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Abstract

In this paper we propose the use of a random network model for simulating and
understanding the epidemics of influenza A(H1N1). The proposed model is used
to simulate the transmission process of influenza A(H1N1) in a community region
of Venezuela using distributed computing in order to accomplish many realizations
of the underlying random process. These large scale epidemic simulations have re-
cently become an important application of high-performance computing. The net-
work model proposed performs better than the traditional epidemic model based
on ordinary differential equations since it adjusts better to the irregularity of the
real world data. In addition, the network model allows the consideration of many
possibilities regarding the spread of influenza at the population level. The results
presented here show how well the SEIR model fits the data for the AH1N1 time
series despite the irregularity of the data and returns parameter values that are
in good agreement with the medical data regarding AH1N1 influenza virus. This
versatile network model approach may be applied to the simulation of the transmis-
sion dynamics of several epidemics in human networks. In addition, the simulation
can provide useful information for the understanding, prediction and control of the
transmission of influenza A(H1N1) epidemics.
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1 Introduction

The pandemic virus AH1N1/09 is a flu virus of swine origin that was first
identified in humans in April 2009 in Mexico and the United States [1]. The
virus soon spread to the rest of the world and on June 11th, 2009, the WHO
declared novel influenza A(H1N1) a pandemic [1]. The transmission of the
virus AH1N1 occurs through effective contacts with an infectious individual.

Typical interventions include quarantine, isolation, travel restrictions, closing
of public places, fear-based self quarantine and cancellation of events [1]. These
interventions have economic costs to individuals and society related to lost
work, increased school absenteeism and decreased business revenues [1,2,3,4,5].
It is important to mention that the entire vaccine production process takes at
least six months to complete. However a pandemic influenza A(H1N1) vaccine
became available in the U.S. in October 2009 [2].

Since there are more than 14,000 confirmed deaths worldwide caused by the
AH1N1/09 virus, it is important to understand the dynamics of the AH1N1/09
virus. Every year approximately 36,000 people die from seasonal influenza
or flu-related causes only in the U.S. [2]. Some models including the SEIR
(Susceptible-Exposed-Infected-Recovered) model have been presented to study
the dynamics of H1N1 influenza virus spread in different regions around the
world [6,7,3,8,9]. The influenza virus has a latency (eclipse) stage and that
is the main reason to choose the SEIR model over the SIR one [10,11]. It is
important to remark that while some parameters of the SEIR model can be
determined based on previous knowledge, other parameters must be estimated
by fitting the model to the available data. Thus, fitting epidemiological mod-
els to real data becomes a central problem for the field of infectious disease
epidemiology [12].

The study of contact networks, and more generally of social networks, is of
growing importance in a diverse group of disciplines [13]. Simulating networks
has the disadvantage of being computationally intensive: an epidemic in a pop-
ulation of just a few hundred thousand nodes can take hours of computation
to obtain average results over a range of model parameters. However, that is a
once-off cost of doing away with the assumption of a fully-mixed population,
and the range of possibilities it provide makes it a necessary trade-off [14].

Usually, in the ODE models, all the factors involved in the transmission are
embedded into the non linear model parameters. In the network models a dis-
ease spread structure is postulated and the transmission parameters can be
interpreted as the probability of a successful contact among all the possible
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contacts. In the random networks, in each step each individual (node) is stud-
ied and may be monitored over time in order to know its particular evolution.
Additionally, in ODEs, seasonality is usually forced introducing a term involv-
ing a cosine, whereas, as has been shown in [15], constant parameters located
in a certain range simulate naturally the seasonal disease behavior.

In general stochastic epidemic models are to be preferred over deterministic
when their analysis is possible. In first place, a natural way to describe the
spread of a disease is stochastic; one defines the probability of disease trans-
mission between two individuals rather than rather than stating certainly
whether or not the transmission will occur. On the other hand, deterministic
epidemic models rely on the law of large numbers. Moreover, when considering
extinction this can only be analysed with stochastic models [16].

To the best of our knowledge very few antecedents of mathematical mod-
els based on networks have been used to study the dynamics of some real
world epidemics with infected populations. Some interesting previous work is:
a hierarchical network model for the epidemic of A/H1N1 virus spreading in
Romania [17], a network model to study the RSV spread in the population of
the Spanish region of Valencia [15,18], a scale-free network modeling dengue in
Singapore [19], a complete graph network modeling the social obesity epidemic
[20], a social network to investigate the 2007 outbreak of equine influenza in
Australia [21], a network study of a measles outbreak in Hagelloch, Germany,
in 1861 consisting of 188 affected individuals [22] and a network model that de-
scribes the empirical data of the 2000/2001 cholera epidemic which took place
in the Kwa Zulu-Natal Province, South Africa [23]. In [24] authors developed
an interesting agent-based model, in which each individual is explicitly rep-
resented and vector populations are linked to precipitation estimates. They
implemented the model on both scale-free and regular networks.

It is important to remark that the classical SEIR epidemic model does not
reflect the irregularity (random fluctuations) of the AH1N1 real data regard-
ing infected population. In addition, the deterministic model describes the
epidemic using mean values without considering the population variance or
that the population has discrete values [25,26,24]. However, the SEIR model
can also be used with contact networks and the data simulation results are
non-smooth due the underlying discrete structure of the network model. The
simulation results using network models may be very different than the coun-
terpart deterministic model [15,25,26].

Social networks have been constructed using real data and used to study some
health issues [20,27]. For instance, the monitoring of individual activities and
construction of the network has been attempted for the city of Portland [28].
The spread of several infectious diseases is determined by random encounters
among people who live in the same geographical area: meeting at the bus
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stops, crossing the streets, gathering at shopping centers, etc. The transmission
of the AH1N1 virus is possible through effective contacts with an infectious
individual. In this research we consider that the random network model is the
most appropriate to the modeling of the transmission of the AH1N1 virus.

In order to obtain the simulation results for the network SEIR model in the
shortest time a client-server application was developed to coordinate many
computers in the calculation of the epidemic propagation. Results were stored
in the server for later processing. We have obtained more than one million
tests for different combinations of the average number of contacts, k, and the
transmission rate β. It is important to remark that k and β are constants
to be determined by fitting the model to the real data of AH1N1 from the
Venezuelan Nueva Esparta state during the year 2009.

In this work, we develop a network model to reproduce the dynamics of AH1N1
virus in the Venezuelan state of Nueva Esparta (mainly one island). To do
that, we consider a SEIR model using a network framework to explain the
pandemic dynamics. It should be mentioned that Nueva Esparta is a relatively
large state with a low population density where continuous SEIR models did
not succeed in explaining some AH1N1 real data dynamics [29,30]. Once the
model is formulated, we use the Particle Swarm Optimization (PSO) algorithm
in a distributed computing environment to determine the unknown model
parameters that best fit to the reported data of Nueva Esparta with regard to
infected individuals by AH1N1. The PSO algorithm was inspired by the social
behavior of biological organisms, specifically the ability of groups of some
species of animals to work as a whole in locating desirable positions in a given
area, e.g. birds flocking to a food source [31,32]. Generally in the PSO method,
particles move through the search space using a combination of an attraction
to the best solution that they individually have found, and an attraction to the
best solution that any particle in their neighborhood has found [31,32]. Thus,
the PSO allows to search the optimum of a nonlinear problem. In this work
the PSO is used in the fitting process in order to find the optimum values of
the parameters β and the scale factor s that minimize the mean square error
(MSE) between the real reported infected cases and the predicted infected
cases of the network model. We select PSO as the optimization method since
we consider that is suitable when the results that must be optimized depends
on several parameters and depends on random processes. Nevertheless, several
other optimization methods can be used but this topic is out of the scope of
this study.

Similar works has been developed previously. For instance, in [33] authors
study the pandemic (H1N1) 2009 influenza in two states of Australia using
as a tool a SEIR stochastic model in order to reflect the variability of the
outbreak. Additionally, in [34] authors estimated reproduction numbers using
a stochastic approach and computer-generated data.
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2 Methods

The reported cases of pandemic AH1N1 influenza represent those who tested
positive to influenza AH1N1 virus using laboratory testing and the data is
reported by weeks. The data was originally collected from state health in-
stitutions where individuals presenting acute symptoms were assisted. The
reported dates correspond to when the samples were taken. The influenza
AH1N1 tests were performed using specimens from nasal swabs or aspirates
and real-time reverse transcription polymerase chain reaction (RT-PCR) or
viral culture. The reported positive cases of pandemic AH1N1 influenza in
Venezuelan Nueva Esparta state are depicted graphically in Figure 1. The
highest number of positive reported cases was in the 34th week of 2009. The
data was provided by the National Health Department of Venezuela. First row
corresponds to week number of year 2009. It is important to remark that the
number of infectious by AH1N1/09 detected in each week is because these
people went to see a doctor and were reported. Data about deaths are not
available.

0 5 10 15 20 25 30
0

5

10

15

Time (Weeks)

In
fe

ct
ed

 P
op

ul
at

io
n 

I(t
)

Real RSV Data (Nueva Esparta state (Venezuela))

Figure 1. Graph of the data of reported positive cases of pandemic AH1N1 influenza
in Venezuelan Nueva Esparta state.

Here we introduce the proposed SEIR network model considering births and
deaths. The SEIR epidemiological model considers that the whole population
N(t), is divided into four subpopulations: S(t) susceptible, E(t) exposed peo-
ple incubating the virus, infectious I(t) and recovered subpopulation R(t).
In addition, we consider that newborn children become susceptible at rate µ
(birth rate) and individuals leave the system at rate d (death rate). Disease-
related deaths are disregarded since they are much smaller than natural deaths
and are not a main driving factor on the dynamics. In particular, a US study
estimated a death rate of 4 deaths per 100 000 population during April 2009–
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April 2010 [35]. An individual in S(t) flows to E(t) because people in I(t)
transmit AH1N1 by effective contacts at rate β. Finally we consider that once
an individual is recovered, he acquires permanent immunity [2]. In this model
the infected individuals recover at rate ρ, where 1/ρ is the average time to
recover from AH1N1 influenza. In addition, exposed individuals become in-
fectious at rate ω, where 1/ω is the average time to become infectious. The
model diagram is depicted in Figure 2.

Figure 2. Flow diagram of the SEIR mathematical model for AH1N1 transmission
dynamics.

Using the above description, we build a random network model to describe
the evolution dynamics of the spread of AH1N1.

First, we build the network. Let us take N = 450138 the number of network
nodes as the population of Nueva Esparta. Let k the average number of links
of a node, also called degree of a node. k is unknown and not necessarily an
integer, but its value may determine the speed of the disease spread. Therefore,
the network hasN×k/2 links, ties or undirected edges to be assigned randomly
as follows:

(1) For i = 1 to N × k/2.
(a) Take randomly two different values between 1 and N , say i1 and i2.
(b) If the link (i1, i2) exists, repeat the step (a). Else, include (i1, i2) in

the link list.

Using the above algorithm, as shown in [15], the node degrees follow a Poisson
distribution. Also, note that different runs of the above algorithm produce
different networks with average node degree k.

Now, we establish the initial condition of the network respect to the disease.
The initial conditions regarding the topology of the network and the number of
infected can affect the dynamics of the epidemic [36]. Since initial conditions
are not known, we use different values for the initial infected and exposed
individuals in order to generate with the network model a dynamics as close
as possible to the real data. In this way, all the N nodes will be labelled as
susceptible except a random number between 0 and 99 labelled as exposed
and a random number between 1 and 99 labeled as infectious. It is important
to remark that in all the initial scenarios the total population N is the same.
The initial time is taken as the Monday of the 24th week of 2009.

It is time to define the model evolution rules. The evolution will be carried

6
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out daily. Let µ and d be the birth and death rates in Nueva Esparta. The
unknown model parameters we are going to use as model input are:

• k, average nodes degree,
• β, disease transmission rate,
• ω, inverse average time an exposed becomes infectious,
• ρ, inverse average time an infectious becomes recovered.

The incubation period for pandemic AH1N1 virus has been reported to be 2-10
days with a mean of 6 days [1]. Therefore, the mean time in the exposed class
E(t) has been assumed such that ω = 1

6
days−1. The infectious period has been

reported between four and seven days with ρ = 1

7
days−1 [37,38]. However,

in young children and in immunocompromised or severely ill patients, the
infectious period might be longer [39].

In the following, rnd() denotes a function that returns a random number
between 0 and 1.

Thus, the network evolves as follows (take into account that N changes over
time):

• For every day from the Monday of the 24th week of 2009 until the Sunday
of the 50th week, with daily jumps:
· If there are no exposed or infectious, the simulation finishes, because no-
body can be infected.
· New births. Nµ/365 is the average daily births. For each node and each
day, calculate the first value of h such that

rnd() <
h∑

i=0

e−kki/i!,

(follows a Poisson distribution), where h is the number of links of the
newborn. Then, take randomly h different values between 1 and N and
build the new links.
· Deaths. Nd/365 is the average daily deaths. For each node and each day,
calculate the first value of h such that

rnd() <
h∑

i=0

e−kki/i!,

(follows a Poisson distribution), being h is the number of links of the node.
Then, take randomly h different values between 1 and N and remove the
nodes and their links.
· For every node

7
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If the node is infectious and h is the number of days it is infected, if

rnd() <
h+1∑
i=0

e−ρρi/i!,

(follows a Poisson distribution), the node becomes recovered and it
and its links are removed from the system.
If the node is exposed and h is the number of days it is exposed, if

rnd() <
h+1∑
i=0

e−ωωi/i!,

(follows a Poisson distribution), the node becomes infectious.
If the node is susceptible, for every infectious node linked with it, if
rnd() < β, the node becomes exposed.

3 Results

This section is devoted to the presentation of the simulations and fitting results
of the SEIR random network model in order to explain in a more suitable
way the irregularity of the time series real data regarding the AH1N1 virus.
In addition, results for the classical SEIR model are presented in order to
compare with the SEIR random network model.

3.1 Random network model fitting

Here, it is presented the simulation and fitting results of the SEIR random
network model in order to explain in a more suitable way the irregularity of
the time series real data regarding the AH1N1 virus. Once the procedure to
simulate the transmission dynamics of AH1N1 in Nueva Esparta has been
implemented, we are able to find out the model parameters in order to fit
the model with the reported data of infected cases depicted in Figure 1. Sim-
ulations are performed using the Monte Carlo method, assuming constant
population and connections.

It is important to remark that the differences between time points regarding
real data of AH1N1 infected population in Nueva Esparta state is small and
the classical SEIR epidemic model is not able to reproduce this dynamic. For
instance in [15] the authors used a network model to simulate a epidemic of
RSV with a larger infected population. In this way using a network model to
reproduce this profile is a challenging problem and our results are scalable to
larger populations.

8
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To do this, as a first approach, we carried out around 480.000 Monte Carlo
simulations taking µ = d = 17.16 per thousand (we consider birth and death
rates equal because the short time, 25 weeks, simulated), 0.001 < β < 1,
1 < k < 50, 4 < ω−1 < 8, 5 < ρ−1 < 9, 1 initial infectious and 0, 1, 2, 3, 4 or
5 exposed. With this first approach we try to reduce the range of parameters
to find the best fitting.

To carry out the 480.000 simulations in a reasonable time, we tackle the prob-
lem by using a computational system following the paradigm of distributed
computing that allows us to estimate the parameters in the random network
epidemic model. This paradigm consists of a client/server structure where the
server delivers tasks to be carried out by client computers, and when the task
is finished, the client sends the obtained results to the server to be stored until
all tasks are finished and ready to be analyzed. In our case, every task consists
of a network model simulation with a set of parameters and the results are
persons in each disease state at any time. Among all the simulations carried
out, all the estimated parameters that make the best fitting are,

• k = 13,
• β = 0.014163,
• ω = 1

5
,

• ρ = 1

7
,

• 1 exposed,
• 1 infectious,
• scale, s = 1,

with mean square error equal to 1.567. It should be mentioned that the fitting
process gives optimum results with connectivity degrees around k = 13. This
fitting, not being poor, nevertheless has some drawbacks, such as that the
highest peak is not reached and that there is a second lower peak not repre-
sented in the numerical simulation of the network model. Thus, a better fitting
is needed. It is important to remark, that in this case the network model was
not able to reproduced the second peak since we restricted the mean exposed
and recovery days just to integer values. However, in order to improve the
network fit, we realized that exposed and recovery days may be real numbers
since from a clinical point of view is correct to state that for instance exposed
days are 3.5 (84 hours). In fact this assumption is assumed implicitly in the
classical SEIR model since the transition between exposed and infected classes
are assumed to follow an exponential continuous probability distribution.

It is important to remark, that in the network model the number of exposed
and infected people, are represented by relatively small integer values, which
makes the model sensitive to the initial conditions due to the disease extinction
outcome. However, this is a tradeoff that needs to be paid in order to have a
more realistic stochastic model [16].

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

In order to improve the fit and reproduce the second peak, we use the Parti-
cle Swarm Optimization algorithm, but in a more restricted parameter space
based on the previous fitting process [31]. In addition, as has been mentioned
above we include now noninteger parameter values for k, ρ and ω and, we
have opened the range for the initially infectious between 1 and 100 and for
the initially exposed between 0 and 100 in order to be able to reach a better
fitting. For this second approach, the best fitting, obtained using again the
computing distributed system, is given by the estimated parameters

• k = 21.5,
• β = 0.00849,
• ω = 1

5.9
,

• ρ = 1

6.665
,

• 3 exposed,
• 1 infectious,
• the scale s = 0.965,

with mean square error equal to 1.446. Notice that the fitting has been im-
proved and include now noninteger parameter values for the optimum solution.
In Figure 3 is presented graphically one fitting of the random network model
to the time-series data of confirmed cases of pandemic AH1N1/09 influenza
from the Venezuelan Nueva Esparta state. The simulation results of the SEIR
random network model generate irregular time series that approach the real
data. It is important to notice how good the fitting process is despite the irreg-
ularity of the data and the stochastic process underlying the proposed SEIR
network model. The best fitted random networks have values around ω = 1

5

and ρ = 1

7
, which are in good agreement with the medical data regarding

AH1N1 influenza virus [1,37,38].

It should be mentioned that the fitting process gives optimum results with
connectivity degrees around k = 21.5. This fact reflects that the connectivity
of the network is important and should be included in a realistic epidemiolog-
ical model. On the other hand, it should be mentioned that β also plays an
important role of the spread of the disease, but its variation is less than the
connectivity since depends mainly on the virus infectivity and environments
conditions. For instance, in high density cities or regions, the connectivity k
would be greater than in Nueva Esparta state, and disease spread would be
faster [28,20].

3.2 Model fitting using the classical SEIR epidemiological model

In this section we perform a data fitting using the classical SEIR epidemi-
ological model based on differential equations in order to compare with the

10
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Figure 3. Model fitting for the Venezuelan Nueva Esparta state with the Particle
Swarm Optimization algorithm of the SEIR random network model for the infected
population. Real RSV data (line) and network SEIR model (dash line). The param-
eter values are k = 21.5, β=0.00849, ω = 1

5.9
, ρ = 1

6.665
, 3 exposed and 1 infectious

as initial condition and a scale value of s = 0.965.

network model fitting. The parameter values of the classical SEIR model based
on differential equations need to be set. Since the epidemiology of pandemic
AH1N1 virus is not accurately known or is not the same for each individ-
ual, the parameter values were chosen based on the best available data. It is
important to remark that each one of the parameters ω, and ρ, can be inter-
preted as the mean of the inverse length of the transit period between two
sub-populations. Therefore the above numerical values computed for each pa-
rameter should be considered as average length of transition periods between
two sub-populations and should not be regarded as a fixed time after which
each individual crosses to a new sub-population. For instance with a fixed
valued for the incubation period ω, implicitly it is assumed different incuba-
tion periods varying between [0,∞]. This is one of the main disadvantages of
the classical continuous models. Moreover, in the real world the incubation
period varies depending on several variables including the immune system of
each individual. Thus, it has been argued that network models can be more
realistic since includes these variations due to different factors. However, ana-
lytic analysis is more complex in comparison with the classical epidemiological
models. Additionally, since we use the SEIR model for a relatively short time
period we assume a constant population size. The population-scaled SEIR
model (without loss of generality) is given by:

Ṡ(t) =µ− dS(t)− βS(t)I(t),

Ė(t) =βS(t)I(t)− (d+ ω)E(t),

İ(t) =ωE(t)− (d+ ρ)I(t), (1)

Ṙ(t) =ρI(t)− dR(t).

11
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The time-series data of confirmed cases of pandemic AH1N1 influenza do not
correspond exactly to subpopulation I(t), since only a fraction s (scale factor
to be determined) of people who felt sick and decided to go to the doctor
who reported the case. Additionally, some infected individuals do not show
complete symptoms. In this way the parameters to be estimated by a fitting
process to real data are the influenza AH1N1 transmissibility β and the scale
factor s.

The initial conditions in t0, S(t0), E(t0), I(t0) and R(t0) are unknown. We
assume that only a small fraction (1/1000) of the population is infected in
order to simulate the initial stage of the influenza epidemic and we set the
initial conditions S(t0) = 1− 0.001, I(t0) = 0.001, E(t0) = 0 and R(t0) = 0.

Thus, the fitting process is performed to estimate β and the scale factor s by
least squares method and using Nelder-Mead algorithm. In order to compute
the best fitting, we implemented the function

F : R
2
−→ R

(β, s) −→ F (β, s)

where β and s are variables such that:

(1) For a given (β, s), solve numerically the system of differential equations
(1) and obtain a solution Ŷi(t) = (Ŝi(t), Êi(t), Îi(t), R̂i(t)) which is an
approximation of the real world solution Y (t).

(2) Set t0 = 23 (fitting process starts at week 23) and for t = 24, 25, . . . , 51,
corresponding to weeks where data is available, evaluate the computed
numerical solution for subpopulation I(t); i.e. Î(24), Î(25), Î(26),. . .,
Î(51).

(3) Compute the root mean square of the difference between sÎ(24), sÎ(25),
sÎ(26),. . ., sÎ(51) and infectious data. This function F returns the root
mean square value(RMS) which is given by:

RMS=
√
(sÎ(23)− I(23))2 + (sÎ(24)− I(24))2 + . . .+ (sÎ(51)− I(51))2.

(4) Find a global minimum for the root mean square value(RMS)using Nelder-
Mead algorithm.

Function F takes values in R
2 (β and s) and returns a positive real number,

the root mean square that measures the closeness of the scaled infectious
population, provided by the model, to time-series data. Hence, we can try to
minimize this function using the Nelder-Mead algorithm [40,41], that does not
involve the computation of any derivative or gradient, impossible to know for
function F. In order to find a global minimum, we take 500 initial different
points for Nelder-Mead algorithm in the domain [0, 10]× [0, 10000] ⊂ R

2. We
stored all the minima obtained and, among them, the values of β and s that
minimize the function F. In other words the Nelder-Mead algorithm return the

12
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best value of β and s such gives the minimum of the root mean square value
(RMS). For similar details regarding the fitting procedure for the classical
SEIR model see [42]. It is important to mention that the beta of the SEIR
model is not the same as the β of the network one. It is important to remark
that there is correlation between SEIR’s β and k [43,20].

In Figure 4 the fitting of the classical SEIR model, based on differential equa-
tions is presented. The data is the time-series data of confirmed cases of pan-
demic AH1N1/09 influenza from the Venezuelan Nueva Esparta state. The
mean square error (mse) for this fitting is equal to 5.32476. In this particu-
lar case one gets a scale factor s = 0.000102 using the total population scale
N instead of the normalized population represented in the model (1). Since
s=0.96 the network model does not need a scale factor to predict the infected
cases. However, the classical SEIR model needs the scale factor to predict to
real infected cases.

As it can be seen in Figure 4 the numerical simulation of the classical SEIR
model generates a smoothness time series that differs from the real data.
Additionally, the model does not allow the infected population to totally die
off. In Figure 5 it can be observed the fitting of the network and SEIR classical
models in order to make a graphic comparison among them. Notice that the
network model has a second peak of infected cases, but with the SEIR model
it is not possible to obtain that second peak.
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Figure 4. Model fitting for the Venezuelan Nueva Esparta state with the classical
SEIR model. The influenza AH1N1 transmissibility β = 6.21 and the scale factor
s = 0.000102.

4 Discussion and conclusions

In this paper it is proposed the use of a SEIR random network model approach
for simulating and understanding some epidemics of influenza A(H1N1). The

13
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Figure 5. Model fitting for the Venezuelan Nueva Esparta state with the network
and classical SEIR models. Real RSV data (line), network (dot-dashed) and classical
SEIR model (points).

proposed model is used to simulate the transmission process of influenza
A(H1N1) in a state of Venezuela using distributed computing in order to
accomplish many realizations of the underlying random process.

The network model proposed here performs better than the traditional epi-
demic model based on ordinary differential equations since it reflects the ir-
regularity of the real data and gives a better fit to the real data of reported
infected cases. In addition, it is well known that more heterogeneity may be
added to the network models in order to reproduce real world cases. The net-
work model allows the consideration of many possibilities regarding the spread
of the influenza at the population level. Furthermore, we show with these re-
sults the naturally observed strict extinction of the epidemic, which are not
obtained with the SEIR classical differential equation model. In the network
model more mean values for the transition periods were included in order to
show more possible scenarios. On the other hand, using different mean values
for the transition periods for the SEIR model the results were not significant
different and we keep some standard values from the literature.

The fitting process of the SEIR network model to the AH1N1 infected popu-
lation time series data provides parameter values that are in good agreement
with the medical data regarding AH1N1 influenza virus. The fitting process
returns a network connectivity degree around k = 21.5 for Venezuelan Nueva
Esparta region. However, in high density cities or regions, the connectivity k
would be greater than in Nueva Esparta state, and disease spread would be
faster [28,20]. The algorithm used here for the network model can be modified
in several ways and variations of our algorithm have been used in other work
related to network models [15,26,44].
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This versatile network model approach may be applied to the simulation of
the transmission dynamics of several epidemics in human networks. In ad-
dition, the simulation can provide useful information for the understanding,
prediction and control of the transmission of influenza A(H1N1) epidemics.
For instance, if we would like to study the effect of a vaccination program
it is possible to add to the network a new node class where the nodes can
not transit to the infected class. Moreover, the network model can also be
modified to include some health policies such as antiviral treatment which
may be included by simply modifying the infectious period. In regard to fu-
ture work and as has been suggested by other authors, models that include
detailed information of the human contact network may be introduced in the
model. This detailed information is not easy to collect but some interesting
work has taken a first approach [21,28]. In addition, for influenza A(H1N1)
infected population time series data from years 2010 it is necessary to include
vaccinated population due to the fact that influenza A(H1N1) vaccine pro-
grams have been implemented in the studied regions. It can be mentioned
that the models are a simplification of the complex real world where there are
many variables that affect the dynamics of influenza, such as, school periods,
weather or social events, but since real data regarding these factors are not
available and in order to have a manageable model with reliable results it is
necessary to disregard some of these factors.

The computational cost of network simulation is higher than the classical SEIR
model. However, it is possible to obtain more reachable epidemic scenarios
than with the classical SEIR epidemiological model. In this way, the network
model could predict a higher number of infected cases and this may affect
the plans and budget of health institutions. In some countries or regions this
fact could be a very important health issue. Therefore, we think that network
modeling decision would depend on the particular health authorities and how
much risks they desire to take with regard to medicines, beds in hospitals,
personal and all the variables involved in attending a epidemic.

We think that further research using complex networks is going to continue
growing and more challenges are going to be faced in the future. However, an
increasing amount of computing resources are needed in order to deal with
this type of models. Several characteristics can be added to each node in
order to represent the variability among individuals. Following these ideas
more data need to be collected and also data mining techniques must be
used for large data sets. This direction of research has been applied in several
areas of bioscience, bioinformatics and bioengineering. Thus, we think that
the proposed methodology or similar is going to be extended and be more
useful in the near future.
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