside a turn) is not realistic
in some cases, such as for spoken dialogue systems and when
only the transcriptions of the dialogue are available. In these
situations, turns are usually distinguishable, but segments into
the turn must be obtained with different techniques.

This segmentation task has been researched in several
works [45], [46], [47], [48], [49]. However, not so many
works consider together the segmentation and annotation of
dialogue turns (i.e., the unsegmented annotation problem).
Some authors propose a decoupled approximation [50], [51].
Only a few works, such as [52], [53], [54], [36], propose
schemes in which segmentation and annotation is produced in
a coupled process. These works use combinations of different
models (A∗ search and n-grams [52], DBN with GMMs, and
conditional probability tables [54]). In any case, to the best
of our knowledge, systems that use a coupled segmentation
and annotation require, for spoken dialogue turns, a previous
recognition of the turn. After this recognition, the words can
be used as input for the segmentation and annotation module.

In the case of our NGT proposal, only models of similar
nature are employed, and the turn DA sequence can be directly
obtained from speech.

III. THE N-GRAM TRANSDUCERS TECHNIQUE

The problem of obtaining the interpretation of dialogue
turns (i.e., the corresponding sequence of DA labels) can be
stated as an optimisation problem: given a word sequence W
that represents a dialogue, obtain the sequence of DA labels
U that maximises the posterior probability Pr(U|W), that is:

Û = argmax
U

Pr(U|W) (1)

A usual approximation is based on employing generative
models (e.g., HMM). Formulation in this case is obtained
by applying Bayes rule on Eq. (1), which decomposes the
problem into:

Û = argmax
U

Pr(U ,W) = argmax
U

Pr(W|U) Pr(U)

A ⊂ Σ? ×∆?

Sample of
input-output
training pairs

Labelling − L(·)

-
S ⊂ Γ?

Sample of
(re-labelled)

training strings

??
? GI

?
alg

T : A ⊂ T (T )
A Finite-State

Transducer
Inv. labelling − Λ(·)�

A: S ⊂ L(A)
A Finite-State

Automaton

Fig. 1. General scheme for the GIATI technique. Σ, ∆ and Γ are the input,
output, and extended set of symbols, respectively. A and S are the initial sets
of aligned and re-labelled samples. L(A) and T (T ) represent the languages
derived from A and T , respectively. The GI algorithm is usually the inference
of a smoothed n-gram, and A is the automaton equivalent to the inferred n-
gram. L and Λ are the labelling and inverse labelling functions.

where Pr(W) is dropped because it does not depend on the
maximisation variable U .

In contrast, the optimisation proposed in Eq. (1) could be
achieved by estimating the posterior probability Pr(U|W)
using a discriminative model. In this work we propose to
model Pr(U|W) by using the N-Gram Transducers (NGT)
technique.

A. Fundamentals of the N-Gram Transducers technique

The NGT technique is based on a Stochastic Finite-State
Transducer (SFST) inference technique known as GIATI [11].
Although GIATI was initially defined as a Machine Translation
technique, it can be easily adapted to the dialogue framework
using as input language the words (W) or other input infor-
mation, and as output language the DA labels (U). Figure 1
shows a scheme of the general GIATI process.

The last step (converting grammatical model into a trans-
ducer) is difficult when using smoothed n-grams. Therefore
it is preferable to avoid this last step and use the smoothed
n-gram directly as a transducer, which gives the name to the
model: N-Gram Transducer (NGT). This can be applied for
monotone alignments.

In the case of dialogues, the input language is the sequence
of words of the dialogue W , and the output language is
the sequence of DA of the dialogue U . Since words in a
dialogue are organised in turns, it is usual to express the
optimisation problem in terms of turns. Thus, given a dialogue
with T turns, we express its associated word sequence as
W = WT

1 = W1W2 · · ·WT and the corresponding DA
sequence as U = UT

1 = U1U2 · · ·UT . Notice that Wt and Ut

represent the sequences of words and DA, respectively, for the
turn t. Consequently, without losing generality, the posterior
probability could be stated as:

Pr(U|W) = Pr(UT
1 |WT

1 ) ≈
T∏

t=1

Pr(Ut|Wt) (2)

where we assume that the sequence of labels of one turn
depends only on the words of that turn.

Alignments are local for each turn (i.e., words of Wt only
can be aligned to DA of Ut), and define the segments (sequence
of consecutive words assigned to a DA label) of the turn.
Given a turn Wt = wl

1 = w1w2 . . . wl, a segmentation on
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Yes , uh , I don’t work , though , but I used to .
↑ ↑ ↑
% sd sd

Yes , uh ,@% I don’t work , though ,@sd but I used to .@sd

Fig. 2. An alignment between a dialogue turn and its corresponding DA labels
(from the SWBD-DAMSL scheme, %: uninterpretable, sd: statement-non-
opinion), and the result of the re-labelling process, where @ is the attaching
metasymbol.

Wt is defined by a sequence of indexes (s0, s1, s2, . . . , sr),
where r is the number of segments, s0 = 0, sr = l and Wt =
ws1

s0+1w
s2
s1+1 . . . w

sr
sr−1+1. If Ut = u1u2 . . . ur, each segment

wsi
si−1+1 is assigned to the DA ui. Alignments are established

between the DA label and the final word of its segment.
By using this segmentation notation and focusing in a

certain turn (U = Ut and W = Wt), the calculation of the
terms Pr(U |W ) of Eq. (2) can be approximated as:

Pr(U |W ) ≈
∑
r,s

r∏
i=1

Pr(ui|wsi
si−1+1) (3)

where all possible number of segments r and segmentation s
are considered and, for a given segmentation s of r segments,
it is assumed that the probability of assigning ui to the i-th
segment only depends on the words of that segment (wsi

si−1+1).
Given the sequence of words of a turn t, Wt = w1w2 . . . wl,

and the corresponding DA sequence Ut = u1u2 . . . ur, the
labelling function that is usually used attaches the DA label
ui to the last word of the i-th segment in Wt (wsi ) using a
metasymbol (e.g., @).

Consequently, the terms in the product of Eq. (3) can be
expressed as:

Pr(ui|wsi−1+1 . . . wsi) ≈ q(wsi−1+1 . . . wsi@ui) (4)

where q is a score function on the sequence that does
not consider the normalisation term of the probability. The
posterior probability could be estimated in an n-gram fashion,
given as final estimator:

Pr(ui|wsi−1+1. . .wsi)≈q(wsi@ui|w
si−1
si−n)

si−1∏
k=si−1+1

q(wk|wk−1
k−n) (5)

Notice that in the terms q(wk|wk−1
k−n), the sequence of words

could be extended to previous segments in order to have a
proper definition of the score.

The use of the labelling function that attaches the DA label
to the last word of each segment produces as a result, for turn
t, a extended word sequence e1e2 . . . el, where:
• ei = wi when wi is not aligned to any DA.
• ei = wi@uk when wi is aligned to the DA uk.
Figure 2 presents an example of alignment for a dialogue

turn and the corresponding extended word sequence. After this
step, the n-gram can be inferred from the total set of extended
word sequences to build the NGT model. Notice that terms
in Eq.(5) relate to the NGT model by the association of the

observation score q(wsi@ui|w
si−1
si−n) to the sequences of the

end of the i-th segment and the association of the transition
scores (those of the product) to the previous sequences in that
segment.

The search process (decoding) in the NGT model is the key
point of the technique. The decoding is applied to a sequence
of input words (without DA labels) and provides the sequence
of the DA labels and their positions with respect to the input
sequence. The decoding is a search process in the NGT model,
whose search space is modelled as a tree where each node has
associated a score. The i-th level of the tree corresponds to
the i-th word in the input, and each input word is expanded
for all the possible outputs it has associated in the alignments
in the training corpus. For example, if the input word wi was
aligned in the training corpora to outputs (DA) d1, d2, and d3,
apart from the empty output, all the nodes in level i− 1 will
expand into four children nodes, each of them associated to
the corresponding output (i.e., wi, wi@d1, wi@d2, wi@d3).

Apart from that, in the NGT decoding an n-gram of DA
labels is used to compute the score of the nodes of words
with associated outputs. Thus, the score of a node is basically
calculated as a product of three different factors:

1) The score of its parent node pP .
2) The score of the sequence of the n extended words that

finish in the node (which is given by the NGT model,
an n-gram of degree n), q(ei−(n−1), . . . , ei).

3) If the node corresponds to an extended word with
associated output (i.e., ei = wi@dk), the score of the
sequence of the m DA that finish in the node (given by
an n-gram of degree m of DA sequences, inferred from
the training data), q(dk−(m−1), . . . , dk).

Therefore, for a expanded node with empty output, its asso-
ciated score is calculated by p = pP · q(ei−(n−1), . . . , ei),
and for the rest of the nodes is calculated by p = pP ·
q(ei−(n−1), . . . , ei) · q(dk−(m−1), . . . , dk). In Figure 3 an
example of tree search is provided.

There are a few similarities between NGT and the Hidden
Event Language Model (HELM) proposed in [18], [55], [56],
such as the use of n-gram and the appearance of events that are
somewhat hidden in the processed sequence. However, while
in HELM the hidden events appear at the same level than the
visible events and are removed in the estimation of the n-gram
probabilities, in NGT the output labels are added to the input
tokens and the extended symbol forms part of the probability
estimation. Moreover, HELM does not explicitly models the
relations between hidden events in the sequence, while NGT
decoding does it by using the n-gram of output labels.

The basic NGT search can use alternatives such as:
• Beam-search to avoid the exponential growth of the

search space.
• Limited expansion of nodes, by expanding only the k

children nodes of highest score for each parent node.
• Weight factors that promote or penalise the nodes with

output or that alter the influence of the NGT model with
respect to the n-gram of DA; in this last case, the Output
Grammar Scale Factor (OGSF) is defined as a factor that
increases or reduces the contribution of the n-gram of
DA to the score calculation for each node.
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,@% I don’t work
p(I|uh ,@%)=1 p(don’t|,@% I)=1 p(work|I don’t)=1

p=0.0162 p=0.0162 p=0.0162p=0.0162

,@b I don’t work
p(I|uh ,@b)=1 p(don’t|,@b I)=1 p(work|I don’t)=1

p=0.0252 p=0.0252 p=0.0252p=0.0252

p=0.0078.@sd

p=0.0003.@ng

p(.@sd|don’t work)=0.8

p(.@ng|don’t work)=0.2
p(ng|% %)=0.1

p(sd|% %)=0.6

.@ng p=0.0005

p(.@ng|don’t work)=0.2
p(ng|% b)=0.1

.@sd p=0.0161

p(.@sd|don’t work)=0.8

p(sd|% b)=0.8

p(%|%)=0.3

p(,@%|,@% uh)=0.6

uh
p=0.09

p(b|%)=0.7

p(,@b|,@% uh)=0.4

p(uh|Yes ,@%)=1

,@%
p=0.09

p(%)=0.3

p(,@%|Yes)=0.3

Yes
p=1.0

p(,@b|Yes)=0.7

p(b)=0.7

,@% I workdon’t
p(don’t|,@% I)=1p(I|uh ,@%)=1 p(work|I don’t)=1

p=0.2352 p=0.2352 p=0.2352p=0.2352

,@b I don’t work
p(I|uh ,@b)=1 p(don’t|,@b I)=1 p(work|I don’t)=1

p=0.0392 p=0.0392 p=0.0392p=0.0392

.@ng p=0.0376

p(.@ng|don’t work)=0.2

p(.@sd|don’t work)=0.8

p(ng|b %)=0.8

p(sd|b %)=0.1

.@sd p=0.0188

.@ng p=0.0039

.@sd p=0.0094

p(.@ng|don’t work)=0.2

p(.@sd|don’t work)=0.8

p(sd|b b)=0.3

p(ng|b b)=0.5

p(%|b)=0.8

p(,@%|,@b uh)=0.6

uh
p=0.49

p(,@b|,@b uh)=0.4

p(b|b)=0.2

p(uh|Yes ,@b)=1
,@b

p=0.49

Fig. 3. An example of the tree search for the NGT model. In this example, both the NGT and the n-gram of DA are modelled by 3-grams. In the
nodes where an output is produced, its score is computed from the score of the parent node, the NGT probability and the n-gram of DA probability. Best
hypothesis is in boldface and marked by a dark arrow. The meaning of the DA labels is uninterpretable (%), backchannel (b), statement-non-opinion (sd) and
negative-non-no-answers (ng).

B. N-Gram Transducers on dialogue

The NGT technique can be applied to several tasks in
dialogue. In this work we focus in the tasks described in
Subsection II-C: dialogue annotation, and decoupled/coupled
turn DA decoding.

• Dialogue annotation: in this case, the input of the model is
a transcription of a complete dialogue, which can include
punctuation marks and annotation of non-linguistic phe-
nomena (such as laughter, coughing, etc.). In this task, the
separation between turns is commonly available, but the
segmentation into segments is not usual. Since segments
are usually confined in a turn, the last word of a turn
must be the last word of a segment. Consequently, the
final word of a turn will have assigned a DA. The tree
expansion is done for the complete sequence of words.
The final solution is the optimal for the whole dialogue,
and provides the segmentation and annotation with DA of
all the turns of the input dialogue. Therefore, this option
can be used in the annotation of dialogue corpora.

• Decoupled turn decoding: in this case, the input of the
model is a recognition result of a dialogue turn; in this
case it is unusual to have some special tokens (such

as punctuation marks) in the input. In this task, the
dialogue turns previous to the current input are known and
their decoding is fixed. Therefore, those previous turns
(dialogue history) are modelled as a single branch in the
search tree and when the new input is processed children
nodes for only that branch are created. The final solution
is a single branch which is optimal for the turn but
without knowing the future turns. From this branch the
turn segmentation and annotation is obtained, although
for the decoding process only the sequence of DA is
needed. Therefore, this option can be used to decode user
intentions from the result of a speech recogniser.

• Coupled turn decoding: this case is similar to the pre-
vious, but consists of using directly the NGT model
as language model in the speech recogniser (i.e., cou-
pled speech recognition and DA decoding). Besides, the
speech recogniser must take into account the n-gram
of DA in the recognition process; therefore, the speech
recogniser must be slightly modified to take into account
this n-gram when calculating the probabilities for the
NGT model states with associated output. This option
can be used to directly obtain DA labels in speech-
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TABLE I
SUMMARY OF THE FEATURES OF THE SWITCHBOARD AND THE DIHANA
CORPUS. FOR DIHANA, U MEANS USER TURNS AND S SYSTEM TURNS.

Corpus SwitchBoard Dihana
Language English Spanish
Nature Human-human Human-computer
Semantically restricted No Yes
Number of dialogues 1155 900
Number of turns 115,000 6280 U + 9133 S
Vocabulary size 42,000 900
Annotation scheme SWBD-DAMSL IF-DIHANA
Number of DA labels 42 248

input dialogue systems, which is supposed to be more
accurate and efficient than the decoupled option (which
was previously described as decoupled turn decoding).

In this work, we will centre in these previously described
applications, although NGT can be used for other applications,
such as obtaining a draft segmentation that can be used by
other DA assignment models [57].

IV. DIALOGUE DATA

In this section we present the experimental data that we
used in the different experiments with the NGT technique. Two
different corpora are introduced: the SwitchBoard corpus [30]
and the Dihana corpus [58]. These two corpora present dis-
similar features with respect to the size of the vocabulary, the
set of DA labels, the nature of the interaction, the associated
semantic restrictions, etc. A summary of the different features
of these two corpora is presented in Table I.

A. SwitchBoard corpus

The SwitchBoard corpus [30] is a popular corpus of tele-
phone conversations in English between two human speakers.
The speakers discuss about general defined topics, but without
a clear task to accomplish (they can discuss about politics,
economics, social matters, etc., but without a defined objec-
tive). The corpus recorded spontaneous speech, with frequent
overlaps and interruptions between the speakers, and with
several spontaneous speech phenomena (such as hesitations,
non-linguistic sounds, etc.) and background noises.

The corpus consists of 1155 conversations (approximately
115,000 turns), that were manually transcribed with a spe-
cial notation for spontaneous speech phenomena (specially
overlaps and non-linguistic sounds). Vocabulary size is about
42,000 words. Total recorded speech signal is about 95 hours.

The set of DA labels that were used in the annotation of the
Switchboard dialogues is known as SWBD-DAMSL [31]. This
set is a simplified version of the standard DAMSL annotation
set [27]. SWBD-DAMSL comprises a total number of 42
different labels, which cover communicative functions such
as statement, question, backchannels, etc., but with associated
subtypes (e.g., statement-opinion and statement-non-opinion).
In the annotation process, each turn was segmented into the
corresponding segment (an average of 1.7 segments per turn
was obtained) and a label was associated to each segment

Spk Seg Transcription Lab
S1 S1-1 Yeah, aa

S1-2 to get references and that, sd
S1-3 so, but, uh, %
S1-4 I don’t feel comfortable about leaving my

kids in a big day care centre, simply
because there’s so many kids and so many
<sniffing> <throat clearing> sd

S2 S2-1 I think she has problems with that, too. sd

Fig. 4. An example of annotated turns in the SwitchBoard corpus. The
meaning of the labels is statement-non-opinion (sd), uninterpretable (%) and
agree/accept (aa).

according to a set of rules. The manual labelling was per-
formed by 8 different human experts, given an inter-annotator
agreement with a Kappa value of 0.8 [10]. An example of
annotation is provided in Figure 4.

Even though its intrinsic difficulties, SwitchBoard has be-
come in the last years a sort of standard corpus to evaluate
annotation tools and models. Several works used SwitchBoard
to evaluate their proposed models, such as [10], [59], [36].
Some of these previous works do not give details on the corpus
preprocessing or experimental framework.

In our case, the preprocessing of the SwitchBoard corpus
removed interruptions and overlaps by joining the separated
pieces of turns (consequently, all the segments in the turn
remain in a single speaker interaction), all the punctuation
marks were separated as single words, and all the words were
transcribed to lowercase1. This preprocessed version can be
used in the dialogue annotation experiments. We built another
version without punctuation marks at all, in order to simulate
the output of an hypothetically “perfect” speech recogniser
and to use it in turn decoding experiments.

B. Dihana corpus

The Dihana corpus [58] is a set of 900 dialogues in Spanish.
The dialogues were acquired in a Wizard-of-Oz (WoZ) envi-
ronment [60] which simulates a human-computer interaction.
These dialogues were directed by the definition of scenarios
in a task related to railway information (timetables and fares)
for long-distance trains in Spain. The acquisition was only
restricted with respect to the objectives of the scenarios, and
no other syntactical, lexical or semantic restriction was applied
in the interaction with the users.

The corpus acquired conversations from 225 speakers (153
male and 72 female) that presented small Spanish dialectal
variants. The total number of turns in the corpus is 6280
for the users and 9133 for the system, with a vocabulary of
approximately 900 words. The total amount of acquired signal
is about 5.5 hours. All the dialogues were manually tran-
scribed, including special annotation marks for spontaneous
speech phenomena. No overlaps or interruptions were present
in the corpus, since in the acquisition process the user was not
allowed to interrupt the system prompts (possible interruptions
were ignored). The spontaneous speech marks were removed
for obtaining the final version of the corpus to be annotated.

1Preprocessed corpus available at www.dsic.upv.es/˜cmartine/
research/resources.html.
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Spk Seg Transcription
Lev 1 Lev 2 Lev 3

S S1 Welcome to the railway information system. How
may I help you?
Open Nil Nil

U U1 I want to know the departure times from
DEP-TW(Valencia)

Que Dep-h Org
U2 to Madrid

Que Dep-h Dest
U3 arriving on DATE(May the 15th of 2004).

Que Dep-h Day
S S2 Do you want to leave on

DATE(Sat, May the 15th of 2004)?
Conf Day Day

U U4 Yes.
Accept Day Nil

S S3 Consulting times for trains from DEP-TW(Valencia)
to DST-TW(Madrid) on DATE(Sat, May 15th 2004).
Conf Dep-h Dest, Day, Org

S4 Wait a moment, please.
Wait Nil Nil

S5 There are TR-NUM(several) trains. The TR-ORD(first
one) leaves at DEP-HR(7:45) and arrives at
ARR-HR(11:14), and the TR-ORD(last one) leaves
at DEP-HR(18:45) and arrives at ARR-HR(22:18).

Ans Dep-h Arr-h, Dep-h, Ord-n, N-tr
S6 Do you need anything else?

Cons Nil Nil

Fig. 5. An excerpt of an annotated dialogue (translated from Spanish into
English) from the Dihana corpus. Nil denotes the absence of information.
Words in capital letters denote categories.

The set of DA labels that was defined for the annotation of
Dihana is an adaptation of the Interchange Format (IF) used for
dialogue annotation [61]. The IF format defines three different
levels for each label, called respectively speech act, concept,
and argument. This set was adapted for Dihana [62], giving
a total of 248 different labels (152 for user turns and 95 for
system turns). Figure 5 presents an annotation example.

In contrast with SwitchBoard, Dihana is not such a sort
of standard dialogue corpus, but it presents several interest-
ing features for the study of the dialogue process and the
implementation of actual dialogue systems: it is a medium-
size corpus, task-oriented, with vocabulary limited to the task.
In conclusion, Dihana is a useful corpus to complement the
conclusions obtained with SwitchBoard and check the models
in a real dialogue system framework

The preprocessing of the Dihana corpus consisted in low-
ercase transcription, separation of punctuation marks, adding
a speaker mark (U for user and S for system) to each word
and a categorisation of the most frequent semantic categories
that are present in the task (such as town names, hours, dates,
etc.)2. This preprocessed corpus can be used in the dialogue
annotation experiments. Apart from this, a version without
punctuation marks and the output of a speech recogniser are
available for decoupled turn decoding. Audio data is available
and allows coupled turn decoding experiments.

2Preprocessed corpus available at www.dsic.upv.es/˜cmartine/
research/resources.html.

V. ASSESSMENT MEASURES

The assessment of the results depends on the specific task
to be performed. When using the models for the annotation of
whole dialogues, it is important to have the correct labels in
the correct position of the turns. However, for turn decoding,
only the correct sequence of DA labels is important, since
the label position in the turn is not usually provided to the
dialogue manager.

Previous works defined several assessment measures [63].
Apart from these, we propose alternative measures based on
edit distance. Each of these measures has a specific purpose
(i.e., measure the quality of different things). According to this
purpose, they can be divided into three different groups:

1) Decoding measures: only DA labels, no positions
• CER (Classification Error Rate): it is a classical

measure which is used when each unit to be anno-
tated is a segment (i.e., the segmented case), and
only one DA label is assigned; it measures the
percent of errors committed in the classification.

• DAER (DA Error Rate): it is our proposed measure;
it considers whole turns, which may have several
DA labels (i.e., the unsegmented case); therefore,
the sequence of DA labels from the reference is
compared with the sequence of DA labels obtained
from the decoding process; DAER measures the
edit distance between these sequences; DAER over-
comes the limitation of the CER measure on the
segmented case.

2) Segmentation measures: only positions of the DA labels
in the turn are compared:
• NIST-SU: it is classical proposal which computes

number of segmentation errors (missed segments
and false alarm segments) divided by the number
of segments of the reference; its limitation is that
does not consider position substitutions.

• DSER (DA Segmentation Error Rate): it is a classi-
cal measure that computes the number of segments
of the reference incorrectly segmented divided by
the total of segments of the reference; the main
difference with NIST-SU is that it only takes into ac-
count reference segments, ignoring errors produced
by an excessive segmentation in system output; its
limitation is that takes segment as whole sequence,
not as limits.

• SegER (Segmentation Error Rate): it is our proposed
measure for segmentation error; it is computed as
the edit distance between sequences of reference
positions and annotation positions (those obtained
by the system); SegER is proposed to avoid the
NIST-SU and DSER limitations, since accounts for
the fact that in real annotation a wrong segmentation
can be corrected by using only final boundaries
(initial boundaries can be supposed to be the next
position to the previous boundary), by inserting,
deleting or moving the corresponding boundaries
(which correspond to edit operations).
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Decoding measures (label)
Reference B Z K B Q
System seg. B Z Z B Q
System Z Z B Q
CER X X × X X
DAER D C S1 C C

Segmentation measures (position)
Reference B | Z Z Z | K K K | B | Q Q |
System Z | Z Z Z Z Z | B B | Q Q |
NIST-SU X × × × X X
DSER X × × × X
SegER C D S1 S1 C C

Annotation measures (label and position)
Lenient × X X X × × × X X X
Strict × × × × × × × × X X
SegDAER S1 D S2 S2 C C

Measure Error computation
CER 1 Err/5 Ref = 20%
DAER (1D+1S)/(3C+1D+1S)=40%
NIST-SU 3 Err/5 Ref = 60%
DSER 3 Err/5 Ref = 60%
SegER (1D+1S)/(3C+1D+1S)=40%
Lenient 4 Err/10 Ref = 40%
Strict 8 Err/10 Ref = 80%
SegDAER (1D+2S)/(2C+1D+2S)=60%

Fig. 6. An example of how to calculate the different assessment measures. Reference and system show the DA labels present in the reference and given by
the system (B, Z, K, and Q represent DA labels, | represents segment limits). In NIST-SU, DSER, Lenient, Strict, and CER measures, × means error and X
correct. In SegER, SegDAER, and DAER, Sk means substitution (two Sk with the same k value represent the same substitution), D deletion, and C correct.

3) Segmentation and annotation measures: both DA labels
and their positions are considered:
• Lenient : it is a classical measure that calculates the

number of words with incorrect DA label divided
by the total number of words.

• Strict : it is a classical measure that calculates the
number of words with incorrect DA label or incor-
rect segmentation divided by the total number of
words; the difference with Lenient is that takes into
account if the word is in the correct segment.

• SegDAER (Segmentation and DA Error Rate): it
is our proposed measure, in which the units to be
compared are composed of the position joined to
the DA label; again, reference sequence is compared
against annotation sequence with the edit distance
to obtain its value; SegDAER is proposed to avoid a
feature common to Lenient and Strict, which is that
they consider all the words of the segment affected
by the label and the boundaries; however, in an
annotation framework, labels can be considered to
be at the end of the segment (and they would be
interpreted to affect all the words of the segment),
and correcting them (in position or in value) would
imply edit operations on the label, not on the total
sequence of words.

Figure 6 (very similar to that used in [63], [50], [64])
shows how sequences are obtained and compared for each of
the proposed measures. In the annotation experiments, errors
can be produced by an incorrect position (NIST-SU, DSER,
and SegER give a measure on that) or by an incorrect label
(DAER gives a measure on this type of error); Lenient, Strict,
and SegDAER are measures that take into account these two
sources of errors altogether, and are appropriate to evaluate
the performance in the annotation experiments. However, in
decoding evaluation position errors are not important, thus
making the DAER measure the most appropriate to evaluate
the quality of the decoding process.

VI. BASELINE SYSTEM

In this section we present a set of baseline models: a
generative model based on Hidden Markov Models (HMM)
with n-grams as language model of DA (model similar to that
proposed in [10]), a discriminative model based on Conditional
Random Fields (CRF) [65], such as that used in [66], and a

sequential model (i.e., apply a model for segmentation and
then one for DA assignment on the obtained segments, which
is an usual option [71]) that uses CRF for segmentation and
Support Vector Machines (SVM) for DA assignment. The
performance of the NGT model for the annotation in the
unsegmented case will be compared against these models. We
present a comparison of the HMM-based model with other
authors work in Subsection VI-A, the experimental framework
in Subsection VI-B, and the results in Subsection VI-C.

A. Comparison with previous work

In order to validate our implementation of the HMM
baseline model, we compared other authors results with the
results given by this model. Although we are interested in the
unsegmented case, most authors present only classification of
segments (i.e., segments are given and only a single DA label
must be assigned to the segment). Thus, for this comparison
we used a HMM-based model version that acts on segmented
input (i.e., takes the whole segment and classifies it into any
of the different classes represented by the HMM models).

This comparison is made on the SwitchBoard corpus, which
has been extensively used in DA tagging since its publication.
Many works, such as [10], [35], [67], [68], [69], [9], [70], have
used this corpus. Unfortunately, each of them uses a different
experimental framework (most cases not fully specified), and
assume the segmentation of the corpus (in contrast with the
unsegmented case, which is our main interest).

Anyway, results of different authors are presented in Ta-
ble II, along with our baseline results3. The 11-fold cross-
validation partition was chosen in order to have the same
number of dialogues (105) in each partition.

Results show that our HMM proposal obtains a performance
similar to that obtained by other authors, although the different
composition of test and training sets makes the different
results not directly comparable (except in the case of Stolcke
partitions). Therefore, we will take this implementation as
baseline system for evaluating the quality of the NGT results.

B. Experimental framework

Our experimental framework is based on using a cross-
validation approach. In the case of the SwitchBoard corpus,

3See www.stanford.edu/˜jurafsky/ws97/ for Stolcke partitions
and www.dsic.upv.es/˜cmartine/research/resources.html
for 11-fold partition.
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TABLE II
COMPARISON OF CER RESULTS FOR THE SWITCHBOARD CORPUS FOR

DIFFERENT MODELS AND TEST FRAMEWORKS. LAST TWO RESULTS REFER
TO OUR BASELINE HMM-BASED MODEL.

Author Error Conditions
[10] 29.0% Stolcke partitions
[59] 28.7% Unknown 4k test
[67] 29.7% Unknown 10-fold cross validation
[68] 30.2% Unknown test, ICSI training
[9] 30.0% Unknown test, 49 labels
[70] 29.6% Unknown test, 173 dialogues

HMM-baseline 30.3% Stolcke partitions, 3-gram
HMM-baseline 29.5% 11-fold cross validation, 3-gram

we used 11 partitions of 105 dialogues each partition. In the
case of the Dihana corpus, since it presents different features,
partitions are 5 of 180 dialogues each partition4.

The HMM experiments tested different values for the degree
of the DA n-gram (from 2 to 5). The CRF experiments were
performed by using CRF++5 with CRF-L2 algorithm, C = 1,
and η = 5 · 10−3; features were the word and whether it is
final or not; the template file was that given with CRF++ for
the Base-NP task. The sequential approach experiments used
CRF segmentation (same parameters) and SVM tagging (with
libsvm6, cost 1, linear kernel).

To check the statistical significance, 90% confidence inter-
vals were calculated using bootstrapping with 10,000 repeti-
tions for all the experiments [72].

C. Baseline results

The baseline experiments are annotation experiments, i.e.,
the input are whole dialogues. Therefore, the search is per-
formed from the first word in the first turn of the dialogue up to
the last word of the last turn of the dialogue. Turn boundaries
are taken into account since we consider that DA labels do
not span between different turns. No other information on
segmentation is given at the input of the baseline system.

Experiments were performed in the conditions described
in Subsection VI-B. They produced the results presented in
Table III. The sequential approach gives better results in all
cases (except for Dihana Lenient). Examining in detail the
results, this good behaviour is mainly caused by the more
accurate segmentation given by the CRF model used only for
segmentation. Moreover, the SVM model for DA assignment
produces much better results on SwitchBoard because the
lower number of classes (DA labels), which makes easier the
association between word segments and DA label. In Dihana,
where the number of labels is quite higher, improvements is
not so high, although the input vocabulary is more reduced.

Unfortunately, as far as we know, the annotation experiment
has not been performed by other authors in the SwitchBoard
corpus (although many works used other corpora such as ICSI-
MRDA [64], [68], [73], [50], AT&T VoiceTone [74], and

4Partitions available at www.dsic.upv.es/˜cmartine/research/
resources.html

5http://code.google.com/p/crfpp/
6http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

TABLE III
Lenient, Strict, AND SEGDAER SWITCHBOARD AND DIHANA RESULTS

WITH HMM AND DIFFERENT DA n-GRAMS, WITH CRF, AND WITH CRF
SEGMENTATION AND SVM TAGGING. CONFIDENCE INTERVALS LOWER

THAN ±0.2 IN SWITCHBOARD AND THAN ±0.6 IN DIHANA.

HMM / DA n-gram CRF CRF+
2 3 4 5 SVM

SW
B

D Lenient 30.9 31.0 31.2 31.6 38.5 28.9
Strict 79.7 79.5 79.8 80.3 63.7 54.0

SegDAER 60.7 60.5 61.1 62.0 48.9 41.9

D
ih

an
a Lenient 13.2 13.1 13.4 13.7 24.4 13.8

Strict 61.4 61.5 61.7 61.9 25.0 14.6
SegDAER 33.7 34.5 34.6 35.2 26.5 22.2

SpeechDate [17]), and no clear comparison is possible with
previous works in this unsegmented case.

VII. RESULTS IN HUMAN-HUMAN DIALOGUES

In this section we present the experiments directed to evalu-
ate the NGT technique for dialogue annotation and decoupled
turn decoding in human-human dialogues. Although our main
interest is on human-computer dialogues and turn decoding,
the use of human-human dialogues and annotation allows us
to evaluate the performance of the NGT model with respect
to the baseline systems presented in Section VI.

A. Experimental framework

Our experimental framework is that defined in Subsec-
tion VI-B. The complete experiments tested different values
for the degree of the NGT n-gram and the DA n-gram (from
2 to 5). The Output Grammar Scale Factor parameter was
optimised in the cross-validation.

B. Dialogue annotation experiments

In the dialogue annotation experiments, the conditions are
the same that those described for the baseline system (Sub-
section VI-C) in terms of input type and segmentation infor-
mation. Table IV shows the annotation task results. The best
option is using an NGT model of degree 3 (significantly better
than other NGT models), and no significant differences can be
observed for the different DA language models employed.

Results show that SegDAER is a coherent measure with
respect to Lenient and Strict, and that the SegER measure is
coherent with NIST-SU and DSER. Moreover, it confirms that
SegDAER results are not as optimistic as Lenient and not as
pessimistic as Strict, giving a more balanced measure of the
correction effort for annotation.

We can see that half of the annotation decisions are correct
(SegDAER results, 49.2 for NGT 3, DA n-gram 3 and 4),
which is significantly better than the HMM results in Table III,
with an absolute difference of about 15% in Strict and 11%
in SegDAER (Lenient results are worse in a 9%). When com-
paring with the CRF results (Table III), SegDAER differences
are not significant, although CRF Strict and Lenient results
are slightly better.

DAER, NIST-SU, DSER, and SegER results show that the
main source of errors are incorrect labels, which is consonant
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TABLE IV
SWITCHBOARD ANNOTATION RESULTS. FIRST COLUMN REFERS TO THE DEGREE OF THE DA n-GRAM AND SECOND ROW TO THE DEGREE OF THE NGT

MODEL. CONFIDENCE INTERVALS ARE LOWER THAN ±0.3 FOR ALL MEASURES AND EXPERIMENTS.

NIST-SU DSER SegER
DA n-gram 2 3 4 5 2 3 4 5 2 3 4 5

N
G

T
2 23.0 23.0 23.0 23.0 33.3 33.4 33.4 33.4 21.3 21.3 21.3 21.3
3 23.8 23.7 23.7 23.8 33.7 33.6 33.6 33.7 21.8 21.8 21.7 21.8
4 26.0 26.0 26.0 26.1 35.6 35.6 35.6 35.7 23.3 23.3 23.3 23.4
5 28.5 28.7 28.7 28.8 37.9 37.9 38.0 38.1 25.2 25.2 25.3 25.3

Lenient Strict SegDAER DAER
DA n-gram 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

N
G

T

2 41.0 50.6 50.7 50.7 66.2 66.1 66.1 66.1 50.7 50.6 50.7 50.7 47.3 47.2 47.2 47.3
3 39.9 39.5 39.5 39.6 65.9 65.7 65.8 65.9 49.3 49.2 49.2 49.4 45.4 45.2 45.2 45.5
4 41.5 41.0 40.9 41.1 68.6 68.4 68.4 68.5 52.3 52.1 52.1 52.4 47.9 47.6 47.6 47.9
5 42.8 42.3 42.1 42.3 71.3 71.1 71.2 71.2 55.7 55.5 55.5 55.7 50.6 50.4 50.4 50.5

with the difficulty of labelling the corpus even for human users
(as was pointed out in [10]). However, segmentation errors are
higher than those provided by the sequential approach. Apart
from that, since NGT is based mainly on last words of the
segment, it does not has as many informational sources as
the SVM model for determining such ambiguous labels. This
explains why the sequential approach is not improved by NGT.

C. Decoupled turn decoding experiments
In these experiments we used two different versions of the

corpus: with and without punctuation marks. The version with
punctuation marks simulates a typed system or a speech recog-
nition system which can produce perfect transcriptions. The
version without punctuation marks simulates a perfect speech
recognition system that cannot provide punctuation marks (that
can be critical in the obtainment of the appropriate sequence
of DA). The NGT model for the punctuation marks corpus is
the same than for annotation, while in the other version the
model is trained from dialogues without punctuation marks.

Table V shows the results for both versions of the Switch-
Board corpus. The differences between using the dialogue-by-
dialogue approximation (used in annotation) and the turn-by-
turn approximation (used in decoding) with punctuation marks
are not significant (45.2 and 45.5 are the best results in the
two cases, see Tables IV and V). Consequently, the turn-by-
turn approximation can be used in the annotation experiments
with similar results but with lower spatial complexity (since
only one branch per turn is kept after the turn decoding).

However, when punctuation marks are not present, results
degrade dramatically (from 45.5 to 51.4). This is explained
by the nature of the NGT model, where the most important
parameters are the last n words of the segment; therefore,
deletion of punctuation marks (which are very usual at the
end of segments) may have a large impact in the correct
estimation of the NGT model parameters. Thus, we conclude
that the presence of punctuation marks is critical to obtain
better results for this type of dialogues (non-task-oriented,
large vocabulary), and using this model with the direct output
of a speech recogniser can be error prone. Results show that
different DA language models have similar effect, with 3-
grams as the best option for the NGT model (although there
are no significant differences when using other NGT models).

TABLE V
SWITCHBOARD DECODING RESULTS (DAER). CONFIDENCE INTERVALS

ARE IN ALL EXPERIMENTS LOWER THAN ±0.3.

With punctuation marks Without punctuation marks
DA n-gram 2 3 4 5 2 3 4 5

N
G

T

2 48.2 48.1 48.1 48.1 51.4 51.4 51.4 51.4
3 45.7 45.5 45.6 45.7 51.9 51.7 51.7 51.7
4 47.0 46.9 46.9 47.0 52.4 52.4 52.4 52.4
5 49.3 49.2 49.2 49.4 52.9 52.8 52.8 52.9

VIII. RESULTS IN HUMAN-COMPUTER DIALOGUES

In this section we present the experiments directed to
evaluate the NGT technique for a human-computer system.
We present the experimental framework for the Dihana corpus
and the results for annotation and decoding.

A. Experimental framework

Our experimental framework for Dihana used the cross-
validation approach described in Subsection VI-B. The par-
titions were applied in the annotation and decoding processes.

In the case of the decoding processes (decoupled and cou-
pled), the user dialogue turns must suffer a speech recognition
process. Acoustic and language modelling was performed on
the 4 training partitions that correspond to each test partition
(i.e., a set of 5 acoustic and language models were used).
In speech experiments only user turns are taken into account
(since there is no speech signal associated to system turns).

For Dihana speech recognition, feature vectors consists of
12 cepstrum values plus energy, and delta and acceleration
coefficients. Acoustic modelling is performed by HMM with
a three-state, left-to-right without skips topology, that model
contextual units (triphones); a total set of 802 different tri-
phones were employed for each set, with a total number of
19,182 gaussians for all the models for each partition. These
models were trained by using the HTK toolkit [75].

With respect to language models, the inclusion of the dia-
logue context in its estimation and usage helps to obtain better
results. Context refers to the presence of system turns that
can be introduced in the search process to restrict the speech
hypothesis. Additionally, the finite nature of each turn can be
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used to disregard other hypothesis. This context inclusion is
made differently in the decoupled and coupled framework:
• Decoupled: context is included by adding (for each turn)

the previous system turn to the language model history
and forcing the decoding to finish in a proper final word.

• Coupled: since the NGT model is used as language
model, the previous system turn with the corresponding
attached DA labels is added to the current NGT history;
additionally, since each turn must present at least a DA
label, only hypothesis with a word with an attached DA
label are taken into account.

These search restrictions were implemented in the iAtros
speech recogniser7. iAtros [76] is a speech and handwrit-
ten text recogniser based on HMM as acoustic/morphologic
models and n-grams or Finite State models as language
models. iAtros allows, among other features, the definition of
categories and the use of input and output language models
for speech translation.

The recognition of user turns employed n-grams language
models (with n = 2, 3, 4, 5) trained with the SLM toolkit [77],
which included the categories that were defined for the task
(town names, times, etc.). In the cross-validation experiment,
best result was obtained by using a 3-gram, with a Word Error
Rate (WER) of 29.1% (with proper words, not categories).
This recognised corpus was used in the decoupled turn de-
coding experiments using the same process that was applied
to the transcribed corpus (lowercase, categorisation, etc.).

Coupled decoding, apart from the previously described
restrictions, used the iAtros capabilities of using input-output
language models (typically used for speech machine trans-
lation). In this case, the input language model is the NGT
model, were each extended symbol was associated to the
acoustic units corresponding to the actual word, and the output
language model is the DA n-gram.

In the experiments we tested different values for the degree
of the NGT n-gram (in this case, a wider range than in the
SwitchBoard case, since preliminary experiments showed that
optimal error was obtained for NGT models of higher order)
and the DA n-gram (from 2 to 5). The Output Grammar Scale
Factor value was optimised in the cross-validation process.

B. Dialogue annotation experiments

Table VI shows the results for the Dihana corpus. The
best option is using 4-grams for the NGT model and 3-
grams for the DA language model, although differences are
not significant with respect to some other combinations of
NGT and DA n-gram. In this case, using bigrams in the NGT
model or in the DA language model produces poorer results
than using higher order n-grams. This could be caused by the
task-oriented nature of the Dihana corpus, which implies more
regular sequences of words and DA whose span is higher than
two words or DA labels.

We can see the high quality in the annotation of the dialogue
turns, since more than an 80% of the labels are correct
(SegDAER of 17.9, for 4 NGT and 3 DA n-gram). These

7iAtros can be downloaded from www.prhlt.upv.es/page/projects/
multimodal/idoc/iatros.

figures are significantly better than those produced by the
HMM/n-grams, CRF and the sequential annotation models
(SegDAER 33.7, 26.5, and 22.2 respectively, see Table III,
nearly 16%, 9%, and 4% of absolute difference). In this case,
since annotation is applied to whole dialogues, both user and
system turns are included in the evaluation. NGT provides a
segmentation error better than HMM and CRF, and similar to
the sequential approach. However, the lower vocabulary size,
the regular nature of system turns, and the lower ambiguity of
DA labels (due to the task-oriented nature of the corpus, which
makes dialogue context more important), make the baseline
models (even the SVM of the sequential approach, which does
not take into account the context) less accurate than NGT.

DAER and SegER show that, as it happened with Switch-
Board, most of the errors are produced by an incorrect as-
signment of the DA label, while its position is usually correct.
SegER, NIST-SU and DSER show a similar behaviour to that
obtained with SwitchBoard. However, SegDAER seems a bit
optimistic with respect to Lenient and Strict measures, but
relative behaviour is similar for all the measures.

C. Decoupled turn decoding experiments

In these experiments we used three different versions of the
corpora: with and without punctuation marks, and the speech
recognised version. The first and second version have the
same sense that in SwitchBoard (evaluate NGT with perfect
recognition). The speech recognised version corresponds to the
output of a real speech recogniser (iAtros), and uses an NGT
model trained from dialogues without punctuation marks.

Table VII shows the results for the three versions (with
and without punctuation marks, and the speech recognised
version) of the Dihana corpus. In this case, results are only
for user turns, since system turns are not decoded in a
dialogue system (they are produced by the computer, which
consequently knows the meaning). The decoding intercalates
the corresponding transcription of system turns (with punctu-
ation marks) within the different user turns. To compare the
difference with the dialogue-by-dialogue approximation used
in annotation, results on annotation for only user turns are
shown in the first subtable of Table VII.

In this case, the turn-by-turn approximation produces a
significant degradation in DAER with respect to the dialogue-
by-dialogue one (from 34.3 to 39.4). Consequently, we can
expect a lower performance of the model in the turn decoding
task. But in contrast to what happened with the SwitchBoard
corpus, the degradation in this case is associated to the lack
of information of the development of the dialogue in future
turns. This is clear from the comparison between the results
with or without punctuation marks, where differences are not
significant (from 39.4 to 39.1). The high dependence on future
turns could be explained by the more regular nature of DA
sequences in this corpus, since it is a task oriented corpus
where the interactions follow usually the same order (e.g.,
asking for times, clarifying data, asking for fares).

In the case of the speech recognised corpus the degradation
of the results is quite significant (around 12% absolute DAER),
which was expected given that the WER of the speech recog-
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TABLE VI
DIHANA ANNOTATION RESULTS. FIRST COLUMN REFERS TO THE DEGREE OF THE DA n-GRAM AND SECOND ROW TO THE DEGREE OF THE NGT MODEL.

CONFIDENCE INTERVALS ARE LOWER THAN ±0.7 FOR ALL MEASURES AND EXPERIMENTS.

NIST-SU DSER SegER
DA n-gram 2 3 4 5 2 3 4 5 2 3 4 5

N
G

T

2 5.8 5.7 5.8 6.0 10.1 9.8 10.1 10.5 5.8 5.6 5.8 6.0
3 4.4 4.3 4.5 4.6 7.3 7.1 7.5 7.6 4.1 4.0 4.1 4.2
4 4.3 4.2 4.2 4.3 7.1 6.9 6.9 7.0 4.0 3.9 3.9 4.0
5 4.3 4.2 4.3 4.3 7.2 6.9 7.0 7.0 4.0 3.9 3.9 4.0
6 4.4 4.3 4.4 4.5 7.2 7.0 7.1 7.3 4.2 4.1 4.2 4.2
7 4.6 4.4 4.6 4.6 7.5 7.2 7.4 7.6 4.3 4.2 4.3 4.4

Lenient Strict SegDAER DAER
DA n-gram 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

N
G

T

2 26.0 24.1 24.6 25.9 26.9 25.1 25.6 26.9 27.5 26.1 26.6 27.7 27.0 25.6 26.1 27.2
3 20.5 19.1 19.7 20.6 21.5 20.1 20.8 21.6 20.0 18.7 19.4 20.0 19.5 18.2 18.9 19.5
4 19.5 18.2 18.2 19.0 20.6 19.2 19.3 20.0 19.0 17.9 18.1 18.7 18.5 17.3 17.5 18.1
5 20.0 18.2 18.3 19.1 21.0 19.2 19.2 20.1 19.6 18.2 18.4 19.0 19.0 17.6 17.8 18.4
6 19.4 18.4 18.3 19.0 20.4 19.4 19.3 20.0 19.3 18.5 18.8 19.3 18.7 17.9 18.1 18.6
7 19.9 19.3 19.1 19.9 21.0 20.3 20.2 20.9 20.5 19.8 19.9 20.5 19.8 19.0 19.1 19.8

TABLE VII
DIHANA DECOUPLED DECODING RESULTS (DAER). CONFIDENCE INTERVALS ARE LOWER THAT ±1.2 IN ALL EXPERIMENTS.

Annotation user turns With punctuation marks Without punctuation marks Speech recogniser output
DA n-gram 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

N
G

T

2 46.4 45.2 45.8 47.0 54.8 54.7 54.7 55.1 53.0 52.4 52.9 53.7 65.5 65.0 65.2 65.6
3 36.7 35.3 36.4 37.4 40.7 39.9 40.3 40.6 40.4 40.0 40.1 40.3 58.1 57.5 57.6 58.4
4 35.6 34.3 34.6 35.5 40.7 40.1 40.0 40.4 39.8 39.2 39.1 39.9 58.3 57.5 57.6 58.1
5 36.7 35.1 35.4 36.3 40.6 39.5 39.6 40.0 40.1 39.2 39.2 40.0 57.8 57.4 57.4 58.0
6 37.0 36.0 36.5 37.3 40.3 39.4 39.4 39.7 40.0 39.3 39.1 40.1 52.4 51.5 51.7 52.3
7 39.8 38.3 38.5 39.6 41.5 40.6 40.6 41.1 41.3 40.9 40.8 41.7 53.5 52.7 52.9 53.4

TABLE VIII
DIHANA COUPLED DECODING RESULTS (DAER), CONFIDENCE

INTERVALS ARE LOWER THAN ±1.1 IN ALL CASES.

DA n-gram 2 3 4 5

N
G

T

2 62.5 62.4 62.4 62.4
3 57.9 57.8 57.8 57.7
4 55.2 55.2 55.2 55.2
5 54.5 54.4 54.4 54.3
6 54.2 54.1 54.2 54.2
7 54.2 54.2 54.2 54.2
8 53.6 53.5 53.5 53.5
9 53.8 53.7 53.7 53.7

10 54.0 53.9 53.9 53.9

nised corpus is about 29%. In this case, high order NGT n-
grams (6-grams) produce significantly better results. This can
be caused by the higher span of these models, which can cover
more history and therefore be more robust against recognition
errors in the last words of the turn.

In conclusion, for a more usual dialogue system framework
(task-oriented, with a more limited vocabulary), the main
limitation of the NGT technique is given by the noisy input
sequence (produced by the speech recognition engine) and by
the local (turn-by-turn) decoding (since for perfect transcrip-
tions decoding results present a significant degradation with
respect to annotation results).

D. Coupled turn decoding experiments

The coupled turn decoding experiments used the same
cross-validation approach that the decoupled decoding and

employed the same acoustic models. Results on coupled
decoding for Dihana can be seen in Table VIII. Since tendency
of results till NGT of degree 7 showed a reduction of DAER,
complementary experiments with higher order NGT models (8
to 10) were performed and their results were included.

As can be seen, differences between using 4 to 10-grams
in the NGT model are not significant, but lower order models
produce significantly worse results. The use of different DA
n-grams does not produce significant differences. When com-
paring these results with those of the decoupled approximation
(Table VII), best results of coupled approximation are a bit
worse in absolute terms (53.5 in coupled and 51.5 in decou-
pled), although these differences are not statistically significant
(95% confidence intervals are 53.5±1.1 and 51.5±1.1). Thus,
the coupled approximation works as well as the decoupled
approximation, but with the advantage of using less time:
the decoupled approximation uses about 4.1 seconds per turn
for speech decoding and about 0.8 seconds per turn in DA
decoding (in total, about 4.9 seconds per turn), while the
coupled approximation employs about 1.9 seconds per turn
(all times taken in a Intel Core i7 3.4GHz CPU).

IX. CONCLUSIONS AND FUTURE WORK

In this article we presented an extensive description of the
NGT technique and its applications to dialogue annotation and
turn decoding. Results on dialogue annotation show that the
technique is competitive with respect to other more standard
approaches. Besides, in a task-oriented dialogue corpus pro-
duces better results than for non-task-oriented corpora.

Results on turn decoding for reference transcriptions show
that using that approximation could be a valid alternative for
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dialogue annotation. The effect of erasing punctuation marks
does not produces significant degradation in the task-oriented
corpus; therefore, the absence of these marks in the speech
decoding must not affect the quality of the DA decoding.

Finally, the decoupled and coupled DA decoding for real
speech recognition show no significant differences at DAER
level, whereas the decoding time is dramatically lower in
the coupled approach with respect to the decoupled one.
Therefore, we can conclude that the NGT technique is suitable
for performing coupled DA decoding in real dialogue systems,
by applying the NGT search in the speech decoding process.

Future work could be directed to improve the features of
the speech recogniser, since recognition WER is quite high
(29%) and affects severely the final DAER. Results on real
transcriptions show a relative DAER increment of a 30% that is
caused by this high WER, and show that there is still room for
improvement by obtaining better models for speech recogni-
tion. Other parameters for the NGT search could be optimised,
such as beam search. Another possibility is a combination of
models, i.e., using not only NGT but other models such as
HMM, Bernoulli distributions or multimodal distributions in
order to improve the DA annotation and decoding accuracy.
Finally, the implementation of confidence measures on the DA
output (for example, by using word-graph-based confidence
measures usually employed in speech recognition [78]) would
be necessary to eventually give to a dialogue manager more
information on the uncertainty of the user input, thus it can
react properly by using its dialogue strategy.
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