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Abstract

Let A and B be two generalized quadratic matrices with respect to idempotent
matrices P and @, respectively, such that (4 — aP)(A — fP) = 0, AP = PA = A,
(B=7Q)(B—-46Q)=0,BQ =QB=DB, PQ=QP, AB # BA, and (A+ B)(apP —
v0Q) = (afP — v6Q)(A + B) with «, 3,7,6 € C. Let A+ B be diagonalizable. The
relations between the spectrum of the matrix A + B and the spectra of some matrices
produced from A and B are considered. Moreover, some results on the spectrum of the
matrix A+ B are obtained when A + B is not diagonalizable. Finally, some results and
examples illustrating the applications of the results in the work are given.
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1 Introduction and Notations

Let C be the set of all complex numbers and C* = C\{0}. The symbols C,, ., C,,, I, and
0 will denote the set of all n x m complex matrices, the set of all n x n complex matrices,
the identity matrix (of size n), and the zero matrix of suitable size, respectively. The rank
of a A € C,, ,, will be denoted by rk(A). For A € C,,, the spectrum of A will be symbolized
by o(A).

Let P € C, be an idempotent (i.e., P? = P). We say that A € C,, is a generalized
quadratic matriz with respect to P if there exist a, 8 € C such that
(A—aP)(A-p5P)=0, AP = PA = A. (1.1)

The notation £(P;«, 8) will indicate the set of matrices A satisfying (1.1). From (1.1), we
get the equality
A% = (a+ B)A — afP.

Taking P = I, in (1.1), we get that the matrix A is an {«, f}-quadratic matrix. Therefore,
the results which will be obtained in this work are more general than the results provided
in [6].



The set of {«,8}-quadratic matrices has been extensively studied by many authors.
For example, in [10] Wang obtained many results related to sums and products of two
quadratic matrices. Also, the author characterized when a complex matrix 7" is the sum of
an idempotent matrix and a square-zero matrix in [10]. In [11], the problem of characterizing
matrices which can be expressed as a product of finitely many quadratic matrices were
considered by Wang. Wang, considering that every complex n x n matrix T is a product
of four quadratic matrices, showed that if T is invertible, then the number of required
quadratic matrices can be reduced to three in [12]. In [13], Wang characterized the products
of two and four invertible quadratic operators among normal operators and showed that
every invertible operator is the product of six invertible quadratic operators. Aleksiejczyk
and Smoktunowicz studied many properties of quadratic matrices in [1]. Later, Farebrother
and Trenkler, extending the concept of quadratic matrix to generalized quadratic matrix,
examined the Moore-Penrose and group inverse of matrices of that type in [3]. In [2],
Deng gave explicit expressions for the Moore-Penrose inverse, the Drazin inverse, and the
nonsingularity of the difference of two generalized quadratic operators. Also, Deng obtained
spectral characterizations of generalized quadratic operators. In [9], Pazzis considered the
problem of determining when a matrix is the sum of an idempotent and a square-zero matrix
over an arbitrary field, introducing the concept of an (a, b, ¢, d)-quadratic sum.

In [5], the authors discussed the spectra of some matrices depending on two idempotent
matrices. Later, in [6] it was extended those results to a pair of two quadratic matrices.
In this work, we will obtain the generalization of some results given in [6] and give some
additional results related to the subject.

These type of matrices should be of interest not only from the algebraic point of view
but also from the role they play in applied sciences, for example, in the statistical theory:
Let A be a generalized quadratic matrix such that (A — aP)(A — fP) = 0 with a # 8 and
AP = PA = A. Then, there exist two idempotents X,Y € C,, such that A = aX + Y,
X+Y =P,and XY =YX = 0 (Theorem 1.1, [7]). If the matrices X and Y are also real
symmetric, then the matrix A becomes a linear combination of two disjoint real symmetric
idempotent matrices. On the other hand, it is a well known fact that if C' is an n x n
real symmetric matrix and x is an n x 1 real random vector having the multivariate normal
distribution N, (0, I,,), then a necessary and sufficient condition for the quadratic form x'Cx
to be distributed as a chi-square variable is that C? = C. Now, let x be an n x 1 real random
vector mentioned above. Then, the quadratic form x’Ax is a random variable distributed
as a linear combination of two independent chi-square distributions.

2 Results

In this section, first it is given a theorem which examines the spectrum of a sum of generalized
quadratic matrices A and B with AB = BA. Later, it is presented a lemma which helps to
establish a relation between the spectrum of the sum of these matrices and the spectra of
various combinations of these matrices in the case AB # BA.

As is easy to see, one has A € £(P;a,p) if and only if aA € £(P;aq,aB) for any
a € C*. Thus, instead of studying the spectrum of aA + bB when a,b € C* and A and B
are generalized quadratic, we will study the spectrum of A + B.

We shall use the following notation for the sake of simplicity: If I';,T'y C C, then we
denote T'y + T2 = {21 + 22 : 21 € ['1, 29 € ['2}. Note that, in general, ' + T" # 2T".

Theorem 2.1. Let A, B € C,, be two generalized quadratic matrices and o, 3,7, € C such
that A € £(P,a, 8), B € £(Q,~,9). If AB = BA, then o(A+ B) C {0,a,5} + {0,v,d}.

Proof. Since P is an idempotent matrix, there exists a nonsingular matrix S € C,, such



that P = S(I, & 0)S™! with » = rk(P). From AP = PA = A, we get that A can be
written as A = S(X @ 0)S~! where X € C,. Also, we have (X — al,.)(X — 8I,) = 0 since
(A—aP)(A—pBP)=0. From X? — (o + 8)X + aBI, = 0, we have that if A € o(X), then
A2 — (a+ B)A + af = 0, and therefore, A € {a, 3}. From A = S(X @ 0)S~!, we get that
o(A) c {0} Uo(X) C {0,«, 8}. In the same way, we get o(B) C {0,v,0}. Thus, applying
Theorem 2.4.9 of [4] to the matrices A and B, we get the desired result. O

Lemma 2.1. Let A,B,P,Q € C, and «o,3,7,0 € C such that A € £(P;«a,), B €
£(Q;7,9), (apP — v6Q)(A+ B) = (A + B)(aBP —~v0Q), and AB # BA. Let A+ B
be diagonalizable. Then the following statements are true:

(i) There exist a nonsingular S € C,, and Ay, ..., Ax, Bo,..., Bk, Po,..., Py, Qo,...,Qk
such that Ai,Bi,Pi,Qi S G:mw A; € S(Pi;a,ﬁ), B; € E(Qi;’y,é), fori =0,...,k,

A=S((®F 4)® A)S™',  B=S((®%1B:) @ Bo)S ",
P=S(@LP)eR)S™  Q=5((0LQ)®Q)s ™,
AoBy = BoAo, PoyQo = QoPo, A;B; # BiA; fori=1,... k.
(ii) There exist distinct complex numbers py,v1,. .., uk, Vi such that
at+fB4+y+6=pitvi, o(Ai+Bi)={p,vi},

A;B; + B;A; + MiViImi = (’Y + 5)141' + (a + B)Bl + afP; +v0Q);
fori=1,... k.

(ii) If a # B8 and PQ = QP, then there exist nonsingular matrices S; such that

ol,, 0 0 (1., 0 o0
A;=S | o g1, oS!, P=S|0 I, oS
0 0 o0 |0 0 o0
My Mz O (Y, o0 0
Bi=8; |My My 0 |S7', Q=50 Y 0]
0 0 Ms 0 0 Y

where 1k(P;) = x; +y; fori=1,...,k, M11,Y11 € Cy,, Mag, Yoo € Cy,, Mss,Y33 €
Cmi*(zﬂryi)? and

(= B)Mi1 —v0Y11 = (a(B+ v +6) — pivi) Lo,

(B —a) Mg —y0Yas = (B(av + v+ 6) — pivi)1y,,
and
(a0 + B)M3z +v0Y33 = piVilpm, — (2, 44,)-

Proof. First, we prove the parts (i) and (ii) of the lemma:

Since the matrix X = A+ B is diagonalizable, there exists a nonsingular matrix S € C,,
such that

X=S\Il, @ @& \uIp, )51, (2.1)



where the scalars A1, ..., \,, are distinct complex numbers and p; + - - - + p,,, = n. We write
the matrices A, P, and @ as follows:

A o Aim Py o Py
A=S§ : : St P=3S o : S,
Aml Amm Pml Pmm
and _
Quu - Qum
le e Qmm |
with Pj;, Qii, Ais € Cp, for ¢ =1,...,m. From this, we have
MAn 0 Andim [ MAL o MAL
AX =S : : S, XA=S5 : : St
A1A’4m1 et )\mAmm L AmAAml Tt )\mAmm

Since AB # BA, we have AX # X A. So, there exist ig, jo € {1,...,m} such that iy # jo
and /\ioAiojo }é /\joAiojr)' In particular, we have Aiojo 7§ 0.

In view of X = A+ B, A? = (a + 8)A — afP, and B = (y +0)B — v0Q, we get
X2+ (a+B+y+0)A—aBfP = (y+0)X +AX + XA — Q.
Hence, if 4,5 € {1,...,m} and i # j, then
(a+ B+ +0)Ai; — afPy = (i + Aj)Aij — 70Qi; (2.2)

Let us denote W = 8P — 6Q and partition the matrix W as W = S[W;;]7_, S, where
Wi € Cp, fori=1,--- ,m. From (2.1), we get

AWin o AW MWin o MW
WX =258 : . : STt Xw=sS : . : St
If ¢ # j, then WX = XW and \; # A; imply W;; = 0. Thus,
afP;; =~v0Q;; fori# jandi,je{l,...,m}. (2.3)
Considering the equality (2.3) together with (2.2), we get
(O[—i—ﬂ—F"y—i-(S)AU:(AZ—FAJ)AW fori;éjand i,jE{l,...,m}. (24)
Since A;,j, # 0, we have \j; + A\j, = a+ [+ v +6.
By a rearrangement of the indices, we can assume igc = 1 and jo = 2. From this,

we have A1 + Ao = a4+ 8+ v+ 6. Suppose that there exists ¢ € {3,...,m} such that
a+pB+v+d5 =X+ M. So, we get \1 + Ao = A\ + A, that is Ao = \;. But, this is a
contradiction since A\; # A; for i # j. Hence, \i + A, #a+ B+~ +d forany t € {3,...,m}.
From (2.4), we get A;; = 0 for all ¢t € {3,...,m}. And from a symmetric reasoning, we
obtain Ag; =0, A3 =0, and Ay =0 for all ¢ € {3,...,m}. Thus, A can be written as

A Ap

A= 5S4, & A)S™ T, A =
(A ® Ay YT A A

s A € pr Agy € sz, (2.5)




where A; is some square matrix of suitable size. Since A2 = (a+ B)A — afP, if af # 0,

then we get

P11 Pro

P:S(Pl @151)871, P =
Py Py

) PieC,, PneC,,,

where A3 = (a + B)A; — a8 Py, /112 = (a+ B)/L — afP;, and P; is some square matrix
of suitable size. From the idempotency of P, the matrices P, and P, are idempotents. So,
Ay € &Py, 8) and A € &(P1;a, ). If aff = 0, then we take P = I,,. In both cases, the
blocks (1,2) and (2,1) of P are null.

From now on, we denote p1 = A1, v1 = A2, 1 = p1, and s; = po. From (2.1), we have
X =S((ur 1, vils,) @ Ag)S™H, (2.6)

where Az is a diagonal matrix of suitable size. In view of A+ B = X, from (2.5) and (2.6),
we get
B=X-A= S(((ulL«l D Vllsl) — Al) ©® (AQ — Al))Sil.

If we define By = (11, 111, ) — Ay and B; = Ay — Ay, then we have B = S(B1 ®B~1)S_1.
Since B2 = (v +0)B — vQ, if 4§ # 0, then we obtain

Qll Q12

le Q22 ’ Qll S Cplv Q22 S C;Dzv

Q=50Q ®Q1)S™, Q1= l

where B? = (v + §)B; — v6Q; and E12 = (y+6)B; — 40Q,. The matrices Q; and Q;
are idempotents because @ is idempotent. So, By € £(Q1:7,6) and B, € £(Q1;v,6). If
~v0 = 0, then we take @ = I,. In both cases, the blocks (1,2) and (2,1) of @ are null. If
A1By = Elfil, then it is enough to take Ay = Ay and By = B for the proof of the part (i)
of lemma. In addition, in case Ag = Ay and By = El, we have a + 8 +~v+6 = u1 + 11 and
Ay + By = I, ® 1115, and hence o(A; + By) = {1, v1}-

Assume that A; By #+ By A;. Since Al, 31, 161, and Ql satisfy the hypothesis of the
theorem, we can apply the first step of the proof to get A1 = Ay @ Ay, By = By @ Bo,
P, = Py&P,, and Q1 = Q28 Q2, where Ay € £(Ps: v, §), Ay € £(Py; v, 8), By € £(Q2;7,9),
and By € £(Q2:7,9). Now, by an exhaustion process we prove (i), the first and second
relations of (ii).

Now, we shall prove the last equality of (ii). For any i € {1,...,k}, we have A; + B; =

wil., ®vilg,. Hence, denoting m; = r; + s;, we have
(Al + Bi - ,UzImI)(Az + Bi - ViImi) =0.

By doing a little algebra and using the proved equalities of (i) and (ii), we get the last
equality of (ii).

Next, we prove the part (iii) of the lemma. Let us fix ¢ € {1,...,k}. Since P; is an
idempotent, there exists a nonsingular matrix R; € C,,, such that P; = R;(I,, ® 0)R; ",

where r; = rk(P;). Let us write




From A; P, = P;A; = A;, we obtain L =0, M = 0, and N = 0. From (A; —aP;)(A;—8F;) =
0, we get (K — ol,,)(K — BI,,) = 0, and using o # [, we get that the matrix K is
diagonalizable and o(K) C {a, 5}. So, there exist T; € C,, and z;,y; € {0,...,r;} such that
K =Ty(al,, ® BI,,)T; "

Let S; be the nonsingular matrix defined by S; = R;y(T; ® I, —r,) and D = al,, ® BI,,.
It is simple to see that

A;=8;(D®0)S;t and P =Si(I, ®0)S; . (2.7)
We write the matrices B; and @); as

i Y,

B, =5;
Y; Y,

St (2.8)

7 )

My My STt and Q=S
Ms M,

where My,Y; € C,,. From P,Q; = Q;F;, we get Yo = 0 and Y3 = 0. Thus, we have
Qi = Si(Y1 ©Yy)S; .

From (A; + By)(afP; — v0Q;) = (afBP; — v0Q;)(As + By), AiP; = PiA; = A;, and
B;Q; = Q;B; = B;, we arrive at the equality a8(P;B; — B;P;) = v6(Q;A; — A;Q;).
From (2.7) and (2.8), we get

0 M. YiD—-DY; 0
BB; — B;P; = S; St and QiAi—AQi=S| ' Che
—-Ms O 0 0
(2.9)
Now we have four possibilities:
(a) a,B,7,0 #0.
From QB(RB»L - B’LP’L) = 76(Q1A1 - A’LQ’L) and avﬂvp)/a J # 05 we get
My =0, Ms =0, Y1D = DY;. (2.10)
In particular, we have
B; = Sl(Ml D M4)S;1
Now, let us write
My M Y1 Y
M1 = 1 12 s Yi = 1 12 R M117Y11 (S le (211)
My Mas Yo Yoo

In view of the last equality of (2.10) and « # 3, we get Y12 = 0 and Y2; = 0. From now on,
we denote Yy = Y33 and My = Mss.

(b) a8 # 0 and vé = 0.

From a8(P;B; — B;P;) = v6(Q;A; — A;Q;), we get P,B; = B;P; because aff # 0 and
46 = 0. From this, considering (2.9), we arrive at M> = 0 and M3 = 0. So, we have
B, = S;(M; @ M4)Si_1. Since 79 = 0, we can take @ = I,, and hence Q; = I,,, =

Si(Iy, ® Iy, & Imi_(mﬁyi))S;l. In this case, the idempotent matrices Y71, Yoo, and Y33 are

particularly identity matrices of suitable size. So, we get a particular case of the case in (a).

(c) af =0 and vd # 0.



From af(P,B; — B;P;) = v0(Q;A; — A;Q;), we get Q;A; = A;Q; because aff = 0 and
~v8 # 0. Thus, 1D = DY; in view of (2.9). Let the matrix Y] be as in (2.11). In view of
a # B and Y1 D = DY7, we arrive at Y10 = 0, Yo; = 0. Furthermore, since af = 0, we can
take P = I,,, and hence P; = I,,,,, which means that the last summand in the direct sums
occurring in (2.7) are not present. Also, by considering the first equality of (2.9) together
with P; = I,,,, we obtain Ms = 0 and M3 = 0. So, we get a particular case of (a).

(d) a8 =0 and 76 = 0.

In this case, we can take P = @ = I,,, and hence P; = Q; = I,,,. Since af = 0, the last
blocks of A; and P; are absent. In view of Q; = I,,, we can write Y11 = I, and Yoy = I,,.
Also, the blocks Y33 (of ;) and Mss (of B;) are absent. Thus, again we get a particular
case of (a). So, without loss of the generality, from now on, we will consider the case in (a).
Hence, the matrices A;, B;, P;, and Q; can be written as in (iii).

We know from Lemma 2.1 that

aMyy oM O aMy Mz O
AiBi = Si ﬁMgl BM22 0 S;l and BZAl = Sz ale BM22 0 S;l (212)
0 0 0 0 0 0

Also, by the last relation of (ii) of Lemma 2.1, we have
AiB; + BiAi + pivily,, = (’Y +0)A; + (a+ B)B; + afpP, +~v0Q; fori=1,... k.

Considering the last equality, (2.12), and the statements of the matrices A;, P;, B;, and Q;,
we get
(= B)My1 —6Y11 = (af + (v + ) — pvi) I,
(B —a)Maz —y6Yas = (B + (v + 0) B — pivi) Ly,
and
(a+ B)Msz + VY33 = pivily, (2, 4:)-

So, the proof of (iii) is completed. O

Let us observe that the blocks Ay and By in (i) of Lemma 2.1, and therefore, Py and Qg
may be absent.

Now, let us give the following remark in view of Lemma 2.1:

Remark 2.1. At first, by Lemma 2.1 (iii), under the condition a # 3, we have already
P;B; = B;P; and Q;A; = A;Q; with i € {1,...,k} for all a, 5,7, € C. On the other hand;

(i) If afyd # 0 and « # B, the condition (e8P — vdQ)(A+ B) = (A + B)(aBP — viQ)
in Lemma 2.1 is equivalent to the conditions PB = BP and QA = A(Q since in this
case, we get P()BO = B()PO and QOAO = A()Qo.

(ii) If aB # 0 = 76 and aff = 0 # 0, then the same condition is equivalent to the
condition PB = BP and QA = AQ), respectively.

(iii) In the case aff = vd = 0, the condition (aSP — v0Q)(A+ B) = (A+ B)(afP — Q)
already vanishes.

The following corollary is a simple consequence of Theorem 2.1 and Lemma 2.1.



Corollary 2.1. Let P,Q € C, be two idempotents, «,3,v,0 € C, and A € £(P;a, ),
B € £(Q;v,0). Assume that (A + B)(aBP — Q) = (afP — v0Q)(A + B), AB # BA,
and A + B is diagonalizable. If A\ € o(A + B) \ [{0,a, 8} +{0,v,6}], then there exists
w€ o(A+ B) such that \# ppand N\ +p=a+ B+~v+9.

The following theorem provides a tool for proofs of the next theorems.

Theorem 2.2. Let A,B,P,Q € C,, and o, 3,7,6 € C such that A € £(P;«a,3) and B €
£(Q;7,0). If AB = BA, then

(i) o((y+ A+ (a+ B)B + aBP +~vQ — AB — BA) C T'y + T's with Ty = {0,a(y +

(it)

(iii)

6),B(y +6),(+ B)v, (a + B)d,ad + By, ay + B6} and 'y = {0,a8,70,ap + 76} if
PQ=QP,

0(AB — BB —y0PQ) C W1 + ¥y with V1 = {0, =By, =B, —vd, =6 — By, =70 — B6}
and ¥y = {0, a, ad, By, 00} if BP = PB,

o((a = B)B+ BA— AB —~6Q) C T with T' = {0, -4, (a — B)y, — (B — a+ )y, (e —
B)o, —(B — a+7)d}.

Proof. (i) Since P and @ are two commuting idempotents, (and therefore, o(afSP) C

{0, B} and o(vd0P) C {0,~0}), we have
o(afP +~0Q) C Ty (2.13)
by Theorem 2.4.9 of [4]. Also, we get
o((y+0)A+ (a+B)B— AB— BA) C T (2.14)

by Theorem 2.4.9 of [4] because A and B commute, o(A) C {0,a,f}, and o(B) C
{0,~,0}. On the other hand, the matrices afP+v0Q and (v+0)A+(a+5)B—AB—BA
are commuting matrices. So, it is obtained the desired result in view of (2.13), (2.14),
and Theorem 2.4.9 of [4].

Since BP = PB and BQ = QB = B, we get (8B)(v0PQ) = (vdPQ)(8B). Also,
P and @ are commuting idempotents, and therefore PQ is idempotent. So, we have
o(=v0PQ) C {0,—~d}. Again, we have o(—8B) C {0, —8v,—Bd} since B is a gener-
alized quadratic matrix such that (B — vQ)(B — 6Q) = 0. So, by Theorem 2.4.9 of
[4], we obtain

o(=BB —~vdPQ) C U, (2.15)
since (BB)(vdPQ) = (v0PQ)(SB). In view of AB = BA, PB = BP, AP = PA = A,
and BQ = QB = B, we get that AB commutes with —3B — v§PQ. Since o(A) C
{0,«, 8}, 0(B) C {0,v,0}, and AB = BA, we get

o(AB) C V. (2.16)
So, we have from (2.15), (2.16), and Theorem 2.4.9 of [4],
0(AB — B —v6PQ) C ¥y + ¥y (2.17)

since AB and —3B — v6PQ commute.



(iii) Since AB = BA, we get (o« — 8)B — AB + BA — v6Q = (a — )B — ydQ. In view of
o(B) € {0,v,d}, 0(Q) € {0,1}, and BQ = QB, we obtain

o((a—B)B —v3Q) C {0, =76, (a — B)y,v(a =B —06),(a = B)§,6(a =B —7)} =T

by Theorem 2.4.9 of [4].

From the part (ii) of Lemma 2.1, we get the following result.

Theorem 2.3. Let A,B,P,Q € C, and «,83,7,0 € C such that A € £(P;a,), B €
£(Q;7,0), (apP —~v0Q)(A+ B) = (A + B)(afP — v0Q), AB # BA and let A+ B be
diagonalizable.

(i) If € o(A + B)\ [{0,a, B} + {0,7,6}], then

wla+B+y+d—p) €cl(y+9)A+ (a+ B)B+ afP +~iQ — AB — BA|.

(ii) If X € ol(y + 0)A+ (o + B)B + aBP + v5Q — AB — BA\[T'1 + I'y], where Ty =
{0,a(y+6), By +9), (a+ )7, (a+ ), ad + By, ay + 6}, 'y = {0, B, 70, aB + 76},
then the roots of the polynomial 2 — (av+ B+~y+3)x + X are eigenvalues of the matriz

A+ B.

Proof. Let the matrices A, B, P, and @ be as in Lemma 2.1.

Now, take any p € o(A+ B)\ [{0, «, 8} + {0,7,d}]. By Theorem 2.1 and the part (ii) of
Lemma 2.1, there exists i € {1,...,k} such that o(A4; + B;) = {u,a+F+~v+ 06— u}. In
view of the last relation of (ii) of Lemma 2.1, we have

pla+B+y+0—p) € of(y+06)Ai+ (a+ B)B; +aBP; +v6Q; — A;B; — B;Aj]
C o[l(y+0)A+ (a+B)B+ afP +~0Q — AB — BA].

Hence, the proof of (i) is completed.

Next, take any A € o[(y+0)A+ (a+ B)B+afP+~v0Q — AB— BA|\[I'1 +T'5]. So, there
exists ¢ € {1,...,k} such that A € o[(y+9)A; + (a+ ) B; + aBP; +~76Q; — A; B; — B;A;] by
Theorem 2.2 (i). Thus, by the last relation of (ii) of Lemma 2.1, there exist u,v € o(A; + B;)
such that a + 8+~ 4+ 0 = p+ v and A = pv, and therefore, u and v are the roots of the
polynomial 2% — (a+ B+~ + )z + \. In view of 0(A; + B;) C o(A+ B), we have the desired
result in (ii). O

Theorem 2.4. Let A, B,P,Q € C,, and «, 8,7,6 € C such that A € £(P;«a, B) with « # 3,
B e £(Q;7,0), (afP —v0Q)(A+ B) = (A+ B)(afP —v6Q), AB # BA and let A+ B be
diagonalizable.

(i) If X € 0(AB — BB — v0PQ)\[(¥1 + ¥2) U W3] with ¥1 = {0, —Bv, —B0, =70, =76 —
By, =6 — B}, Ua = {0, ay, ad, By, 86}, and W3 = {0, — B, — 3, —vd}, then the roots
of the polynomial 2 — (a+ B+~ +8)x+a(B+~v+6) — X are eigenvalues of the matriz
A+ B.

(ii) If p € o(A+ B)\[{0,a, B} + {0,7,5}], then u? — pu(a+ B+~ +8) +a(B+~v+9) €
0(AB — B — v0PQ).



Proof. Let us write A, B, P, and @ as in Lemma 2.1. By Lemma 2.1 (i), we have
AB—BB—~6PQ = S[(®]_,(A;Bi — BB; —v0P;Q:)) & (Ao Bo — By =70 PoQo)]S ™" (2.18)
From Lemma 2.1 (iii), we get

(o = B)Myi1 —v6Y11  (a— B)Mao 0

A;B; — BB; — v0P,Q; = S; 0 R 0 S7t o (2.19)
0 0 —BMs3s
for alli € {1,...,k} and also, we have
(a — B)Mi11 — Y11 = (Oz(ﬁ + v+ 6) — /J,iVi)Iwi. (2.20)

On the other hand, the matrix Yso is an idempotent matrix and M33 satisfies the equality
(M33 — vY33)(M33 — 6Y33) = 0.
So, we have o(—ydYa2) C {0,—vd} and o(—SMs3) C {0, —5v, —Bd}, and thus,
o(—70Ya2 ® —FMs33) C Us. (2.21)

Observe that we have ByoPy = PyBjy because it does not invalidate the generality to take
a675 75 0. Since AQBO = BQA(), BQPQ = PQBQ, and P()QQ = QQPQ, we get

O'(A()BO — BBy — 76P0Q0) C Uy + Uy (222)

by Theorem 2.2 (ii).

Now, take any A € 0(AB — B —v0PQ)\[(¥1 + ¥2) U Us]. So, by (2.18), (2.19), (2.20),
(2.21), and (2.22), there exists ¢ € {1,...,k} such that A = «(5 + v + 0) — p;v;. Moreover,
from Lemma 2.1 (ii), we get u;,v; € 0(A+ B) and p; + v, = a+ f+ v+ 6. So, p; and v;
are the roots of the polynomial 22 — (a+ B+~ +d8)z +a(B8+v+4) — A

Next, take any pu € o(A+ B)\[{0, «, 8} + {0, ~,d}]. Lemma 2.1 and Theorem 2.1 ensure
that there exists i € {1,...,k} such that g and a+ 3+ v+ 0 — u are eigenvalues of A; + B;.
Let us denote v = a4+ 8+ v+ 6 — p. From (2.19) and (2.20), we get

a(f+y+0) — v € 0(A;iBi — fB; —y0PiQi) C 0(AB — 8B — 70 PQ).
Hence, the proof is completed. O

Theorem 2.5. Let A, B,P,Q € C,, and o, 8,7,6 € C such that A € £(P;«a, 8) with « # 3,
B e £(Q;7,0), (afP —v0Q)(A+ B) = (A+ B)(afSP —vQ), AB # BA and let A+ B be
diagonalizable.

(i) If j € o(A + B\[{0, a, B} + {0,7,8}], then

(i.a) a(B+v+9) —pla+B+~v+0d—pu) € ol(a— B)B+ BA— AB — ~0Q)].

(1.b) —Bla+~v+0) +ula+5+~v+3d—p) € of(e —B)B+ BA— AB — ~Q)] or
—270 — Bla+y+6) +pula+B+~v+06—u) €ol(la — 5)B+ BA— AB — ~0Q)].
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(i) If X € o[(a — B)B + BA — AB — v6Q|\I', where T' = {0, —~0, (o — B)y,—(8 — a +
0)7, (= )4, —(B — o + )3}, then the roots of one of the following polynomials are
eigenvalues of the matric A + B.

(a) 2> —(a+B+v+08)z+a(B+7+68) — A,
(b) 22 —(a+B+v+8)z+ A+ Ba+y+4
(c) 2> —(a+B+v+8z+ A+ Ba+y+4

7

)
) + 2v4.
Proof. Let us write A, B, P, and @ as in Lemma 2.1. By Lemma 2.1 (i), we have that
(e — 8)B — AB+ BA —v4Q
is similar to
[(®F (a - B)B; — AiB; + BiA; —v0Q;) @ ((a« — B)By — AgBo + By Ao — 76Q0)].

From Lemma 2.1 (iii), we arrive at

(o — B)B; — A;B; + B;A; —70Q);

(a— )My —y0Y1y 0 0
=S, 2o — ) Moy (o0 — B) Moy — y6Yao 0 S;12.23)
0 0 (o — B)M35 — vY33

Also, we know from Lemma 2.1 (iii) that (« — f)M11 — v0Y11 = (a(B+ v+ 9) — pivi) L,
and therefore,

Again, from Lemma 2.1(iii), we have (a — ) Mas +7v6Y22 = (—B(av + v+ 6) + pivi) 1y, , and
therefore
(v = B)Mag — y6Yae = —276Ya0 + (=B(a+ v + 0) + pivi) Ly, . (2.25)

Since Yas is an idempotent, we get
o((a = B) Moy — v0Ya2) C {—F(av+ v+ 0) + pivi, =276 — Bla + v +6) + v} (2.26)

by Theorem 2.4.9 of [4] and the equality (2.25). On the other hand, since (Msz3—~Y33)(Ms3—
0Y33) = 0, M33Y33 = YagMas = Msg, and Y33 = Ys3, we get that

o((a=pF)Msz3—76Ys3) C {0, =76, (a=p)7, (a=B)y =790, (a=p)d, (a=p)5—7d} = T'. (2.27)

Observe that in Lemma 2.1 (iii) the blocks M7; and May of B; must be present, since
otherwise, A; B; = B;A;, which is not possible.

Now, take any p € o(A+ B)\[{0,«, 5} +{0,v,d}]. So, by Lemma 2.1 and Theorem 2.1,
there exists 7 € {1,...,k} such that g and o+ S+ v+ 0 — p are eigenvalues of A; + B;. Let
us denote v = a+ S+ v+ § — p. By (2.23) and (2.24), we can write

a(B+y+6)—uv € o((a— B)My1 —v6Y11) Co((a— f)B+ BA — AB — v6Q).
From (2.26), we have

—B(oz +v+ 5) + uv € O'((Oz — /B)MQQ — ’}/5}/22)
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or

=276 — Bla+v+96) + uv € o((a — B)Mag — y0Ya2).
Since o((a — f)Maz — v0Ya2) C o((ov — B)B + BA — AB — ~v0Q), it is completed the proof
of (i).

Next, take any A € o((a— )B — AB+ BA—~v0Q)\I'. So, considering Theorem 2.2 (iii),
from (2.23), (2.24), (2.26), and (2.27), it is seen that there exists i € {1,...,k} such that
A=af+v+0)— piv;or A= —=F(a+v+0)+ piv; or A = =276 — fla+ v+ 0) + pivi,
where p;,v; € 0(A; + B;) satisty a + 8+ v+ § = u; + v;. Observe that we have obtained
three possibilities where the sum and the product of u; and v; are known. Therefore, u;, v;

are the roots of one of the polynomials written in (ii) of the theorem. O

Next results deal with similar results, but deleting the hypothesis of the diagonalizability
of A+ B. We begin with establishing several lemmas.

Notice that 2P = y@Q (when z,y € C and P,Q are idempotents) implies one of the
following situations:

a) x = 0. Thus, y@Q = 0. Hence y =0 or Q = 0.

b) z # 0. Thus, P = 2Q. Therefore, 2Q = P = P? = 22Q? = 22Q.

Now, we have three possibilities:
b.1) z=0; b.2) z=1; b.3) Q = 0.

On the other hand, observe that the matrix () can not be zero, since otherwise, in view of
BQ = QB = B, we get B = 0. From this, we obtain AB = BA, which is a contradiction.
So, the results in this section include the following situations:

(i) A and B are scalar-potent matrices.
(i) A€ £(P;a,B) and B € £(P;~,0) with af = +4.

Lemma 2.2. Let A,B,P,Q € Cy and «,,v,6 € C such that A € £(P;«a,8), B €
£(Q;7,9), aBP = ~6Q, and AB # BA. If A+ B is a Jordan block corresponding to
ANeC, thena+B+~v+§=2\.

Proof. Let us define X = A+ B. From B? = (y + 6)B — 74Q, we have (X — A)? =
(v +6)(X — A) — v5Q. By expanding this equality and using A? = (a + 8)A — aBP and
afP =~v0Q, we get

X2+ (a+B+7+0)A=AX + XA+ (y+0)X. (2.28)
. Al . ar  a»
By hypothesis, we have X = . Let us write A = . We get from (2.28)
az a4
A2 02X
|+ atBryrs| " (2.29)
0 A as as

:[/\al a1+)\a2]+[/\a1+a3 Aag + ay +(7+6)

Aas  as+ Aag Aas Aay

Al
0 x|
Since AX # X A, we have two possibilities: (i) ag # 0 or (ii) a1 # aa.
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(i) By looking at the entry (2,1) of (2.29), one gets (o« + 8+ v+ d)as = 2Xaz. Now ag # 0
leads to a4+ B+ v+ 6 =2\

(ii) By looking at the entries (1,1) and (2,2) of (2.29), one gets A + (o + 8+ + §)a; =
2Xa1 4 az + (Y+ )X and A2+ (a+ B+ + 8)as = 2Xas + az + (y+6)A. By subtracting
these last two equalities, we have (a4 S+~ +0)(a1 —aq) = 2X\(a1 —ay4). From a1 # ay,
we get a+ B+ v+0 =2\

This finishes the proof. O

Lemma 2.3. Let A,B,P,Q € C, and o, 3,7, € C such that A € £(P;«a,3), B €
£(Q;7,0), afP = v6Q, AB # BA, and o # B, v # 6. If A+ B is a Jordan block
corresponding to A € C, then a+ S+ v+ = 2.

Proof. We shall prove this lemma by induction on n > 2. First of all, we must note that
n = 1 is not possible since n = 1 implies that the matrices A and B would be scalars, which
would contradict AB # BA. The case n = 2 was proved in Lemma 2.2.

Assume that n > 2 and the lemma holds for complex (n — 1) x (n — 1) matrices. Let
X = A+ B. Since X is a Jordan block whose size is n corresponding to A € C, we can write

A1 0 0
0lr 1 0
x| %0 (,)(_) _[A “], JeCh . (2.30)
. . . . . . OJ
olo 0 - A1
00 0 - 0 A

Let us remark that J is a Jordan block corresponding to A. Let us write A as follows:

a
A= “ 2 , a] € C, as € Cl,n—17 as € G:n—l,lu Age C,_1. (2.31)

az Ao

The equality (2.28), which can be used, leads to

)\2 Au +uJ ai ag
)
[O 72 +(a+B8+7+9) as A
A
— (v +9) A u n a1 aju+asJ a1 +uaz  Aas + udy (2.32)
0o J Aag azu+ AgJ Jag JAg

We obtain from the “south-west block” of (2.32) the equality («+ 3+ 4+ d)ag = \az + Jas.
Ifag # 0, then a+ S+ + 3 — X € o(J) = {A\}. Therefore, a« + 5+ v+ 0 = 2\

Now, assume az = 0. If a3 # 0, then from A% = (a + 3)A — aBP we can write

P11 P2
0 F

P = ) p1 € (I:v P2 € Cl,nflv PO S Cnfl- (233)

If af = 0, we can take P = I,, and we can also write P as in (2.33). On account of
X = A+ B, (2.30), (2.31), a3 = 0, and B? = (v + §)B — vJQ, we can write

g1 92
0 Qo |’

b by
0 B

B = ;o Q=
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where b1,q1 € C, ba,q2 € C; ,,—1, and By, Qo € C,,—1. Hence Ay, By satisfy all conditions
of the lemma, except maybe AgBy # ByAp.

If AgBy = By Ay, since Ay and By are diagonalizable (because « # 3, v # §), [4, Theorem
1.13.19] allows us to get that Ay + By is diagonalizable; but this is impossible because
J = Ap + By is a Jordan block whose size is greater than 1. Therefore AgBy # ByAp.
Applying the induction hypothesis to Ay and By, we get o+ S+ v+ = 2. O

Lemma 2.4. Let A,B,P,Q € C, and o, 3,7, € C such that A € £(P;«a,3), B €
£(Q;7,0), aBP = v5Q, AB # BA, and o« # B, v # 6. If A+ B is a direct sum of
Jordan blocks corresponding to A € C, then a+ B+ v+ = 2.

Proof. Write X = A+ B and X = J; & --- ® Jp, where each J; € Cy, is a Jordan block
corresponding to A. Write A = [Aij];’szl, where A;; € Ci,. The condition AB # BA is
equivalent to AX # X A. Two possibilities can happen:

(i) Ai; =0foranyi,j € {1,...,m} with i # j. Since A2 = (o + B)A — aP, we get that
P can be written as P, @ --- @ P,,, where P, € Cy, (if o = 0, we can take P = I,,).
By denoting B; = J; — A;; we get B = By @ -+ ® By,. As we did with P, matrix @
can be written as Q1 @ - -+ ® Qu, where @Q; € Cy,. Applying Lemma 2.3 for A; and

B;, we get the conclusion of the lemma.

(ii) There exist 4,5 € {1,...,m} such that ¢ # j and A;; # 0.
We can use (2.28). The block (i, j) of this latter equality gives

(a+B+7+0)Ay = JiAij + AijJj. (2.34)

Since Aj; = [v1--- Vi, ] # 0, let k be the least index such that v # 0. The kth column
of (2.34) allows us to get (a+ B8+ +0)vy = J;vi + Avi. Hence a + 5 +v+d— A €
o(J;) = {A}. Therefore, the conclusion of the lemma is obtained.

Both cases permit to prove the lemma. O

Theorem 2.6. Let A,B,P,Q € C, and «, 8,7, € C such that A € £(P;«a,3), B €
£(Q;7,0), afP =~+6Q, AB # BA, and a # 3, v # 0. If A+ B is not diagonalizable, then
there exist \,u € 0(A+ B) such that a + B+~ +0 = A+ u.

Proof. Let us define X = A+ B and let X = SJS~! be the Jordan canonical form of X.
Here, the matrix S is nonsingular and J = J; @ - -- @ J,p,, where each J; € Cy, is a direct
sum of Jordan blocks corresponding to \; € C for i = 1,...,m. We assume that A,..., A\,
are pairwise distinct. Also, we define K = S~1AS, P = S~1PS, Q = S~1QS, and let us
decompose K = (Ki;){"_1, P= (Pij )i =1, and Q= (Qij)i%=1, where Kji, Pyi, Qi; € Cy, for
i=1,...,m. Observe that AX — XA = A(A+ B)— (A+ B)A = AB— BA # 0. Therefore,
KJ+#JK.

Now, two possibilities can occur: (i) There exist 4,5 € {1,...,m} such that ¢ # j and
K;; #0. (ii) For any i,j € {1,...,m} with ¢ # j one has K;; = 0.

(i) Obviously, the equality (2.28) can be used. By doing so, we get

P r(a++v7+0)K =JK +KJ+ (v+0)J. (2.35)
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By looking at the block (i, 7) of (2.35) one obtains

(a+B+~v+90)Ki; = J; Kij + K;jJ;. (2.36)
Let us write
;1 - 0 0
0 A -~ 0 O
Jj =
0 0 A1
0 0 -+ 0 A

If vy, is the least non-zero column of K; (exists because K;; # 0), then the kth column
of (2.36) leads to (a+B+vy+0)vy = J;vi+A;jVi. Thus a+B+v+0—\; € o(J;) = {\i}.
Therefore o + B+ +0 = Aj + A,

(ii) In this situation, one has K = K13 @& -+ & K. Since KJ # JK there exists
i € {1,...,m} such that K;;J; # J;K;;. Observe that B =X — A = S(J - K)S™},
and thus, Pj; = Q;; = 0 for any 7 # j. By applying Lemma 2.4 to matrices K;; and

J; — K;, one finishes the proof of this case.

Both cases end the proof of the theorem. O

3 Applications and Examples

The purpose of this section is twofold: (i) To provide several examples that serves to show
the wide applicability of the former results, (ii) To show how some scattered results in the
known literature can be obtained from the established results of this paper.

Example 1: Corollary 2.1 can help someone to solve complex problems. For example,
let us permit to point the next one: Let

1 -9 6 L [2 =16 10 R
P=7l-1 12| A=2|0 —6 6|, B=g|1 -10 7
-1 -3 6 1 -17 14 2 —19 13

We can check P? = P, (A —2P)(A—-3P) = 0, AP = PA = A, (B—- P)? =0, and
BP = PB = B. The problem to solve is “find all complex numbers z such that A + zB is
idempotent”.

Since B € £(P;1,1), then zB € £(P; z,z). Since A + 2B is idempotent, then A 4 zB is
diagonalizable and o(A + zB) C {0,1}. Observe that all conditions of Corollary 2.1 hold.
By Corollary 2.1, if 1 ¢ {0,2,3} + {0, 2z}, then 1+0 =243+ z+ 2. But {0,2,3} 4+ {0,2} =
{0,2,3,2,24 2,3+ z}. Hence we have only four possible cases to consider: 1 =z, 1 =2+ z,
1=3+ 2z, and 1 =5+ 2z. With these values of z, it is enough to check whether A + 2B is
idempotent by a simple numerical computation.

Observe that if we substitute, for example, the condition (A + 2B)? = A + 2B by
(A + 2B)% = a + 2B, the exposed procedure, although a bit longer, permits finding such
values of z, whereas the “brute force” procedure is unfeasible to perform.

Example 2: Let A € £(P;a,b) and B € £(P;¢,d) with a,b, ¢,d € C*. Also, the complex
numbers z, y, z are given. We want to study the spectrum of M = ztA+yB+2P— AB— BA.
First, we will find «, 3,7, d such that

x=v+9, ¢/d=7~/8, y=a+p, a/b=a/f witha+b#0+# c+d. (3.1)
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Hence, we have
M = (y+08)A+ (a+p)B+zP— AB — BA.

On the other hand, the solution of (3.1) is

= 0= .
a+b a—i—b’/y c+d’ c+d

_ay . by cx dx

Let
N=M-zP+ (af+~v0)P=(y+0)A+ (a+p)B+ (af +~))P — AB — BA.

We have MP = PM = M (because AP = PA = A and BP = PB = B). We can write
P = S(I, #0)S™'. From MP = PM = M, we can deduce that M = S(X & 0)S?!
and N = S(X + (a8 + 6 — 2)I. © 0)S™1. Hence we can make an easy relation between
(M) and o(N). But we can study o(N) via Theorem 2.3 because A € £(P;a,b) implies
GL_H)A € £(P; aaLer, baLer) = £(P;a, 8). Similarly, B € £(P;~,0). Hence, by finding the
eigenvalues of GL_H)A + oF3 B, we can find the eigenvalues of M for arbitrary z € C.

Now, let us give two more examples which illustrate the situations (i) and (ii) in Remark
2.1 and satisfy the conditions of Corollary 2.1 and Theorems 2.3, 2.4, 2.5.

Example 3:
0 0 00 000 0
0 -1 -3 1 01 1 -1
a=L f=-L A=14 o 1o P=loo0o1 ol
0 0 10 001 0
and
0 0 -1 1 10 —-1/2 1/2
0 -2 0 0 0 1 1 -1
y=-3, 0=-2 B=|, o 3 ol @@=, ¢ 10
0 0 -1 -2 0 0 1 0
Example 4:
00 0 0 1 =10 0
00 0 0 0 0 0 0
a=0 f=-1L A=15 5 o | P=l 3 4 2 9|
5 —6 —2 1 -6 7 2 -1
9 2 I -2 4 -4 -1 1
-6 6 2 -2 3 -3 -1 1
y==3 0==2 B=1 o g 4 o |0 @7 3 4 2
9 —-12 -3 0 -3 4 1 0

Notice that we have aff # 0, 70 # 0, PB = BP, and QA = AQ in Example 3. On
the other hand, observe that af = 0 # ~6, PB # BP, and QA = AQ in Example 4. So,
Example 3 and Example 4 explains the situation in the part (i) and (ii) of Remark 2.1,
respectively.

Lemma 2.1 permits to deal with many situations when A and B satisfy the hypotheses
of this lemma. Some of these situations are the following.

Theorem 3.1. Let A,B,P,Q € C, and «,83,7,8 € C such that A € £(P;a,), B €
£(@57,0), (aBP —16Q)(A+ B) = (A+ B)(aBP — 70Q), and AB # BA.
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(i) If A+ B is an idempotent matriz, then « + 5 +~v+ 3§ = 1.
(ii) If A+ B is an involutive matriz (i.e., (A+ B)?> =1,), then a + 3+~ + 6 = 0.
(iii) If A+ B is a tripotent matriz (i.e., (A+ B)3 = A+ B), then a+8+~v+4d € {0,—1,1}.

Proof. (i) Since A 4+ B is idempotent, this matrix is diagonalizable and o(A + B) C {0, 1}.
Let us write the matrices A and B as in Lemma 2.1. Since AB # BA, we get k > 1.
Thus, there exist u,v € o(A4; + By) such that p # v and p+v = o+ + v+ . From
(A1 + B1) C o(A+ B), we get {u,v} ={0,1}. Hence a + 8+~ +0 = 1.

(ii) Since A + B is involutive, this matrix is diagonalizable and (A + B) C {—1,1}. The

proof follows as in the previous item.

(iii) Since A+ B is tripotent, this matrix is diagonalizable and o(A+ B) C {0, —1,1}. Let us
write matrices A and B as in Lemma 2.1. Since AB # BA, we get k > 1. Thus, there exist
w,v € 0(A1 + By) such that p # v and p+v =a++~vy+0. From 0(4; +B1) C o(A+ B),
we have three possibilities {u, v} = {0,1} or {u,v} = {0, -1}, or {u, v} = {—1,1}. Hence
a+B8+~v+0de{l,—1,0}. O

Theorem 3.2. Let A,B,P,Q € C, and «,83,7,0 € C such that A € £(P;a,), B €
(i) (A+B)? = A+B <= a+B+y+d =1, AB+BA—aBP—~Q = (a+B)B+(v+0)A.
(ii)) (A+B)? =1, < a+B+7y+6=0, AB+BA—aBP—~v6Q =1, (a+[)(A-B).

(iii) (A + B)® = A+ B <= The matrices A, B, P, and Q satisfy one of the following

conditions:

(a) a+B+v+8=0and (1 - (a+B)*)(A+ B) =
—290QA — 2a8BP — affA — 0B — (a + B)afP — (v + 0)véQ + ABA + BAB.

(b) a+B+~v+6=1and (1—(a+B)?+aBf)A+ (1 —(y+8)?+~6)B =
AB+ BA+ —279QA — 2a8BP — (a+ B)apP — (v + §)v6Q + ABA + BAB.

(c)a+B+~v+6=-1and (1—(a+B)2+aB)A+(1—(y+6)?+~0)B =
—2v0QA — 2a3BP — AB — BA — (a + B)aBP — (v + 6)v0Q + ABA + BAB.

Proof. (i) By expanding (A + B)? = A + B, we have

(A+B?*=A+B & A*+B*+AB+BA=A+B
S (a+p)A—aBP+(y+0)B—~Q+AB+BA=A+B

If we employ the condition oo + 5 4+ v+ 6 = 1, then we get

(a+pB)A—aBP+ (y+6)B—-~vQ+ AB+BA=A+B
<= AB+ BA—aBP —~v6Q = (a+ B)B + (v + ) A.

So, the proof of (i) is complete.
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(ii) Since (A + B)? = I,,, we can write
(A+B?*=1,& A*+B*+AB+BA=1,
< (a+PB)A—afP+ (y+0)B—~vQ+ AB+ BA=1,
From this, if we insert the condition a + 8 + v+ § = 0, then we get that the equality
(a+B)A—afP+(y+6)B—~vQ+AB+BA=1,
holds if and only if the equality
AB + BA — affiP —~v6Q = I, — (a + 8)(A — B)
holds. So, it is obtained the desired result in (ii).
(iii) The equality (A + B)®> = A + B can be written as
A+ B® + ABA+ BAB + AB® + BA* + B’A+ A’B = A+ B.

If we insert A% = (a+ B)A — affP, B? = (v + §)B — 76Q, then this last equality turns to

(a+ B+~ +0)(AB + BA) — aB(BP + PB + A) — v6(QA + AQ + B) (3.2)
—(a+ B)aBP — (y+8)y0Q + ABA+ BAB = (1 — (a+ B)>)A+ (1 — (v +0)?)B.

fa+8+v+d=0,a+8+v+0=1,and a+ B+ v+ d = —1, respectively, the equality
(3.2) is equivalent to the equalities

(1-(a+B)*)(A+B) =
—aB(BP + PB+ A) — v6(QA+ AQ + B) — (a + B)aSP — (v + 6)70Q + ABA + BAB,

AB + BA — aB(PB + BP) — v6(QA + AQ) — (o + B)aP
—(y+0)v9Q + ABA+BAB = (1—(a+B)? +aB)A+ (1 — (y+0)?> ++6)B,

and

—aB(PB+ BP) — y6(QA + AQ) — AB — BA — (a + B)afP
—(y+0)v0Q + ABA+ BAB =(1—(a+B)2+aB)A+ (1 —(y+9)*++0)B.

Also, from the hypothesis of theorem, we have a3(PB— BP) = v6(QA— AQ), and therefore
—afB(PB + BP) —v6(QA + AQ) = —270QA — 2aBP. So, the proof is completed. O

In [8], Sarduvan and Ozdemir proved that for ¢;,¢; € C* and idempotent matrices
T1,T5 € C,,, under the assumption 7175 # T5T;, the matrix ¢;7y + coT5 is involutive if
1+ co =0 and C%I" + T + 15Ty =Ty + Ts.

1

Note that this result can be obtained from Theorem 3.2 (ii) by taking A = 1Ty, B =
Ty, a=c,=0,7vy=c, d =0, and P = Q = I,,. Observe that it is also true the
converse of this result.

Again in [8], Sarduvan and Ozdemir established that for ¢;,c; € C* and involutive
matrices Ri, R € C,,, under the condition R1Rs # RoR;, the matrix ci Ry + coRs is

2 2
involutive if Ry Ry + RyRy = =t

C1C2
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Observe that this result is trivially obtained from Theorem 3.2 (ii) by taking A = ¢; Ry,
B=cRy,a=c, f=—c,7=co, d = —co, and P = Q = [,,. Also, it is seen that it is
also true the converse of this result.

Example 5: In Theorem 2.6, the eigenvalues A and x4 may be equal. As an example of
the applicability of this theorem, we shall study the following situation. Let X,Y € C,, be
two noncommuting idempotents. We want to find all nonzero complex numbers a, b such
that aX + bY is nilpotent (i.e., there exists k € N such that (aX + bY)* = 0). If we define
A=aX,B=bW,P=Q=1,,a=a, 5 =0,v=0>,and 6 = 0, then all conditions of
Theorem 2.6 are satisfied. Furthermore, since 0(A+ B) = {0} ( because A+ B is nilpotent),
we have that a + b = 0. Hence aX + bY is nilpotent if and only if a + b =0 and X — Y is
nilpotent.
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