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Abstract. Some works have recently shown the usefulness of simple models of nucleon 
separation energies in terms of neutron and proton numbers. However, the customary use of 
least squares in the process of parameter estimation turns out to be extremely sensible to the 
accuracy of the model and the extent and quality of data (e.g. highly vulnerable to the 
sample size or the possible existence of undesired errors in the experimental values). We 
will show how robust estimation by global optimization instead of least squares estimation 
improves on both the stability of the estimated parameters and the extrapolation to 
unknown energies. Comparison against recently determined experimental data will show a 
level of agreement comparable to the predictions made by the best and much more complex 
models. 
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1. Introduction 

Nucleon separation energies are fundamental properties of the atomic nucleus. They play an 
essential role in nuclear structure theory and nuclear astrophysics, e.g. in the rapid proton and rapid 
neutron capture processes. Therefore they have been the subject of extensive research in recent 
years (for a comprehensive review see e.g. [1]).  
A number of models and relations have been proposed for nucleon separation energies (or for 
nuclear masses or binding energies), among others, the Weizsäcker and improved Weizsäcker 
models [2-3], the Galvey-Kelson mass relations [4-6], the Duflo-Zuker model [7] and mass 
relations in terms of proton-neutron interactions [8,9]. Most of the formulas currently used involve 
extensive theoretical calculations and depend on so many parameters that a possible dominant 
dependence on simple physical quantities like neutron and proton numbers, N and Z, is obscured. 
Recently, some studies have shown the usefulness of very simple models of nucleon separation 
energies in terms of N/Z (or Z/N) [10,11]. Their agreement with experimental data is fairly good 
and therefore they can be proposed to be used for extrapolation to unmeasured separation energies. 
In the present paper we show, however, that the model parameters obtained after a least squares 
adjustment are extremely sensible to the particular data used in the adjustment and that 
extrapolation to unknown separation energies, although to a lesser degree, is also considerably 
dependent on them. One may argue that the proposed simple models are too simplistic to 
encapsulate all the nuclear processes involved and therefore predictions based on them shall not be 
much accurate. However, we will show how the use of a robust estimation method instead of the 
least squares estimator significantly improves the stability of the estimated parameters and 
extrapolations to unknown separation energies. As we were initially motivated by Ref. [10] we 
used the same dataset, i.e. the nucleon separation energies compilation of Audi and Wapstra [12], 
in order to reproduce, first, and improve, second, their results. Since several of the then unknown 
separation energies have already been measured at present we were also able to test the respective 
predictions of Audi and Wapstra, and the simple model with parameters obtained both by means of 
a least squares adjustment and by robust estimation. Results demonstrate the best performance of 
the latter. 
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2. Methods 

2.1. Simple model for nucleon separation energies 
 
If we denote by Sn the one-neutron separation energy we can write, according to [10], 
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with constant parameters ai for all nuclei, where A is the mass number, pair  is a pairing term of the 

form usually found in Weizsäcker type formulas 
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which accounts for the main part of the shell correction, the discontinuity at the magic neutron 
numbers. 
 
For the one-proton separation energy, Sp, N and Z have to be interchanged and an additional 
Coulomb term is needed [10]. Therefore we can write 
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where ai are constant parameters (different from those in Eq. 1) for all nuclei and 
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2.2. Robust estimation by global optimization 
 
It is well known that the least squares estimator is the best estimator (with some desirable 
properties like unbiasedness and linearity) for the cases where only Gaussian errors occur, i.e. 
where there are neither gross errors in the observations nor systematic errors in the model (or 
observations). 
 
Let it be the following over-determined system of equations 
 

νlAx                       (10) 
 
where A is the coefficient matrix for the vector of unknowns x, l is the observation vector and  is 
the vector of residuals. Then the least squares solution is the one that minimizes the sum of squared 
residuals 
 

 2
iνminargx                     (11) 

 
which is readily obtained by 
 

  lAAAx TT 1
                     (12) 

 
However, it turns out that this solution may be extremely sensible to the accuracy of the functional 
model (in our case, Eq. (1) for Sn or Eq. (5) for Sp) and the quality of data (i.e. the possible 
existence of undesired errors in the sample of Sn or Sp values).  
 
Alternatively to least squares estimation, robust estimation was devised for the cases were 
deviations from the theoretical functional model or from the observation statistical model may be 
expected [13]. Some of the ideas concerning robust estimation can be traced back to the 18th 
century and found in the works of Boscovich and Maire, Laplace and other contemporaries [14-15] 
which already proposed the L1 norm that we use in this paper. The foundations of the modern 
theory of robust estimation were established by Box [16] and developed by some other later 
contributors (Andrews et al. [17], Huber [18], etc). 
 
Robust estimation is based on minimizing a function – called the estimator – in order to attain a 
solution that is maximum resistant to the non-fulfilment of the functional model or the appearance 
of gross or systematic errors in the observations. If the model is correct and the observations are 
affected only by random errors then robust estimation yields a solution close to that of classic least 
squares estimation. By contrast, if systematic or gross errors affect the observations or the model is 
not completely correct then robust estimation provides the most accurate solution whereas least 
squares, which is much less robust, yields a highly contaminated and unacceptable solution. 
 
Among all the robust estimators, we will focus on one of the most successful, the L1 norm, the use 
of which is widespread in the literature, e.g. [19-24]. For the system of equations defined in Eq. 
(10), the least L1 norm (or least absolute deviation) solution is the one that minimizes the sum of 
absolute values of residuals 
 

 iνminargx                     (13) 

 
The typical procedure to compute such an estimator is an iteratively reweighed least-squares 
(IRLS) scheme, by which the estimator minimization – Eq. (13) – is performed by successive least 
squares adjustments computing for each of them equivalent weights based on the previous 
adjustment residuals. The equivalent weight function for the L1 norm estimator to be used within 
least-squares is 
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So that the solution to the weighted least squares system yields the L1 norm minimization 
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However, as we showed previously [22], the problem with robust estimation as IRLS is a 
computational one, for if the initial least-squares solution lies far away from the correct solution 
then the iterative process started with it attains only a local optimum. Therefore we will deal with 
robust estimation as a global optimization problem in order to ensure attainment of the global 
optimum.  
 
Let us recast the question in the form of a global optimization problem 
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where f is the objective function and xi are the variables to optimize within a search domain D. 
 
Among the vast variety of global optimization methods, which can be classified into heuristic and 
deterministic methods [25], we will use the Simulated Annealing (SA) method. It is an iterative 
heuristic method based in the analogy with the self-construction process of crystalline networks, 
which was originally proposed by Metropolis et al [26], and later developed by Kirkpatrick et al 
[27], among many others. It was the first method to succeed in solving the travelling salesman 
problem (i.e. the shortest itinerary for a salesman to visit a given set of cities). We only sketch here 
a simple procedure for application. For further details please refer to more specific literature, 
e.g. [28-29]. 
 
The method tries to emulate the formation process of a crystalline network; therefore, three key 
features have to be implemented: 
 

1. The thermal agitation of particles, directly dependent on temperature (iteration, in our 
analogy). It is customary to select a zero-centred Gaussian distribution, i.e. 
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2. The cooling scheme, responsible for the amplitude reduction of thermal agitation. With the 

temperature decrease (the course of iterations in our analogy) displacements – Eq. (17) – 
undergo a gradual amplitude decrease. A simple though successful expression is 

 
)(i)i( σβσ 0                                                    (19) 

 
where (0) is the initial amplitude (a value that permits to comfortably explore the search 
domain width in few steps) and  is the cooling factor, whose value has to be selected 
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according to the problem complexity. See the next section for the particular values used for 
(0) and  in our problem at hand. 
 

3. The acceptance criteria, used to decide whether to accept or reject the solution proposed in 
the iteration on the basis of the particular value of the objective function. The acceptance 
criteria for the particular iteration j can be written as 
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where p is a small number (e.g. 0.001) that defines the probability of accepting a solution 
that is worse than the previous one and whose inclusion contributes to preventing the 
algorithm from getting stuck into local minima. 
 

Therefore, the scheme to solve our robust estimator – minimum L1 norm, Eq. (16) – by SA can be 
summarized as: 
 

Step 1. Take an arbitrary initial solution for the vector to estimate x(0) (its value is not 
critical, it can be e.g. the result of a prior least squares adjustment) and compute by Eq. 
(16) the corresponding value for the objective function f(x(0)). 

 
Step 2. Generate a vector of displacements x by using the thermal agitation function (17) 
in every vector component, using the standard deviation for the corresponding iteration in 
accordance with the cooling scheme (19). 
 
Step 3. Accept or reject this solution as the basis for the next iteration as decided by the 
acceptance criteria (20). 

 
Return to step 2 to perform the next iteration until a finishing criterion is fulfilled. A simple 
finishing criterion may be to reach a standard deviation for the iteration (i) that is below 
the desired degree of accuracy in the solution. 

 
The convergence to the global optimum in a finite number of iterations is guaranteed in 
probabilistic terms [28] and depends mainly on the cooling scheme: if cooling is too fast, i.e. if β in 
(19) makes the amplitude drop too quickly, the final state is an amorphous one (a local minimum) 
and not the crystalline state (the global minimum). Conversely, if cooling is too slow, i.e. if β in 
(19) makes the amplitude diminish too slowly, then the computation time becomes uncomfortably 
high. , (0) and (final) are parameters that have to be tuned for the particular problem (see the next 
section for the particular values used in our problem). 
 

3. Results and discussion 

 
Since we were inspired in this paper by the simple model in [10] we used here the same dataset of 
nucleon separation energies, i.e. the compilation by Audi and Wapstra [12]. We are well aware that 
newer datasets have been published since then, particularly the AME2003 [30] and AME2012 [31] 
databases; however, we will use the same data as in [10] since we are interested now in showing 
the improvement, both in accuracy and stability, attained by using robust estimation as a global 
optimization problem instead of least squares.  
 
Once these advantages have become evident we will end up by testing the quality of predictions for 
unmeasured energies. Since several of the then unknown separation energies have already been 
measured at present (and available in [31]) we will be able to test the respective predictions of Audi 
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and Wapstra, and the simple model with parameters obtained both by means of a least squares 
adjustment and by robust estimation. Results will demonstrate the best performance of our method. 
 
Analogously to [10] we used the so-called recommended values in [12] (file rct2_rmd.mas95) and 
omitted all data points which have not been measured but derived from systematic trends as well as 
all nuclei with 40A .  
 
We performed the least squares (LS) adjustment of one-neutron separation energies – following Eq. 
(1) – and one-proton separation energies – following Eq. (5) – and obtained the same results as 
[10]. We also obtained both sets of parameters by means of robust estimation (RE) computed by 
the SA method as explained in the previous section, with the following values for tuneable 
parameters: 
 

- Starting parameters )(x 0 : least squares solution. 
- Search domain D: least squares solution 20000  keV for each unknown (this search 

domain can be made arbitrarily wider at the only cost of additional computational burden). 

- Initial amplitude 2000 )(σ  keV, one or two orders lower than the search domain width 
so that it can explore it comfortably in some hundred or thousand iterations. 

- Final amplitude 20.σ )final(   keV, since variations of this order are completely negligible 
for our purposes. 

- Small probability 0010.p  , in the acceptation of worse solutions, only to help escape 
from local minima. 

- Cooling factor 99990.β  , since along with the rest of the parameters it provides a 
reliable and relatively fast estimation procedure (with computing time of the order of a 
couple of seconds in a conventional personal computer). 

 
The process resulted in 69075 iterations and the parameters obtained for both the one-neutron and 
one-proton separation energies are displayed along with the ones estimated by least squares in 
Table 1 and Table 2. It is worth noting that repeated executions of the algorithm provide slightly 
different sets of parameters whose differences are negligible for our purposes. 
 

Table 1. Parameters for Sn after LS and RE adjustments. Root mean square (rms) deviations and residual 
percentile are also provided. 

 

 
a1  

(keV) 
a2  

(keV) 
a3  

(keV) 
apair  

(keV)
ashell 

(keV)
rms  

(keV) 
0.99 

(keV) 
0.95 

(keV)
0.90 

(keV)
0.80  

(keV) 
0.75  

(keV) 
0.50  

(keV) 

Sn (LS) 6294 3433 5850 10587 1512 423 1364 813 652 501 445 268 

Sn (RE) 5227 3532 5364 10874 1552 429 1456 811 646 485 440 260 

 

Table 2. Parameters for Sp after LS and RE adjustments. Root mean square (rms) deviations and residual 
percentile are also provided. 

 

 
a1  

(keV) 
a2  

(keV)
a3  

(keV) 
aCoulomb 
(keV) 

apair  
(keV)

ashell 
(keV)

rms  
(keV) 

0.99 
(keV) 

0.95 
(keV)

0.90  
(keV) 

0.80  
(keV) 

0.75  
(keV) 

0.50  
(keV) 

Sp (LS) 13831 636 3557 982 12141 1319 461 1481 793 665 531 473 292 

Sp (RE) 12179 863 1917 1068 12387 1312 467 1659 795 650 512 458 283 

 
 
The first evident observation is that the model parameters for Sn (or Sp), a1, a2, etc are quite 
different depending on whether they are estimated by LS or RE. At any rate, apart from the 
possible physical significance, those differences do not have a very large impact on the respective 
predictions that can be made from them, as we will show later.  
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Secondly, regarding the statistic parameters, the root mean square (rms) deviation is very slightly 
larger for the RE adjustment, 429 as compared to 423 keV for Sn and 467 as compared to 461 keV 
for Sp. Inspecting the residuals in more detail we observe the well-known ability of the L1 norm 
estimation (i.e. RE) to confine in fewer observations the largest residuals. Therefore the residual 
99th percentile is considerably larger for the RE adjustment (confinement of large residuals) 
whereas the residual 50th percentile is considerably smaller. In our case we can benefit much from 
this desirable property: if some of the measured energies contain gross errors they will be confined 
in those observations and not spread out through all observations (and results). 
 
As we said before, it is also expected that the RE solution is more stable than the LS solution, i.e. 
some variations in the input data will have a larger impact on LS parameters than on RE 
parameters. For demonstration purposes we remove now the first 10% of the nuclei in the dataset 
(those with lower A) and compute again the LS and RE parameters. Results are shown in Table 3 
for the one-neutron separation Sn model (an analogous behavior is found for the one-proton 
separation Sp model; for the sake of brevity we will restrict the rest of the explanation to the Sn 
model). 
 

Table 3. Parameters obtained for the Sn model after LS adjustment 
for the complete dataset (column LS), the dataset after removal of 
the first 10% of data (column LS0.9) and variation in % (column 
LS). Analogously for RE results (respective columns RE, RE0.9 
and RE). 

 

 
LS 

(keV) 
LS0.9 
(keV) 

LS 
(%) 

RE 
(keV) 

RE0.9 
(keV) 

RE 
(%) 

a1 6294 4390 30 5227 4061 22 

a2 3433 3664 -7 3532 3685 -4 

a3 5850 5105 13 5364 4907 9 

apair 10587 11111 -5 10874 11281 -4 

ashell 1512 1614 -7 1552 1632 -5 

 
 
We can clearly see that the impact of removing the dataset is larger for the LS estimated parameters 
(reaching the 30%) than for the RE estimated parameters (reaching only 22%). Being those 
variations quite large we must warn the reader, however, that their impact on the predictions made 
from them is not so dramatic, as we will later see. 
 
Now let us use our model and estimated parameters to predict unmeasured energies and see if they 
respond, as expected, within accuracies of a few keV. In the time interval between the 1995 Audi 
and Wapstra [12] dataset, which is the information that we have exclusively used in our analysis so 
far, and the AME2012 compilation [31] several one-neutron separation energies have been directly 
measured. They appear as experimentally determined values in the 2012 compilation [31] whereas 
in the 1995 dataset [12] appear as merely predicted values – for 88Tc, 89Tc, 123Ag, 140I, 226Rn, 227Rn, 
228Rn, 233Ra, 234Ra and 235Ac, e.g. – or simply not available (for 222Po). 
 
We will now use the model for one-neutron separation energy – Eq. (1) – along with the estimated 
parameters by LS and RE, shown in Table 1, in order to obtain predictions for these currently 
known separation energies. We also compare the experimentally determined values with the 
predictions included in the 1995 Audi and Wapstra compilation [12] when available. Results are 
shown in Table 4 and Fig. 1.  
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Table 4. Experimentally determined one-neutron energies Sn and comparison 
with predictions by Audi and Wapstra (AW) [12], Eq. (1) with LS parameters 
and Eq. (1) with RE parameters. AW, LS and RE show the respective 
differences between the energies obtained by each of these predictions and the 
experimental values. 

 

 
Experimental 

(keV) 
AW 

(keV) 
LS 

(keV) 
RE 

(keV) 
AW 

(keV) 
LS 

(keV) 
RE 

(keV) 
88Tc 12060 11518 12114 11931 -542 54 -129 

89Tc 13780 12996 13970 13863 -784 190 83 

123Ag 6510 6600 6530 6607 90 20 97 

140I 3210 3305 3411 3417 95 201 207 

222Po 5360  5294 5357  -66 -3 

226Rn 5858 5789 5516 5577 -69 -342 -281 

227Rn 3933 3864 4009 4035 -69 76 102 

228Rn 5714 5578 5315 5381 -136 -399 -333 

233Ra 4246 4064 4047 4077 -182 -199 -169 

234Ra 5500 5694 5337 5407 194 -163 -93 

235Ac 5555 5573 5541 5610 18 -14 55 

rms dev.     320 198 169 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Differences of predictions by Audi and Wapstra, Eq. (1) with LS 
parameters and Eq. (1) with RE parameters with respect to the experimentally 
determined one-neutron energies Sn. 

 
 
As it can be seen we obtain a slight improvement if we solve our model – Eq. (1) – by RE instead 
of LS. The root mean square deviation results in 169 keV for the model solved by RE and 198 keV 
for the model solved by LS, which show the excellent agreement of the predictions made by means 
of the simple model (1). Quite surprisingly, Audi and Wapstra predictions are considerably worse 
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than those obtained by the simple model for two nuclei, 88Tc and 89Tc, and yield a root mean square 
deviation of 320 keV. 
 
Finally we will show that, as it was said before, the expected stability of the predictions made by 
the model solved by RE is higher than for the model solved by LS. If we use the parameters 
obtained for the dataset in which the first 10% of data has been removed, i.e. those shown under 
LS0.9 and RE0.9 in Table 3, the predicted values vary considerably less for the RE adjustment than 
for the LS adjustment. These results and variations are shown in Table 5. 
 

Table 5. One-neutron predicted energies by Eq. (1) with LS parameters, Eq. (1) 
with LS parameters with the 10% data removed, Eq. (1) with RE parameters, Eq. 
(1) with RE parameters with the 10% data removed and respective variations. 

 

 
LS 

(keV) 
LS0.90 

(keV) 
LS 

(keV) 
RE 

(keV) 
RE0.90 

(keV) 
RE 

(keV) 
88Tc 12114 11866 -248 11931 11802 -129 

89Tc 13970 13856 -114 13863 13833 -30 

123Ag 6530 6654 124 6607 6692 84 

140I 3411 3380 -31 3417 3375 -42 

222Po 5294 5363 69 5357 5377 20 

226Rn 5516 5587 71 5577 5600 22 

227Rn 4009 4014 5 4035 4005 -30 

228Rn 5315 5392 77 5381 5407 26 

233Ra 4047 4061 14 4077 4054 -24 

234Ra 5337 5422 86 5407 5438 31 

235Ac 5541 5625 84 5610 5640 30 

rms dev.   105   53 

 
 
Variations in the predicted values are considerably smaller for the model with parameters obtained 
by RE (being the root mean square deviation 53 keV) than for the model with parameters estimated 
by LS (whose root mean square deviation is 105 keV).  
 
 
4. Conclusion 
 
We have shown that both the predictions and the estimated parameters for the simple nucleon 
separation model (1) are considerably more stable, i.e. less dependent on the data used, for the RE 
adjustment than for LS estimation. Comparison against recently determined experimental data led 
us to conclude that predictions made by the simple model (1) solved by means of RE are a little 
better than those after LS estimation. Finally, we want to emphasize the usefulness of the results 
obtained by so a simple model, whose accuracy of some tens of keV is comparable to the accuracy 
that yield the best and much more complex models. 
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