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Multivariate Multinomial T2 Control Chart using Fuzzy Approach 

Quality of a product is often measured through various quality characteristics 

generally correlated. Multivariate control charts are a response to the need for 

quality control in such situations. If quality characteristics are qualitative, it 

sometimes happens that the product quality is defined by linguistic variables – 

where quality levels are represented by some specific words- and product units 

are classified into several linguistic forms categories, depending on the degree of 

fulfillment of expectations, creating a situation of fuzzy classifications. This 

paper first reviews the concepts found in the literature on the development of 

fuzzy multivariate control charts. We propose a method to control these fuzzy 

quality evaluations, with correlated multiple attributes quality characteristics, 

through the use of a Hotelling T2 control chart 

Keywords: Multinomial Processes, Fuzzy Theory, Hotelling T2 

1. Introduction 

Product Quality is often measured through various quality characteristics generally 

correlated. In such cases, multivariate control procedures, considering the correlation 

structure between them, is appropriate. Lot of work has been done to monitor 

multivariate quality characteristics whose value is defined in terms of a numerical value 

measured over a range, usually identified as variables in quality control language, but 

comparatively few papers deal with controlling multivariate attributes processes.  

Lu et al. (1998) proposed a control chart for multivariate attribute processes in 

which the quality status of a product unit is classified as conforming or nonconforming, 

this approach deals only with binomial quality features however, in many cases, binary 

classification may not be appropriate. In fact, for many products quality does not change 

abruptly from perfect to worthless, so there is a need for intermediate assessments for 

quality characteristics such as appearance, smoothness and color, which cannot be 

expressed numerically (Taleb, Limam and Hirota 2006). To complement binary 



classification, several intermediate levels can be expressed in linguistic terms. For 

example, a quality characteristic of a product can be classified in terms: "perfect", 

"good", "average", "poor" or "bad" depending on their ability to meet specifications, 

then, the significance of these terms is determined by fuzzy sets that associate a 

membership function to each of them. 

 A research paper incorporating uncertainty into decision analysis is basically 

done through the probability theory and/or the fuzzy set theory (Gülbay and Kahraman 

2007). The first one represents the stochastic nature of decision analysis while the 

second captures the subjectivity of human behavior. A rational approach toward 

decision-making should take human subjectivity into account, rather than employing 

only objective probability measures. The fuzzy set theory is a perfect means for 

modeling uncertainty (or imprecision) arising from mental phenomena which is neither 

random nor stochastic. When human subjectivity plays an important role in measuring 

the quality characteristics, classical control charts may not be applicable, since they 

require precise information.  

The use of fuzzy control charts becomes inevitable when statistical data 

considered are vague or affected by uncertainty, or information available is incomplete 

or includes human subjectivity.  

In this paper, we have integrated the concepts employed in the development of 

Hotelling T2 multivariate control chart and fuzzy control charts and we propose a 

method to design a Fuzzy Control Chart for correlated multi-attribute quality 

characteristics in order to simplify procedures and improving statistical modeling to 

avoid excessive dependence on simulation processes. 



2. Multivariate Fuzzy Control Charts 

Control charts for multivariate quality variables such as Hotelling T2(Hotelling 

1947), MCUSUM (Crosier, 1988) and MEWMA (Lowry 1992) have been extensively 

studied in the literature. Moreover, there is increased effectiveness of techniques to 

identify the cause of an out-of-control signal (Mason et al, 1997; Runger et al, 1996; 

Aparisi et al, 2006, etc.).  

The application of multivariate control charts for multinomial attributes 

processes depends on the sampling procedure used (Taleb and Limam, 2004, 2005).  

In the case where the items are classified successively with respect to all quality 

characteristics, i.e., sample´s items are classified by each quality characteristic 

separately Taleb, Limam and Hirota (2006) have suggested two approaches for the 

construction of process control charts for multivariate attribute when data are presented 

in a linguistic form. They developed two monitoring statistics 2
fT and W2 based on 

fuzzy and probability theories. The first one 2
fT  is similar to T2 Hotteling statistics and 

is based on representative value of fuzzy sets.  The W2 statistics distribution, being a 

linear combination of dependent chi-square variables, it is obtained by Satterthwaite 

approximation. If each item is controlled simultaneously with respect to all the quality 

characteristics, then Taleb (2009) proposes two methods for the construction of control 

charts for monitoring multivariate process based on multi-dimensional linguistic data. 

The first is based on probability theory and the second on the fuzzy theory. These 

graphs suffer from a lack of formalization and high dependence on simulation/bootstrap 

processes, which makes such an essential topic in control charts as is the very definition 

of the control limits is performed by simulation. 

When product quality characteristics are evaluated by a panel of experts who 

rate them according to a ranking, Kumar and Mohapatra (2012) integrate the concepts 



presented by other researchers (e.g. in 2005 Chen  proposed a new approach to the 

development of fuzzy control charts by association of fuzzy numbers with scores of 

experts on quality characteristics) and develop a method for the  modeling of fuzzy 

control charts to monitor a product with multiple features (attributes) that are correlated 

and measured by experts, on a linguistic scale (subjectively). The overall quality of the 

sample is calculated by adding interactive weighted fuzzy values assigned to each 

quality characteristic. Control charts are drawn using possibility and necessity 

measures, following the definition in Prade (1982).  

3. Proposed Methodology 

For this paper we assume that the items are classified successively with respect to all 

quality characteristics. 

3.1 Modelling and nomenclature 

Suppose that p correlated attribute quality characteristics pQ,,Q,Q ...21 are controlled 

jointly. Each p,=j,Qj 1,2,...  is a linguistic variable that describe the quality of a product 

unit through a set of linguistic terms jkq , ,s,,=k j...1,2 where js  is the number of 

categories of the set of terms of the quality characteristic jQ . Each jkq  term is associated 

with a fuzzy subset jkF  described by a membership function  xμ jk  which associates to 

each x value of the standardized variable basis (in fuzzy terms), a number in the interval 

[0, 1]. This number represents the degree to which the x value belongs to the fuzzy subset

jkF . There are several methods of preparation and selection of membership functions 

essentially based on statistical data (Civilnar and Trussell 1986).  

It is possible to perform arithmetic operations on linguistic variables represented as fuzzy 

sets by applying the definitions and fuzzy mathematics techniques that have been 



developed extensively (Raz and Wang 1990). These require that the membership function 

is normal (there is at least one value of x whose degree of membership is equal to 1) and 

convex. For an introduction to fuzzy arithmetic, see Kaufmann and Gupta (1985). 

Throughout the rest of this document all membership functions associated to the linguistic 

terms are assumed normal, convex and standardized in the range [0, 1], where 0 represents 

the best possible quality, and 1 represents the worst quality, so as to ensure compliance 

with those conditions will be used triangular membership functions and therefore each 

category qjk of the quality characteristics will be represented by a triangular fuzzy number. 

  jkjkjkjk c,b,a=F   (1) 

Thus its corresponding  xμ jk  membership functions would be defined as:  
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A sample Ai of n observations can then be represented by the set 

                 
pipsppsip1p1ijsijkij1i1si11i n,F,,n,F;;n,F,,n,F,,n,F;;n,F,,n,F=A ..................

jjjsjkj1111s11  

where ijkn  is the number of observations of the quality characteristic jQ of the sample Ai 

classified by the linguistic variable jkq and  it holds that  

p.,=j,n,=n
js

=k
ijk 1,...

1
  



Each quality characteristic jQ measured in a sample iA  is a multinomial variable with

js  categories such that    ijQ ~  n,p,p,,pM
jijsijkij1 ......    

where 

  
n

n
=p ijk

ijk  (3) 

Using fuzzy arithmetic, it is possible to combine the fuzzy subsets of each 

attribute. Kaufmann and Gupta (1985) showed that the multiplication of a triangular 

fuzzy number (TFN) T and a real number k is a  TFN, and adding two TFNs T and S is 

a TFN too, so is therefore a linear combination of  TFNs obtains a TFN. For example, if 

T and S are respectively represented by triples  321 t,t,t and  321 s,s,s then a linear 

combination C=k1T+k2S will be represented by the triplet 

 .323122211211 sk+tk,sk+tk,sk+tk  

Therefore by assuming that jkF  fuzzy variables corresponding to the k 

categories of the jth characteristic are TFNs obtained by equation (1) then, a linear 

combination can represent the quality characteristic jQ of the sample i  by a single fuzzy 

number provided by  

 













 jk

js

=k
ijkjk

js

=k
ijkjk

js

=k
ijkjk

js

=k
ijkij cn,bn,an

n
=Fn

n
=F

1111

11
  (4) 

it will also be a TFN and can be written as 

 ijijijij c,b,a=F  

The sample can then be expressed as  



 ipi1i F,,F=A ...  

In the literature, fuzzy control charts have been developed by converting the 

fuzzy sets associated with linguistic variables in scalars called representative values 

(Wang and Raz 1990). This conversion facilitates the layout of the observations in the 

graph and can be done in several ways, but the most popular methods are four, which 

are similar to the measures of central tendency used in descriptive statistics: the fuzzy 

mode, the levelα   fuzzy midrange, the fuzzy median and the fuzzy average. However 

there is no theoretical backup for choosing one transformation method (Taleb et al. 

2006). The choice between them should be based primarily on ease of calculation or 

user preference (Gülbay and Kahraman 2007).  

The defuzzification method used to derive the representative value in this 

document is the fuzzy average avgf based on Zadeh (1965), defined by  

  
 

 


1

0

1

0:

dxxμ

dxxxμ

=FxAv=f

F

F

avg   (5) 

Considering triangular membership function  xμij  corresponding to ijF , similar 

to that calculated in equation (2), and replaced in equation (5), the representative value 

ijR  for  characteristic jQ  of the sample iA would be obtained by  
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replacing in equation (6) the corresponding values of ijijij cyba , calculated by 

equation (4) yields  
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If we call jkvr to the value given by  

 
3

jkjkjk
jk

c+b+a
=vr  

As we can see, it would be the representative value corresponding to the 

membership function of the category k of the quality characteristic j which is obtained 

using the method of fuzzy average defuzzification. Replacing it in (7), we have  
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This final expression, allows moving from a multinomial variable for each 

quality characteristic jQ  to a numeric value. As we can see the representative value to 

use is a linear combination of the ijkn  corresponding to the categories jkq of jQ . 

Then the sample Ai of n observations would now be represented by the vector 

   '... ipi2i1i R,,R,R=R   (9) 

where ijR  approximates a normal distribution (according to the theory of large 

numbers) whose mean is obtained by  
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but from equation (3) .
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and its variance is calculated by  
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The process for obtaining the covariance matrix is very complex, so it requires 

to be estimated. The estimator to use is discussed in the next section. The set of 

representative values of the p quality characteristics are represented by the 1p  

dimension vector Ri given in equation (9). 

Like Taleb, Liman and Hirota (2006), the test statistic to be represented in the 

control chart for each sample is  

    Ri
1

RRi μRΣμR  '=Ti
2  (10) 

where   pμ,,μ= ...1Rμ  is the in-control mean vector for each quality characteristic and 

ΣR is its covariance matrix.  

3.2. Parameter Estimation µR and ΣR  



Since iR  has a p-dimensional multivariate normal distribution with mean vector Rμ  

and covariance matrix RΣ  whose calculation is very complex, these parameters will be 

estimated by R  and S respectively from the data matrix R shown in equation (15). 

Montgomery (2008) distinguish two phases in the construction and use of T2 Phase I 

corresponds to a pre-control step oriented to obtain initial control limits, while phase II 

is the monitoring of the process. 

According to Chou, Mason and Young (2001), in Phase I, if mR,RR ,...21,  represent a 

historical data set (HDS) of m observations with sample mean vector R  and sample 

covariance matrix S, 2T  statistic value for iR are obtained by  

     m,,=i;'=Ti ...1,22 RRSRR i
1

i    (11) 

these values can be represented in a 2T control chart with UCL calculated by  
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where  αb;a,B  is the  thα1  quantile of a Beta distribution  ba,B  

Given a HDS of size m, and a single future observation Y in Phase II, the statistical 

value  

    RYRY  12 S'=Ti  (13) 

is represented in a 2T control chart with  
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where  αp;mp,F   is the  thα1  quantile of a Fisher distribution  pmp,F   

Parameters Rμ  and RΣ  must then be estimated by R  and S from the analysis of 

the preliminary HDS consisting of samples of size n, taken when the process is in-

control.  

Let´s suppose that m of such samples are available. The m data samples are 

stored in the table 1. Representative values for the p quality characteristics of the m 

samples can be expressed as  
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whose column jR (j=1,2,...,p) can be obtained from  

Table 1. Data table for preliminary analysis. 

 Q1  ... Q j ... Q p  

q11  ... q1s1  ... q j1 q j2 ... q jk ... q js j ... q p1  ... q ps p
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... n1j1
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where jkvr  are the representative values of fuzzy subsets jkF corresponding to the js

categories of the quality characteristic jQ . 

The mean vector Rμ  will be estimated by  pRR,R= ,...,..., j1R  

where 
m

=i
ijj R

m
=R

1

1
and ijR is the representative value of the fuzzy subset associated 

with the jth quality characteristic of the ith sample, as mentioned above.  

A significant issue in the case of individual observations is estimating the 

covariance matrix Σ (Montgomery 2008). Sullivan and Woodall (1996) provide an 

excellent discussion and analysis of this problem, and compare several estimators. They 

showed a more efficient graph that estimates the covariance matrix of the difference 

vector between successive observations, as suggested by Holmes and Mergen (1993), 

under the assumption that successive observations tend to have the same, or nearly the 

same mean vector, which is a more robust estimation of the in-control covariance 

matrix for individual observations. 

Holmes and Mergen (1993) call this estimator mean square successive 

difference (MSSD). Under this approach, the estimator of the variance is obtained by  
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and the estimator of covariance between the representative values of the quality 

characteristics jQ  and hQ  will be  
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The covariance matrix of the sample S is then expressed by  
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3.3. Interpreting out-of-control signal 

One difficulty encountered with any multivariate control chart is the practical 

interpretation of out-of-control signals. To do this, we will use the procedure proposed 

by Montgomery (2009) for the diagnosis of an out-of-control signal that is to break the 

2T  statistic into components that reflect the contribution of each individual variable. If 

2T  is the current value of the statistic, and  
2
iT  is the statistical value of all process 

variables except the ith, Runger, Alt and Montgomery (1996b) showed that  

  
22
ii TT=d 

  (17) 

is an indicator of the relative contribution of the ith variable to the global statistic. When 

an out-of-control signal is generated, it is recommended to calculate the values of 

 p,,=idi ...1,2  and focus on the one of the variables for which the id values are 

relatively large.  



4. Numerical Examples  

4.1. Frozen food example 

To show the application of proposed graphic, we use the example provided in the paper 

by Taleb, Liman and Hirota (2006) of a food processing industry in which three quality 

characteristics are   joint measure: appearance (Q1), colour (Q2), and flavor (Q3), which 

sets linguistic terms are calculated by:  

     poormedium,good,=q,q,q=QT 1312111  

     rejected,acceptablestandard,=q,q,q=QT 2322212  

     poormedium,good,perfect,=q,q,q,q=QT 343332313  

Membership functions associated with these three term sets are shown in 

Figure1. The membership functions can be represented by their corresponding fuzzy 

triangular numbers: 

 0,0,0.2511 =F   50,0.25,0.712 =F   0.25,1,113 =F  

 0,0,0.521 =F   0,0.5,0.7522 =F   0.5,1,123 =F  

 0,0,0.2531 =F  50,0.25,0.732 =F  10.25,0.75,33 =F  0.75,1,134 =F  

The data from the process of food are shown in columns 2 to 11 of Table 2. 

4.1.1 Process analysis Phase I 

From these data representative values and corresponding T2 statistic values are 

calculated for each sample and are summarized in the columns 12 to 15 of Table 2. The 

inverse of the covariance matrix S for the 20 samples is obtained using equation (16) 

and is: 
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Figure2. Sets of membership functions 

The upper control limit for Phase I, for a type I 0.05=α  error is obtained by:  
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Table 2 data from the process of food (taken from Taleb, Limam, and Hirota 2006), representative values 

of samples i and statistic 

T2.  

i q11  
 

q12  
 

q13  
 

q21  
 

 q22  
 

q23  
 

q31  
 

q32  
 

q33  
 

q34  
 

1 210 7 3 206  9 5 167 48 3 2 

2 211 6 3 207  8 5 176 42 2 0 

3 206 9 5 202  12 6 163 55 2 0 

1.0

0.25 0.5 0.75 1.0

Standard

1.0

Acceptable Rejected

Color

1.0

0.25 0.5 0.75 1.0

Good

1.0

Medium Poor

Perfect

Taste

1.0

0.25 0.5 0.75 1.0

Good
1.0

Medium Poor

Appearance



4 211 5 4 207  8 5 163 51 5 1 

5 203 16 1 194  18 8 175 45 0 0 

6 210 6 4 206  9 5 174 44 1 1 

7 208 7 5 204  9 7 174 40 5 1 

8 207 7 6 204  9 7 169 46 3 2 

9 206 7 7 202  9 9 169 48 2 1 

10 186 25 9 200  12 8 169 48 3 0 

11 196 13 11 196  13 11 163 46 10 1 

12 203 12 5 200  13 7 167 44 9 0 

13 203 9 8 198  11 11 174 42 3 1 

14 202 9 9 198  11 11 174 40 6 0 

15 209 6 5 207  9 4 172 42 5 1 

16 210 3 7 205  5 1 172 44 4 0 

17 205 11 4 201  13 6 172 45 2 1 

18 210 6 4 206  8 6 169 48 2 1 

19 206 13 4 203  13 4 172 46 0 2 

20 206 12 2 202  14 4 169 46 5 0 

 

The control chart obtained is shown in figure 4(b), three possible assignable 

causes are identified and eliminated, and then, the parameters are calculated again. 

4.1.2 Analysis of the process, Phase II 

After clearing the samples considered out-of-control due to assignable causes, we obtain 

the parameters R  and 1S  that will be used in Phase II to calculate the statistic 2T  for 

additional samples. The new inverse of the covariance matrix 1S  and sample mean 

estimator R are respectively:  

.

24350.1011579.3510041.03-

11579.35124035.97148759.62-

100416.03-62.14875945.238033




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







 
 =1S  8,0.1470.107,0.19=R  

The upper control limit for this phase is obtained by: 
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Additional data are shown in the columns 2 to 11 of the table 3. From these 

additional data, representative values and corresponding T2 statistic values are 

calculated for each sample and summarized in columns 12 to 15 of the Table 3. Then 

we have the corresponding control chart for Phase II shown in Figure 5(b).  

4.1.3 Interpretation of the out-of- control signal  

The figure shows that the process is out-of-control when the samples 21, 22, 23 and 25 

are taken. To determine which variables are responsible for each of the three cases, the 

corresponding id   are calculated and shown in Table 4. 

From table 6 we see that the more contributor variable to the to the out-of-control 

signal detected when samples 21 and 22 was taken, is the QC 1Q (appearance), since in 

both cases is the variable with the highest value di. While in the case of the sample 23 the 

largest contributor is the QC 2Q (colour) and to the sample 25 is the 3Q (flavor)  

4.2. Porcelain process example 

In this example we have used the data in the paper by Taleb (2009) of a 

porcelain processing industry in which three quality characteristics are   joint measure: 

appearance (Q1), translucence (Q2), and Whiteness (Q3), which sets linguistic terms are:  



     choicethirdchoice,ondstandard,=q,q,q=QT sec1312111  

     cetranslucennotce,translucengoodce,translucenperfect=q,q,q=QT 2322212  

     poormedium,high,=q,q,q,q=QT 343332313  

To apply the proposed methodology to these data we made a count by category 

independently. Like the above example, the membership functions can be represented 

by their corresponding fuzzy triangular numbers: 

 0,0,0.411 =F   50.2,0.4,0.12 =F   0.6,1,113 =F  

 0,0,0.421 =F   70.3,0.5,0.22 =F   0.6,1,123 =F  

 0,0,0.431 =F  80.4,0.6,0.32 =F  0.6,1,133 =F  

The data from the porcelain process are shown in columns 2 to 10 of Table 5. 

4.2.1 Porcelain process analysis Phase I 

From these data representative values and corresponding T2 statistic values are 

calculated for each sample and are summarized in the columns 11 to 14 of Table 5. The 

inverse of the covariance matrix S for the 23 samples is obtained using equation (16) 

and is: 


















 3957.63 1982.7974.98

 1982.79 5884.702717.10

74.98  2717.10 4656.33

=1S  

 Table 3. Additional samples  

 

The upper control limit for Phase I, for a type I 0.05=α  error is obtained by:  
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Table 4. id Values for interpretation of out-of-control signal 

 

The control chart obtained is shown in Figure 2, we found that sample 11 was 

outside the upper control limit, the sample is removed and the parameters are calculated 

again. 

4.2.2 Analysis of the porcelain process, Phase II 

After clearing the samples considered out-of-control due to assignable causes, we obtain 

the parameters R  and 1S  that will be used in Phase II to calculate the statistic 2T  for 

additional samples. The new inverse of the covariance matrix 1S  and sample mean 

estimator R are respectively:  
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1082.66‐  3059.0  6844.75

=1S        8,0.2260.330,0.37=R  

The upper control limit for this phase is obtained by: 
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Figure 2. Fuzzy multivariate control chart phase I. 

 

Table 5. Data from the porcelain process (taken from Taleb 2009), representative values of samples i, and 

statistics T2.

 



Additional data are shown in the columns 2 to 10 of the table 5. From these 

additional data, representative values and corresponding T2 statistic values are 

calculated for each sample and summarized in columns 11 to 14 of the Table 6. Then 

we have the corresponding control chart for Phase II shown in Figure 3.  

Table 6. Additional samples of Porcelain Process (taken from Taleb 2009) and its representative values

 

 

Figure 3. Fuzzy multivariate control chart for additional samples phase II. 

 

4.2.3 Interpretation of the out-of- control signal  

The figure shows that the process is out-of-control when all additional samples 24, 25 

and 26 are taken. To determine which variables are responsible for each of the three cases, 

the corresponding id   are calculated and shown in Table 7. 

From table 7 we see that the more contributor variable to the to the out-of-control 

signal detected when samples 24 was taken, is the QC 1Q (appearance), since is the 



variable with the highest value di. Likewise for sample 25 is 2Q (translucence), while in 

the case of the sample 25 the largest contributor is the QC 3Q (whiteness).  

5. Discussion 

As we can see in the figure 4 the results obtained by the proposed methodology are quite 

similar to those proposed by Taleb et al. (2006).  

In phase I there is a significant overlap between the two graphs in the general 

shape of the curves and in identifying abnormalities, with the advantage that we use a 

well-known chart and avoid using methodologies based on simulation only. 

Table 7. di values for interpretation of out-of-control signal Porcelain process 

 

 

Figure 4. (a) Statistics T2 f (Taleb et al.1996), (b) T2 fuzzy multivariate control phase I. 
 

 
Table 8. Comparison between statisticals proposed by Taleb, Limam, and Hirota (2006) and the statistic T2 

 
 



For additional data on the phase II shown in table 8 and figure 5, the graphics match the 

identification of key points that show anomalies.  

Regarding to the second example, we can say that although both methodologies and 

statistical sampling in Taleb (2009) are different, the final results in terms of control 

output signal detection and identifying the variables responsible for the control output 

signal are the same, showing the generality of our approach. 

 

Figure 5. (a) T2
f control chart for additional data (Taleb, Limam, and Hirota 2006), (b) T2 fuzzy multinomial control 

chart for additional data 

6. Conclusions 

After the literature review relative to fuzzy multivariate quality control charts we decided 

to work under the assumption that the items are classified by each quality characteristic 

separately, as it is the sampling methods having higher degree of feasibility in their 

implementation. 

Fuzzy Theory has been used to transform the multivariate variables into their 

corresponding representative values. These values follow an approximate multivariate 

normal distribution when the defuzzification method used is the fuzzy average. With this 

approach, the inherent complexity of multivariate multinomial is avoided. Instead a 

Hotelling T2 Control Chart for a single observation can be designed. 



Performance of this chart has been compared with previous alternatives (Taleb et 

al. 2006) showing similar behavior, with the operative important advantage of avoiding 

dependence on simulation. 

The next step is the optimization of the parameters of the chart to preset under 

control ARL values. Also we believe it is important to complete this work by a sensibility 

analysis with respect to the selection of the membership functions and the degree of 

fuzzines. 
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