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Abstract  

This paper presents the application of feed-forward multilayer perceptron networks to forecast hourly 

nitrogen oxides levels 24 hours in advance. Input data were meteorological variables, average hourly 

traffic and nitrogen oxides hourly levels. The introduction of four periodic components (sine and cosine 

terms for the daily and weekly cycles) was analyzed in order to improve the models’ prediction power. 
The data were measured during three years at monitoring stations in Valencia (Spain) in two locations 

with high traffic density. The models’ evaluation criteria were the mean absolute error, the root mean 

square error, the mean absolute percentage error, and the correlation coefficient between observations and 

predictions. Comparisons of multilayer perceptron-based models proved that the insertion of the four 

additional seasonal input variables improved the ability of obtaining more accurate predictions, which 

emphasizes the importance of taking into account the seasonal character of nitrogen oxides. When using 

seasonal components as predictors, the root mean square error (RMSE) improves from 20.29 to 19.35 

when predicting nitrogen dioxide, and from 45.07 to 42.37 when forecasting nitric oxides if the model 

includes seasonal components At one study location. At the other location the RMSE changes from 23.76 

to 23.05 when predicting nitrogen dioxide and from 33.94 to 33.10 for the other pollutant’s forecasts.  
Neural networks did not require very exhaustive information about air pollutants, reaction mechanisms, 

meteorological parameters or traffic characteristics, and they had the ability of allowing nonlinear and 

complex relationships between very different predictor variables in an urban environment. 

Key words: air quality; nitrogen oxides concentration; urban atmospheric pollution; multilayer 

perceptron; seasonal variability. 

 

Introduction 

Air pollution in urban areas is a worldwide growing problem. Administrations introduce plans and 

regulations to reduce pollutants emissions. Emission directives establish limit values for concentrations of 

pollutants with the aim of avoiding, preventing and reducing the harmful effects on human health and the 

environment as a whole (Senger, 2000). Modeling temporal variations in the concentration of pollutants 

is useful when evaluating the effectiveness of these plans. These models allow long and short term 

forecasting of pollution levels. They have to take into account the link between climate and pollutants, 

which plays an important role in the variability. 
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Tools to predict pollution levels can be used in different ways. Deterministic and statistical models 

have been developed for the purpose of forecasting. Deterministic models are not appropriate as 

prognostic models in coastal zones (Rye, 1995). They are more suitable for extensive areas such as whole 

regions and large cities. One of the causes of the uncertainty of deterministic models is the lack of 

sufficient data as they require precise data from the emission and transportation of pollutants (deriving 

from traffic) and meteorological conditions. As the complexity of a problem increases, the theoretical 

understanding decreases due to ill-defined interactions between systems, and statistical approaches are 

required. 

Statistical models are able to establish a relationship between input variables (predictors) and output 

variables, without detailing the causes and effects of the formation of pollutants. Autoregressive statistical 

models are often used to analyze the seasonality, trend and autocorrelation of pollutants variability (Box 

et al., 2008; Prada-Sanchez et al., 2000), but they are limited by their weakness when modeling non-linear 

temporal variations. Classification and regression trees have also been applied to study the pollutant 

variability (Ryan, 1995; Gardner and Dorling, 2000). The possible presence of chaotic dynamics in 

pollutant concentrations allows modeling non-linear time series (Kocak et al., 2000). Donnelly et al. 

(2015) applied a non-parametric kernel regression model to forecast nitrogen dioxide concentrations 48h 

in advance, using temporal variations and correlations with meteorology. The model had low 

computational resources and gave index of agreement values between 0.74 and 0.94.     

During the last two decades the use of artificial neural networks, and, in particular, the application of 

multilayer perceptron (MP) models, has been developed to forecast pollutant concentrations (Gardner and 

Dorling, 1998). Neural networks have been shown to be effective alternatives to more traditional 

statistical techniques (Shalkoff, 1992). The neural network models can be trained to approximate virtually 

any smooth, measurable function (Hornik et al., 1989). Unlike other statistical techniques, they make no 

prior assumptions concerning the data distribution. They can model highly non-linear functions and can 

be trained to accurately generalize when presented with new, unseen data (Bishop, 1995). These features 

of neural networks make them an attractive alternative to developing numerical models, and also when 

choosing between statistical approaches. Ibarra-Berastegi et al. (2008) focused on the prediction of hourly 

levels up to 8 h ahead for five pollutants at six locations in the area of Bilbao (Spain) using MP. The best 

performance of these models at the different sensors in the area, was obtained for the prediction of 

nitrogen dioxide (NO2) 1 hour ahead (correlation coefficient between observations and predictions=0.9), 
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and the worse results were observed for the prediction of ozone 8 hour ahead. Caselli et al. (2009) 

compared the MP and multivariate regression models to predict critical pollution events. The regression 

models gave less accurate results mostly for 1 day forecasting and failed when fitting spiked high values 

of pollutant concentrations. Arhami et al. (2013) investigated the combination of artificial neural 

networks and Monte Carlo simulations, to quantify model uncertainty when predicting several pollutants 

at two urban sampling locations of a developing country. They used meteorological parameters and 

seasonal components as predictors, and validated the models with simulated data. They concluded that 

this methodology allowed selecting input variables and models’ architecture in their study area. The best 

mean square errors obtained were 18.7 for nitrogen dioxide predictions, and 27.5 for nitric oxides.  

Elangasinghe et al. (2014) developed an artificial neural network model for predicting nitrogen dioxide 

concentrations at a site near a major highway in Auckland, New Zealand. They compared models with 

different inputs (meteorological parameters, hour, day and month). Their study revealed that carefully 

choosing of inputs can give more reliable nitrogen dioxide forecasts, but the authors indicated that the 

inclusion of emission rates might improved the methodology. The artificial neural network model 

outperformed a linear regression model based on the same input parameters.    

The objective of this study is to investigate, for the first time, the capability of the MP method to 

forecast NO2 and nitric oxide (NO) concentrations in the Valencia urban area (Spain). The primary goal 

of the work is to predict concentrations 24 hours ahead at two different locations. This forecasting period 

of 24 h has been selected for practical regulatory reasons; shorter time forecasts are of minimal value for 

air quality management purposes. NO2 and NO are relevant air pollutants in Valencia (European 

Communities 2007). They are mainly a consequence of motor vehicle emissions, and industrial pollution 

plays a smaller part (Ballester et al., 2005). Tenias et al. (1998) reported a significant connection between 

a 10 μg/m3 increase in NO2 level and the relative risk of asthma emergency visits in Valencia. Daily 

levels of NO2 in this city are also associated with cardiovascular admissions (Ballester et al., 2001; 

Ballester et al., 2006). This pollutant is precursor of other secondary pollutants that are related to 

photochemical smog and acid rain. Ambient air NO2 is in large part originated by the oxidation of NO. 

The link between climate and these pollutants plays an important role on their variability and has to be 

taken into account when selecting optimal pollutant reduction strategies to avoid exceeding emission 

directives. In this paper, several MP models are designed and compared to establish the most efficient 
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performer as a forecasting tool using meteorological and traffic variables, pollutants concentrations, and 

seasonal components as predictors. 

 

Materials and methods 

 

Study area and database 

 

The study area is located in Valencia (Spain). This city has around one million inhabitants, and 

Mediterranean climatology and structure. An air pollution network managed by the local government 

since 1995, measures pollution variables in its urban area. The traffic network of the local municipality 

measures the number of vehicles (NV) circulating every hour at locations close to the pollution 

monitoring sites. The data used in this work were hourly observations from the air pollution and traffic 

networks. The study considers two monitoring stations: Pista Silla and Viveros. Fig, 1 presents the map of 

the study monitoring sites’ location. These two stations were selected because several high pollution 

episodes were registered to them during the period 2002-2005. The limit value of NO2 for the protection 

of human health in a calendar year (averaging period) was exceeded at Pista Silla, in 2003, 2004 and 

2005. At this site, the highest annual NO2 mean was observed in 2003. Mass concentrations of nitrogen 

oxides are determined using the chemiluminescence method. Pollutants concentrations are expressed in 

μg/m3. The volumes are standardized at a temperature of 293ºK and a pressure of 101.3 kPa. The air 

pollution monitoring site at Pista Silla also measures wind speed (WS, m/s), wind direction (WD, 

degrees), temperature (T, ºC), solar radiation (SR, W/m2), relative humidity (RH, %) and pressure (P, 

mbar). At Viveros location, WS, WD, T and SR observations were provided by the National Institute of 

Meteorology, which manages a meteorological station close to the air pollution station. Pista Silla station 

is in a roadside site located a few meters from a motorway, and Viveros is in an avenue close to the city 

center. The distance between them is 2,6 km. Traffic density is high at both sites. The matrix of data 

(hourly measurements) had 18339 entries for Pista Silla (years 2003-2005) and 16221 for Viveros (years 

2002-2004), after eliminating rows with missing values. Table 1 shows averages, coefficients of variation 

and maximum values of pollutants, meteorological and traffic variables for both stations, during the study 

period. 
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Factors mainly contributing to NO2 and NO concentrations are connected with the source activity (e.g. 

traffic) and periodic variations in nature (e.g. photochemical reactions in the atmosphere). Periodic 

components are expected in the time series at the week level and in the form of daily variations. Fig. 2 

represents the average diurnal cycle of NO2 and NO levels at Pista Silla during the study period. The 

average weekly cycle at the same station for the two pollutants can be seen in Fig. 3. The average traffic 

strength is also plotted in these diagrams with another scale on the right side. There are differences 

between hours, with concentrations’ peaks associated with high traffic density. The daily and weekly 

variations of the two pollutants depend on average daily and weekly traffic variations. The same cyclical 

patterns were observed at Viveros station. 

 

Multilayer perceptrons 

 

The MP models used in this work were composed of three layers of neurons: the input layer, the hidden 

layer, and the output layer. The models were compared with different number I of predictors Xi or 

neurons in the input layer. The predictors were pollutants concentrations, meteorological parameters, 

traffic variable or seasonal components (sine and cosine terms for the daily and weekly cycles). The 

models’ output Y was the prediction of NO2 or NO concentrations 24 hours in advance; therefore the 

number of neurons in the output layer was equal to 1. Table 2 shows the models that were analyzed. The 

number of neurons H in the hidden layer was determined by experimentation, training the neural 

networks with values of H from 5 to 30. Greater values of H did not give a better performance. The MP 

networks were trained with two backpropagation algorithms: the scaled conjugate gradient algorithm 

(SCG) and the Levenberg-Marquard algorithm (LM). It has been proved that both algorithms converge 

faster and perform better than other backpropagation algorithms (Moller, 1993).The output Yo can be 

expressed as follows: 

                                               
    

      
      

   
 
                                    (1) 

where o denotes the elements of the output layer and h indicates the elements of the hidden layer.    
  is 

the weight that connects the neuron j of the hidden layer with the neuron of the output layer, and    
  is 

the weight that connects the neuron i of the input layer with the neuron j of the hidden layer. bo is the bias 

of the neuron of the output layer, and   
  is the bias of neuron j of the hidden layer.  fo is the transfer 

function of the neuron of the output layer. In this work, the linear transfer function has been applied for  
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fo.     is the transfer function of neuron j of the hidden layer. The most widely used    are the hyperbolic 

transfer function (tansig) and the logarithmic sigmoid function (logsig): 

                                                                             
      

                                                            (2) 

                                                                            
 

                                                              (3) 

Fig. 4 shows an MP model with I neurons in the input layer, H neurons in the hidden layer, and one 

neuron in the output layer.  

Overtraining does occur when the MP memorizes the patterns introduced to it, and it is not capable of 

identifying new situations. The early stopping technique can be used to avoid this problem (Sarle, 1995). 

In this technique, the available database is separated into three subsets: the training set, the validation set, 

and the test set. The training set is used to update the network weights and biases. During the training, the 

validation set is used to guarantee the generalization capability of the model, and training should stop 

before the error on the validation set begins to rise. The test set is a new set used to check the 

generalization of the MP. In this work, the models were trained on data from the first year. Data from the 

second year were used as the validation set, and observations from the third year are the test data set. The 

computations were performed with the Neural Network Toolbox of MATLAB. 

 

 

Evaluation criteria 

 

Four statistical parameters were obtained to compare the performance of the MP models with the test 

dataset. They are the most used indices to assess the quality of an estimator (Willmott et al., 1985; 

Gomez-Sanchis et al., 2006). The correlation coefficient r between the forecasted values Yf and the 

observations Y quantifies the global description of the model. We computed the root mean square error 

(RMSE): 

                                                                        
         

  
   

 
                                                 (4) 

where n is the number of observations in the test data set. The mean absolute error (MAE) also measures 

how close forecasts are to observations: 

                                                                        
         

 
   

 
                                                      (5) 
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An expression of accuracy of predictions as a percentage can be computed with the mean absolute 

percentage error (MAPE): 

                                                                         
 

 
  

      

  
  

                                                  (6) 

 

 

Results and discussion 

 

The best performance indices results at Pista Silla station are shown in Table 3. It contains the best results 

obtained with the models MP1 to MP4 (output (NO2)t+24), and the models MP5 to MP8 (output NOt+24). 

The table indicates the backpropagation algorithm, the transfer function, and the number of neurons in the 

hidden layer. The comparison of the results indicates that the most accurate predictions of (NO2)t+24 at 

Pista Silla, were obtained with the Levenberg-Marquard (LM) algorithm. The MP2 model using the 

tansig transfer function and this algorithm gives good values of the four evaluation criteria when the 

number of neurons in the hidden layer is nh=14. The values of these indices show that the obtained model 

is a good estimator. The predictors are meteorological parameters, traffic, seasonal components and 

(NO2)t concentrations. Fig. 5 represents predictions with this model corresponding to the first 100 hours 

of the test data set. The period is from 00:00h on January 1st 2003 to 3:00h (am) on January 5th 2003.  

Valencia shows clear seasonal variations, with increasing activity during the coldest months. Nitrogen 

oxides emissions are higher during times of lower temperatures and also increase with reduced traffic 

speed, which in Valencia also occurs during winter months when urban locations have a greater density of 

traffic. The optimal neural network matches actual observations very appropriately, and captures the 

concentrations’ peaks and troughs. Fig. 6 gives the scatterplot of the data set test predictions versus 

observations. The evaluation of NOt+24 predictions at Pista Silla is also in Table 3. In this case, the LM 

algorithm also gives most accurate forecasts. The MP6 model with nh=10, this algorithm, and the logsig 

transfer function, provided the best value of the RMSE. In this case, the predictors are meteorology, 

traffic, seasonality and NOt concentration. The model MP8 gives better prediction results in terms of 

MAE and MAPE. This model includes all the potential predictors (see Table 2). The Fig. 7 shows actual 

and predicted values of NOt+24 with this model for the first 100 hours of the test data set (from 00:00h 

on January 1
st
 2003 to 3:00h am on January 5

th
 2003). The neural model fits the observed values 

correctly. The accuracy of predictions of these models for the two pollutants can be compared using the 
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two adimensional parameters MAPE and r. MAPE, which computes this accuracy as a percentage, is 

better for (NO2)t+24 (MAPE=0.45) than for NOt+24 (MAPE=1.13). 

Table 4 shows the best predictions results of the test data set at Viveros station. Forecasts evaluations 

of (NO2)t+24 can be seen in the first four rows (models MP1 to MP4). Very similar results were obtained 

with the two transfer functions. The MP2 model gives the best RMSE result as can be seen in the table, 

when using the SCG algorithm, the tansig transfer function and with a number of neurons in the hidden 

layer nh=10. The inputs to the neural network are meteorological variables, traffic, seasonal components, 

and (NO2)t levels. Predictions of this model in the first 100 hours of the test data set are plotted in Fig. 8. 

The period is from 17:00h on February 25th 2002 (the first complete record), to 21:00h February 28th 

2002. The value of the MAPE=0.98 indicates that the fit is less accurate than at Pista Silla, where the 

MAPE results are smaller with the four models (see Table 3). The correlation coefficients between 

(NO2)t+24 observations and predictions are very small in Viveros (see Table 4). This indicates that the 

linear agreement between this two variables is very poor, and then the performance of the model MP1 to 

MP4 worse than at Pista Silla. Fig. 5 also shows a closer agreement between observations and forecasts 

than Fig. 8. The model MP4, that includes NOt as predictor, has a smaller MAPE value.  

The evaluation indices for the predictions of NOt+24 at Viveros are also in Table 4. The model that 

provides the best RMSE of NOt+24 forecasts is the MP8 model at Viveros station. The transfer function is 

the tansig, with the Levenberg-Marquard backpropagation algorithm, and the number of neurons in the 

hidden layer is nh=10. Fig. 9 shows the time series of NOt+24 predictions and actual values in the first 100 

hours with complete data of the test data set at Viveros (the first 20 hours had missing records). 

Predictions are less accurate than at Pista Silla, where the correlation coefficient resulted for this pollutant 

r=0.66 and the MAPE is equal to 1.13 with this model. At Viveros, these parameters are r=0.52 and 

MAPE=3.32. The correlation coefficient is better when predicting NOt+24 than (NO2)t+24 at Viveros, but 

the agreement between actual and predicted values, expressed as a percentage, is better for (NO2)t+24. The 

MP models might perform worse at Viveros because the nitrogen oxides’ temporal variations might 

depend on other environmental parameters not considered here, such as other meteorology parameters. At 

Viveros location, wind speed, wind direction, temperature and solar radiation observations were used as 

inputs. At Pista Silla, pressure and relative humidity were also available.   

The MP models have the advantages of making no prior assumptions concerning the data distribution. 

They have also modeled the non-linear relationships existing between inputs and outputs, and have been 
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trained to accurately generalize when presented with new, unseen data. They are easy to use and 

understand compared to other statistical methods. These models can also be applied in other areas with 

similar air quality problems and meteorological and traffic influences. Future work will involve their 

application to forecast other pollutants.  However, the MP is a “black box” learning approach, cannot 

interpret relationships between inputs and output, and cannot deal with uncertainties. There are other 

linear statistical methods where a greater understanding if the cause and effect can be obtained, but they 

are not useful in this study given the highly non-linear relationships between inputs and outputs. Other 

approaches such as non-parametric regression models have recently (Donnelly et al. 2015) performed 

well for air quality prediction in other places. A comparison of MP models with these approaches in the 

study locations is a promising research area. These models may be a good alternative to the methods used 

in this work. 

 

Summary 

 

In this work, neural network models, and more particularly, multilayer perceptron models have been 

developed in order to forecast nitrogen oxides levels 24 hours in advance. This forecasting period was 

selected because the shorter time forecasts are of minimal value for air quality management purposes. 

Management of control and public warning strategies for nitrogen oxides levels, require accurate 

forecasts of the concentration of these pollutants, and their dependence on meteorological and traffic 

variables. The multilayer perceptron performed better when predicting nitric oxide at the study locations, 

if the models included daily and weekly seasonal components. These components were introduced with 

four additional input variables sin(2h/24), cos(2h/24), sin(2d/7) and cos(2d/7), h=1, 2,.,24, d=1, 

2,.,7. In one of the monitoring stations (Pista Silla) the best forecast of nitrogen dioxide were obtained 

when including as input variables meteorology, traffic, seasonality and (NO2)t level. At the other site 

(Viveros) the introduction of seasonality improve the performance of the multilayer perceptron when 

predicting nitrogen dioxide in terms of the root mean square error.  

The relative importance of meteorological and vehicle emission variables on surface nitrogen oxides 

predictions is of great interest to establish the legislative measures that permit to reduce their levels. 

Models with different architectures have been considered. They have allowed predicting nitrogen oxides 

concentrations with accuracy. Mechanisms involved in nitrogen oxides concentration are complex and 
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non-linear. Neural networks do not require very exhaustive information about air pollutants, reaction 

mechanisms, meteorological parameters or traffic flow. They have also the advantage of allowing 

nonlinear relationships between very different inputs or predictor variables. 

The application of the models could be extended to forecast other pollutants hourly levels in the study 

area. The predictor variables of this work represent an excellent starting point, but models that consider 

other inputs should be taken into account for future work. The results support other studies done in other 

parts of the world using artificial neural networks (ANN) techniques (Ibarra-Berastegi et al. 2008, 

Elangasinghe et al. 2014). It is the first time that this methodology is applied to Valencia urban area to 

predict nitrogen oxides concentrations. If the models were to be used as an operational air quality forecast 

models, forecast traffic data would also be required. These forecast traffic could be obtained by applying 

ANN using as inputs seasonal components. Forecast traffic values can be used as models’ input and might 

improve their performance. A comparison of the models using representative values and forecast traffic 

data would be useful to evaluate their effects. Future research will also focus on the development of other 

neural network models for atmospheric pollutants prediction. Finally, the methodology developed in this 

study could also be applied in different areas with similar air quality problems and meteorological and 

traffic influences. 
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Table 1 Mean, coefficient of variation (CV) and maximum values of pollution, meteorological and traffic 

data for the two monitoring stations. Nitrogen dioxide (NO2) and nitric oxide (NO) are expressed in 

μg/m3. Wind speed: WS in m/s. Wind direction: WD in degrees. Temperature: T in ºC. Solar radiation: 

SR in W/m2. Relative humidity: RH in %. Pressure: P in mbar. Number of vehicles circulating every 

hour: NV. 

Station Variable     Average CV Minimum Maximum 

P.Silla NO2 58.8 0.51  249 
 NO 52.0 1.14  624 
 WS              1.1 0.82  8.6 
 WD 187.8 0.57  360 
 T 18.7 0.36  38.2 

 RH 60.8 0.25  92 
 P 1022.2 0.01  1044.7 
 SR 153.3 1.60  947 
 NV 2945.7 0.57  38712 
Viveros NO2 36.72 0.67  238 
 NO 19.6 1.93  596 
 WS 1.8 0.72  11.9 
 WD 168.3 0.69  360 

 T 18.9 0.34  38.2 
 SR 170 1.53  1033.3 
 NV 1088.7 0.66  13456 

 

Table 2 Models analyzed in the paper 

 

Model Output variable Input variables 

MP1 (NO2)t+24 Meteorologyt, traffict, (NO2)t 

MP2 (NO2)t+24 Meteorologyt, traffict,  

Seasonalityt+24,(NO2)t 

MP3 
 

(NO2)t+24 Meteorologyt, traffict,  
(NO2)t, NOt  

MP4 (NO2)t+24 Meteorologyt, traffict,  
Seasonalityt+24,(NO2)t, NOt 

MP5 NOt+24 Meteorologyt, traffict, NOt 

MP6 
 

NOt+24 

 
Meteorologyt, traffict,  

Seasonalityt+24,NOt 

MP7 
 

NOt+24 

 
Meteorologyt, traffict,  

NOt, (NO2)t 
MP8 NOt+24 

 
Meteorologyt, traffict,  

Seasonalityt+24, NOt, (NO2)t 

 

Table 3 Best performance criteria results at Pista Silla for the models MP1, MP2, MP3 and MP4 (output 

(NO2 )t+24) and models MP5, MP6, MP7 and MP8 (output NOt+24) 

Model Transfer function nh Learning algorithms RMSE MAE MAPE r 

MP1 tansig 16 LM 20.29 16.39 0.51 0.59 

MP2 tansig 14 LM 19.35 15.38 0.45 0.63 

MP3 logsig 30 LM 20.48 16.32 0.48 0.56 

MP4 logsig 10 LM 20.49 16.55 0.50 0.65 

MP5 logsig 7 LM 45.07 27.85 1.31 0.61 

MP6 logsig 10 LM 42.37 26.48 1.19 0.66 

MP7 logsig 10 LM 45.26 28.39 1.42 0.59 
MP8 logsig 7 LM 42.57 25.57 1.13 0.66 
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Table 4 Best performance criteria results at Viveros for the models MP1, MP2, MP3 and MP4 (output 

(NO2 )t+24) and models MP5, MP6, MP7 and MP8 (output NOt+24) 

Model Transfer function nh Learning algorithms RMSE MAE MAPE r 

MP1 logsig 5 SCG 23.76 18.16 0.93 0.03 

MP2 tansig 10 SCG 23.05 18.31 0.98 0.07 

MP3 logsig 16 SCG 23.28 18.41 0.93 0.15 

MP4 logsig 12 SCG 23.32 18.31 0.91 0.05 

MP5 logsig 5 LM 33.78 19.86 3.52 0.49 

MP6 logsig 16 LM 33.19 19.03 3.16 0.52 

MP7 tansig 10 LM 33.94 19.26 3.20 0.49 

MP8 tansig 10 LM 33.10 19.10 3.32 0.52 

 

 

FIG. 1 Map of the study monitoring sites’ locations. 
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FIG. 2 Average diurnal cycles at Pista Silla station 

 

 
 

 

FIG. 3 Average weekly cycles at Pista Silla station 
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FIG. 4 A multilayer perceptron model 

 

 

                                 Input              Hidden                  Output 

                                    X1  

                                    X2  

                                    Xi  

                                    XI  

 

 

 
FIG. 5 Nitrogen dioxide prediction 24 hours in advance in the first 100 hours of the test data set at Pista 

Silla. The model is the multilayer perceptron including (NO2)t, meteorology, traffic and seasonality as  

predictors, with 14 neurons in the hidden layer, the tansig transfer function and the Levenberg-Marquard 

backpropagation algorithm. Correlation coefficient r=0.63 and mean absolute error MAE=15.38 
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FIG 6 Scatterplot of nitrogen dioxide predictions 24 hours in advance versus observations at Pista Silla. 

The model is the multilayer perceptron including (NO2)t, meteorology, traffic and seasonality as  

predictors, with 14 neurons in the hidden layer, the tansig transfer function and the Levenberg-Marquard 

backpropagation algorithm 
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FIG. 7 Nitric oxide prediction 24 hours in advance in the first 100 hours of the test data set at Pista Silla. 

The model is the multilayer perceptron including NOt, (NO2)t, meteorology, traffic and seasonality as 

predictors, with 7 neurons in the hidden layer, the logsig transfer function and the Levenberg-Marquard 

backpropagation algorithm. Correlation coefficient r=0.66 and mean absolute error MAE=25.57 
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FIG. 8 Nitrogen dioxide prediction 24 hours in advance in the first 100 hours of the test data set at 

Viveros. The model is the multilayer perceptron including (NO2)t, meteorology, seasonal components, 

and traffic as predictors, with 10 neurons in the hidden layer, the tansig transfer function and the Scaled 

Conjugate Gradient backpropagation algorithm. Correlation coefficient r=0.07 and mean absolute error 

MAE=18.31 
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FIG. 9 Nitric oxide prediction 24 hours in advance in the first 100 hours with complete records of the test 

dataset at Viveros. The model is the multilayer perceptron including NOt, (NO2)t, meteorology, traffic and 

seasonality as predictors, with 10 neurons in the hidden layer, the tansig transfer function and the 

Levenberg-Marquard backpropagation algorithm. Correlation coefficient r=0.52 and mean absolute error 

MAE=19.1 
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Supplementary Table S1 Performance criteria results at Pista Silla for models MP1, MP2 and MP3 

(output NO2) 

 

 

Model 

 

Transfer 

Function 

 

 

nh 

 

SCG algorithm 

 

 

 

LM algorithm 

RMSE MAE MAPE r RMSE MAE MAPE r 

MP1  Tansig 5 22.68 18.58 0.60 0.49 20.96 16.51 0.53 0.58 

  7 22.15 18.22 0.59 0.51 21.95 17.43 0.56 0.55 

  10 20.83 16.96 0.54 0.59 21.23 17.26 0.53 0.57 

  12 23.24 19.02 0.61 0.41 23.25 19.12 0.63 0.55 

  14 21.67 17.57 0.54 0.55 20.30 16.49 0.51 0.59 

  16 22.52 18.34 0.59 0.45 20.29 16.39 0.51 0.59 

  18 21.44 17.59 0.56 0.55 21.42 17.52 0.56 0.57 
  20 23.82 19.28 0.61 0.49 21.92 17.65 0.54 0.56 

  30 22.83 18.59 0.58 0.47 21.22 17.13 0.53 0.55 

 logsig 5 22.88 18.86 0.62 0.52 21.28 17.29 0.54 0.59 

  7 23.46 19.27 0.62 0.48 20.84 17.14 0.55 0.58 

  10 21.93 17.98 0.56 0.51 21.66 17.62 0.56 0.58 

  12 24.06 20.02 0.67 0.44 20.64 16.71 0.52 0.59 

  14 23.52 19.14 0.59 0.54 20.58 16.68 0.53 0.58 

  16 22.12 18.04 0.58 0.51 21.88 17.74 0.56 0.58 

  18 23.04 18.82 0.59 0.42 22.52 18.21 0.56 0.52 

  20 22.31 18.40 0.59 0.55 21.94 17.89 0.57 0.57 

  30 26.23 21.35 0.67 0.39 21.63 17.66 0.56 0.58 
MP2 tansig 5 21.91 17.94 0.57 0.64 20.45 16.52 0.51 0.56 

  7 24.45 20.32 0.68 0.50 20.31 16.43 0.51 0.65 

  10 21.35 17.39 0.55 0.62 21.19 17.12 0.52 0.66 

  12 20.62 16.77 0.52 0.63 20.75 16.69 0.51 0.64 

  14 22.23 17.95 0.57 0.57 19.35 15.38 0.45 0.63 

  16 21.11 16.99 0.52 0.63 20.89 16.87 0.51 0.63 

  18 21.58 17.55 0.54 0.62 21.29 17.18 0.52 0.64 

  20 21.38 17.28 0.53 0.63 20.52 16.52 0.51 0.64 

  30 22.07 17.94 0.56 0.65 23.43 28.86 0.58 0.59 

 logsig 5 26.94 22.42 0.76 0.24 20.69 16.66 0.52 0.65 

  7 21.99 17.92 0.56 0.61 20.70 16.66 0.49 0.66 

  10 24.84 20.74 0.69 0.42 21.38 17.39 0.54 0.59 
  12 21.94 18.73 0.58 0.59 20.71 16.64 0.51 0.66 

  14 22.25 18.01 0.56 0.58 22.20 18.03 0.57 0.63 

  16 22.51 18.49 0.58 0.57 21.28 17.13 0.51 0.63 

  18 24.48 20.29 0.66 0.53 20.61 16.70 0.51 0.59 

  20 21.89 17.91 0.55 0.63 21.24 17.10 0.52 0.63 

  30 23.34 19.03 0.59 0.54 23.22 28.79 0.56 0.62 

MP3 tansig 5 21.44 17.51 0.54 0.56 21.72 17.84 0.58 0.57 

  7 21.95 18.03 0.59 0.59 20.44 16.39 0.49 0.53 

  10 21.54 17.47 0.54 0.52 21.94 17.39 0.56 0.58 

  12 21.60 17.69 0.57 0.55 22.08 17.92 0.56 0.55 

  14 21.61 17.66 0.56 0.57 20.81 16.82 0.51 0.54 
  16 21.46 17.51 0.55 0.54 22.09 17.93 0.56 0.55 

  18 21.77 17.86 0.57 0.53 22.39 18.52 0.61 0.58 

  20 21.53 17.46 0.55 0.56 23.33 19.15 0.62 0.54 

  30 27.09 21.81 0.64 0.34 22.99 18.56 0.57 0.55 

 logsig 5 23.27 18.15 0.59 0.54 21.19 17.27 0.55 0.59 

  7 23.79 19.61 0.63 0.51 21.03 17.03 0.53 0.56 

  10 22.76 18.66 0.61 0.52 22.01 17.82 0.57 0.57 

  12 20.90 16.89 0.52 0.59 20.51 16.51 0.49 0.57 

  14 23.01 18.71 0.59 0.55 21.84 18.03 0.59 0.58 

  16 23.89 19.40 0.61 0.50 22.96 18.96 0.61 0.56 

  18 24.31 20.02 0.67 0.52 22.49 18.29 0.57 0.53 

  20 26.70 21.57 0.64 0.49 21.15 17.14 0.53 0.56 
  30 22.65 18.09 0.56 0.52 20.48 16.32 0.48 0.56 



22 
 

Supplementary Table S2 Performance criteria results at Pista Silla for models MP4 (output NO2), MP5 

and MP6 (output NO) 

 

Model 

Transfer 

function 

 

nh 

SCG algorithm LM algorithm 

RMSE MAE MAPE r RMSE MAE MAPE r 

MP4 tansig 5 21.08 17.13 0.54 0.59 21.42 17.28 0.54 0.59 

  7 21.65 17.42 0.52 0.59 20.83 16.79 0.52 0.66 

  10 21.56 17.43 0.53 0.63 20.58 16.54 0.51 0.66 

  12 22.36 18.06 0.55 0.59 21.28 17.28 0.51 0.62 

  14 20.95 17.03 0.54 0.65 21.41 17.27 0.53 0.65 

  16 21.55 17.29 0.52 0.65 22.86 18.70 0.58 0.58 

  18 21.22 17.06 0.52 0.64 21.83 17.64 0.55 0.59 

  20 23.37 19.19 0.61 0.60 25.66 20.32 0.54 0.55 
  30 21.63 27.36 0.53 0.63 21.75 17.69 0.56 0.61 

 logsig 5 23.27 18.15 0.59 0.54 20.67 26.68 0.52 0.63 

  7 23.79 19.61 0.63 0.51 20.77 16.75 0.51 0.65 

  10 22.76 18.66 0.61 0.52 20.49 16.55 0.50 0.65 

  12 20.91 16.89 0.52 0.59 21.88 17.78 0.55 0.63 

  14 23.01 18.71 0.59 0.55 21.45 17.35 0.54 0.62 

  16 23.89 19.40 0.61 0.50 22.63 18.29 0.58 0.61 

  18 24.31 20.02 0.67 0.52 21.75 17.53 0.56 0.63 

  20 26.70 21.57 0.64 0.49 20.93 16.77 0.51 0.63 

  30 22.65 18.09 0.56 0.52 22.25 17.99 0.57 0.61 

MP5 tansig 5 46.48 29.59 1.56 0.57 45.46 28.43 1.41 0.59 
  7 52.73 36.55 2.32 0.38 45.21 27.87 1.34 0.60 

  10 47.95 30.57 1.52 0.53 46.59 30.66 1.73 0.57 

  12 46.58 30.25 1.56 0.57 46.05 29.54 1.52 0.59 

  14 49.32 33.39 1.82 0.51 45.49 29.19 1.49 0.59 

  16 48.87 31.86 1.71 0.51 45.67 30.27 1.64 0.59 

  18 47.75 31.05 1.67 0.54 45.52 29.28 1.52 0.59 

  20 46.67 29.16 1.52 0.57 46.31 30.78 1.66 0.59 

  30 50.08 34.22 1.92 0.51 46.08 29.19 1.38 0.58 

 logsig 5 51.42 33.89 2.02 0.42 46.78 32.54 1.91 0.59 

  7 50.02 34.31 2.08 0.48 45.07 27.85 1.31 0.61 

  10 49.09 33.32 1.89 0.51 45.12 27.80 1.31 0.61 

  12 46.34 29.45 1.58 0.57 45.94 27.67 1.27 0.59 
  14 48.10 31.69 1.72 0.53 48.78 30.37 1.64 0.53 

  16 49.82 34.05 1.92 0.48 46.07 30.02 1.63 0.59 

  18 48.33 31.58 1.76 0.53 45.81 29.69 1.47 0.59 

  20 51.34 36.48 1.77 0.49 45.29 29.30 1.44 0.60 

  30 55.27 37.74 1.89 0.36 46.12 29.92 1.54 0.59 

MP6 tansig 5 45.28 28.36 1.43 0.60 43.87 27.39 1.28 0.63 

  7 45.80 29.52 1.58 0.59 43.55 27.18 1.23 0.64 

  10 46.35 30.02 1.59 0.58 44.16 28.42 1.54 0.63 

  12 45.75 28.84 1.42 0.59 43.27 26.98 1.19 0.65 

  14 54.33 37.55 2.02 0.34 44.51 28.15 1.36 0.62 

  16 44.51 27.49 1.40 0.62 43.63 27.78 1.29 0.64 
  18 46.07 25.47 1.53 0.58 45.07 30.13 1.59 0.63 

  20 63.14 44.51 2.21 0.30 45.49 29.40 1.54 0.62 

  30 46.32 30.47 1.59 0.58 45.82 29.88 1.45 0.59 

 logsig 5 55.93 36.19 2.08 0.17 44.66 27.05 1.29 0.62 

  7 46.01 29.00 1.45 0.58 44.88 27.92 1.36 0.61 

  10 47.19 30.18 1.55 0.56 42.37 26.48 1.19 0.66 

  12 47.19 30.18 1.55 0.56 43.28 27.01 1.24 0.64 

  14 45.96 30.28 1.52 0.59 43.28 27.60 1.32 0.65 

  16 48.94 31.51 1.73 0.50 43.36 27.21 1.28 0.64 

  18 47.63 30.79 1.56 0.54 45.13 30.98 1.75 0.64 

  20 47.05 31.03 1.57 0.56 44.18 27.45 1.31 0.62 

  30 46.30 29.49 1.49 0.57 45.14 29.60 1.50 0.61 
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Supplementary Table S3 Performance criteria results at Pista Silla for models MP7 and MP8 (output 

NO) 

 

Model 

Transfer 

function 

 

nh 

SCG algorithm LM algorithm 

RMSE MAE MAPE r RMSE MAE MAPE r 

MP7 tansig 5 46.29 28.12 1.52 0.58 45.64 27.89 1.34 0.59 

  7 49.39 32.82 1.80 0.49 46.52 31.00 1.76 0.58 

  10 46.24 29.54 1.46 0.58 45.66 27.93 1.24 0.59 

  12 55.61 35.39 1.88 0.25 45.92 29.22 1.36 0.59 

  14 49.07 32.29 1.68 0.50 45.84 28.45 1.34 0.59 

  16 47.61 29.62 1.48 0.55 47.15 31.67 1.75 0.57 

  18 47.16 30.42 1.59 0.55 49.88 33.69 1.99 0.52 

  20 49.83 31.07 1.55 0.48 46.09 28.23 1.23 0.58 
  30 49.26 32.40 1.66 0.50 46.79 31.23 1.60 0.58 

 logsig 5 48.69 30.59 1.57 0.51 46.76 29.94 1.61 0.59 

  7 51.36 32.19 1.61 0.42 45.47 27.63 1.27 0.59 

  10 46.69 28.83 1.34 0.57 45.26 28.39 1.42 0.59 

  12 48.29 29.93 1.50 0.53 47.44 28.74 1.39 0.58 

  14 48.98 32.18 1.73 0.50 48.53 34.46 2.08 0.56 

  16 51.55 34.71 1.90 0.50 45.82 28.46 1.42 0.59 

  18 47.00 29.13 1.36 0.56 46.88 29.29 1.36 0.57 

  20 50.53 32.05 1.35 0.48 48.45 35.38 2.09 0.59 

  30 55.87 36.76 1.83 0.29 46.76 31.05 1.62 0.59 

MP8 tansig 5 47.47 30.32 1.58 0.54 42.53 26.45 1.21 0.66 
  7 52.96 34.14 1.96 0.35 43.19 26.70 1.22 0.65 

  10 48.23 31.07 1.65 0.52 47.27 33.00 1.77 0.58 

  12 45.16 28.24 1.33 0.60 43.05 26.56 1.19 0.65 

  14 45.48 27.75 1.29 0.59 43.42 27.02 1.18 0.65 

  16 43.36 26.76 1.22 0.64 43.54 27.68 1.22 0.65 

  18 48.83 32.79 1.64 0.48 46.31 31.31 1.63 0.61 

  20 47.37 30.26 1.46 0.55 44.81 28.28 1.32 0.63 

  30 46.56 28.73 1.39 0.57 44.56 27.22 1.17 0.62 

 logsig 5 48.30 32.62 1.84 0.53 43.38 26.66 1.19 0.64 

  7 50.30 32.98 1.83 0.47 42.57 25.57 1.13 0.66 

  10 48.09 29.19 1.45 0.54 42.86 26.58 1.18 0.65 

  12 49.61 32.71 1.78 0.48 45.14 28.28 1.29 0.60 
  14 49.58 31.39 1.59 0.48 45.04 27.59 1.18 0.61 

  16 48.97 32.44 1.81 0.51 43.59 26.37 1.14 0.64 

  18 48.29 29.75 1.48 0.52 43.22 27.35 1.31 0.65 

  20 51.24 34.60 2.01 0.45 43.38 25.97 1.10 0.65 

  30 44.63 27.70 1.33 0.61 44.34 27.78 1.25 0.62 
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Supplementary Table S4 Performance criteria results at Viveros for models MP1, MP2 and MP3 (output 

NO2) 

 

Model 

Transfer 

function 

 

nh 

SCG LM 

RMSE MAE MAPE r RMSE MAE MAPE r 

MP1  tansig 5 23.76 18.76 0.99 0.12 24.28 19.06 0.99 0.11 

  7 23.78 18.59 0.94 0.10 23.39 18.34 0.93 0.12 

  10 23.25 18.65 0.99 0.03 23.62 18.54 0.96 0.11 

  12 24.29 19.14 1.02 0.09 24.34 19.03 0.96 0.11 

  14 23.72 18.85 0.98 0.09 24.39 19.03 0.94 0.10 

  16 24.51 19.33 1.01 0.06 24.82 19.34 0.94 0.10 

  18 24.54 19.29 0.99 0.08 24.07 18.82 0.94 0.11 

  20 24.68 19.46 0.99 0.09 24.59 19.18 0.97 0.08 
  30 25.01 19.51 0.98 0.07 24.68 19.18 0.97 0.08 

 logsig 5 23.76 18.16 0.93 0.03 24.35 19.14 1.01 0.08 

  7 23.29 18.49 0.98 0.06 24.66 19.29 0.99 0.11 

  10 25.33 20.11 1.09 0.02 24.29 19.02 0.97 0.07 

  12 25.66 20.39 1.06 0.02 23.82 18.69 0.95 0.11 

  14 25.18 19.96 1.02 0.01 23.75 18.62 0.95 0.11 

  16 26.19 20.61 1.04 0.03 24.85 19.42 0.98 0.07 

  18 25.51 20.03 1.03 0.03 23.97 18.81 0.95 0.12 

  20 24.92 19.62 0.99 0.09 24.27 19.14 1.06 0.13 

  30 25.51 20.31 1.05 0.08 28.29 20.49 0.96 0.09 

MP2 tansig 5 23.46 18.54 0.98 0.04 24.74 19.46 1.02 0.07 
  7 24.12 19.13 0.98 0.03 24.27 19.07 1.03 0.13 

  10 23.05 18.31 0.98 0.07 24.49 19.22 0.99 0.10 

  12 24.25 19.23 0.97 0.06 25.17 19.65 1.01 0.09 

  14 24.74 19.44 1.02 0.06 24.72 19.36 0.98 0.14 

  16 24.09 18.96 0.98 0.12 24.23 18.86 0.95 0.12 

  18 24.08 18.93 0.99 0.07 24.79 19.33 0.98 0.11 

  20 24.79 19.59 1.04 0.10 24.16 19.93 0.98 0.11 

  30 24.56 19.32 0.99 0.09 25.99 20.36 1.08 0.09 

 logsig 5 23.65 18.81 0.99 0.06 23.67 18.49 0.97 0.14 

  7 24.01 19.10 0.96 0.03 25.14 19.64 1.01 0.09 

  10 24.48 19.25 0.96 0.05 24.19 18.94 0.98 0.13 

  12 24.74 19.48 0.96 0.06 24.94 19.53 1.00 0.11 
  14 23.98 19.11 0.99 0.05 24.42 19.07 0.96 0.11 

  16 23.69 18.65 0.96 0.12 25.02 19.72 1.06 0.10 

  18 25.46 20.00 1.04 0.02 24.67 19.33 1.03 0.09 

  20 23.66 18.77 0.99 0.08 25.33 19.72 0.98 0.09 

  30 24.99 19.65 0.99 0.09 25.04 19.64 0.97 0.13 

MP3 tansig 5 23.76 18.78 0.98 0.01 24.22 18.98 0.98 0.07 

  7 23.38 18.57 0.97 0.05 24.04 18.73 0.96 0.11 

  10 24.63 19.38 1.02 0.08 24.26 19.07 1.00 0.08 

  12 24.55 19.22 0.99 0.07 23.64 18.54 0.92 0.12 

  14 24.43 19.29 1.01 0.07 24.28 19.01 0.98 0.12 

  16 24.39 19.21 0.98 0.08 24.60 19.16 0.92 0.09 
  18 23.58 18.58 0.98 0.09 24.30 19.14 1.01 0.09 

  20 24.44 19.26 0.93 0.12 24.22 19.14 1.01 0.11 

  30 24.59 19.09 0.96 0.10 24.12 18.85 0.87 0.14 

 logsig 5 24.83 19.65 1.03 0.03 24.48 19.32 1.03 0.06 

  7 26.31 21.06 1.11 0.01 24.58 19.22 0.98 0.08 

  10 25.21 20.02 1.05 0.02 24.18 19.02 0.96 0.08 

  12 24.12 18.98 0.96 0.08 24.27 19.07 0.99 0.09 

  14 23.36 18.25 0.91 0.12 24.17 18.82 0.94 0.11 

  16 23.28 18.41 0.93 0.15 24.12 18.84 0.96 0.10 

  18 23.88 18.88 0.97 0.08 24.48 19.13 0.99 0.08 

  20 26.17 20.49 1.06 0.02 24.34 19.13 0.99 0.08 

  30 24.76 19.48 0.97 0.11 24.86 19.39 0.95 0.08 
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Supplementary Table S5 Performance criteria results at Viveros for models MP4 (output NO2), MP5 

and MP6 (output NO) 

 

Model 

Transfer 

function 

 

nh 

SCG algorithm LM algorithm 

RMSE MAE MAPE r RMSE MAE MAPE r 

MP4 tansig 5 24.43 19.66 1.01 0.08 25.28 19.82 1.04 0.06 

  7 23.76 18.97 1.01 0.06 24.91 19.57 1.01 0.09 

  10 25.34 19.83 1.02 0.05 24.79 19.38 0.96 0.09 

  12 23.80 1884 1.00 0.01 24.54 19.21 0.99 0.06 

  14 24.39 19.25 0.99 0.06 24.38 19.14 0.99 0.13 

  16 24.57 19.43 1.18 0.05 24.31 19.07 0.99 0.10 

  18 24.89 19.84 1.00 0.03 25.15 19.64 0.97 0.10 

  20 24.43 19.27 0.99 0.08 24.83 19.43 0.98 0.10 
  30 25.95 20.33 1.05 0.11 24.45 19.13 0.99 0.12 

 logsig 5 24.56 19.56 1.04 0.03 24.12 18.94 0.99 0.14 

  7 23.40 18.77 0.97 0.01 24.34 19.18 1.03 0.25 

  10 26.85 20.77 1.09 0.07 24.94 19.63 1.04 0.09 

  12 23.32 18.31 0.91 0.05 25.32 19.86 1.01 0.06 

  14 25.26 19.95 1.05 0.02 24.72 19.48 1.02 0.07 

  16 24.79 19.74 1.02 0.05 24.75 19.55 1.01 0.09 

  18 24.26 19.06 1.01 0.07 25.66 19.83 0.98 0.08 

  20 23.91 19.02 1.02 0.11 25.16 19.74 1.02 0.09 

  30 24.89 19.74 1.01 0.11 25.19 19.58 0.96 0.11 

MP5 tansig 5 35.57 22.14 4.33 0.41 34.11 19.99 3.58 0.49 
  7 34.94 21.90 4.22 0.45 33.81 19.37 3.32 0.49 

  10 35.10 21.24 4.12 0.44 34.66 21.84 4.29 0.48 

  12 35.25 21.74 4.21 0.43 33.86 20.01 3.56 0.49 

  14 34.19 21.08 4.05 0.48 33.81 19.83 3.53 0.49 

  16 36.00 23.02 4.53 0.41 34.61 21.38 4.05 0.49 

  18 35.39 21.32 3.92 0.41 34.51 19.71 3.34 0.48 

  20 36.31 22.40 4.22 0.43 35.58 20.34 3.47 0.47 

  30 37.59 24.48 4.98 0.36 35.66 22.63 4.49 0.47 

 logsig 5 35.71 21.47 4.15 0.39 33.78 19.86 3.52 0.49 

  7 35.15 22.10 4.37 0.43 33.96 19.79 3.35 0.49 

  10 35.15 22.56 4.51 0.44 35.87 24.13 3.30 0.44 

  12 38.09 22.79 4.16 0.39 33.99 19.90 3.47 0.49 
  14 36.04 22.11 4.24 0.38 34.42 20.04 3.63 0.47 

  16 43.36 31.67 4.39 0.39 33.88 19.55 3.34 0.49 

  18 39.03 24.60 4.76 0.33 34.46 19.73 3.36 0.48 

  20 36.58 24.16 4.93 0.38 34.36 20.79 2.89 0.48 

  30 35.49 21.91 4.07 0.42 35.68 21.25 3.73 0.47 

MP6 tansig 5 35.64 21.51 4.06 0.40 33.84 19.09 3.14 0.49 

  7 34.83 21.34 3.93 0.46 33.43 20.39 3.86 0.52 

  10 34.86 21.43 4.09 0.45 33.47 19.62 3.46 0.51 

  12 35.84 23.43 4.75 0.42 33.70 19.56 3.33 0.51 

  14 36.49 21.55 3.75 0.34 33.26 18.75 3.03 0.52 

  16 35.69 21.52 3.99 0.39 33.65 20.17 3.54 0.51 
  18 35.59 21.44 3.90 0.40 33.60 20.66 3.94 0.51 

  20 35.07 19.96 3.33 0.43 37.15 20.06 3.35 0.44 

  30 33.88 20.64 3.80 0.49 33.99 19.92 3.45 0.49 

 logsig 5 37.89 22.43 4.19 0.22 33.94 20.04 3.62 0.49 

  7 37.19 21.59 3.75 0.29 33.37 19.90 3.59 0.53 

  10 38.40 23.05 3.89 0.28 33.56 19.61 3.36 0.51 

  12 35.93 21.70 4.04 0.38 33.45 19.75 3.90 0.53 

  14 35.33 22.40 4.28 0.42 33.63 19.25 3.14 0.51 

  16 35.25 21.40 4.01 0.42 33.19 19.03 3.16 0.52 

  18 34.39 21.55 4.12 0.48 33.63 19.91 3.54 0.50 

  20 37.46 24.54 4.91 0.31 34.03 20.75 3.81 0.49 

  30 34.19 20.50 3.68 0.48 34.58 19.73 3.29 0.46 

 



26 
 

Supplementary Table S6 Performance criteria results at Viveros for models MP7 and MP8 (output NO) 

 

Model 

Transfer 

function 

 

nh 

SCG algorithm LM algorithm 

RMSE MAE MAPE r RMSE MAE MAPE r 

MP7 tansig 5 35.60 22.67 4.54 0.42 34.57 20.72 3.83 0.48 

  7 35.86 21.62 4.23 0.42 34.09 20.92 3.97 0.49 

  10 35.19 22.69 4.53 0.45 33.94 19.26 3.20 0.49 

  12 37.75 24.36 5.05 0.32 41.61 24.82 5.22 0.40 

  14 36.31 22.36 4.35 0.37 36.67 20.97 3.81 0.44 

  16 35.19 22.26 4.34 0.43 33.85 19.41 3.22 0.49 

  18 34.18 20.99 3.95 0.48 37.70 21.78 3.87 0.47 
  20 35.73 21.82 4.02 0.42 36.72 20.65 3.50 0.46 

  30 40.55 23.79 4.24 0.25 37.62 20.87 3.54 0.44 

 logsig 5 35.82 21.61 4.19 0.42 34.03 21.16 4.09 0.49 

  7 37.81 22.11 3.97 0.23 34.16 21.35 4.17 0.49 

  10 35.51 22.12 4.13 0.41 35.95 21.84 4.14 0.48 

  12 37.87 24.54 4.97 0.29 34.45 20.60 3.72 0.49 

  14 36.72 24.09 4.13 0.37 36.92 21.04 3.62 0.47 

  16 34.94 22.05 4.33 0.45 38.84 21.77 3.86 0.46 

  18 34.47 21.96 4.31 0.47 34.89 19.33 3.22 0.47 

  20 34.94 21.60 4.15 0.45 34.43 20.21 3.49 0.49 

  30 34.75 20.92 3.87 0.45 35.72 20.29 3.43 0.48 
MP8 tansig 5 37.06 21.21 3.80 0.30 33.64 19.67 3.47 0.51 

  7 34.75 20.08 3.42 0.45 33.51 19.81 3.55 0.51 

  10 38.55 20.65 3.14 0.37 33.10 19.10 3.32 0.52 

  12 36.29 22.88 4.52 0.36 33.28 19.50 3.51 0.52 

  14 35.22 21.31 4.04 0.43 34.97 21.35 4.18 0.48 

  16 34.04 20.79 3.92 0.49 33.99 20.38 3.68 0.49 

  18 34.21 20.72 3.88 0.48 33.64 19.73 3.36 0.51 

  20 36.12 22.91 4.56 0.39 33.51 20.70 3.89 0.52 

  30 34.74 21.25 4.06 0.45 33.65 20.38 3.57 0.52 

 logsig 5 37.35 20.88 3.52 0.30 33.54 19.80 3.52 0.51 

  7 35.97 21.63 3.93 0.38 33.63 18.92 3.13 0.50 

  10 35.72 23.39 4.71 0.41 34.24 20.42 3.67 0.49 
  12 35.75 21.20 3.79 0.39 33.64 19.80 3.38 0.52 

  14 35.83 22.43 4.39 0.39 34.44 20.13 2.83 0.44 

  16 37.06 22.97 4.52 0.30 33.78 19.93 3.56 0.50 

  18 35.16 20.68 3.68 0.43 33.56 19.68 3.35 0.51 

  20 35.84 22.91 4.45 0.40 33.91 20.42 3.64 0.49 

  30 34.87 21.33 3.86 0.45 34.13 20.36 3.61 0.51 

 

 

 


