
Escola Tècnica Superior d’Enginyeria Informàtica
Universitat Politècnica de València

Open World Streaming:
Automatic memory management in
open world games without loading

screens.

Trabajo Fin de Grado
Grado en Ingenieŕıa Informática

Alejandro Juan Pérez

tuketet@gmail.com

Supervised by

Ramón Pascual Mollá Vayá

2015-2016

mailto:tuketet@gmail.com

Contents

1 Introduction 3

2 Open world videogames 4
2.1 Content generation . 5

3 Requirements 6
3.1 Main requirements . 6
3.2 Secondary Requirements . 7

4 Level-based videogames 8

5 World streaming 9
5.1 Examples of games using world streaming 10
5.2 The strategy . 18
5.3 Loading Resources is slow . 19

6 The architecture of the engine 21

7 Implementation 23
7.1 Graphics System . 23

7.1.1 Architecture . 23
7.1.2 Features . 24
7.1.3 Why did I implement my own graphics engine? 25
7.1.4 Modern OpenGL programming 26

7.2 Physics System . 29
7.2.1 The issue of the precission 30
7.2.2 Alternative approaches 30
7.2.3 Our approach . 31

7.3 Resource Manager . 31
7.4 World Streamer . 34

8 Result and testing 38
8.1 Demo . 39
8.2 Performance . 40

9 Conclusion 44

10 Update: animation system 45

11 Future extensions 50

1

12 License 51

13 Tools and dependencies 51
13.1 Used tools . 51
13.2 Dependencies . 51

2

1 Introduction

Open world games are among the most appreciated games by players. They
provide users the chance to explore a big world and they are very immersive.
Open world games grant players the freedom to take any decision and enjoy
their high interaction.

In open world videogames the player, usually, controls an avatar over a
big virtual world. So the player that controls the avatar takes its skin and,
ideally, gets immersed in the virtual world.

There is a good chance you know about some of the most famous open
world games. Some of them are: Grad Theft Auto series 1 , The Elder Scrolls
series 2 or Minecraft 3. These games, apart from being very famous, they
have all been in the top of the best-selling videogames[1].

• Minecraft has sold 19 million copies for the PC platform and it is the
most sold PC game ever.

• Grand Theft Auto V has sold 19 millons copies for the PS3, making it
the most sold PS3 game ever.

• The Eder Scrolls: Skyrim has sold 20 millon copies for PC, XBOX and
PS3.

Therefore, open world games are not only about fun, freedom and high
interaction but also a promising business. And as we will see they are tech-
nologically challenging.

Despite open world games are well know, the techniques that are applied
in their implementation are not. Game studios that are experienced in the
implementation of open world games, like Rockstar, keep well their secrets.
The development of open world game engines requires a great investment.

The purpose of this project is to develop a game engine that will support
making open world videogames. Our engine should allow the creation of
games with huge worlds and avoid loading screens. There is very few infor-
mation about the topic (specially at the implementation level). My intention
is to gather available information and extend it with my own thoughts and
get them to be implemented. Hopefully, this article, and the open source
code that comes along with it, will help other people to understand the main
concerns they should take when developing open world games.

1Grand Theft Auto is a series of games produced by Rockstar
2The Elder Scrolls is a series of games produced by Bethesda
3Minecraft is a sandbox game produced by Mojang

3

2 Open world videogames

Open world are some kind of videogames in which the player can move freely
in a huge virtual world. The structure of the game is not linear in terms of
gameplay. That means, the player has the choice on what to do next. There
are some game genres that can benefit a lot from the open world approach.
For example, role playing games (RPG)4, sandbox5 and vehicle simulation6

are enhanced when convined with a big open world.
In some open world RPGs, the player can explore the world and complete

missions. Some of these missions are not mandatory so the player is allowed
to decide whether or not to take them. These is an example of the non-
linearity we have been talking about.

Figure 1: Far Cry 3 is a RPG featuring an open world

In an open world vehicle simulation videogame, the player would be free
to drive around a big city or the long roads of the country side.

4https://en.wikipedia.org/wiki/Role-playing_video_game
5https://en.wikipedia.org/wiki/Glossary_of_video_game_terms#Sandbox_

game
6https://en.wikipedia.org/wiki/Vehicle_simulation_game

4

https://en.wikipedia.org/wiki/Role-playing_video_game
https://en.wikipedia.org/wiki/Glossary_of_video_game_terms#Sandbox_game
https://en.wikipedia.org/wiki/Glossary_of_video_game_terms#Sandbox_game
https://en.wikipedia.org/wiki/Vehicle_simulation_game

Figure 2: Euro Truck Simulator is a driving simulator with a realistic open
world

2.1 Content generation

Since open world games have such a big universe, there must be a lot of
content to fill up all that space. It is required to have a lot of people creating
that content (programmers, designers, artists...). Sometimes, when there are
not so many human resources available, it is a good choice to generate the
world procedurally. Therefore, we can get help from the computers in order
to fill the world with fun content. Most of the times, there is a mixture
of procedurally generated content and artists content. But there are some
games where the content generated by algorithms is predominant. Having the
computers to do such a costly task is an advantage for indie game studios
because they can not afford hiring so much people. No Man’s Sky7 is an
example of a videogame with a procedurally generated world developed by a
small team.

7No Man’s Sky is a game produced by Hello Games

5

Figure 3: No Man’s Sky is a videogame with a potentially unending open
world (procedurally generated)

Whether or not the content of open world games has been generated by
a computer or a human, there is a common trend in the latest open world
videogames: there are less and less loading screens. The videogame design-
ers are trying to avoid loading screens when possible, so the player doesn’t
have to wait and has his immersion feeling increased. This is accomplished
thanks to a techniche called world streaming. This is the main focus of this
document.

3 Requirements

So we are willing to make a game engine that supports the development of
open world games and avoids loading screens. We are going to focus on the
requirements that are more specific for open world games. And requirements
that are common for most game engines will be left as secondary require-
ments.

3.1 Main requirements

We consider these requirements are the main target to accomplish.

• Visualization: We said that requirements that are common for any
game engine will be treated as secondary requirements. But this is an
exception. It is very important to have some kind of visual feedback.

6

We need visualization to test our system. Also, it is important in order
to prove that our engine is working properly. So we need to implement
a graphical interface even if it is not very fancy. The graphics will be
2-dimensional.

• Memory management: If there is one thing that characterizes open
world games is that they usually have very big worlds. These worlds
have a huge amounts of data (entities, textures, meshes, sound, etc).
Some of this games require several tens of gigabytes of compressed data
in secondary disk. Obviously, we can not expect our users to have that
much RAM capacity. The main challenge will be to keep memory con-
sumption to a minimum while not compromising playability or quality.
The trick we are going to use is to load into main memory only the
things that are closer to the player. Another thing that we will do
is to avoid duplicated resources in RAM. For example, there are is a
forest that has many trees that share the same set of textures, we must
accomplish that each texture is in RAM at most once.

• Accurate physics simulation: Again, this is a feature that most
game engines incorporate. But it is important as a main requirement
because accuracy in open world games carry challenges that must be
solved. We will talk about this topic later because it is complex and
requires its own space (7.2.1).

• Easy to use: It is important that making games with our game engine
is as easy as with any of the engines we are used to. If our engine was
too difficult to use nobody would use it.

• Testable: We want to be able to see if our engine is working as ex-
pected.

3.2 Secondary Requirements

These requirements would be great to be implemented for a commercial game
engine but not the main target of this academic work.

• Sound: Every game engine has sound and it is not an issue in open
world games.

• Scripting: We could embed some scripting language as it is done in
most game engines.

• Advanced graphics: They have nothing to do with world streaming.

7

• Persistency: It would by great if changes made to the world were
persistent.

• Efficiency: Saving computational resources in world streaming will
make them available for other tasks like physics simulation or artificial
intelligence.

4 Level-based videogames

Traditionally games have been structured in levels. In this kind of games
the player must complete the current level to advance to the next one. Once
one level is completed that level doesn’t need to remain in main memory.
Therefore, resources can be deleted. The mechanics of this type of games
allows to manage the resources of the game in an easy and efficient way.

Level 1 Level 2

Level 1 Level 2

Loading...

Figure 4: Level loading mechanics

It is well know that computers(and other gaming devices) usually have
two types of memory. The first memory is the one we usually call main mem-
ory. Main memory is fast and small. The second memory is the secondary

8

storage memory. This one is slow and big. Changing of level requires loading
all the resources of the next level from secondary memory and, therefore, it
is slow. That’s why in most level-based games changing of level will pop-up
a loading screen and the player has to wait for a while [21].

Figure 5: One loading screen from Sonic

Sometimes, the designers of the game use the loading screen as a mean
to give tips to the player.

The approach used by level-based games is not suitable for open world
games, we need world streaming in order to avoid loading screens. That
doesn’t mean there are not open world games that use the level-based ap-
proach but, probably, the only reason to implement an open world videogame
with loading screens is because it is easier.

5 World streaming

World streaming consists on loading game resources and entities on demand.
The concept is very similar to video streaming. In video streaming the data
is sent from disk or from the network as it is needed. So in world streaming
the game contents are taken from the disk (or from the network) to main
memory as they are needed. In contrast to video streaming, world streaming
is not as straightforward. In video streaming the data is sequential, that is,
you know what comes after. World streaming is different because what comes
next depends on what the user does. So we must have the data prepared for

9

all the decisions the user can make. Imagine the case of a platform game
such as Terraria8. Terraria is a 2D game that has an enormous map.

Figure 6: Screenshot of Terraria

In Terraria the player can move in four directions (up, down, left, right).
So when the user chooses to go to any of the four directions the data must
be already prepared in main memory no mater what key is pressed.

5.1 Examples of games using world streaming

”Streaming is the backbone of everything we do. Everyone at the company
understands how it’s structured.” said Adam Fowler, the Technical direc-
tor at Rockstar North [3]. Companies, such as Rockstar, know that world
streaming is the technology that supports their success.

In this section we are going to show some of the most relevant games
supported by the world streaming technology.

It is pretty easy to find out whether a game is using some kind of world
streaming or not. First of all, the game uses less RAM than the size it takes
in secondary storage. This would mean that not all the content of the game
is loaded at start up (which could be the case in small sized games like Retro
City Rampage DX[22]). The second characteristic that identifies games using
streaming is the lack of loading screens when moving around (there can be
still some loading screens like the first one and when taking portals).

8Terraria is a sandbox game by Re-Logic

10

Hunter - Paul Holmes (1991) Hunter is one of the main influences of
GTA (Grand Theft Auto). Hunter is a 3D action-adventure game in which
the player could travel around a pretty big world. The degree of freedom
in this game was enormous. There were many vehicles (bicycles, cars, ships,
tanks, airplanes), places, and weapons. It is certainly not the first open world
game but from the information we have I could affirm it might be the first
game that used some kind of world streaming.

Figure 7: Screenshot of Hunter

In this game there were missions that could be completed but it was the
player who decided whether or not to complete them.

Hunter was released for Amiga and Atari. The acceptance of the game
was great and magazines ranked it with high scores.

Grand Theft Auto - Tarantula Studios (1997) This was the first
Grand Theft Auto. With an enormous city and mainly 2D graphics, GTA
was the one that started the famous series of violent games. The player
takes the role of a criminal that can drive all around the city without loading
screens.

11

Figure 8: Screenshot of GTA

The game was released in 1997 for PC and PlayStation, and in 1998
for GameBoy Color. The GBC (GameBoy Color) version is considered to
be a great technological achievement due to the hardware limitations of the
portable console. The first GTA was successful in sells mainly thanks to the
GBC version but magazines and users rated it low[4].

Midnight Club: Street Racing - Angel Studios (2000) Midnight
Club is a series of open world racing games. In this game you take the role
of an urban street racer. The player can drive all around The Big Apple
and challenge other street racers. In the missions you will have to defeat
your enemies and scape from the cops. Completing missions will provide you
respect and money to buy new cars. But you can skip missions and just
enjoy driving around New York.

12

Figure 9: Screenshot of Midnight Club: Street Racing

This first Midnight Club was released in the same year that the PS2
(PlayStation 2) was commercialised. The acceptance of the public was good
but sells were less than expected. One year later, they released the GBA
version which was rated poorly. Despite of its unfortunate sales, this game
is the one that started a successful saga.

Dungeon Siege - Gas Powered Games (2002) Dungeon Siege is a
role-playing videogame very similar to Diablo series. Scott Bilas, one of the
developers of the game, published a very inspiring article about how the team
managed to develop a game with such a big world[2]. Thanks to its flexible
scripting engine the community was able to make modifications of the game,
and even some people used the engine to make their own game. Despite the
main story of the game is very linear there are many secondary missions and
the player has quite freedom to move around. The greatest achievement of
this game was avoiding all loading screens except for the initial one. Even
taking portals is instantaneous. Graphics were impressive for the time being.

13

Figure 10: Screenshot of Dungeon Siege

Dungeon Siege had an online mode too. In the online mode you could
grab your friends and complete the adventure in company.

Dungeon Siege had good sales but maybe not as much as it deserved for
its technological quality and good graphics design

Grand Theft Auto: San Andreas - Rockstar North (2004) After
the Rockstar ’s successful titles GTA III and GTA: Vice City, it came an
even more sold game: GTA: San Andreas. Take the role of Carl Johnson,
the feared gangster. This game has one of the biggest maps in the history of
videogames. There is complete freedom to wander around any of the three
enormous cities.

14

Figure 11: Screenshot of GTA: San Andreas

San Andreas is the most sold PS2 game ever. Very successful for the PC
and XBOX platforms too. And not only that, the game is still having good
sales for PC and Android.

World Of Warcraft - Blizzard (2004) World of Warcraft (WoW) is an
MMORPG (massively multiplayer online role-playing game). This game has
a different type of world streaming from the one we have seen so far. In this
case the information that provides the status of the entities does not come
from the hard disk but from the network. World streaming in the network is
even more challenging but, for instance, resource management is very similar.
This game has a big world and social interaction between players. Chatting,
trading and fighting with other players is possible in WoW.

15

Figure 12: Screenshot of World of Warcraft

WoW has been the most played multiplayer game for many years and it
is the game that provided most earnings of all times($10 billion)[5].

Fallout 3 - Bethesda Softworks (2008) World streaming is a feature
present in many of the new-generation videogames. Fallout 3 is just one of
them that has an enormous world and impressive graphics.

16

Figure 13: Screenshot of Fallout 3

Minecraft - Mojang (2011) Minecraft is the sandbox that proved that
games are not all about graphics.

Figure 14: Screenshot of Minecraft

Minecraft is the most sold PC game of all times.

Conclusion We have seen many games supported by the world streaming
technology. The trend shows that open world games are becoming more
popular and it does not seem it is going to stop.

17

5.2 The strategy

The most valuable source of information I have found about world streaming
is an article called The Continuous World of Dungeon Siege by Scott Bilas [2].
In this article, Scott Bilas explains how they developed Dungeon Siege. Dun-
geon Siege is an open world 3D game released in 2002. It was developed by
Gas Powered Games and distributed by Microsoft. In this article I have
found many useful tips for implementing an open world streaming engine.
Dungeon Siege is a 3D game but you can only move in four directions (the
world is landscape shaped). So the approach followed in Dungeon Siege is
similar to the one we would follow in a 2D game.

In Dungeon Siege the world is divided into pieces of land which are aligned
to a grid. These rectangles of land are called nodes. Any node can be
connected to every other node. If two nodes are linked, that means that if
the player is in one of them, he could travel to the other at any moment.
Therefore, when the player is in one node we must be loading at least all the
directly connected nodes. Normally the connections will match the adjacent
pieces of land.

Figure 15: Connections of adjacent pieces of land (we are not taking into
account the diagonals)

But there are cases in which two adjacent nodes could not be connected
(e.g. there is a wall separating them). Or there could be nodes that are

18

connected and are not adjacent (e.g. there is a portal that will teleport the
player from one place to another).

Figure 16: Two nodes connected by a portal.

This node-based approach is the one used in Dungeon siege. The design-
ers of the game used a custom tool that would allow them to manage the
connections of the nodes.

For our engine we are going to take a simpler approach and we will assume
each node is connected to all the surrounding nodes (i.e 8 nodes at most).
This will simplify the job of the designers of the game. With our approach
taking portals will require a loading screen (which is very common current
games).

5.3 Loading Resources is slow

Imagine that we have implemented our strategy and in a given moment the
player has changed of node. We will have to load to main memory all the
entities that are located in the new adjacent cells (or nodes). That implies:
loading from disk the file that describes that cell, parsing that file in order
to find the entities, loading all the resources that are required by the entities
and finally creating the entities. So when the node had been loaded you
would realize that you have spent 1 second (or much more) and in this time

19

you haven’t rendered a single frame!. This would be perceived by the user
as a freeze. Therefore, we have to solve this in some way.

Figure 17: Loading from disk in the main loop.

The bottleneck here is the access to disk. Access to disk blocks the CPU
and requires some time. So most of the time, when loading a new cell, the
CPU would be idle while it could be doing important tasks (e.g. physics
simulation or rendering). The solution that is suggested in the article of
Scott Bilas (and the one we have followed) is to use a separate thread for
loading resources from disk. So if our main thread (the one that executes
the main loop) needs to load a resource, instead of doing it itself, it asks the
background thread to do it. This way, the main thread is never idle when
there is job to be done and the secondary thread will be loading from disk
at its own pace.

20

I need this resource to be
loaded but I can't do it myself

because I must attend other tasks.
Would you mind doing it for me?

Hi, background thread!
Hello!

Sure!

M BG

Figure 18: Two threads talking.

Figure 19: Loading from disk is performed by a secondary thread

6 The architecture of the engine

Our game engine will be composed by some subsystems. In order to work
properly the components of the engine must interact with each other in some
way.

21

List of
active entities

World
Streamer

Graphics
System

Physics
System

Resource
Manager

Figure 20: Game engine architecture.

The picture above is a simplification of the architecture. Notice that in
the diagram only two subsystems are represented. The graphics and physics
components are the most important subsystems, but there could be others
like sound or artificial intelligence (AI).

Resource Manager: The resource manager is the component in charge of
accessing the file system. It runs on a separate thread so it does not interfere
in the progress of other tasks. Also, it must assure that there will not be
duplicated resources in main memory. The resource manager is used by all
the other architecture components. So it takes the role of a servant for the
others. In other to ease the access to this utility system, it is very convenient
to implement it as a singleton.

World Streamer: It is the one. The brain of the architecture. The world
streamer is in charge of telling the subsystems below (graphics and physics
in our diagram) what to do. It must decide whether a given entity must be
loaded or not. An inefficient implementation of the world streamer would
decide that all the entities of the world must be loaded. And a useless
implementation would not load any entity. So the world streamer needs to
compute the subset of entities that must be loaded at any time. This subset
of loaded entities is what we find in the diagram as ”List of active entities”.

22

Graphics System: Might be called graphics engine too. It will get a list
of entities that must be rendered from the world streamer. So it will be
just told what should be displayed on the screen. The graphics system is
independent from all the other components and does not care who is using
it.

Physics System Very similar to the graphics system. In the diagram you
can appreciate the difference between these two: an extra arrow. This arrow
flows from the physics system to to the world streamer. The meaning of this
arrow is the position of the main character. After each physics simulation step
the position of the main character might have changed and the world streamer
needs this information in order to recompute the set of active entities.

7 Implementation

In this section I will explain briefly how I implemented the modules of the
game engine.

7.1 Graphics System

The graphics system is implemented from scratch (there is a reason that will
be explained later). Since implementing a graphics engine is not the purpose
of this academic work, it does not have a big set of features.

7.1.1 Architecture

This graphics module is split in two layers. The first layer is the low-level
layer. The low-level layer is the one that uses the OpenGL API (application
programming interface). The purpose of the low-level layer is to provide a
simple interface for the upper layer. This way the high-level layer does not
need to understand any of OpenGL. So if we needed to deploy the application
to a platform were DirectX performs better, we would only need to replace
the low-level layer and the rest of the whole system would remain the same.

23

World Streamer

High-level Renderer

Low-level Renderer

OpenGL

Graphics
System

Figure 21: Graphics system architecture.

The low-level renderer API is just a reduced set of functions that allows
to draw things on the screen. On the other hand the high-level renderer
provides a class-based mechanism to define the scene. That is, in the low-
level renderer we would say: ”draw texture A in position X” and it will be
shown on the screen for just this frame. And in the high-level renderer we
would say: ”there exists a sprite in X and it has priority P” and it would be
drawn on the screen until it is removed.

7.1.2 Features

The renderer I have implemented is not very sophisticated but works fine for
our purpose. Animations are not yet supported(Update: I have implemented
a new animation system [10]). You can assign priorities to the sprites in order
to define what is drawn on top. There is an abstraction of the camera too.
The low-level renderer uses the subset of functions available in OpenGL ES
(embedded systems), so it could be ported to mobile platforms.

24

7.1.3 Why did I implement my own graphics engine?

There are three reasons I had to implement a custom graphics engine.

Most graphics engines will manage resources automatically. Auto-
matic resource management is one of the main targets of this academic work.
If we had the render engine to do this for us, we would be missing something
important. Even though, the graphics engines only manage graphics related
resources and we would like to have resource management unified. What
is more important, the resource manager of the graphics engines might be
blocking.

OpenGL implementations do not support multithreading. OpenGL
does not allow you to call its functions from threads other than the main
thread. If you try to do so the behavior will be completely undefined [6].

Loading a graphics resource (like a texture) involves these steps:

• Load the resource, which is stored in hard disk, to main mem-
ory. This must be done by the secondary thread because we are ac-
cessing hard disk and that is slow.

• Allocate the resource in video card memory. To render an object
all its resources must be in the memory of the graphics card. To allo-
cate, for instance, a texture in video memory we need to call OpenGL
functions. That is the reason this step must be performed by the main
thread (only the main thread is allowed to call OpenGL functions).
Fortunately, the process copying a resource from RAM to VRAM is
fast enough, so it does not block other tasks.

• Delete the resource in MM. Once the resource is in VRAM, we
do not need it anymore in RAM. This task is not costly and could
be performed by any thread. In our implementation it is deleted by
the secondary thread because we think it makes more sense that the
memory is released by the same thread it was allocated by. Also, in
this way the code seems better encapsulated.

Most graphics engines provide functions to load graphics resources. And
these functions do all the steps that we mentioned in a single call. Therefore,
if we used one of these graphics engines, we would not be able to split the
work among the two threads. Probably, there are workarounds that would
allow to split tasks but they might difficult to implement. This is the main
reason I have decided to make my own render engine.

25

I had personal interest in learning modern OpenGL. Also, I wanted
an excuse to learn modern OpenGL features like shaders. The version of
OpenGL I used is OpenGL ES 2.0. This version of OpenGL is compatible
with embedded systems, smartphones and tablets. In this version you are
forced to use shaders because all the fixed pipeline functionality has been
removed. I will dedicate a section to explain briefly how to use shaders in
modern OpenGL.

7.1.4 Modern OpenGL programming

I do not pretend to make a tutorial on modern OpenGL nor shaders but just
to summarize what I have done. I have used only the subset of API that is
common to OpenGL 2.1 and OpenGL ES 2.0. In my testings, I used version
2.1, which is the one that runs on PC.

Since OpenGL ES does not support fixed pipeline functions I had to use
shaders. What are shaders? Basically , they are pieces of code that run in the
graphics card. They are used to achieve custom visual effects[7]. In OpenGL
shaders are written in a specific programming language called GLSL. GLSL
is very similar to C[8]].

There are two types of shader.

• Vertex shader. Vertex shaders take as input one vertex and gives
as output the position (or other properties like normal and UV coor-
dinates) that vertex should take. It is used to achieve effects such as
mesh deformation. One example where vertex shaders are used is the
waves of the ocean. The vertex shader should change the position of
vertices so it fakes the water moving. In our 2D render engine, we do
not need the vertex shader to do anything special: it just forwards the
position as it is.

#version 120

/**

* In the vertex shader you are computing the position

* of the current vertex.

* Also you compute the texture coordinate corresponding

* to this vertex.

**/

// these are the parameters received by the main program

attribute vec2 inPosition;

26

attribute vec2 inTexCoords;

void main()

{

// compute the position of the current vertex

// In this case you are just forwarding the position,

// but this allows you to achieva cool effects like the

// mesh bending or the waves of the ocean

// The fouth coordinate is called W(1.0) and it is used

// for normalization purposes(read:

// "http://stackoverflow.com/questions/2422750/

// in-opengl-vertex-shaders-what-is-w-and-why-do-i-divide-by-it")

gl_Position = vec4(inPosition, 0.0, 1.0);

// compute the texture coordina corresponding to this

// vertex

gl_TexCoord[0] = vec4(inTexCoords, 0, 0);

}

• Fragment shader. Also called pixel shader but this term is more used
for DierectX. Fragment shader is executed for every pixel and it should
output the desired color for the current pixel. In our code we will be
returning the color of the corresponding texture coordinate.

#version 120

/**

* In the fragment shader you are computing

* which should be the color of the current pixel

* (fragment and pixel are sinonyms in OpenGL,

* in fact in DirectX it is called pixel shader)

*

* The output goes to -> gl_FragColor

*

**/

uniform sampler2D tex;

void main()

27

{

// take the color of the texture pixel

vec4 color = texture2D(tex, gl_TexCoord[0].st);

// output

gl_FragColor = color;

}

Shaders are compiled at runtime. In the following picture there is a
summary of the steps that are required to make a shader program.

glCreateProgram()

glAttachShader()

glAttachShader()

glLinkProgram()

glUseProgram()

glCreateShader()

glShaderSource()

glCompileShader()

glCreateShader()

glShaderSource()

glCompileShader()

FRAGMENT SHADER

VERTEX SHADER

Figure 22: The process to compile and use shaders.

Once you have built your shader program you can use it at any time.
These are the tutorials that I have learned from: [9] [10] [11].

Since in modern OpenGL ES matrix operations (such as glRotatef()) have
been removed I had to use one geometry library: GLM[12]. For window
management I used SDL2[12]. And for texture loading I employed SOIL[14].

28

7.2 Physics System

The physics system we have implemented is not very complex. We have made
a small wrapper of Box2D. Box2D is a popular 2D physics engine[15]. It is
used by, the well known game engine, Unity.

World Streamer

Box2D

Physics
System
Wrapper

Figure 23: Physics System Architecture.

Our wrapper consists of two main classes: PhysicsComponent and Physic-
sSystem. The first one is an abstract class that represents a rigid body. In
our engine entities are composed of components and PhysicsComponent is
one of them. An entity could have a PhysicsComponent or not.

There are only two implementations of PhysicsComponent: PhysicsBox
and PhysicsCircle. PhysicsBox is defined by some and width and height
(axially aligned) and PhysicsCircle by the radius. You can assign mass,
dimensions and position to it. Also you can chose at creation time if it is
dynamic or kinematic. Kinematic bodies will not be affected by forces. Also,
if mass 0 is assigned to a body it will be assumed to be static (can’t be moved
at all).

PhysicsComponent’s are created by a request to the PhysicsSystem. When
you are done with a PhysicsComponets request its deletion to the Physic-
sSystem. The GraphicsSystem and the PhysicsSystem run at the same rate.
So in the main loop you only have to call the update function of the two
systems.

29

7.2.1 The issue of the precission

In the requirements section we stated that physics simulation was a main
requirement because it was a challenge in big world games. Here it comes
the reason. Floating point numbers can be imprecise when they become too
high (or too low).

0-∞ +∞

Figure 24: Float sampling representation.

As you can see, floating point numbers are not distributed uniformly. The
sampling rate is better for values that are closer to 0. And the number of
represented values decreases as we go towards −∞ or +∞. So in our game
the precision would decrease as we get further from the origin of coordinates.
That affects mainly the physics simulation but also graphical representation.
And this problem becomes worse if the world is very big.

So how can we solve this? Well, if the problem raises because the entities
are too far from the origin of coordinates, let us move the entities to where
the origin of coordinates is (or move the origin of coordinates to where the
entities are). We will retake this topic in the ”World streamer” section (7.4).

7.2.2 Alternative approaches

There are other approaches to overcome the precision issue.

• Using double: Double precision floating point numbers have a broader
range and better accuracy. It would be pretty straightforward to re-
place floats by doubles. But this is not scalable. What if we need even
more accuracy?. Also, some graphics cards might not support doubles.
Therefore, animations and visual feedback would look poor.

• Using fixed-point: Fixed-point numbers (FPN) have constant preci-
sion in all ranges. The range might be too small but we can always use
long integers for a broader range and better accuracy. We could use li-
braries for even greater integers (BigInt), although this would decrease
performance. There are drawbacks for this solution. The physics engine
might not support FPNs, eventhough we could spend time modifying
the source if it is available. The graphics card might not support them
(specially with 64-bit). In genaral, since floating point numbers are so
extended, it would be difficult to integrate with existing software.

30

7.2.3 Our approach

The approach we have chosen has many benefits and the only drawback is
that it is a bit diffucult to implement.

Having the origin of coordinates close to the entities allows us to use the
most precise range of floating point numbers. In that range, floating-point is
even more accurate than fixed-point.

Since we are using the floating-point numbers that most graphics cards are
optimized for, we get the best possible performance. And the compatibility
is also the best.

We can use any existing software because floating-point is so extended.
When storing entities for persistence, the positions will be relative to the

cell they belong to. So any position in the world could be represented as a pair
of cell (integer vector) and relative position (float vector). So as long as the
cell size keeps small, the precision will be fine. And the integer representation
is broad enough for most cases. If 32-bit integers were not enough, you
could always use 64-bit or even libraries such as TTMath[16]. With our
representation we have good accuracy and unlimited range scalability without
droping performance.

The representation that we have used is the same that Scott Bilas suggests[2].

7.3 Resource Manager

The resource manager is the system that takes care of accessing the secondary
storage memory. It provides all the other system components an interface to
get resources when they need them without having to wait. So basically, the
resource manger returns a handle to the resource when it gets a request. Even
if the resource is not loaded, it should return a handle (instantaneously).

The following comic shows in a friendly way how the resource manager
works.

31

I need texture "kitten.png".
I'm going to ask
ResourceManager for it.

Hi, mr. RM.
I need "kitten.png"

Ok, let me check.

Sorry, dude. That texture
is not in RAM.
I will have to load it from
disk. When loaded you
will find it at address 42.

Ok

While the resource
is being loaded, I
can do other things.

Figure 25: Comic of the resource manager.

32

As you can see, even though the resource manager says that the requested
resource is not in RAM, he tells the requester that when it becomes loaded,
he will find it at address 42 (that is the handle).

Take a look at (this time more serious) representation.

World
Streamer

I need texture

"duck.png"

if is
loaded

yes

no

increase
reference

count

increase
reference

count

enqueue to
load

return handle return handle

RESOURCE MANAGER
INTERFACE

RESOURCE MANAGER
INDEPENDENT

THREAD

fo

rever

load
resource

Figure 26: Diagram of the resource manager.

The resource handle is returned in all cases. The handle has an attribute
that tells if the resource is loaded or not.

So for instance, the renderer needs to draw a texture. Therefore, the
graphics system requests to the resource manager that texture. Every frame,
the graphics system will check if the resource has been loaded. And if it is,
the texture is drawn.

The resource manager needs to keep track of how many handles are point-
ing to each resource. When the number of handles for one resource becomes
zero, the resource is released.

If one resource needs to be loaded, that request is enqueued in a special
queue. What is so special about this queue is that it is prepared for being
accessed by several threads (thread safe queue). This type of queue is usually
called work queue.

In our implementation there is the abstract class Resource. These are
some of the classes that inherit from Resource:

33

• ResourceText . It represents a text file on disk. When loaded you
will be able to read the file using ”getText()”.

• ResourceTexture . This is the resource that will be required by the
sprites. When loaded you can call ”getTextureData()” and you will be
given a pointer to the raw texture data.

• ResourceCell . This resource is quite special. When loaded, you will
be able to get the data also. But this time you can modify the data.
You are given a XML node and you can modify it. When there are no
references to a ResourceCell it will be released and all changes made
will be stored. This resource is used to represent a cell where entities
can be placed. Therefore, you can add and remove entities from the
cell and seamlessly all changes will be persistent.

The resource manager is a singleton and needs to be initialized at the
beginning of the application. In order to do so, just call ”launch()”. That
will start the secondary thread.

In order to implement the work queue, I used pthreads and I got inspired
by this article[16].

7.4 World Streamer

The world streamer is in charge of telling which entities should be loaded and
which ones should be deleted. The world is divided in equally sized squares
and inside each of these cells we will place the entities.

Figure 27: When changing of cell some cells are loaded and some others
become deleted.

Each cell is represented in an XML file and they are named as ”cell X Y.xml”.
Take a look at this example of XML file:

34

<cell>

<entity>

<position>

<x>109.925</x>

<y>180.015</y>

</position>

<graphics>

<texture>tukifoc.png</texture>

<width>120</width>

<height>120</height>

</graphics>

<physics>

<shape>box</shape>

<width>120</width>

<height>120</height>

<mass>60</mass>

</physics>

</entity>

<entity>

<position>

<x>9.91001</x>

<y>112.793</y>

</position>

<graphics>

<texture>wood_box.png</texture>

<width>80</width>

<height>80</height>

</graphics>

<physics>

<shape>box</shape>

<width>80</width>

<height>80</height>

<mass>60</mass>

</physics>

</entity>

</cell>

In this example you can see there are two entities attached to the root
node (cell). Each entity has position, graphics component and physics com-
ponent. Inside the graphics component there is the texture and the dimen-
sions. In some cases, you will find ”priority” for the graphics component. If

35

the priority is not specified, zero will be assumed.
At he beginning the world streamer will search in the ”world folder” di-

rectory for all files named like ”cell X Y.xml” (where X and Y are integers).
The are no restrictions in the shape of the world. All the following shapes
are valid.

Figure 28: Examples of valid world shapes.

If an entity gets out of a cell and gets in a space where there is no cell
(what is not green in the previous picture), the entity is stored in the last
valid cell it was. So it is the job of the designer to make sure no entity will
get outside of the map.

Main character,
where are you?I'm at

(251, 217)

You have changed
of cell!

The main character has changed of cell.
I must delete all the old entities, create

the new ones and move the origin of
coordinates.

MC

WS

Figure 29: World streamer realizes that the main character has changed of
cell.

The world streamer implements the IWorldStreamer interface, so you
can have several implementations for the world streamer. In the early be-

36

ginning, when the WorldStreamer was not still implemented, we wrote Test-
WorldStreamer. This class just streams one entity and its implementation
was pretty strightforward. This way of programming allowed us to make
a fast prototype and check that all the system components were interact-
ing properly. The main functions of this interface are: init(), update() and
getEntities().

The implementation of the update() function is the core of the system. It
determines the list of active entities. Its implementation is one of the longest
but it is not as difficult as it might seem at first. The following diagram sums
up what this function does.

if out
of bounds

yes
change of cell

if main character
changed of cell

no

yes change origin
of coordinates

release old
cells

load new cells
parse loaded
cells (XML)

end

FOR EACH ENTITY

Figure 30: Flow diagram of the update function of the WorldStreamer.

37

In each frame we check for cells (XML files) that have been loaded and
we parse them. After parsing, we create the new entities.

Deleting a cell involves creating an XML tree, removing all entities and
finally requesting the resource manager to release the XML file (thus saving
it).

Also, we must handle when the user closes the application. So when the
user closes the window or presses Esc we must save all the active cells.

In order to parse XML and modify the trees, we have used RapidXml.
This library claims to be the fastest out there. There is also a high-level
wrapper of this library in the famous Boost library collection but I realized
later. Anyhow, I have found it to be pleasant to use. The only pitfall I have
found with this library is a small compiling error there is when generating
the text of the tree. I seems to be a bug that can be easily solved[17].

When I had to implement the code that looks cell files in a certain direc-
tory, I had to use a external library: Boost Filesystem. I decided to use this
library because of its good portability. Also the Boost libraries are guarantee
of quality.

8 Result and testing

The final application consists of a stable game engine. Yet not fully-featured.
Note: There is section 10, where we show a newer version of the engine.

Figure 31: Demo screenshot.

38

8.1 Demo

As you can see, we have developed a demo using our game engine. After
a lot of debugging, everything seems to work very well. Graphics are fine,
physics are accurate and overall performance is petty good.

In order to test our system intensively, we have written an script that
generates a random world. We have made our tests with a world of 1 million
cells (which is about 4GB of XML files). The files must be located in the
”world folder” directory. In the same folder there is the main character file
(main character.xml). In this file you can configure the appearance, position
and other stuff of the main character.

Our application allows to zoom in and zoom out the camera using the
mouse wheel. When you open the application you will see something like in
figure 31.

If you zoom out the camera you will be able to see the boundaries of the
visualization.

Figure 32: Zooming out.

So if you zoom in enough, the player will not realize that the entities are
being loaded a he walks.

39

You can watch this video of the demo https://youtu.be/ymecWxF886U.
The previous video shows the demo at the time the first performance tests
where made.

There it is a video of the engine with the latest features (much better
looking) https://vimeo.com/159836286.

8.2 Performance

The memory consumption is very low. Running with one million of cells we
get a RAM consumption of ∼70MB.

The world window is the space that will determine the set of entities that
are loaded at any given time. We can configure the size of the world window
in init file.xml. The world window is always square shaped and the side is
always odd. The number you have to put in the configuration file is not the
side of the world window, it is (side−1)/2. This way, the introduced number
is always valid.

The following pictures show different world window sizes.

Figure 33: Window size = 1.

40

https://youtu.be/ymecWxF886U
https://vimeo.com/159836286

Figure 34: Window size = 2.

Figure 35: Window size = 3.

41

We have found that a window size of three is a good balance between
performance and playability. Maybe four for high resolution screens

Window size CPU RAM
1 1% 70.3MB
2 2% 70.3MB
3 4% 70.4MB
4 6% 70.6MB
5 9% 72.7MB
6 12% 74.4MB
10 24% 85.0MB

Table 1: Performance tests.

The CPU consumption is highly dependent on the window size. We have
measured that most of the CPU consumption is drawn at the drawing stage.
The CPU consumption of the physics simulation is only a small part and the
consumption of the other subsystems are negligible.

A big part (around half of the total) of the time spent during the drawing
stage relies in matrix operations. I think there might be a slight margin of
improvement in these matrix operations but not much.

Speaking about RAM consumption, the amount of RAM used increases
very slowly compared to CPU. That is indeed the prove that our resource
manager is taking care of duplicates.

42

Figure 36: Window size = 10.

0 2 4 6 8 10
0

5

10

15

20

25

30

Window size

C
P

U
u
sa

ge

CPU consumption

By observing the graph, we can notice that the asymptotic cost is close to
linear but not exactly. It might be something between linear and quadratic.
That is a great achievement considering that the number of entities grows
like O((2n + 1)2), that is highly quadratical (n is the window size).

43

9 Conclusion

We have developed a game engine that supports big worlds. The performance
is good, so it could be ported to mobile platforms (we have carefully chosen
the dependencies for this purpose). We wanted to create a engine that would
show how to overcome the technological challenges of big world games and I
think that the goal has been accomplished.

In addition of creating the engine, we have been able to create a demo
that tests the engine intensively. Thanks to this, we have proved that our
engine is stable and, apparently, has no bugs.

We have successfully integrated graphics and physics.
Physics simulation is accurate thanks to the, moving the origin of coor-

dinates, strategy. We have wrapped a particular physics engine but all the
concepts used are applicable to any other physics engine.

We have implemented a small render engine. The reader of this article
would learn how to implement a graphics system that has to cooperate with
the resource manager to overcome the limitations of multithreading with
OpenGL. Also, I have learned the basics of modern OpenGL programming
and I have applied them.

Also, we have implemented a resource manager that could be used in
other types of applications, not only videogames. Our resource manager is
easy to extend. Avoiding race conditions has been a difficulty and we have
successfully dealt with it.

The world streamer implementation works fine and our architecture would
allow to create new implementations and swap between them easily. The
world streamer is configurable, so it can be adapted to the hardware capa-
bilities.

It was not a main requirement but we also managed so the modifications
of the world are persistent.

The code is well documented using doxygen syntax. Hopefully, any de-
veloper who is interested in learning or contributing could understand the
code and extend the engine.

In my opinion world streaming is an interesting topic in the field of
videogames. I think open world videogames will keep being among the most
popular videogames. Up to now, successful open world videogames have come
from very important companies that can make great investments. From my
point of view, open world games are a difficult target for small companies
and indie developers. Not only because the implementation of an appropriate
engine is a lot of work, but also because a lot of content and resources have to
be produced. But if the proper tools become available to them, that target
will get feasible. Also, procedural generation could help developers to fill

44

the world with great content. I think in some years the number of available
tools for making open world games will grow and they will be accessible for
anybody. I hope to see some indie open world games in a few years.

10 Update: animation system

The new animation system I have implemented extends the engine and adds
some complexity. Also, implementing this feature forced me to refactor the
code. Now the engine is performing better (in terms of loading times), more
stable and better organized.

The animation system is implemented from scratch. The animations are
based in frames.

We have created a custom file format based in XML for representing
sprites. Sprites can have multiple animations. The structure of these sprite
files is represented in the following UML diagram.

Sprite Texture* *

Animation

1..*

Frame
1..*

duration: float
rect: AARect

reference

Figure 37: UML diagram

As you can see, one sprite has at least one animation and each animation
has at least one frame. Frames have associated a duration and a rectangular
region in a texture. Having the possibility to refer to a specific region of a
texture allows us to use sprite sheets.

There are a lot of sample sprites in the bin/sprites directory. This is a
fragment of the sprite that we use as our main character:

<sprite>

45

<textures>

<tex id="sp1">pokemon_red_pj.png</tex>

</textures>

<animations>

<anim id="stand_down">

<frame>

<tex>sp1</tex>

<rect>

<x>32</x> <y>0</y>

<w>32</w> <h>32</h>

</rect>

<time>1</time>

</frame>

</anim>

...

<anim id="walking_up">

<frame>

<tex>sp1</tex>

<rect>

<x>0</x> <y>96</y>

<w>32</w> <h>32</h>

</rect>

<time>0.2</time>

</frame>

<frame>

<tex>sp1</tex>

<rect>

<x>32</x> <y>96</y>

<w>32</w> <h>32</h>

</rect>

<time>0.15</time>

</frame>

<frame>

<tex>sp1</tex>

<rect>

<x>64</x> <y>96</y>

<w>32</w> <h>32</h>

46

</rect>

<time>0.2</time>

</frame>

</anim>

</animations>

</sprite>

It is useful to have an id for every animation, so it’s straight forward to
set an animation programmatically. If we wish to make an sprite which is not
animated, we can make an animation with only one frame, since animations
loop by default.

In the following diagram we try to represent the mechanism we use in
order to load and display sprites.

47

Figure 38: Flow chart of the sprite’s loading process

Now there are more steps than when we had just static images. We need
to read the XML of each sprite and from that file obtain the textures that
must be loaded.

In the same way we made sure that no texture is twice in memory, we
want to make sure no sprite is twice in memory. The class Sprite contains the
data which is common to all the entities using it. And the class SpriteStatus
only keeps track of the current status of the animation. That is, the current
frame and the time spent in the current frame.

48

Figure 39: UML representation of the Sprite and SpriteStatus classes

In order to test the animation system I have created a new automatic
world generation script. You can find it in ”bin/world gens”. This new
generator makes better looking worlds. The world is made up of a big set
of template cells (can be found at bin/cell templates). Our generator takes
as input a certain number of rows and columns and fills the world with
randomly chosen cell templates. This is an example of what we have seen
in 2.1. In this case we are making a mixture of manually generated content
and automatically generated content.

49

Figure 40: Screenshot of one generated world

In terms of performance we have performed the same tests we did and
it seems that the animation system has not affected at all. The bottleneck
keeps being the rendering stage.

11 Future extensions

I have taken the development of this game engine as a hobby. I pretend to
continue the development in my spare time.

These are some of the features that I would like to get implemented.

• Scripting: I have already started working on this feature. Right now,
implementing game logic is really difficult. Since the beginning, the
game logic was intended to be done by scripting. When this feature
got implemented, I would consider the game engine usable to make
some real games. I want to embed the Lua programming language.

50

• World editor tool: Right now, everything has to be done by editing
text files. It would be great to have a tool that allows to edit the world
and manage the assets. That would make the engine friendlier to use.

• Sound: No game is complete without sound.

• World description data compression: If you generate a very big
world the world folder gets flooded of small cell files. Getting these
files packed in a single compressed file would save a lot of space and
would make the world folder easier to manage.

12 License

The developed software is open source. It is licensed under the MIT License.
The project is hosted in a public repository:

https://github.com/tuket/OWMAN.

13 Tools and dependencies

13.1 Used tools

• Code::Blocks. Used as the main IDE (integrated development envi-
ronment).
www.codeblocks.org

• Doxygen. Automatic generation of documentation from code co-
ments.
www.doxygen.org

• Apitrace. OpenGL debugger.
apitrace.github.io

13.2 Dependencies

• Boost FileSystem. Allows accessing the file system.
www.boost.org/libs/filesystem

• OpenGL. Graphics API.
www.opengl.org

• SDL2. As window manager.
www.libsdl.org

51

https://github.com/tuket/OWMAN
www.codeblocks.org
www.doxygen.org
apitrace.github.io
www.boost.org/libs/filesystem
www.opengl.org
www.libsdl.org

• RapidXML. For parsing XML and modifiying the tree.
rapidxml.sourceforge.net

• Box2d. As the physics engine.
box2d.org

• POSIX Threads. For creating threads.
pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

• SOIL. A small library that allows to load textures.
www.lonesock.net/soil.html

• GLEW. A library that defines the OpenGL extensions.
glew.sourceforge.net

• GLM. A mathematics library for OpenGL.
http://glm.g-truc.net

References

[1] List of the best-selling videogames.
http://en.wikipedia.org/wiki/List_of_best-selling_video_

games#All_platforms

[2] The Continuous World of Dungeon Siege - Scott Bilas.
http://scottbilas.com/files/2003/gdc_san_jose/continuous_

world_paper.pdf

[3] Technical leads Adam Fowler and Phil Hooker take us through the
technology powering GTA V.
http://www.develop-online.net/studio-profile/

inside-rockstar-north-part-3-the-tech/0184140

[4] GTA article at Wikipedia.
http://en.wikipedia.org/wiki/Grand_Theft_Auto_%28video_

game%29

[5] Top 10 highest grossing videogames of all time.
http://www.businessinsider.com/here-are-the-top-10-highest-grossing-video-games-of-all-time-2012-6?

op=1

[6] Stack Overflow post discouraging multithreaded rendering with
OpenGL.

52

rapidxml.sourceforge.net
box2d.org
pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html
www.lonesock.net/soil.html
glew.sourceforge.net
http://glm.g-truc.net
http://en.wikipedia.org/wiki/List_of_best-selling_video_games#All_platforms
http://en.wikipedia.org/wiki/List_of_best-selling_video_games#All_platforms
http://scottbilas.com/files/2003/gdc_san_jose/continuous_world_paper.pdf
http://scottbilas.com/files/2003/gdc_san_jose/continuous_world_paper.pdf
http://www.develop-online.net/studio-profile/inside-rockstar-north-part-3-the-tech/0184140
http://www.develop-online.net/studio-profile/inside-rockstar-north-part-3-the-tech/0184140
http://en.wikipedia.org/wiki/Grand_Theft_Auto_%28video_game%29
http://en.wikipedia.org/wiki/Grand_Theft_Auto_%28video_game%29
http://www.businessinsider.com/here-are-the-top-10-highest-grossing-video-games-of-all-time-2012-6?op=1
http://www.businessinsider.com/here-are-the-top-10-highest-grossing-video-games-of-all-time-2012-6?op=1

http://stackoverflow.com/questions/11097170/

multithreaded-rendering-on-opengl

[7] Shaders on Wikipedia.
http://en.wikipedia.org/wiki/Shader

[8] GLSL on Wikipedia.
http://en.wikipedia.org/wiki/OpenGL_Shading_Language

[9] GLSL tutorial
http://www.lighthouse3d.com/tutorials/glsl-tutorial

[10] Modern OpenGL tutorial.
https://open.gl

[11] Learn OpenGL.
http://www.learnopengl.com

[12] GLM official webpage.
http://glm.g-truc.net

[13] SDL official webpage.
https://www.libsdl.org

[14] SOIL official webpage.
http://www.lonesock.net/soil.html

[15] Box2D official webpage.
http://box2d.org

[16] Multithreaded Work Queue in C++.
http://vichargrave.com/multithreaded-work-queue-in-c

[17] Solution to RapidXml bug at StackOverflow.
http://stackoverflow.com/questions/14113923/

rapidxml-print-header-has-undefined-methods

[18] Game Coding Complete - Mike McShaffry and David Graham.
http://www.mcshaffry.com/GameCode

[19] Game Engine Architecture - Jason Gregory
http://www.gameenginebook.com

[20] TTMath library
http://www.ttmath.org/

53

http://stackoverflow.com/questions/11097170/multithreaded-rendering-on-opengl
http://stackoverflow.com/questions/11097170/multithreaded-rendering-on-opengl
http://en.wikipedia.org/wiki/Shader
http://en.wikipedia.org/wiki/OpenGL_Shading_Language
http://www.lighthouse3d.com/tutorials/glsl-tutorial
https://open.gl
http://www.learnopengl.com
http://glm.g-truc.net
https://www.libsdl.org
http://www.lonesock.net/soil.html
http://box2d.org
http://vichargrave.com/multithreaded-work-queue-in-c
http://stackoverflow.com/questions/14113923/rapidxml-print-header-has-undefined-methods
http://stackoverflow.com/questions/14113923/rapidxml-print-header-has-undefined-methods
http://www.mcshaffry.com/GameCode
http://www.gameenginebook.com
http://www.ttmath.org/

[21] Level (video gaming) - Wikipedia
https://en.wikipedia.org/wiki/Level_%28video_gaming%29

[22] Steam discussion about the small size of Retro City Rampage
http://steamcommunity.com/app/204630/discussions/0/

882962698536189638/

54

https://en.wikipedia.org/wiki/Level_%28video_gaming%29
http://steamcommunity.com/app/204630/discussions/0/882962698536189638/
http://steamcommunity.com/app/204630/discussions/0/882962698536189638/

	Introduction
	Open world videogames
	Content generation

	Requirements
	Main requirements
	Secondary Requirements

	Level-based videogames
	World streaming
	Examples of games using world streaming
	The strategy
	Loading Resources is slow

	The architecture of the engine
	Implementation
	Graphics System
	Architecture
	Features
	Why did I implement my own graphics engine?
	Modern OpenGL programming

	Physics System
	The issue of the precission
	Alternative approaches
	Our approach

	Resource Manager
	World Streamer

	Result and testing
	Demo
	Performance

	Conclusion
	Update: animation system
	Future extensions
	License
	Tools and dependencies
	Used tools
	Dependencies

