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Abstract. The question of determination of displacements in control networks with two or 
more measuring epochs is a well-known problem with broad applications to different fields 
of science and engineering. The standard procedure, which is computed by means of the 
pseudoinverse matrix, however, makes an implicit assumption that may be not convenient 
for the network at hand: it distributes the noticed displacement among the majority of the 
network points.  The present paper develops what it has been named as the maximum 
number of stable points hypothesis and builds from the corresponding theoretical 
framework an applicable computation procedure. Application to a particular example will 
confirm its clear advantages versus the standard procedure for deformation determination in 
the cases where a single large deformation may be suspected. 
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1. Introduction 

The theory and methods for deformation determination can be found in disparate areas of science 
and engineering, which include structural engineering, geodesy, surveying engineering, tectonics, 
geotechnical engineering and geomorphology, and may make use of observation techniques like 
Global Navigation Satellite Systems (GNSS) – e.g. Global Positioning System (GPS) – remote 
sensing, photogrammetry, Electronic Distance Measurement (EDM), angle measuring, levelling, 
etc. [1-10]. 
 
Control networks for deformation determination are generally classified into absolute and relative 
networks, depending whether they have points located outside the deformable area that can be 
considered stable (absolute networks) or all the network points may be affected by displacements 
so that only relative movements can be detected (relative networks) [7]. In the present paper, we 
will focus on the latter case, i.e. the case where all points are potential candidates for suffering a 
displacement between a pair of observing epochs. 
 
In a deformation network redundant measurements are made among the control points for every 
epoch. Then the corresponding overdetermined systems of observing equations are formed and 
solved by least squares. Finally, the use of statistical tests over the least squares solution permits to 
conclude within the corresponding level of significance on the possible point displacements. This 
well-known theoretical framework will be developed in the next section. As it will be shown, no 
unique solution exists for the problem of determining relative displacements. In fact there are 
infinitely many solutions in terms of possible point displacements that are compatible with the 
observed values. In order to obtain a solution for the corresponding rank deficient systems the 
standard theory of deformation determination opts then for the pseudoinverse solution. As it will be 
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argued, the pseudoinverse solution is a very sensible choice but it may not be the best option for all 
cases. The fact that the particular selected solution supposes to include an additional assumption 
directly affecting the results and what this assumption may be is a question often overlooked in 
deformation monitoring theory. The explanation of the assumption implicit in the adoption of the 
pseudoinverse solution (balanced distribution of displacements among all points) along with the 
proposal of a different assumption and correspondingly different solution arguably more sensible 
for other cases (stability of the majority of pillars and possible large displacements in very few of 
them) will be developed in the next section and later applied to the case of the open test field 
located in the Universidad Politécnica de Valencia campus. 

 

2. Methods 

2.1. Standard procedure for deformation determination 

 
Let the system of observation equations for epoch 1 be written as 
 

1111 rlxA             (1) 
 
where A1 denotes the coefficient matrix, x1 the solution vector, l1 the vector of independent terms, 
which includes the observed values, and r1 the residual vector. 
 
If observations are assumed to follow normal distributions with variance-covariance matrix 1 then 
the residual vector also follows a normal distribution with zero mean and variance-covariance 

matrix 1 and the most likely solution is obtained by the least squares condition 111x  min arg
1

rPr T
, 

where P1 = 1
-1, which leads to 

 

  1111111 lPAxAPA TT            (2) 
 

  111

1

1111 lPAAPAx TT 
          (3) 

 
and analogously for epoch 2 
 

  222

1

2222 lPAAPAx TT 
          (4) 

 
The deformation vector is obtained then as 
 

12 xxd             (5) 
 
If the magnitudes observed in both epochs are the same (and ordered the same in both equation 
systems) and the same approximate coordinates are used in both epochs, Eq. (1) applied to both 
epochs can be written as 
 

111 rlAx             (6) 
 

222 rlAx             (7) 
 
Subtracting Eq. (6) from Eq. (7) it can be written 
 

rlAd             (8) 
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where d is the deformation vector defined in Eq. (5), l is vector of differences between observed 
values in every epoch and r is the vector of differences between residuals. 
 
Solution of the equation system in Eq. (8), named the observation differences model, is obviously 
equivalent to the separate solution of Eqs. (6) and (7) and subsequent determination of 
displacement by Eq. (5), and it will be preferred here for the sake of conciseness. The least squares 
solution verifies 
 

  PlAdPAA TT           (9) 
 

  PlAPAAd TT 1
          (10) 

 

where   1
21

P . 
 
 
Now, as it was mentioned before, in the case of control networks where no point is free from 
potential displacements the corresponding system of equations is rank deficient. Therefore the 
matrix inverse in Eq. (10) – or inverses in Eqs. (3) and (4) if separate adjustments are preferred – 

does not exist. The solution is obtained then by means of generalized inverses, denoted by   , in 
an equivalent manner 
 

  PlAPAAd TT 
          (11) 

 

where, by definition, given a matrix nmB   a generalized inverse of B is a matrix mnB    
that satisfies 

BBBB            (12) 
 
The question now is that there are infinitely many generalized inverses, leading each of them to a 
different solution. There are then infinitely many deformation solutions that fulfill the least squares 
minimum condition, or in other words, there are infinitely many vectors d that satisfy Eq. (8) with 
the same residual vector r. 
 
One particular generalized inverse is customarily selected: the pseudoinverse matrix. For any given 

matrix nmB   there always exists one and only one matrix – denoted by B+ – that satisfies the 
four equations known as Moore-Penrose conditions [11] 

BBBB            (13) 
  BBBB           (14) 

    BBBB
T

         (15) 

  BBBB
T            (16) 

 
The pseudoinverse matrix is one of the generalized inverse matrices and it can be proved that has 
some possibly desirable properties that make it the habitual choice [12,13]: it is the generalized 
inverse of least determinant and least trace, and provides the solution of minimum L2-norm among 
the infinitely many solutions of the system of equations.  
 
The crucial point here is to acknowledge the assumption implicit in the customary selection of the 
pseudoinverse for the generalized inverse matrix in Eq. (11): the displacement vector d with least 
L2-norm is being chosen as the best explicative solution to our rank deficient problem. In other 
words, in a control network where no point can be assured to remain stable we opt for the solution 
where di

2 is minimum, i.e. we prefer to explain the observed differences between epochs in the 
measured magnitudes as small displacements of all points, and this constitutes a working 



Deformation monitoring and the maximum number of stable points method             4 

 
assumption incapable of being demonstrated or refuted (additional to those that led to select the 
least squares estimator as the best estimator). 
 
One may argue that this hypothesis may appear to be reasonable for most cases. There are some 
occasions, however, where this assumption may go against the expected behavior, and therefore the 
customary use of the pseudoinverse solution must clearly be avoided. This is the case, for instance, 
of highly stable networks, such as the test field facility that we will see in Section 3, where clearly 
no displacements of the order of the observation accuracy may be expected, except for the possible 
displacement of one of the benchmarks due to unfortunate circumstances. Explanation of the 
deformation sensed by the measurements as multiple displacements of all points – which is the 
solution obtained by means of the pseudoinverse – would be clearly unacceptable and a different 
assumption and corresponding solution is needed. 
 

2.2. Maximum number of stable points procedure 

Rather than postulating as the best explicative solution the one that extends the displacement to all 
points (making them as small as possible) the assumption of isolating the displacements in as few 
points as possible may be occasionally preferred. We will refer to this assumption as the maximum 
number of stable points assumption. Operationally, we will obtain this by searching among the 
infinitely many solutions d of Eq. (11) for the one that minimizes L1-norm, i.e. |di| minimum. This 
property of the L1-norm versus the behavior of the L2-norm is well-known and has been extensively 
used in the domain of the residual vector in what is known as robust estimation: the ability of the 
least L1-norm estimator (|ri| minimum) to confine large values in the residuals of the very few 
affected observations versus the behavior of the least L2-norm estimator (ri

2 minimum) that results 
in not so large values but spread out throughout all results [14-17]. Now this ability will be 
exploited in the deformation space. 
 
Considering that all solutions (and only them) of the rank-deficient system of consistent equations 

bBx   where nmB   and mb   verify 
 

 yBBIbBx            (17) 
 

for ny   and B  pseudoinverse of B (e.g., [11]), the solution of the rank-deficient least squares 
system given in Eq. (9) can also be obtained by  
 

      yPAAPAAIPlAPAAd TTTT 
       (18) 

 
Assigning the value 0y  leads to the pseudoinverse solution 
 

  PlAPAAd TT 
          (19) 

 
which, as it can be demonstrated (see Appendix), is the solution of least L2-norm (di

2 minimum). 
 
However, as we are now interested in the solution of least L1-norm (|di| minimum) we will seek 
for the y-vector in Eq. (18) that minimizes this norm. In Robust Estimation the search for the 
minimum L1-norm is normally done following an Iteratively Reweighted Least Squares (IRLS) 
scheme [1,14]. Nevertheless, if the minimization is dealt with as a Global Optimization (GO) 
problem it is ensured that the optimum attained is not only a local minimum but the global one, 
which sometimes results in a very significant improvement with respect to the result obtained by 
the IRLS method [14,17]. The optimization problem to solve is 
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      






















n

TTTT

n

i
i

y

y

yPAAPAAIPlAPAAd

dmin

for 

 where

1

     (20) 

 
Among all the GO methods we can select, for instance, the Simulated Annealing (SA) method. 
Random values will be iteratively drawn for the y-vector, plugged into Eq. (20) and the subsequent 
L1-norm values stored. The role of the SA algorithm is to put some order into this process of 
random search so that it finally results into the global optimum. For details on the method the 
reader is referred, e.g., to [14,18]. It must be noted that the solution of the GO problem stated in Eq. 
(20) may also be successfully obtained by any other of the existing GO methods, to name just a 
few: Genetic Algorithms [19,20], Interval Arithmetic Techniques [21], Monkey Algorithms 
[22,23], hybrid methods [23], etc. 
 
 
2.3. Statistical testing of displacements 
 
Independently of the generalized inverse matrix selected one has to finally test whether the 
determined displacements are significant (at a certain level of significance) or not. The so-called 
Global Congruency Test, e.g. [7,25], is routinely applied in order to investigate the hypotheses of 
zero displacement, which constitutes the null hypothesis 
 

0:0 dH           (21) 

 
and significant displacement, which is the alternative hypothesis 
 

0:1 dH           (22) 
 
It is performed by means of the statistic 
 

 
h

dPAAd
T

TT

2
0

          (23) 

 
where  
 

hm

Prr T


 2

0           (24) 

 

is the unit weight variance (with m the number of observations) and h is the rank of PAAT . 
 
Comparison between the T value obtained and the critical value at a level of significance  for the 
corresponding Fisher distribution permits to decide between the two possible alternatives: if 

),hm,h(FT  1  then the null hypothesis (no significant displacement) is accepted, if 

),hm,h(FT  1  then the alternative hypothesis (significant displacement) is accepted. 
 
The test can also be done in 1D, i.e. particularized to a single coordinate of the network, to decide 
on its possible significant displacement; or 2D to test the possible displacement of a point. In those 
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cases only the components of interest of the d-vector and the corresponding minor of the 

matrix PAAT  have to be used along with 1h  (1D-case) or 2h  (2D-case). 
 

3. Application and results 

Let us now present an example of application where the hypothesis of the maximum number of 
stable points is more convenient than the standard assumption defined by the use of the 
pseudoinverse solution and let us analyse how they both perform for the same simulated 
displacements. 
 
A test field has been recently set at the Universidad Politécnica de Valencia campus and its 
corresponding absolute scale has been transferred from the Nummela baseline [26] by means of an 
observation campaign with a Mekometer ME5000 EDM, previously calibrated by interferometric 
means. The expected baseline stability has now to be confirmed. Fig. 1 displays the baseline 
geometry, which is basically intended for calibration of EDMs and, therefore, is of the so-called 
Heerbrugg-type design [27]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. UPV test field (local coordinates). 
 
 
Apart from the epoch zero data (scale transfer from Nummela with the calibrated EDM) where 
coordinates were obtained for the baseline pillars with absolute accuracies of 0.2 to 0.3 mm, let us 
now suppose that we perform a second observation campaign with a simulated displacement in one 
pillar, possibly due to unfortunate circumstances, of an amount that, in principle, could be clearly 
detectable after distance measurement with accuracies of few tenths of a millimetre: say a 
displacement of 1 mm. 
 
Therefore, we will compare the distance values deduced from the epoch zero coordinates, which 
constitute our first campaign, with the distance values deduced from the epoch zero coordinates 
plus the simulated coordinate displacement, which constitute our second campaign. The additional 
inclusion of randomly simulated observation errors – of the few tenths of a millimeter expected for 
the Mekometer ME5000 – show to have a second order impact on the obtained results and 
therefore do not obscure the essential issues of the discussion below. 
 
Tables 1 to 6 and corresponding Figs. 2 to 7 show the solutions obtained by both procedures – 
pseudoinverse solution and the maximum number of stable points procedure – for the respective 
simulated displacements of 1 mm in X1, Y1, X2, Y2, X7, Y7. For the purpose of illustration only 
those cases are shown. Results for simulated displacements in pillars 3, 4, 5 and 6 are similar to 
those obtained for pillars 1 and 2. Additionally, please also note that the unknowns to determine 
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also include, as usual, the possible calibration coefficients a and b that relate distances measured in 
the second campaign to absolute distances traced to the meter definition measured in the first 
campaign,   bDaD  12 1 . 
 

Table 1. Results for a simulated 
displacement of 1 mm in X1. 
 
Unknown Pseudoinverse Min L1-norm 

a (ppm) 1,6 0,2 

b (mm) 0,00 0,00 

dX1 (mm) 0,60 0,95 

dY1 (mm) 0,00 0,00 

dX2 (mm) -0,35 -0,04 

dY2 (mm) 0,00 0,00 

dX3 (mm) -0,24 -0,03 

dY3 (mm) 0,01 0,00 

dX4 (mm) -0,07 -0,02 

dY4 (mm) 0,01 0,00 

dX5 (mm) 0,07 0,00 

dY5 (mm) 0,02 0,00 

dX6 (mm) 0,14 0,01 

dY6 (mm) 0,02 0,00 

dX7 (mm) -0,16 -0,02 

dY7 (mm) -0,06 -0,01 

 

Table 2. Results for a simulated 
displacement of 1 mm in Y1. 
 
Unknown Pseudoinverse Min L1-norm 

a (ppm) -0,1 0,0 

b (mm) 0,00 0,00 

dX1 (mm) 0,00 0,00 

dY1 (mm) 0,61 0,93 

dX2 (mm) 0,00 0,00 

dY2 (mm) -0,35 -0,07 

dX3 (mm) -0,01 0,00 

dY3 (mm) -0,24 -0,05 

dX4 (mm) -0,01 0,00 

dY4 (mm) -0,07 -0,02 

dX5 (mm) -0,02 0,00 

dY5 (mm) 0,07 0,00 

dX6 (mm) -0,02 0,00 

dY6 (mm) 0,14 0,01 

dX7 (mm) 0,06 0,01 

dY7 (mm) -0,16 -0,04 

 

-0,4
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0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

a b dX1 dY1 dX2 dY2 dX3 dY3 dX4 dY4 dX5 dY5 dX6 dY6 dX7 dY7
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0,2

0,4

0,6
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1

1,2

1,4

1,6

a b dX1 dY1 dX2 dY2 dX3 dY3 dX4 dY4 dX5 dY5 dX6 dY6 dX7 dY7

Fig. 3. Results for a simulated displacement dY1 = 1 mm. 
Dotted/solid bars represent the pseudoinverse/min L1-norm 
solution. Units: mm except for unknown a given in ppm. 

Fig. 2. Results for a simulated displacement dX1 = 1 mm. 
Dotted/solid bars represent the pseudoinverse/min L1-norm 
solution. Units: mm except for unknown a given in ppm. 
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Table 3. Results for a simulated 
displacement of 1 mm in X2. 
 
Unknown Pseudoinverse Min L1-norm 

a (ppm) 1,3 0,2 

b (mm) 0,00 0,00 

dX1 (mm) -0,35 -0,04 

dY1 (mm) 0,00 0,00 

dX2 (mm) 0,69 0,96 

dY2 (mm) 0,00 0,00 

dX3 (mm) -0,22 -0,03 

dY3 (mm) 0,00 0,00 

dX4 (mm) -0,08 -0,01 

dY4 (mm) 0,01 0,00 

dX5 (mm) 0,03 0,00 

dY5 (mm) 0,02 0,00 

dX6 (mm) 0,09 0,01 

dY6 (mm) 0,02 0,00 

dX7 (mm) -0,15 -0,02 

dY7 (mm) -0,05 -0,01 

 

 
 

Table 4. Results for a simulated 
displacement of 1 mm in Y2. 
 
Unknown Pseudoinverse Min L1-norm 

a (ppm) -0,1 0,0 

b (mm) 0,00 0,00 

dX1 (mm) 0,00 0,00 

dY1 (mm) -0,35 -0,05 

dX2 (mm) 0,00 0,00 

dY2 (mm) 0,69 0,95 

dX3 (mm) 0,00 0,00 

dY3 (mm) -0,22 -0,04 

dX4 (mm) -0,01 0,00 

dY4 (mm) -0,08 -0,01 

dX5 (mm) -0,02 0,00 

dY5 (mm) 0,03 0,00 

dX6 (mm) -0,02 0,00 

dY6 (mm) 0,09 0,01 

dX7 (mm) 0,05 0,01 

dY7 (mm) -0,15 -0,03 
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Fig. 5. Results for a simulated displacement dY2 = 1 mm. 
Dotted/solid bars represent the pseudoinverse/min L1-norm 
solution. Units: mm except for unknown a given in ppm. 

Fig. 4. Results for a simulated displacement dX2 = 1 mm. 
Dotted/solid bars represent the pseudoinverse/min L1-norm 
solution. Units: mm except for unknown a given in ppm. 
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Table 5. Results for a simulated 
displacement of 1 mm in X7. 
 
Unknown Pseudoinverse Min L1-norm 

a (ppm) 0,1 0,1 

b (mm) 0,00 0,00 

dX1 (mm) -0,16 -0,02 

dY1 (mm) 0,06 0,00 

dX2 (mm) -0,15 -0,02 

dY2 (mm) 0,05 0,00 

dX3 (mm) -0,15 -0,02 

dY3 (mm) 0,02 0,00 

dX4 (mm) -0,14 -0,01 

dY4 (mm) -0,02 0,00 

dX5 (mm) -0,13 0,00 

dY5 (mm) -0,05 0,00 

dX6 (mm) -0,12 0,00 

dY6 (mm) -0,07 0,00 

dX7 (mm) 0,84 0,99 

dY7 (mm) 0,00 0,00 

 

 
 

Table 6. Results for a simulated 
displacement of 1 mm in Y7. 
 
Unknown Pseudoinverse Min L1-norm 

a (ppm) 0,4 0,0 

b (mm) 0,00 0,00 

dX1 (mm) -0,06 0,00 

dY1 (mm) -0,16 -0,01 

dX2 (mm) -0,05 0,00 

dY2 (mm) -0,15 -0,01 

dX3 (mm) -0,02 0,00 

dY3 (mm) -0,15 -0,01 

dX4 (mm) 0,02 0,00 

dY4 (mm) -0,14 -0,01 

dX5 (mm) 0,05 0,00 

dY5 (mm) -0,13 -0,01 

dX6 (mm) 0,07 0,00 

dY6 (mm) -0,12 -0,01 

dX7 (mm) 0,00 0,00 

dY7 (mm) 0,84 0,99 
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Fig. 6. Results for a simulated displacement dX7 = 1 mm. 
Dotted/solid bars represent the pseudoinverse/min L1-norm 
solution. Units: mm except for unknown a given in ppm. 

Fig. 7. Results for a simulated displacement dY7 = 1 mm. 
Dotted/solid bars represent the pseudoinverse/min L1-norm 
solution. Units: mm except for unknown a given in ppm. 
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As we see, the standard procedure for deformation determination (based on the pseudoinverse 
solution) notices the deformation suffered by the network but fails clearly in determining where 
this displacement occurred. This is due to the fact, explained in Section 2.1, that the standard 
determination procedure prefers to assign displacements to the majority of the pillars (the majority 
of unknowns, in general) of the network. The assumption of a single large displacement in a pillar 
versus the assumption of many not so large displacements but affecting most of the pillars may 
sometimes, as in this example, be more convenient and the corresponding theoretical framework 
shall be applied. The results obtained after the standard pseudoinverse lead to a misleading scene in 
which many of the presumably stable pillars have suffered significant displacements. It is 
particularly remarkable how a simulated displacement in pillar No. 1 can be misleadingly 
interpreted as a change of scale a of the distancemeter by the standard method due to the existing 
correlations in the network. By contrast, the application of the maximum number of stable points 
procedure faithfully captures the simulated single displacement and assigns only residual values to 
the rest of the unknowns. 
 

4. Conclusions 

The theory of deformation determination among different observation epochs has been reviewed. 
For the case of relative deformation networks it has been argued that the classical standard 
procedure, which is based on the use of the pseudoinverse matrix, has an implicit assumption that 
leads to consider among the infinitely many possible solutions one that attributes displacements to 
the majority of points. As it is claimed, this solution may not be representative of the expected 
scenario for many deformation monitoring networks. After having set a general framework for the 
study of particular solutions, the hypothesis of maximum number of stable points has been selected 
and developed. A final application illustrates how, as expected, the standard procedure fails in 
detecting the existing deformation whereas the maximum number of stable points procedure 
succeeds in the determination of place, direction and size of displacement for the cases were the 
stability of the great majority of the network points has to be incorporated as the most realistic 
hypothesis. 

 

Appendix 

For the rank-deficient system of consistent equations bBx  , whose infinitely many solutions can 

be given by  yBBIbBx    with ny  , the so-called pseudoinverse solution is obtained 

with 0y , bBxp
 . We demonstrate here that the pseudoinverse solution is the minimum L2-

norm solution. 
 
Let us start by showing that px  and  pxx   are orthogonal 

 

            bBxbBBBbBxbBxxx
TT

p
T

p
                 (25) 

 

where we have made use of Eq. (14)   BBBB  in the first factor of the last equality. We can 

write the transpose of the matrix product in the right-hand member as    TT
BBbB   and take into 

account, Eq. (16), that BB  is symmetric. It follows that  
 

                 bBBxBbBbBBBBxBbBbBxBBbBxxx
TTT

p
T

p
    (26) 

 

where we have made use again of Eq. (14)   BBBB . Since bBx   we obtain, as we wanted 
to demonstrate, that 
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           00   .bBbBbBbBxxx
TT

p
T

p                              (27) 

 
From the trivial equality 
 
    pp xxxx                      (28) 

 
we compute the L2-norm squared on both sides 
 

    p
T

ppp xxxxxxx  2
2

2

2

2

2

2
                 (29) 

 
Since we have demonstrated that the last term is zero we obtain 
 

   
2

2

2

2

2

2 pp xxxx                                             (30) 

 

that is   
2

2

2

2 pxx   with the equal sign if and only if pxx   as we wanted to demonstrate. 
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