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Abstract

Modern communications systems impose stringent requirements on the equipment
that operates at microwave frequency, especially in the case of wireless commu-
nications. The design of passive components for these applications is contingent
upon the availability of accurate electromagnetic (EM) modeling tools that can effi-
ciently handle the complex geometry of these components. Despite the widespread
use of mesh-based general-purpose computer-aided engineering (CAE) tools to per-
form final design verifications, their application during the optimization process is
limited. Optimum designs require a large number of simulations, which are compu-
tationally expensive when performed by general purpose tools. Instead, microwave
designers prefer to employ faster software tools tailored to specific geometries, such
as waveguide components, ferromagnetic devices, multilayer planar structures, etc.
Therefore, the development of faster and more efficient specialized EM tools has
a direct impact on the design of microwave components, both quantitatively and
qualitatively. Increasingly complex geometries are modeled more accurately, and
may be incorporated into novel designs without penalizing development time and
its associated costs. By doing so, passive components become more advanced and
are able to fulfill stricter requirements. At the same time, new research and de-
velopment opportunities arise in order to address the challenges posed by these
advanced structures.

The present PhD thesis is focused on a specific type of waveguide cavity geom-
etry: bi-dimensional structures of arbitrary shape. Most microwave components
based on rectangular waveguides include these elements (bends, T-junctions, ta-
pers, power-dividers, etc.), thus the scope of this work is wide. To characterize
these structures, an efficient full-wave modal formulation is developed. Taking
into account common properties of bi-dimensional structures, such as its electro-
magnetic symmetry, the resulting technique is very efficient and accurate. Thanks
to the integration of this formulation into a CAE tool, a designer is able to solve
complex systems that combine this type of element with components of vastly
different shapes.

The developed formulation is first applied to the analysis and design of pas-
sive components, such as filters, multiplexers and orthomode transducers. These
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examples are employed to validate the results, as well as to demonstrate the im-
provement that the proposed analysis technique represents over well-known com-
mercial EM packages. Likewise, this formulation is combined with the commercial
tool SPARK3D to predict RF breakdown (multipactor and corona) in selected
bi-dimensional structures.

Then, novel implementations of waveguide quasi-elliptic filters, based on the in-
terconnection of bi-dimensional cavities, are proposed. Special attention is paid to
the realization of multiple transmission zeros (TZs) with tuning-less compact struc-
tures. First, a novel family of filters, known as hybrid-folded rectangular waveguide
(HFRW) structures, is studied. Simple and flexible methods to prescribe the loca-
tion of the transmission zeros realized by these structures are presented. Practical
aspects related to their physical implementation are also discussed. Secondly, a
compact and purely capacitive obstacle, capable of realizing multiple TZs, is pre-
sented and discussed. In both cases, multiple examples are given to illustrate the
step-by-step process involved in the design of these structures.

Finally, a systematic procedure for the design of wideband manifold-coupled
multiplexers is proposed. To avoid the generation of undesired resonances, stubs
that connect the filters to the manifold are removed. Likewise, the manifold length
is kept as short as possible. Following a simple step-by-step procedure, based
on analytical formulas and EM simulations, a good starting point for the final
optimization of these structures is obtained. Ultimately, all of the technology and
developments presented in this PhD thesis converge into the design of a wideband
quadruplexer for passive intermodulation measurements at C-band.



Resumen

En la actualidad, los sistemas de comunicaciones imponen unos requisitos muy
estrictos sobre el equipamiento en la banda de microondas. El diseño de estos
componentes está supeditado, muchas veces, a la disponibilidad de herramientas
de modelado electromagnético (EM) que sean capaces de analizar geometŕıas com-
plejas. A pesar del amplio uso de herramientas CAE (en inglés, computer-aided
engineering) de propósito general para la verificación final de prototipos, su posible
aplicación durante el proceso de diseño es limitada. Los diseños óptimos exigen
realizar una gran cantidad de simulaciones EM. Dado que las simulaciones con
estas técnicas tienen un alto coste computacional, los diseñadores suelen optar
por emplear herramientas software especializadas en las estructuras que diseñan,
ya sean componentes en gúıa de onda, dispositivos ferromagnéticos, estructuras
planares multicapa, etc. Por tanto, el desarrollo de nuevas herramientas más pre-
cisas y eficientes ayudará a reducir el tiempo de diseño de estos productos, y con
ello los costes asociados. Además, permitirá abrir nuevas ĺıneas de investigación
para responder a los retos que plantean geometŕıas cada vez más complejas.

Esta tesis se centra en el desarrollo de una herramienta de análisis EM para
un tipo muy concreto de estructuras. Se trata de cavidades bidimensionales, con
independencia de la forma que tengan. Es habitual encontrar este tipo de estruc-
turas en la mayoŕıa de componentes implementados en gúıa rectangular (codos,
uniones en T, divisores de potencia, etc). Por tanto, el rango de aplicación de la
teoŕıa desarrollada en esta tesis es muy amplio. En concreto, se ha desarrollado
una nueva formulación basada en métodos modales que permite realizar una car-
acterización de onda completa de estas estructuras de forma eficiente y precisa.
Al aprovechar su simetŕıa geométrica y electromagnética, la herramienta desar-
rollada puede minimizar los cálculos a realizar, consiguiendo grandes velocidades
de computación pero manteniendo una alta precisión. Gracias a la integración
de esta formulación dentro de una herramienta CAE basada en métodos modales,
se ofrece la posibilidad a los diseñadores de resolver sistemas muy complejos que
combinan este tipo de cavidades con otros componentes de geometŕıas distintas.

Esta formulación se aplica, en primer lugar, al análisis y diseño de componentes
pasivos comunes, tales como filtros, multiplexores y transductores ortomodales.
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Estos ejemplo sirven para validar la herramienta desarrollada, aśı como demostrar
la significativa mejora que supone el uso de esta nueva técnica con respecto a
otros paquetes software de análisis electromagnético. Aśımismo, al combinar esta
formulación con la herramienta SPARK3D se abre la posibilidad de predecir la
aparición de fenómenos de descarga de alta potencia (multipactor y corona) en
determinadas estructuras bidimensionales.

Seguidamente, se proponen nuevas formas de implementar filtros cuasi-eĺıpticos
basados en la interconexión de cavidades bi-dimensionales. Se hace especial hin-
capié en la realización de múltiples ceros de transmisión mediante estructuras com-
pactas que no requieran sintońıa. Por una parte se estudian los filtros hybrid-folded
rectangular waveguide (HFRW por sus siglas en inglés). Este trabajo incluye una
discusión en profundidad sobre distintas implementaciones de este tipo de filtros.
En ella se consideran aspectos prácticos relacionados con su uso e implementación
f́ısica, que ofrecen al diseñador unos criterios claros para elegir la estructura que
más se ajuste a sus especificaciones. Por otra parte se presenta un nuevo obstáculo
de naturaleza capacitiva extremadamente compacto, que permite la realización de
multiples ceros de transmisión incluso en estructuras “en ĺınea”. En ambos casos
se incluyen ejemplos de aplicación y se describe, paso por paso, la metodoloǵıa
seguida para su diseño.

Finalmente, se expone un procedimiento sistemático para diseñar multiplexores
de banda ancha. Para prevenir la generación de resonancias indeseadas (un prob-
lema habitual en este tipo de componentes) se evita, en la medida de lo posible,
la interconexión de las diferentes partes mediante tramos de gúıa (stubs). Sigu-
iendo una metodoloǵıa simple, basada en fórmulas anaĺıticas y simulaciones elec-
tromagnéticas, se consigue un excelente punto inicial para la última fase del diseño:
la optimización. La tesis culmina aplicando todos los avances y la tecnoloǵıa de-
sarrollados al diseño de un cuadruplexor para medidas de intermodulación pasiva
en banda C (4-8 GHz).



Resum

Els actuals sistemes de comunicacions sense fils imposen uns requisits molt es-
trictes sobre l’equipament de la banda de microones. El disseny d’aquests compo-
nents està supeditat, moltes vegades, a la disponibilitat de ferramentes de mode-
latge electromagèntic (EM) que siguen capaços de gestionar geometries complexes.
Tot i l’ampli ús de ferramentes CAE (del anglés, computer-aided engineering) de
propòsit general per a la verificació final de prototips, la seua aplicació durant el
procés de disseny és limitada. Els dissenys òptims exigeixen realitzar una gran
quantitat de simulacions. Les simulacions amb aquestes tècniques tenen un alt
cost computacional, per tant els dissenyadors solen optar per utilitzar ferramentes
software especialitzades en les estructures que dissenyen, ja siguen components
en gúıa d’ona, dispositius ferromagnètics, estructures planars multicapa, etc. Per
tant, el desenvolupament de noves tècniques d’anàlisi més precises i eficients aju-
darà a reduir el temps de desenvolupament d’aquests productes, aix́ı com dels seus
costos associats. A més permetrà obrir noves ĺınies d’investigació per respondre
els reptes que plantegen geometries cada vegada més complexes.

Aquesta tesi es centra en el desenvolupament d’una ferramenta d’anàlisi EM
per a un tipus molt concret d’estructures. Es tracta de cavitats bidimensionals,
amb independència de la forma que tinguen. És habitual trobar aquestes estruc-
tures en la majoria de components implementats en guia rectangular. Per tant,
el rang d’aplicació de la teoria presentada en esta tesi és molt ampli. En concret,
s’ha desenvolupat una nova formulació basada en mètodes modals que permet re-
alitzar una caracterització d’ona completa d’aquestes estructures de forma eficient
i precisa. Aprofitant la seua simetria geomètrica i electromagnètica, la ferramenta
desenvolupada pot minimitzar els càlculs a realitzar, aconseguint grans velocitats
de càlcul però sempre mantenint una alta precisió. Gràcies a la integració d’aquesta
formulació dins d’una ferramenta CAE basada en mètodes modals, s’ofereix la pos-
sibilitat als dissenyadors de resoldre sistemes molt complexos que combinen aquest
tipus de cavitats amb altres components de diferent geometria.

Aquesta formulació s’aplica, en primer lloc, a l’anàlisi i disseny de components
passius comuns, com ara filtres, multiplexors i transductors ortomodals. Aquests
exemples serveixen per validar la ferramenta desenvolupada, aix́ı com demostrar



x

la significativa millora que suposa l’ús d’aquesta nova tècnica respecte d’altres
paquets software d’anàlisi electromagnètic. Aix́ı mateix, mitjançant la combinació
d’aquesta formulació amb la ferramenta SPARK3D s’obri la possibilitat de predir
l’aparició de fenòmens de descàrrega d’alta potència (multipactor i corona) en
estructures bidimensionals.

A continuació, es proposen noves formes d’implementar filtres quasi el.ĺıptics
en guia d’ona basats en la interconnexió de cavitats bidimensionals. Es fa especial
èmfasi en la realització de múltiples zeros de transmissió mitjançant estructures
compactes que no requereixen de sintonia. D’una banda s’estudien els filtres hybrid
folded rectangular waveguide (HFRW per les sigles en anglès). Aquest treball in-
clou una discussió en profunditat sobre diferents implementacions d’aquest tipus de
filtres. S’hi consideren aspectes pràctics relacionats amb el seu ús i implementació
f́ısica, que ofereixen al dissenyador uns criteris clars per triar l’estructura que més
s’ajuste a les seues especificacions. D’altra banda es presenta un nou obstacle
de naturalesa capacitiva extremadament compacte, que permet la realització de
múltiples zeros de transmissió fins i tot en estructures “en ĺınia ”. En els dos casos
s’inclouen exemples d’aplicació i es descriu, pas per pas, la metodologia seguida
per al seu disseny.

Finalment, s’exposa un procediment sistemàtic per dissenyar multiplexors de
banda ampla. Per prevenir la generació de ressonàncies no desitjades, un prob-
lema que és habitual en aquest tipus de components, s’evita, en la mesura del
possible, la interconnexió de les diferents parts mitjançant trams de guia (stubs).
Seguint una metodologia simple, basada en fórmules anaĺıtiques i simulacions elec-
tromagnètiques, s’aconsegueix un excel.lent punt inicial per a l’última fase del
disseny: l’optimització. La tesi culmina aplicant tots els avanços i la tecnologia
desenvolupats al disseny d’un cuadruplexor per a mesures d’intermodulació passiva
en banda C (4-8 GHz).
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Chapter 1

Introduction

Nowadays, global telecommunications services are experiencing large growth rates
worldwide. In the last decades, the demand for capacity in these systems has
escalated. At the same time, many of these services are moving towards wireless
solutions. Given the excellent propagation properties of the atmosphere for signals
in the microwave frequency range, the amount of microwave devices required to
fulfill this remarkable demand has soared. Simultaneously, lack of standardization
of key components (for instance, filters and multiplexers for satellite applications)
and demand for custom-engineered products often force microwave engineers to
start new designs almost from scratch. In a dynamic sector like the microwave
industry, first-pass success (i.e. the ability to design, build, tune, and succeed on
the first try) is highly sought after in order to reduce costs and improve product
time to market [1]. To achieve this goal, research and development of more effi-
cient computer-aided engineering (CAE) tools and advanced design procedures are
fundamental. As will be shown, both topics have gone hand-in-hand throughout
much of the microwave components history.

With the advent of radar systems in the 1940s, microwave components started
to receive considerable interest. Radio frequencies employed until that point in
time were low enough that circuits could be simply built with conventional lumped
elements, such as coils and capacitors. However, as applications shifted to mi-
crowave frequencies, the implementation of passive devices with coils and capaci-
tors became impractical, due to the small size of the components involved, radi-
ation from two-wired lines and the large parasitic effects of the wiring, amongst
other practical limitations.

At microwave frequencies, waveguides substituted the former two-wired line,
cavity resonators replaced lumped LC elements and reactances became waveguide
discontinuities. It was an important change in the design approach, since the dis-
tributed nature of the elements that formed the components had to be taken into
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account. In those years when computers were not readily available, the design
of passive components was aided by approximated closed-form expressions and
synthesis techniques [2]. A major contribution was made by N. Marcuvitz, who
compiled in his book [3] the equivalent-circuit parameters for a large number of
microwave structures. The simple and elegant formulas contained in this publica-
tion, based on the solution of an integral-equation formulation of field problems [4]
and experimental data, offered valuable insight on how to transform synthesized
lumped-circuit elements into physical waveguide structures. An in-depth study of
the main design procedures for microwave passive components is compiled in the
well-known book by Matthaei, Young and Jones [5], published in the late years of
this period. As can be seen there, the role of graphs and tables was predominant
in those early years.

The space race and rapid development of commercial satellite communications
in the 1960s and 1970s brought along numerous advances in the area of microwave
components. To fulfill the increasing demand for these new systems, regulators
were forced to move the allocated frequency band for satellites towards higher
frequencies. Associated with the frequency shift, there were many technological
challenges that had to be addressed. For example, filter requirements became more
stringent, in terms of in-band linearity and out-of-band selectivity, which inspired
the development of folded filters with transmission zeros (TZs) [6]. Size and mass
of the components were severely limited for space applications. To minimize them,
the implementation of filters that employ multiple degenerate modes in each cavity
(nowadays known as dual-mode filters) was proposed [7,8]. At the same time, the
combination of contiguous channel filters in a single multiplexer was made possible
thanks to the design of singly-terminated filters [9, 10]. These advances enabled
the reduction, in half, of the number of antennas required to transmit and receive
all channels, with a consequent reduction of the satellite mass and size [11].

Improvements in computational capacity and the increasing availability of
time-shared mainframe computers prompted engineers to adopt more automated
design approaches for filters and multiplexers. Early computer-aided design (CAD)
tools can be traced back to this era [12–15]. One of the few commercially-available
tools at the time was COMPACT (which stands for Computer Optimization of
Microwave Passive and Active Circuits), since most CAD tools were developed
in-house [16]. Typically, the analysis of microwave networks was based on a com-
bination of lumped and distributed elements, that were cascaded using ABCD,
impedance or admittance matrices [17]. As the complexity of the guided struc-
tures increased to meet more demanding specifications, filter design demanded
more accurate analysis tools. It was during these two decades that the foundations
for the numerical solution of Maxwell’s equations (the basis of most modern com-
mercial EM-field solver tools) were laid. For instance, the mode matching (MM)
technique was first described by Wexler [18] in 1967, and a year later Harring-
ton published his well-known book presenting the powerful Method of Moments
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(MoM) [19]. General techniques for the solution of partial differential equations,
such as the Finite Element Method (FEM) [20] and the Finite-Difference Time-
Domain method (FDTD) [21] (although not known by that name at the time),
were first applied to solve electromagnetic problems in the late 1960s. Likewise,
in the early 1970s Johns and Beurle published a paper describing the solution of
bi-dimensional scattering problems by the Transmission-Line Method (TLM) [22].
Some of these contributions came in the form of mathematical formulations, while
others went a step further and even included computer programs that implemented
some of the novel analysis methods. However, the popularization of these methods
did not arrive until decades later.

In the 1980s and 1990s, the commercialization of UNIX workstations and the
personal computer (PC) provided increasing resources in terms of availability,
memory and computational capacity. Technology had evolved enough to support
commercial versions of the CPU- and memory-intensive methods of the 1970s.
For instance, popular EM solvers such as HFSS [23] and Sonnet [24] (currently
used in many microwave designs) were first introduced to the public in the mid-
1980s. Despite the great technological advances in computers and the automation
of meshing algorithms, EM mesh-based methods were still not efficient enough
to design most components of the 1980s. Instead, most analysis tools developed
during this time were focused on specific and widely used structures that were
commonly found in a large number of designs [25–29]. At the same time, these
techniques were often combined with optimization routines in order to minimize
the time devoted to the final tuning of the components [30–32].

This trend has continued over the last two decades, with computers taking a
central role in the design of high-frequency components. Neural networks [33],
genetic algorithms [34] or aggressive space mapping [35] are frequently combined
with full-wave EM analysis tools to facilitate the design of complex components
with a large amount of variables, combining several materials or with very strin-
gent geometrical and mechanical specifications. At the same time, general purpose
3D EM simulators, such as Ansys’ HFSS [23] or CST Microwave Studio [36], have
evolved tremendously and, nowadays, they can be applied to model almost any
component. However, their direct use in combination with gradient-based opti-
mization techniques is still not recommended for large or sensitive structures, due
to the excessive time required in each iteration. For complex waveguide compo-
nents, the actual design is usually performed with full-wave simulators tailored to
the specific structure (typically, modal-based simulators such as FEST3D [37], Mi-
crowave Wizard [38], WASP-NET [39], etc.) and then the final result is exported
into a mesh-based simulator to perform the final verification.

As demonstrated, new developments in microwave devices have been frequently
aided by advances in analysis and modeling tools. In the current digital era, the use
of computers both to analyze and design modern microwave components is indeed
fundamental. In this context, the present PhD thesis makes significant contribu-
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tions in both areas: a very efficient EM simulation tool is first developed, and then
applied to the design of filters and multiplexers for high-power applications.

1.1 State of the art

Electromagnetic problems, and also the analysis techniques used to solve them,
can be classified according to the number of space variables upon which the field
magnitudes depend:

• One-dimensional (1D) problems: The unknown magnitudes in these prob-
lems depend on one space dimension only. Typical examples are transmission-
line problems, where the unknown to be determined is either the voltage or
current along the transmission line.

• Two-dimensional (2D) problems: The objective in these problems is to find
the unknowns defined in two space dimensions. Examples of these types of
problems include the determination of the modal field patterns in waveg-
uides, TEn0 propagation in rectangular waveguide structures and scattering
from cylindrical obstacles.

• Three-dimensional (3D) problems: These are the most general problems,
where the unknown field magnitudes and the excitations depend on the three
space dimensions. Modern design of microwave components require the so-
lution of these sort of problems. A particular case of 3D problems is the
field computation in a 3D region where the excitation is confined to one or
more planes. These problems are known as 2.5D problems, and are found in
planar structures such as microstrip circuits or co-planar circuits.

The present PhD thesis deals with a specific type of 3D problems. The struc-
tures under study are metallic cavities that are constant in one space variable
and have an arbitrary shape in the other two dimensions. Figure 1.1 depicts
one of these cavities, which is constant along the ŷ direction. The cavity can be
interconnected to other elements through openings (known as ports) in the lat-
eral walls. Throughout this thesis, these types of structures will be referred to
as bi-dimensional cavities. Examples of bi-dimensional cavities include, amongst
many others, bends, Y-junctions, compensated T-junctions, rat-race couplers, cor-
rugated sections, inductive/capacitive windows and posts in rectangular cavities
and tapers. When these cavities are connected with other waveguide and discon-
tinuities, and all of them share the same constant dimension, the component is
known as H-plane or E-plane (depending on the constant dimension and nature of
the excitation). In those cases, the use of 2D techniques is possible1. Otherwise,

1For E-plane problems, the electromagnetic fields depend on three space variables. However,
the dependence on one of these variables is analytical, therefore it is not an unknown of the
problem. The core of the problem can be considered, effectively, 2D.
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general components containing bi-dimensional cavities need to be solved by 3D
analysis techniques to take into account all the interactions in the structure.

x̂

ŷ

Connection

Interface (Port)
Connection

Interface (Port)

Figure 1.1: Example of a general bi-dimensional cavity.

The 3D analysis techniques implemented in modern CAD/CAE software tools
can be classified in three groups: modal techniques, discretization techniques and
hybrid techniques.

Modal techniques stem from the work by Wexler [18]. These techniques di-
vide a microwave device in different regions or building blocks (typically, waveg-
uides, planar discontinuities and cavities). They describe the electromagnetic field
within each region as a superposition of modes, and characterize each building
block by an equivalent multimode network representation (in terms of generalized
impedance, admittance or scattering parameters). The resulting matrices model
the interaction between the modes in the different regions, so the response from
a complete component is computed by the interconnection of the matrices in all
the regions. The main advantage of these techniques is that they are computa-
tionally very efficient and accurate, thus being ideal candidates to be the core
analysis methods for CAD tools. This group of techniques has been widely used
to analyze bi-dimensional cavities [40–43], since they can take full advantage of
the electromagnetic properties of these structures. However, they do not offer as
much flexibility as discretization techniques, and can only be applied to canonical
shapes.

The second group of analysis techniques is based on the discretization of a cer-
tain electromagnetic magnitude (such as the electric field, the magnetic field or the
surface current) that represents the unknown of the problem. This process is also
called meshing, and requires the division of the geometry into a large number of
small elements (1D segments, 2D triangles or 3D tetrahedra or hexahedra). Within
each element, the unknown is assumed to have a linear dependence with a certain
set of functions, known as basis functions. The discretization process transforms
Maxwell’s equations, along with the boundary conditions of the problem, into a
linear system of equations. The solution of this system establishes the amplitude
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and phase of the basis functions, thus providing an approximated representation
of the electromagnetic field in each mesh element. Therefore, these techniques are
suitable to analyze any 3D geometry. However, the accuracy of the results is en-
tirely dependent on the density of the mesh, and how well it can be adapted to the
geometry of the component (for instance, generating an accurate mesh for curved
surfaces is a challenging task for these methods). Fine meshes generally provide
more accurate results at the expense of larger computation times. However, the
density of the mesh cannot be indefinitely increased. The maximum mesh size (in
terms of number of elements) is limited by the available computational resources,
especially memory. Likewise, mesh-based methods analyze structures as a whole,
and do not permit the decomposition of a component into smaller parts. Thus,
any change in the geometry of the structure (even if it is small) causes the algo-
rithm to generate a new mesh for the complete geometry. For that reason, these
methods are rarely used to design large and complex components, which require
constant modifications of the geometry. Instead, they are widely applied at the end
of the design cycle to verify the final result. Nowadays, the most frequently used
discretization techniques are Finite Element Method (FEM), Finite Differences in
Time Domain (FDTD) and Method of Moments (MoM). An in-depth study of
these three methods can be found in [44]. Bi-dimensional cavities are suitable to
be analyzed with any of these methods, and several examples can be found in the
technical literature [45–51].

Hybrid approaches that combine several of the aforementioned techniques have
also been proposed as a way to overcome the limitations of the individual tech-
niques. For instance, the characterization of complex-shaped bi-dimensional cavi-
ties that require a large number of modes can benefit from the combination of the
mode-matching technique with FEM [29,52,53].

Despite the maturity of the computational electromagnetics field, the efficient
analysis of bi-dimensional cavities with arbitrary shape has not been properly ad-
dressed. Most publications propose very efficient algorithms that are only tailored
to a few basic geometries [41, 54, 55]. Therefore, their scope of application is lim-
ited. Some methods are flexible enough to describe more arbitrary shapes [56,57],
but do not take full advantage of the 2D nature of the structure: the frequency
dependence of the solution is not properly treated. As a result, these algorithms
involve a large number of time-consuming operations per frequency point. Finally,
formulations that perform the bulk of the computation independent of the anal-
ysis frequency [58, 59], are limited to certain excitations and, therefore, do not
provide a full-wave representation. Moreover, they only allow the description of
the contour in terms of straight segments. Thus, one of their main advantages
(their efficiency to obtain very accurate results) is lost when analyzing cavities
that include circular posts and rounded corners.

The main objective of this thesis is to contribute to the development of a hybrid
analysis technique for bi-dimensional cavities that addresses most of these issues.
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This technique combines the Boundary Integral - Resonant Mode Expansion (BI-
RME) method [26] for waveguides with the Integral Equation technique developed
by Okoshi and Miyoshi [60] for planar circuits. With the aid of a frequency trans-
formation, the 3D problem can be divided into two independent 2D problems that,
conveniently combined, provide an accurate full-wave representation.

The BI-RME method is a modal technique based on the solution of a bound-
ary integral (BI) equation by the MoM that involves a two-dimensional dyadic
Green’s function. Instead of the free-space Green’s function for two-dimensional
domains, this method utilizes the Green’s function of an auxiliary two-dimensional
resonator. For efficiency purposes, this function is divided in two parts: a static
term and a rapidly converging resonant mode expansion (RME). The expansion
is expressed as a series involving the resonant modes of the auxiliary resonator
(either a rectangular or circular waveguide). As a result, the EM problem is trans-
formed into a linear eigenvalue problem of moderate size, amenable for a fast and
accurate solution by standard linear algebra tools (for instance, LAPACK [61]).
This method was originally applied to the determination of the modal chart and
modal field patterns of arbitrarily-shaped waveguides with metal inserts composed
of linear arcs [26]. Later, this formulation was improved in order to solve more
accurately waveguides with increasingly complex contours [62]. In addition, the
BI-RME method was expanded to consider 3D cavities of arbitrary shape [63],
and rectangular cavities containing cylindrical metallic [64, 65] and dielectric ele-
ments [66].

The BI-RME method has also been used to analyze H-plane [67] and E-
plane [68] cavities in the past. Making use of Kurokawa’s field representation
as an expansion of solenoidal and irrotational modes of the closed cavity [69],
the authors obtained an adequate approximation for the Generalized Admittance
Matrix (GAM) of a bi-dimensional cavity. Although this method has proven to
be very efficient in the analysis of filters with simple inductive or capacitive win-
dows, posts or metal sheets, its application to more complex structures is limited.
The main limitation of these formulations is that they require the excitations to
be located at a certain distance from the body of the cavity. This means using
sections of rectangular waveguide with a considerable length to connect the excita-
tions to the cavity. In practical cases, this reduced the scope of application of this
methodology to components having only single-mode interactions between their
different building blocks. Despite these limitations, the European Space Agency
(ESA) funded a project to develop an EM software tool based on this application.
It became known as ANAPLAN-W [70,71].

To overcome the limitations of the original BI-RME formulation applied to
bi-dimensional cavities, the same authors proposed years later to combine this
formulation with the analysis methodology of planar circuits proposed by Okoshi
[60]. As a result, two methods were successfully developed to analyze H-plane [59]
and E-plane [58] cavities. Despite the considerable increase in the accuracy of the
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analysis and the broader range of application of the new formulations, there were
still some requirements that were not addressed:

1. The improved BI-RME formulations were completely based on the excitation
of a limited number of modes. Components with a constant height could only
be excited by the H-plane family of modes (this is, TEm0 modes), whereas
constant-width components had to be excited by the E-plane family of modes
(i.e., LSE1n modes). Therefore, they could not be considered actual full-
wave formulations, since they could only be applied to analyze components
maintaining such symmetry throughout the entire structure. This meant
that, for example, constant-width and constant-height blocks could not be
interconnected in a single component.

2. The original formulation was focused on efficiently computing the GAM, in
order to obtain the frequency response of the cavity. The computation of the
electric and magnetic fields within the cavity was not considered. Nowadays,
it is increasingly important to predict high-power failures (multipactor and
corona) in microwave components [72–74]. Advanced prediction tools receive
the electromagnetic fields as inputs [75]. Therefore it becomes critical for a
modern full-wave analysis tool to generate these EM data.

3. The methods of [58, 59] required the contour of the bi-dimensional cavity
to be described by a collection of straight segments. For eminently curved
components, such as bends, rat-race couplers or cylindrical posts in rectan-
gular cavities, the efficiency of the analysis decreased as the curved elements
had to be approximated by many straight lines to increase the accuracy of
results.

In this context, the present thesis will develop an efficient full-wave formulation
for the analysis of bi-dimensional cavities. This new formulation will capitalize on
the strengths of the improved ANAPLAN-W implementations, while simultane-
ously overcoming its main limitations. It will be based on the combination of the
2D version of the BI-RME method and the Okoshi formulation for planar circuits,
but considering general excitations. The problem will be efficiently solved thanks
to a frequency transformation that reduces the size of the problem and accelerates
the computation of its solution. Both the frequency response and the electromag-
netic fields will be provided. In addition to straight segments, the use of circular
and elliptical arcs will be specifically considered.

The potential scope of application of this tool is very wide. Many waveguide
structures include building blocks with one constant dimension (see Fig. 1.2). Due
to its widespread use, specific analysis tools for the most common 2D building
blocks can be found in the literature. Amongst others, we can mention rectangu-
lar irises [76, 77], posts [78–80], T-junctions with [81] and without [42] compen-
sation posts, Y-junctions [82, 83], bends [56, 84, 85], tapered waveguides [86, 87],
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waveguide steps [88, 89], branch-line couplers [90, 91], rat-races [92, 93] and power
dividers [94, 95]. All these stand-alone blocks can be easily found in waveguide
complex devices. For example, manifold-coupled multiplexers typically employ
T-junctions to model the connection of filters to the manifold [96]. Alternative
implementations of multiplexer manifolds have also been proposed, such as ta-
pered guides [97] to aid in the spatial distribution of the different channels or Y-
junctions [98,99] to cover wider frequency bands. The latter have also been used in
the literature to implement circulators [100] and narrowband orthomode transduc-
ers (OMTs) [101, 102]. Wideband OMTs typically employ bends, tapered waveg-
uides and directional couplers [103–105] or, alternatively, power dividers [106].
Likewise, numerous filters, from band-pass [107, 108] to low-pass [109–111], high-
pass [112] and even band-stop [113] filters include bi-dimensional building blocks.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.2: Some common building blocks. a) Inductive iris. b) Compensated
T-junction. c) Y-junction. d) Bend. e) Tapered waveguide. f) Waveguide
steps. g) Branch-line coupler. h) Rat-race. i) Power divider.

Given that this formulation will be integrated within a CAD tool for microwave
components, this thesis will also consider its application to the design of two types
of components:
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• Quasi-elliptic filters.

• Wideband manifold-coupled multiplexers.

Firstly, quasi-elliptic filters, containing multiple transmission zeros (TZs) in
their frequency response, will be studied. These filters are the preferred solution
in applications that have strong isolation requirements at certain frequency bands.
Typically, filters with TZs either use bandstop cavities to generate them (a method
known as the extracted-pole technique [114]) or implement multiple signal paths
by creating couplings between adjacent and non-adjacent resonators [115]. The
former, combined with non-resonating nodes [116–118], becomes a highly modular
procedure, but requires intense optimization to obtain the final physical dimen-
sions. The latter often requires the ability to produce both electric and magnetic
couplings, which may not be simple in some applications (for instance, high-power
coaxial resonator filters), and normally produces a more intricate layout for the
hardware to be manufactured. However, it is the most extended way of providing
TZs in rectangular and circular waveguide filters. Furthermore, thanks to the cre-
ation of singlets [119], triplets and quadruplets [120,121] (i.e. low-order structures
that introduce one or more TZs and can be cascaded with others to create higher-
degree filters) the design of these types of filters has become highly modular as
well.

The selection of a topology to implement the filter is one of the most impor-
tant aspects of the design process. It determines the specific couplings that can
be physically realized and the range of coupling levels that can be achieved. This
has a direct influence on the type of response that can be implemented, espe-
cially in relation with the number of TZs and their location. The choice of an
adequate topology is especially critical in tuning-less implementations, where the
manufactured structure cannot be altered to compensate deviations in the phys-
ical dimensions. In these situations, low-order filters are preferred in order to
improve sensitivity to manufacturing. Likewise, compact and simple structures,
with a high degree of symmetry, are usual choices to facilitate its accurate and
quick simulation and design with full-wave analysis tools, as well.

Hybrid Folded Rectangular Waveguide (HFRW) filters [122], like the one shown
in Fig. 1.3, have been recently proposed as a robust alternative to classical cross-
coupling configurations. One of the major strengths of this filter topology is its
flexibility. It allows the designer to include as many resonators as required and
physically arrange them in a variety of ways. This ensures an optimum utilization
of the physical space available. At the same time, HFRW structures are able to
provide large coupling levels between adjacent as well as non-adjacent resonators,
which enables the generation of TZs in a wide frequency range. In addition, the
structure is simple enough to be simulated considerably fast and is amenable to
clam-shell manufacturing, which minimizes the insertion losses and the passive
intermodulation (PIM) that may be generated. In this PhD thesis, the design of
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this family of filters is investigated and a simple systematic design procedure is
proposed. Moreover, different configurations are studied, and their capabilities,
advantages and potential limitations are discussed at length.

Complementary to the design of HFRW filters, this PhD thesis also investigates
a novel coupling window formed by a capacitive iris and several rectangular stubs,
as a simple method for generating additional TZs without significantly increasing
the number of resonators or the total length of the filter. This novel constant-
width window, which can be used in a wide variety of filters including HFRW
ones, is inspired by the work of Amari and Bornemann [123]. In that work, a stub
is used to implement the filter input/output coupling window while simultaneously
introducing a TZ. Although feasible, the window in [123] is not very practical, since
it tends to be very large, spurring undesired resonances and limiting the range of
coupling values that can be implemented. With the coupling window proposed
in this thesis, almost any coupling window can be achieved while maintaining
short stub lengths. In addition, multiple stubs can be connected in parallel, thus
increasing the number of TZs implemented with the same coupling element.

Input Output

Figure 1.3: Structure of a fifth-order HFRW filter.

As a second CAD application, the design of tuning-less wideband multiplex-
ers will be examined in this PhD thesis. Multiplexers are passive networks with
multiple ports employed to separate or combine a number of radio frequency (RF)
channels. These components are formed by the interconnection of a series of filters,
each one assigned to extract one channel. A long waveguide, known as manifold, is
typically used to interconnect the filters. If all the channels in the multiplexer cover
more than 20% of the central frequency of operation, the multiplexer is known as
wideband. If they cover less than 10%, they are usually referred to as narrowband.
In contrast with their narrowband counterparts, wideband multiplexers have been
developed to a much smaller extent.

Classical multiplexer design techniques [96, 102] assume a limited variation of
the multiplexer reactance in the passband of any filter. Consequently, they are
adequate in narrowband scenarios. However, a series of issues arise during the
design of wideband multiplexers. The main one is due to the interaction between
the different filters and the manifold, which is much stronger than in the narrow-
band case. Thus, undesired resonances are more problematic. In addition, they
must be avoided in a wider frequency range. Another issue involves the physi-
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cal implementation of the input coupling for each filter. The coupling structure
must provide the high coupling level required and, at the same time, compensate
for the frequency-dependent loading effect of adjacent filters. These two issues
become more concerning as the number of channels increases. For that reason,
most publications related to the design of wideband multiplexers are focused on
diplexers [124–126]. As far as multiplexers are concerned, a manifold based on a
cascade connection of Y-junctions for wideband applications has been proposed
in [98], along with a tailored design technique. The solution requires intercon-
necting stubs and a bulky and intricate manifold (that can reduce the available
coupling from the common port to the last channel filters). Also, a hybrid tech-
nique combining circuit models and full-wave simulations [127] has been proposed
for multiplexers with a moderate bandwidth. However, none of these techniques
provides a satisfactory solution, thus there is still demand for an efficient wide-
band multiplexer design technique. The present thesis contributes to this topic by
proposing a simple systematic procedure that addresses most of the issues associ-
ated with this type of component.

1.2 Objectives

The main objective of the work in this thesis is the development of an efficient and
rigorous analysis technique for the full-wave characterization of complex waveguide
cavities that maintain one of its dimensions (either its width or height) constant,
i.e. bi-dimensional cavities of arbitrary shape. This technique must take advan-
tage of the electromagnetic symmetry of these types of discontinuities to solve the
electric and magnetic fields in a fraction of the time that takes general-purpose
numerical methods. It must provide the electromagnetic fields within the cavi-
ties under analysis, as well as their characterization in terms of the Generalized
Admittance Matrix (GAM). Likewise, this tool must explicitly consider straight
segments as well as circular and elliptical arcs, in order to describe the contour of
the cavity under analysis.

After the development and implementation of this analysis technique it will be
integrated in the EM solver FEST3D [37]. Given the possibilities that this software
brings to the analysis and design of complete microwave components, this thesis
will consider three specific topics, based on the implemented tool.

The first topic is the prediction of high-power breakdown levels in waveguide
structures. In order to do so, the electromagnetic field obtained with this for-
mulation is used as input of the prediction algorithm for high power phenomena
implemented by SPARK3D [128]. This software models multipactor accurately
thanks to the use of an electron tracking algorithm, along with an adequate sec-
ondary electron yield model. Corona, also known as gas discharge or arcing, is
analyzed through the solution of the free electron density continuity equation by
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means of the Finite Element method. The predicted threshold levels will be com-
pared with measurements to validate the accuracy of the field computation.

A second area of interest is the design of HFRW filters. These components
find wide application in low PIM and high-isolation environments. For that rea-
son, they are ideally suited to implement the channel filters in PIM measurement
setups. The design of this type of filter is greatly benefited from the use of an
efficient analysis tool, since there can be many couplings of different natures (ca-
pacitive and inductive) placed close to each other. The number of modes in these
structures is high, thus classical modal techniques tend to be relatively slow to pro-
vide convergent results. Regarding this class of filters, a simple design procedure
will be provided and different implementations will be studied. To complement
this topology of filters, a new coupling structure, based on the combination of stubs
with capacitive windows, will be studied. With it, HFRW filters can increase the
total number of TZs in the stopband without increasing the filter size significantly.

The third application involves the design of wideband manifold-coupled multi-
plexers. These components are generally used in PIM measurement setups. This
thesis will present a systematic procedure for the critical stage of the design: the
spacing of the filters along the manifold and initial adjustment of all the intercon-
nections. This simple and fast methodology provides an adequate starting point
for the successful optimization of wideband multiplexers. Specific issues associated
with the design of multiplexers for wideband applications will be addressed.

In conclusion, the main objectives of the work in this thesis can be summarized
as follows:

1. Development of a full-wave formulation to efficiently compute the electro-
magnetic fields within bi-dimensional cavities of arbitrary shape. The ex-
citation of these cavities will be expressed as an expansion of modes in a
rectangular waveguide. The shape of the cavity will be described by any
combination of straight, circular and elliptical arcs defining a closed line.
The case of multiple conductors within a cavity will also be considered.

2. Extension of the formulation to provide a circuit description of the cavity
under analysis, in terms of the Generalized Admittance Matrix (GAM). This
extension is required in order to generate the frequency response of complex
passive devices that contain bi-dimensional cavities.

3. Validation and integration of this formulation with FEST3D. A variety of
passive components featuring, predominantly, bi-dimensional structures will
be analyzed. Results will be compared with measurements taken from the
literature (when available), and otherwise with results from other commercial
software tools such as Ansys’ HFSS and CST Microwave Studio.

4. Application of the formulation, in combination with SPARK3D, to the pre-
diction of RF breakdown: multipactor and corona thresholds.
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5. Study of HFRW filters in different configurations. Proposal of specific im-
plementations that allow the realization of multiple transmission zeros either
in the upper or the lower stopbands.

6. Proposal of a new coupling window for rectangular waveguide filters that
generates multiple transmission zeros and an adjustable coupling level.

7. Development of a design procedure for wideband multiplexers. Application
of this procedure to the design of multiplexers with HFRW filters for Passive
Intermodulation setups.

1.3 Thesis structure

The thesis is organized in six chapters. This first chapter has presented an overview
of the topic developed within the framework of this thesis. A review of the method-
ologies currently used to analyze and design waveguide filters and multiplexers is
given. The objectives set for this work are also presented. All this gives the reader
a perspective into the strategic value of efficient computer-aided design (CAD)
tools and methodologies in the context of modern passive microwave components.

Chapter 2 deals with the full-wave characterization of bi-dimensional cavities.
It explains how to derive the electromagnetic field within any type of cavity as
a series expansion of resonant modes, coupled to the sources of excitation in the
contour of the cavity. This formulation is then particularized for the case of cavi-
ties having one constant dimension. As will be shown, the problem of determining
the fields given a certain excitation can be split into two contributions: one for
Longitudinal Section Electric (LSE) modes and another for Longitudinal Section
Magnetic (LSM) modes. The field problems associated with each excitation can
be solved independently. This chapter proposes a new and efficient methodology
to solve these two problems. The novelty of proposed methodology is that it re-
duces the complexity of the analysis thanks to a proper frequency transformation.
The EM fields under excitation of high-order modes can be derived directly from
the fields associated with low-order modes, simply by evaluating them at partic-
ular frequencies. The low-order modes that this formulation employs are those
typically involved in the solution of purely E-plane and H-plane cavities. There-
fore, the proposed formulation can be directly applied to any numerical method
dealing with E-plane and H-plane cavities. In the framework of this thesis, a hy-
brid method combining an Integral Equation for planar circuits with the BI-RME
method for arbitrarily-shaped waveguides is employed to solve the partial E-plane
and H-plane problems. The analysis capabilities of this method are also expanded.
To increase its precision when dealing with structures that contain circular and
elliptical contours, singular integrals associated with these segments are solved. In
addition to its application to the computation of EM fields, this novel methodol-
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ogy is also applied to efficiently compute the GAM of bi-dimensional cavities, at
the end of the chapter.

Chapter 3 presents a series of components that are analyzed in order to vali-
date the accuracy of the electromagnetic formulation developed in chapter 2. They
cover a wide range of applications, from filters and multiplexers to orthodomode
transducers. In some instances, measured data taken from the literature is em-
ployed to compare results. In other instances, the components are analyzed with
commercial EM solvers for comparison.

Chapter 4 is focused on the study of quasi-elliptic filters. HFRW implemen-
tations offer great flexibility to choose the number and location of the TZs in the
response. Depending on the specific combination of couplings, the TZs are located
above or below the transmission zeros. Several implementations of these couplings
are proposed. A thorough investigation of the coupling mechanisms between res-
onators reveals that some of these mechanisms are capable of providing an excess
of TZs. This phenomenon is studied, and guidelines are given to help design-
ers control the position of all TZs available. Moreover, a new coupling structure
formed by stubs connected to a capacitive window is studied. Two examples are
given to illustrate its use in practical filter design.

Chapter 5 describes a systematic procedure for the design of wideband manifold-
coupled multiplexers. As opposed to the classical narrowband multiplexers, in
wideband applications it is critical to have short manifolds and avoid the use
of long stubs to connect the different filters to the manifold. In the proposed
technique, filters are directly connected to the manifold, following a sequential
procedure. In each stage, only a few variables are adjusted. By the end of this
procedure, an adequate initial point is obtained. Further optimization by classi-
cal methods is able to provide the desired response of the multiplexer. Several
examples will be shown to validate this procedure.

Chapter 6 summarizes the conclusions of this work. Likewise, it describes
potential research and development lines associated with the work performed in
the framework of this thesis.





Chapter 2

Full-wave characterization of
bi-dimensional cavities

A resonant cavity is a metallic enclosure (such as those shown in Fig. 2.1) of a loss-
less - or low-loss - medium in which an infinite number of free-oscillating modes can
exist. A discrete frequency is associated with each mode, indicating the condition
for its resonance. Cavities are usually coupled to waveguides via apertures located
in the metallic shell. In these apertures, the electric field transverse to the aperture
n̂ × E 6= 0 (n̂ refers to the outwardly directed normal direction), provides the
external source of excitation for the fields in the cavity. However, in this thesis no
additional electric or magnetic current sources are considered in the cavity.

n̂ SV

V

n̂

n̂

SV

V

n̂SV

V

Type I Type II Type III

Figure 2.1: Cavities can be classified in three groups. Type I cavities are sim-
ply connected volumes with a single boundary. Type II cavities are simply
connected volumes with multiple boundaries. Type III cavities are multi-
connected volumes with a single boundary.

Although cavities are traditionally employed as resonators, in this thesis the
concept of cavity is taken in a much broader sense. This means that the cavities
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will be characterized near their resonances but also away from them. In the latter
case, especially when the coupling apertures have a considerable size, cavities can
represent a non-resonating discontinuity between the waveguides connected to the
apertures. Consequently, the theory of cavities can be directly applied to the
modeling of building blocks, such as those depicted in chapter 1.

The electromagnetic fields within aperture-coupled cavities (not containing
electric or magnetic current sources) are governed by Maxwell’s equations:

∇×E = −jωµH (2.1a)

∇×H = jωεE. (2.1b)

By appropriate combination of both equations, the classical wave equations can
be obtained:

∇2E+ k2E = 0 (2.2a)

∇2H+ k2H = 0 (2.2b)

where k = ω
√
µǫ. The solution of these equations, along with the boundary con-

ditions imposed by the cavity walls and apertures in the shell, is the objective of
this chapter. The metallic walls and enclosed medium are assumed to be loss-less.
Two different procedures to solve the wave equations will be shown. The first one
is based on Kurokawa’s field expansion in cavities [69]. As will be demonstrated,
the direct application of this first procedure provides accurate results, but involves
slowly converging series that deem this procedure unsuitable to develop an efficient
analysis tool. As an alternative, a second formulation is proposed. It combines
the theory of auxiliary potentials with the Kurokawa’s expansion and an integral
equation technique proposed by Okoshi [60] to model planar circuits. The ap-
plication of a frequency and boundary-condition transformation to the proposed
formulation results in an important reduction in the size of the problem. This
accelerates the numerical computation of a solution and, therefore, the efficiency
of the overall algorithm. To finalize the present chapter, this second formulation
is applied to efficiently compute the Generalized Admittance Matrix (GAM) of
bi-dimensional structures. Numerical results involving the analysis of this type of
cavities with the proposed formulation will be presented in chapter 3.

2.1 Cavity mode spectrum and the expansion of
electromagnetic fields

Given that the E, H, ∇×E and ∇×H functions in (2.1) and (2.2) are piecewise-
continuous functions (i.e. continuous except for a finite number of surfaces each
with a finite area) and square-integrable over the cavity volume V , they can be
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expanded in terms of an adequate set of orthonormal functions [69, 129]: the
electric and magnetic eigenvectors.

On the one hand, the electric eigenvectors are the solution of the eigenvalue
problem:

∇2Ω+ κ2Ω = 0 in V

n̂×Ω = 0, ∇·Ω = 0 on SV

(2.3)

where κ are the eigenvalues of the problem. As it can be seen, the boundary
conditions are of the electric type, thus the term “electric eigenvectors”. Magnetic
eigenvectors, on the other hand, are the solution of:

∇2Ω+ κ2Ω = 0 in V

n̂ ·Ω = 0, n̂×∇×Ω = 0 on SV .
(2.4)

The boundary conditions, in this second case, are of the magnetic type.
The solutions to the eigenvalue problems presented in (2.3) and (2.4) share the

following properties:

1. There is a countable infinity of real non-negative eigenvalues and real eigen-
vectors.

2. Eigenvalues have a single cluster point at infinity.

3. Eigenvalues are simple or have a finite degree of degeneracy.

4. Eigenvectors are continuously differentiable to all orders.

5. The full eigenvector set constitutes an orthonormal basis. The projection
between any pair of solutions must fulfill:

〈Ωi,Ωj〉 =
∫

V

Ωi ·Ω∗

j dV = δij (2.5)

where δij is Kronecker’s delta. Consequently, any square-integrable vector
field F defined in V can be represented by the expansion:

F =
∑

i

Ωi

∫

V

Ωi ·F dV. (2.6)

In general, the electric and magnetic eigenvectors can be classified in three
groups:

• Irrotational modes — Satisfying:

∇×Ω = 0 ∇·Ω 6= 0. (2.7)

To distinguish between them, the i-th electric irrotational eigenvector are
represented by the symbol fi and the i-th magnetic eigenvector by gi.
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• Solenoidal modes — Fulfilling:

∇×Ω 6= 0 ∇·Ω = 0. (2.8)

The electric solenoidal eigenvectors are represented by the symbol Ei and
the magnetic eigenvectors by Hi.

• Harmonic modes — Satisfying:

∇×Ω = 0 ∇·Ω = 0. (2.9)

Electric harmonic eigenvectors, denoted by E
0
i , only exists when the cav-

ity region is enclosed by M (with M > 1) separate boundaries (type II in
Fig. 2.1). In contrast, magnetic harmonic eigenvectors H

0
i must only be

considered in the field expansion of N -times connected cavities, with N > 1
(type III in Fig. 2.1).

Given the transverse electric field n̂ × E in all the apertures of the shell, the
electric and magnetic field solutions of (2.1) can be expanded according to:

E =

∞∑

i=1

Ai Ei +

in case of M
separate boundaries

(Type II)︷ ︸︸ ︷
M−1∑

i=1

A0
i E

0
i +

∞∑

i=1

Ti fi (2.10a)

H =
∞∑

i=1

Bi Hi +
N−1∑

i=1

B0
i H

0
i

︸ ︷︷ ︸
in case of N-times
connected volume

(Type III)

+
∞∑

i=1

Di gi (2.10b)

where

Ai = 〈Ei,E〉 = κi
k2 − κ2i

∫

SV

Hi · n̂×E dS (2.11a)

Bi = 〈Hi,H〉 = j k

η (k2 − κ2i )

∫

SV

Hi · n̂×E dS (2.11b)

A0
i =

〈
E
0
i ,E

〉
= 0 (2.11c)

B0
i =

〈
H

0
i ,H

〉
=

j

kη

∫

SV

H
0
i · n̂×E dS (2.11d)

Ti = 〈fi,E〉 = 0 (2.11e)

Di = 〈gi,H〉 = j

kη

∫

SV

gi · n̂×E dS. (2.11f)
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In these equations, k = ω
√
εµ is the wavenumber at the frequency of operation and

η =
√
µ/ε is the characteristic impedance of the medium. κi is the i-th eigenvalue

of the corresponding expansion mode. Next, each family of eigenvectors will be
presented.

2.1.1 Electric field expansion

2.1.1.1 Irrotational modes

Irrotational modes fi and their corresponding eigenvalues are the solutions of the
eigenvalue problem defined in (2.3) subject to the conditions:

∇× fi = 0 ∇· fi 6= 0. (2.12)

Since the curl of these eigenvectors is null, they can be expressed as the gradient
of a scalar function vi:

fi =
∇vi
κi

. (2.13)

The scalar function vi satisfies

∇2vi + κ2i vi = 0 in V

vi = constant on SV .
(2.14)

In order to comply with the normalization condition (2.5), the scalar function
must be normalized according to:

∫

V

|vi|2 dV = 1. (2.15)

Although these modes are not excited in aperture-coupled cavities without
electric and magnetic current sources (Ti = 0 in (2.11)), they have been included
for completeness of the solution.

2.1.1.2 Solenoidal modes

Given that their divergence is null, the eigenproblem (2.3) for electric solenoidal
modes Ei becomes:

∇×∇× Ei − κ2iEi = 0 in V

n̂× Ei = 0 on SV

(2.16)

In addition, the eigenvectors satisfy

∇× Ei 6= 0 ∇·Ei = 0. (2.17)
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2.1.1.3 Harmonic modes

The harmonic eigenvectors of the electric type E
0
i satisfy the same equations and

boundary conditions as a source-free electrostatic field in the shielded region V:

∇2E
0
i = 0 in V

∇·E0
i = 0 on SV

n̂× E
0
i = 0 on SV .

(2.18)

As it is demonstrated in [130], these equations necessarily imply that

∇× E
0
i = 0 ∇·E0

i = 0 (2.19)

as defined for harmonic solutions. These modes can only exist if the boundary SV

consists of separate parts at different potentials, as it is the case of Type II cavities
in Fig. 2.1. If the boundary consists of M separate parts, there must be M − 1
harmonic eigenvectors. Similarly to the electric irrotational modes, the harmonic
ones are not excited in aperture-coupled cavities without electric and magnetic
current sources (A0

i = 0 in (2.11)). Nevertheless, they have been included here for
completeness.

2.1.2 Magnetic field expansion

2.1.2.1 Irrotational modes

As in the electric field case, the magnetic irrotational modes gi satisfy

∇× gi = 0 ∇·gi 6= 0. (2.20)

They can be derived from a scalar function wi as:

gi =
∇wi

κi
. (2.21)

The scalar function wi fulfills

∇2wi + κ2i wi = 0 in V

∂wi

∂n
= 0 on SV

(2.22)

where ∂/∂n is the derivative along the outwardly directed normal n̂. To fulfill the
normalization condition of the eigenfunctions 〈gi,gi〉 = 1, the scalar function wi

must fulfill: ∫

V

|wi|2 dV = 1. (2.23)
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2.1.2.2 Solenoidal modes

The magnetic field solenoidal modes Hi and their eigenvalues κi fulfill

∇×∇×Hi − κ2iHi = 0 in V

n̂×∇×Hi = 0 on SV

(2.24)

in addition to the conditions

∇×Hi 6= 0 ∇·Hi = 0. (2.25)

These modes have the same eigenvalue spectra as the electric field solenoidal
modes Ei. Both sets of modes are related to each other by:

∇×Hi = κiEi (2.26a)

∇× Ei = κiHi. (2.26b)

2.1.2.3 Harmonic modes

Lastly, the magnetic field harmonic modes H
0
i correspond to the zero-eigenvalue

solution of (2.4). These modes only exist in multi-connected cavities like the Type
III resonator of Fig. 2.1 (which represents a 2-times connected volume). In an
N -times connected volume, there are N − 1 independent magnetic field harmonic
modes. All of them satisfy

∇×H
0
i = 0 ∇·H0

i = 0 (2.27)

and can be obtained as non-trivial solutions of the eigenvalue problem:

∇2H
0
i = 0 in V

n̂ ·H0
i = 0 on SV

n̂×∇×H
0
i = 0 on SV .

(2.28)

2.1.3 Application to bi-dimensional cavities

For bi-dimensional cavities, like the ones shown in Fig. 2.2, the determination of
the electric and magnetic eigenvectors admits certain simplifications. On the one
hand, the vector eigenvalue problems can be transformed into scalar eigenvalue
problems via suitable auxiliary potentials [131]. On the other hand, the problems
admit variable separation, thus reducing the dimensionality of the scalar problem
to be solved.

Bi-dimensional cavities can be understood as a section of waveguide with short-
circuited ends, therefore containing standing waves [132]. As it will be shown, the
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ẑ

û2
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Figure 2.2: Examples of bi-dimensional cavities: simply connected (left) and
multi-connected (right).

auxiliary potentials that aid in the computation of the electric and magnetic eigen-
vectors are directly related to the TE-to-z, TM-to-z and TEM-to-z solutions that
we can find in a waveguide with the same cross-section as the bi-dimensional cav-
ity. The construction of these solutions is analytical in highly canonical cases.
In contrast, complex waveguide shapes must be solved by means of suitable nu-
merical techniques. For instance, the efficient Boundary Integral- Resonant Mode
Expansion (BI-RME) method [26] can be used to obtain the TE-to-z, TM-to-z
and TEM-to-z solutions in waveguides of any arbitrary shape.

2.1.3.1 Solenoidal modes

The theory of auxiliary potentials states that, in order to obtain the solutions for
the (solenoidal) electric and magnetic fields in a boundary-value problem, a pair
of auxiliary vector potentials, F (electric vector potential) and A (magnetic vector
potential), may be used. Each auxiliary potential provides a subset of solutions.
The superposition of all of them yields the objective electric and magnetic fields.
In the case of bi-dimensional cavities, the electric vector potential problem is
directly related to the TE-to-z solutions of a waveguide with an equivalent cross-
section, as will be shown next. The magnetic vector potential, in contrast, is
related to the TM-to-z solutions of the equivalent waveguide. For multi-connected
cavities, the TEM-to-z modes of the cross-section waveguide lead to a third subset
of solenoidal modes. The expressions of each subset in terms of their respective
waveguide potentials are developed next.

TE-mode solenoidal solutions
These modes satisfy (2.16), (2.17), (2.24) and (2.25) and can be derived from

an electric vector potential Fi as:

E
TE
i = −∇× Fi (2.29a)

H
TE
i =

∇× E
TE
i

κi
. (2.29b)
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The vector equation for the electric field (2.16) can be transformed into an
equation for the vector potential Fi. It has been shown in (2.26a) that the electric
solenoidal modes can be related to the curl of the magnetic solenoidal modes.
Equating this equation with (2.29a), we have

∇×
(
H

TE
i + κiFi

)
= 0. (2.30)

From the vector identity ∇×∇φ = 0, the term in parenthesis can be seen as the
gradient of a certain arbitrary scalar function φ, thus

H
TE
i = ∇φ− κiFi. (2.31)

Now, the curl of (2.29a) is taken and equated with (2.26b). In the resulting
expression, the magnetic field H

TE
i is substituted by its equivalent expression of

(2.31), which yields,

∇2Fi −∇∇ ·Fi = κi∇φ− κ2iFi. (2.32)

Then, the Lorentz gauge is used to define the divergence of Fi in order to com-
pensate for the term containing the gradient of φ (i.e. ∇·Fi = −κiφ). Applying
this gauge in (2.32), the vector Helmholtz equation for the vector potential Fi

becomes
∇2Fi + κ2iFi = 0. (2.33)

The TE solenoidal solutions must have electric components that are transverse
to the constant direction of the structure. In order to obtain these solutions, the
vector potential Fi must be directed according to ẑ. In addition, separation of
variables can be applied. Consequently, Fi can be expressed as:

Fi = Ajl ϕj(u1, u2) sin

(
lπz

h

)
ẑ (2.34)

where ϕj is a certain scalar potential defined in the cross-section S and Ajl is a
normalization factor. l indicates the number of oscillations of the mode in the z
direction (standing wave condition), and h is the size of the cavity in the constant
direction ẑ. The index i of the vector potential Fi is now associated with the pair
of indices (j, l). For solenoidal TE modes, l > 0.

Substituting the expression of the vector potential (2.34) into (2.33), the vector
Helmholtz equation of the problem is transformed into an equation for the scalar
potential ϕj :

∇2
Tϕj +

[
κ2i −

(
lπ

h

)2
]
ϕj = 0 in S (2.35)

where ∇2
T = ∇2 − ∂2/∂z2 is the transverse-to-z Laplacian operator.
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Similarly, the boundary condition for the electric solenoidal modes is trans-
formed into a boundary condition for the scalar potential.

n̂× E
TE
i = n̂× (−∇× Fi)

= Ajl sin

(
lπz

h

)
[n̂× (ẑ×∇T ϕj)]

= Ajl sin

(
lπz

h

)
(n̂ · ∇T ϕj) ẑ. (2.36)

As defined by the boundary condition of the solenoidal modes (2.16), this last
expression must be null on the top (z = 0) and bottom (z = h) walls of the cavity,
as well as on its lateral wall. The former is fulfilled by the sinusoidal variation of
the field with z. This justifies the election of a sine variation with z of the electric
vector potential in (2.34). To fulfill the latter condition (i.e. n̂× E

TE
i = 0 on the

lateral wall), the scalar potential ϕj must satisfy the following condition in the
contour of the cross section of the cavity:

n̂ · ∇T ϕj =
∂ϕj

∂n
= 0 on ∂S. (2.37)

Combining (2.35) and (2.37), the similarity between ϕj and the scalar potential
for TE modes in a waveguide of cross section S is evident. It is well known that
the TE potential in a waveguide fulfills

∇2
Tϕ

TE
j +

(
χTE
j

)2
ϕTE
j = 0 in S

∂ϕTE
j

∂n
= 0 on ∂S

(2.38)

where χTE
j is the eigenvalue of the problem (and cut-off wavenumber of the corre-

sponding TE mode). If the relationship between the eigenvalues of both problems
is:

κi =

√
(
χTE
j

)2
+

(
lπ

h

)2

= κjl. (2.39)

it is immediate to see that the scalar potential of the bi-dimensional cavity problem
ϕj is identical to the scalar potential of the equivalent TE problem ϕTE

j . To
reflect that this eigenvalue is comprised of two contributions, the κjl designation
is employed.

Thanks to this procedure, the computation of the solenoidal TE modes is
reduced to the computation of the scalar TE problem in a waveguide of cross-
section S. To enforce the normalization condition (2.5) for the solenoidal modes,
the amplitude Ajl of the vector potential must be:

Ajl =

√
2/h

∫
S

∣∣∇TϕTE
j

∣∣2 dS
. (2.40)
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Applying Green’s first identity to ϕTE
j and

(
ϕTE
j

)∗
, the integral involved in

(2.40) becomes:

∫

S

∣∣∇Tϕ
TE
j

∣∣2 dS =
(
χTE
j

)2 ∫

S

∣∣ϕTE
j

∣∣2 dS. (2.41)

It is assumed that the waveguide potentials are normalized according to:

∫

S

∣∣ϕTE
j

∣∣2 dS = 1 (2.42)

therefore, the normalized expression for the vector potential Fi is

Fi =

√
2/h

χTE
j

ϕTE
j (u1, u2) sin

(
lπz

h

)
ẑ. (2.43)

Substituting (2.43) into (2.29) and expanding all the terms, the final expres-
sions for the electric and magnetic solenoidal TE modes in terms of the waveguide
scalar potential ϕTE

j are:

E
TE
i =

√
2/h

χTE
j

(
ẑ×∇T ϕ

TE
j

)
sin

(
lπz

h

)
(2.44a)

H
TE
i =

−
√
2/h

χTE
j

√
(
χTE
j

)2
+

(
lπ

h

)2

[
lπ

h
∇T ϕ

TE
j cos

(
lπz

h

)

+
(
χTE
j

)2
ϕTE
j sin

(
lπz

h

)
ẑ

]
. (2.44b)

TM-mode solenoidal solutions
As in the TE case, these modes satisfy (2.16), (2.17), (2.24) and (2.25). How-

ever, the TM-mode solenoidal eigenvectors can be derived from a magnetic vector
potential Ai as:

H
TM
i = ∇×Ai (2.45a)

E
TM
i =

∇×H
TM
i

κi
. (2.45b)

Following a procedure equivalent to the one developed for the solenoidal TE
modes, the original eigenvalue problem can be transformed into:

∇2Ai + κ2iAi = 0. (2.46)
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Likewise, the vector potential Ai in the TM case can be expressed as the
product of two contributions:

Ai = A′
jl ϕ

′
j(u1, u2) cos

(
lπz

h

)
ẑ. (2.47)

For TM modes, l ≥ 0 and i = (j, l). The scalar potential ϕ′
j is a solution of the

scalar eigenvalue problem:

∇2
Tϕ

′

j +

[
κ2i −

(
lπ

h

)2
]
ϕ′

j = 0 in S

ϕ′
j = 0 on ∂S.

(2.48)

This is identical to the eigenvalue problem for TM modes of a waveguide having
a cross section equal to S:

∇2
Tϕ

TM
j +

(
χTM
j

)2
ϕTM
j = 0 in S

ϕTM
j = 0 on ∂S

(2.49)

as long as the following relationship between eigenvalues holds:

κi =

√
(
χTM
j

)2
+

(
lπ

h

)2

= κjl. (2.50)

In this case χTM
j is the cut-off wavenumber of the waveguide TM eigenvalue prob-

lem. Therefore, we can substitute ϕ′
j by ϕTM

j . Likewise, it is assumed that the
waveguide potentials are normalized according to:

∫

S

∣∣ϕTM
j

∣∣2 dS = 1. (2.51)

The normalization condition, in this case, can be expressed as:

A′
jl =

√
ǫl/h

χTM
j

(2.52)

where

ǫl =

{
1 if l = 0
2 if l 6= 0.

(2.53)

Therefore, making use of this normalization constant, the magnetic vector po-
tential can be expressed as:

Ai =

√
ǫl/h

χTM
j

ϕTM
j (u1, u2) cos

(
lπz

h

)
ẑ. (2.54)
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Substituting (2.54) into (2.45), the final expressions for the electric and mag-
netic solenoidal TM modes are:

E
TM
i =

−
√
ǫl/h

χTM
j

√
(
χTM
j

)2
+

(
lπ

h

)2

[
lπ

h
∇Tϕ

TM
j sin

(
lπz

h

)

−
(
χTM
j

)2
ϕTM
j cos

(
lπz

h

)
ẑ

]
(2.55a)

H
TM
i =

−
√
ǫl/h

χTM
j

(
ẑ×∇Tϕ

TM
j

)
cos

(
lπz

h

)
. (2.55b)

TEM-mode solenoidal solutions
For N-times connected cavities, like the one shown on the right side of Fig. 2.2,

there is a third set of solenoidal modes that must be considered. The modes on
this set fulfill the classical solenoidal mode equations (2.16), (2.17), (2.24) and
(2.25). As in the TM mode case, this third set of modes can also be derived from
a magnetic vector potential Ai:

H
TEM
i = ∇×Ai (2.56a)

E
TEM
i =

∇×H
TEM
i

κi
(2.56b)

where

Ai = A
′′

jl ϕ
′′

j (u1, u2) cos

(
lπz

h

)
ẑ. (2.57)

These modes are defined at eigenvalues that equal an integer number of the
oscillations in the constant direction, this is:

κi =
lπ

h
. (2.58)

Since they are solenoidal (and not harmonic) modes, the condition l > 0 must be
fulfilled.

These modes are related to the N − 1 TEM solutions of a waveguide with N
conductors and a cross-section equal to S. To fulfill the orthonormality require-
ments of the solenoidal modes, this third set is not derived directly from the TEM
solutions. Instead, it is expressed as a linear combination of N − 1 independent
(but not orthonormal) TEM solutions in the form:

ϕ
′′

j =

N−1∑

r=1

Cjr ϕ
TEM
r j = 1, 2 · · · , N − 1 (2.59)
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where ϕTEM
r with (r = 1, 2, ..., N − 1) are the TEM potentials that fulfill:

∇2
Tϕ

TEM
r = 0 in S

ϕTEM
r = 1 on ∂Sr

ϕTEM
r = 0 on ∂Si with i 6= r (including ∂S0).

(2.60)

In addition, coefficients Cjr are chosen as to ensure that:
∫

S

∇Tϕ
′′

j · ∇Tϕ
′′

i dS = δij . (2.61)

Once the normalization condition for ∇Tϕ
′′

j is set, the normalization constant
of the vector potential can be computed. Consequently, the expression of this
potential is:

Ai =

√
2

h
ϕ

′′

j (u1, u2) cos

(
lπz

h

)
ẑ. (2.62)

Substituting (2.62) into (2.56), the final expressions for the electric and mag-
netic solenoidal TEM modes are:

E
TEM
i = −

√
2

h
∇Tϕ

′′

j sin

(
lπz

h

)
(2.63a)

H
TEM
i = −

√
2

h

(
ẑ×∇Tϕ

′′

j

)
cos

(
lπz

h

)
. (2.63b)

2.1.3.2 Harmonic modes

Due to their geometrical properties, bi-dimensional cavities can only have a single
boundary, even if they are multi-connected. For that reason, the only set of
harmonic modes that can exist in bi-dimensional cavities is the magnetic harmonic
one. These modes satisfy (2.27) and (2.28) and can be derived from a magnetic
vector potential Ai:

H
0
i = ∇×Ai (2.64)

where the auxiliary potential in now invariant with z (equivalent to (2.57) with
l = 0):

Ai =

√
1

h
ϕ

′′

j (u1, u2)ẑ. (2.65)

The scalar potential ϕ
′′

j is the one used to derive the TEM solenoidal magnetic
modes defined (2.59). Applying the normalization conditions, these static modes
can be expressed as:

H
0
i = −

√
1

h

(
ẑ×∇Tϕ

′′

j

)
. (2.66)
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2.1.3.3 Irrotational modes

Magnetic irrotational modes
It was seen in section 2.1 that these modes could be described, according to

(2.21), as the gradient of a scalar potential. The eigenvalue problem used to
derive the scalar potential wi (2.22) is equivalent to the one used to obtain TE
waveguide modes as described in (2.38). For both problems to be exactly equal,
the eigenvalues have to be related to each other by:

κi =

√
(
χTE
j

)2
+

(
lπ

h

)2

= κjl. (2.67)

Therefore, solenoidal TE modes and magnetic irrotational modes can both be
derived from the TE modes of an equivalent waveguide with cross-section S. Like-
wise, it is possible to separate the problem into transverse and axial variables.
Applying the standing wave condition for magnetic fields and ensuring the nor-
malization condition set in (2.23), the scalar potential of this problem is expressed
as:

wi =

√
ǫl
h
ϕTE
j (u1, u2) cos

(
lπz

h

)
(2.68)

where l ≥ 0 and i = (j, l).
Introducing (2.67) and (2.68) into (2.21), we obtain:

gi =

√
ǫl/h√

(
χTE
j

)2
+

(
lπ

h

)2

[
∇Tϕ

TE
j cos

(
lπz

h

)
−
(
lπ

h

)
ϕTE
j sin

(
lπz

h

)
ẑ

]
. (2.69)

Electric irrotational modes
These modes can be derived, according to (2.13), from a scalar potential vi

which fulfills (2.14). This scalar potential is equivalent to the one employed to
derive TM modes in a waveguide of cross-section S, as seen by comparison of
(2.14) (with vi = 0 on SV ) and (2.49). The relationship between the eigenvalues
of both problems must be:

κi =

√
(
χTM
j

)2
+

(
lπ

h

)2

= κjl. (2.70)

Applying separation of variables, the standing wave condition for electric fields
and ensuring the normalization condition set in (2.15), the scalar potential of this
problem is expressed as:

vi =

√
2

h
ϕTM
j (u1, u2) sin

(
lπz

h

)
(2.71)
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where l > 0 and i = (j, l).
Introducing (2.70) and (2.71) into (2.13), we obtain:

fi =

√
2/h√

(
χTM
j

)2
+

(
lπ

h

)2

[
∇Tϕ

TM
j sin

(
lπz

h

)
+

(
lπ

h

)
ϕTM
j cos

(
lπz

h

)
ẑ

]
.

(2.72)

2.1.4 Convergence of the direct representation: Rectangu-
lar cavity

After presenting the different modes that conform Kurokawa’s field expansion,
the direct field representation presented in this section is applied to a simple bi-
dimensional structure: the rectangular cavity. The cavity, shown in Fig. 2.3, is
excited through a rectangular aperture located on one of the lateral walls. The
TE10 mode of a WR-75 rectangular waveguide coinciding with this aperture sets
the excitation condition n̂ × E. The objective of this example is to compute
the electric and magnetic fields in a finite number of points within the cavity.
By comparing the results with a full-wave simulator, the convergence rate of this
formulation can be studied. Based on this criteria, the potential of this formulation
to model bi-dimensional cavities with more complex shapes will be discussed.

S

b

a
h

ŷ

ẑ

x̂

Figure 2.3: Rectangular cavity under study (a = 50 mm, b = 30 mm, h =
9.525 mm).

The electric and magnetic eigenvectors of the problem can be derived from the
classical potentials of a rectangular waveguide with cross-section S:

ϕTE
mn =

√
ǫmǫn
a b

cos
(mπx

a

)
cos
(nπy

b

)
(2.73a)

ϕTM
mn =

2√
a b

sin
(mπx

a

)
sin
(nπy

b

)
(2.73b)
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where the index j in section 2.1.3 has been replaced by the classical pair (m,n).
Associated with these potentials, the eigenvalues of the problem are:

χTE
mn = χTM

mn =

√(mπ
a

)2
+
(nπ
b

)2
. (2.74)

Following (2.10)-(2.11), and given that a rectangular cavity is simply con-
nected, three sets of eigenvectors are employed to expand the electromagnetic
fields: TE solenoidal modes, TM solenoidal modes and magnetic irrotational
modes. Since the excitation does not have any variations in ẑ, it cannot transfer
energy into the TE solenoidal modes. Therefore, they are not required to expand
the electromagnetic field of this problem. Substituting the TE and TM potentials
into the equations shown in 2.1.3.1 and 2.1.3.3, the field expansions are obtained
(see [133] for the specific expressions). Then, the coupling amplitudes between the
excitation and each mode in the cavity is computed. Finally, the field solutions
are computed according to (2.10).
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Figure 2.4: Magnitude of the electric and magnetic fields provided by FEST3D
at a finite number of points in the xz-plane.

The field expansion involves infinite summations that, in practice, need to be
truncated. If the number of terms considered is high enough, the addition of new
terms will have a negligible impact in the field pattern. In that situation, the
field has converged to the desired solution. In this example, the desired solution
is known beforehand thanks to the simulation of the structure with the full-wave
EM solver FEST3D (see Fig. 2.4). This commercial tool analyzes the problem as
a simple short-circuited waveguide section (representing the cavity) connected to
the WR-75 waveguide excitation. By comparison of the results, the convergence
of series in the Kurokawa field expansion can be studied.
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For this study, a maximum frequency parameter fmax is defined. The series
are truncated according to this parameter. All the modes of the rectangular cross-
section whose cut-off frequency is below this fmax value are added in the series.
The full-wave EM solver provides the electromagnetic field solution in an array
of N points distributed in a plane that is normal to ẑ (since the field solution
does not depend on the z coordinates). Comparing this convergent solution with
the truncated series expansion, a measure of the error in the computation of the
electric and magnetic fields can be defined as:

Error =
1

N

N∑

n=1

{‖X(xn, yn)‖ − ‖X′(xn, yn)‖}2 (2.75)

where N is the number of points where the field is computed, (xn, yn) are the
coordinates of these points, X is either the magnitude of the electric or magnetic
field obtained via the truncated field expansion, and X′ the same magnitude com-
puted by FEST3D. Since the electric field is orders of magnitude higher than the
magnetic field, both quantities have been normalized to its maximum value in
order to compute the error.

Error (%) Error (%)

fmax [GHz] No. Modes Mag. E Mag. H

10 9 6.012 4.518

15 22 1.604 0.918

20 40 0.897 0.666

30 92 0.492 0.355

50 260 0.184 0.138

75 590 0.072 0.058

100 1,045 0.035 0.036

150 2,362 0.028 0.038

200 4,194 0.019 0.032

Table 2.1: Error in the computation of the magnitude of the electric and magnetic
fields in N=17,000 points for different number of terms in the field expansion.

Table 2.1 summarizes the results obtained for different number of terms in
the expansion series. Since the structure does not change its height and is only
excited by one mode, the number of terms in the series expansion is coincident
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with the number of modes computed in the 2D section S of the cavity (modes
with l 6= 0 do not contribute). As shown in the table, a significantly large number
of modes has to be computed in the 2D section of the cavity to obtain convergent
results. Extrapolating this data to more general cases, it can be seen that the
direct application of Kurokawa’s field expansion is not very efficient. The time
devoted to solve thousands of modes of a waveguide with an arbitrary shape is
extremely high, even with very advanced and efficient numerical techniques such
as the BI-RME method [26]. Therefore, further work has to be done to transform
this accurate field expansion into a more efficient and robust numerical analysis
method.

2.2 Hybrid field representation

As it has been shown in the previous section, Kurokawa’s field expansion in cavities
is accurate, but not very efficient for the computation of electromagnetic fields
within bi-dimensional cavities with arbitrary shapes. In this section, an alternative
procedure, combining Kurokawa’s field expansion with auxiliary vector potential
theory and a contour integral method, is proposed. In order to develop a systematic
and efficient formulation, the excitation of the cavities is limited to rectangular
apertures in the lateral walls, having the same dimension h as the cavity (see Fig.
2.5). These apertures are assumed to be connected to rectangular waveguides with
the same dimensions as the apertures. Therefore, the modes of the equivalent
rectangular waveguide act as individual field sources. The electric field transverse
to the rectangular apertures (n̂×es) is considered as the only source in the problem
(i.e. no equivalent sources J or M are present).

h

û1

ẑ

û2

n̂

S

∂S

Port p
S

∂S

∂S

h

n̂

Port p

Figure 2.5: The excitation of the bi-dimensional cavities in the proposed formu-
lation is done through rectangular apertures in the lateral walls.

Given the electromagnetic field excited by each of these modal sources, a more
general problem involving apertures with other shapes and sizes can be solved.
A simple projection of the desired source fields (n̂ × E) into the modes of the
rectangular waveguides (n̂ × es) suffices to express any source in terms of the
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equivalent rectangular waveguide modes:

n̂×E =
∑

s

vs (n̂× es) (2.76)

where E is the desired source electric field, es is the s-th modal electric field in the
rectangular aperture and n̂ is the outward normal vector. In addition, the voltage
parameter is defined as:

vs =

∫

Sp

(n̂×E) · (n̂× es) dS (2.77)

where Sp is the surface of the aperture of port p where E is defined.
According to the superposition theorem, the field within a cavity excited via

multiple apertures can be expressed as the superposition of the fields due to each
individual source (while the remaining sources are short-circuited). The objective
of this section is to develop a formulation that is able to provide, in an efficient
way, the electric and magnetic fields within the bi-dimensional cavity when it is
being excited by one of these sources. The formulation will be particularized for
the mode s at port p (which, in general, may represent any mode at any port).

Due to the symmetry of the problem, the electromagnetic field within bi-
dimensional cavities can be separated into two independent problems, and the
theory of auxiliary potentials can be applied. For the first problem, an electric
vector potential F is used to derive the electric and magnetic fields, whereas in the
second problem these fields can be derived from a magnetic vector potential A. In
both cases, the vector potentials are simply z-directed, this is, the direction where
the structure is constant. Furthermore, the sources of excitation must also comply
with the conditions imposed by each vector potential, if both problems are to be
solved independently. Therefore, instead of the classical Transverse Electric (TE)
and Transverse Magnetic (TM) modes of a rectangular waveguide, z-directed Lon-
gitudinal Section Electric (LSE) and Longitudinal Section Magnetic (LSM) modes
are considered as sources. These modes form an orthonormal base; consequently,
any other excitation can be described as an expansion based on these sets of
modes. The orthonormalization properties of the Longitudinal Section modes can
be summarized as:

∫

Sp

(ẑg × ei) ·hj dS =

∫

Sp

(ei × n̂) ·hj dS = δij (2.78)

where δij is Kronecker’s delta. The coordinate system for these excitation modes
can be seen in Fig. 2.6. Appendix A contains the formulas to transform TE and
TM modes into LSE and LSM modes in a rectangular waveguide.

The particular expressions of the transverse-to-zg components of the modal
electric and magnetic fields for Longitudinal Section Electric (LSEz

lm) modes are:
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dp

h

ẑ

t̂p

ẑg(= −n̂)

Port p

Figure 2.6: Coordinate system for the excitation modes of port p

eLSElm = Alm cos

(
mπ

dp
tp

)
sin

(
lπ

h
z

)
t̂p (2.79a)

hLSE
lm =

Alm lmπ2

dph
[
k2 −

(
lπ
h

)2] sin
(
mπ

dp
tp

)
cos

(
lπ

h
z

)
t̂p

− Alm cos

(
mπ

dp
tp

)
sin

(
lπ

h
z

)
ẑ.

(2.79b)

For the Longitudinal Section Magnetic modes (LSMz
lm), the expressions of the

transverse modal fields are:

eLSMlm =
−Alm lmπ2

dph
[
k2 −

(
lπ
h

)2] cos
(
mπ

dp
tp

)
sin

(
lπ

h
z

)
t̂p

+ Alm sin

(
mπ

dp
tp

)
cos

(
lπ

h
z

)
ẑ (2.80a)

hLSM
lm = Alm sin

(
mπ

dp
tp

)
cos

(
lπ

h
z

)
t̂p. (2.80b)

In these expressions, k = ω
√
µε is the wavenumber of the medium, ǫi was defined
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in (2.53) and the amplitude of the modes is

Alm =





√
2ǫm
dph

for LSE modes

√
2ǫl
dph

for LSM modes.

(2.81)

2.2.1 Fields under LSE excitation

We now first assume that the bi-dimensional cavity is excited by the s-th LSE
mode on port p. The modal indices of this mode are (l,m) (i.e. es = eLSElm ).
The LSE mode is directed in ẑ. Since the structure is constant in this direction,
the electromagnetic fields within the cavity (EF

s and HF
s ) can be derived from the

same potential as the LSE mode. In this case, they can be derived from an electric
vector Fs as:

EF
s =

−1

ε
∇× Fs

HF
s =

−j
kηε

(
k2Fs +∇∇·Fs

)





Fs(r, z) = ϕF
s (k, r) sin

(
lπz

h

)
ẑ (2.82)

where ϕF
s is a scalar potential defined in the surface S and η =

√
µ/ε is the

medium impedance. Note that this field can only exist for l > 0. Developing the
vector operators, we can obtain the different field components as:

HF
s · û1 =

−j
kηε

lπ

h

∂ϕF
s (k, r)

∂u1
cos

(
lπz

h

)
EF

s · û1=
−1

ε

∂ϕF
s (k, r)

∂u2
sin

(
lπz

h

)

HF
s · û2 =

−j
kηε

lπ

h

∂ϕF
s (k, r)

∂u2
cos

(
lπz

h

)
EF

s · û2=
1

ε

∂ϕF
s (k, r)

∂u1
sin

(
lπz

h

)

(2.83)

HF
s · ẑ =

−j
[
k2 −

(
lπ
h

)2]

kηε
ϕF
s (k, r) sin

(
lπz

h

)
EF

s · ẑ=0

where r = r(r) is the projection of the field point into surface S and z the coor-
dinate of the field point in the ẑ direction. The coordinate system employed is
depicted in Fig. (2.5). The frequency and spatial dependence of the electromag-
netic fields (with r and z) is omitted for compactness, and assumed throughout
this chapter.

The vector wave equation for the electric field (2.2) can be transformed into an
equation for the vector potential Fs. After application of a procedure equivalent
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to the one described for TE solenoidal modes in section 2.1.3.1, the wave equation
for the vector potential Fs becomes:

∇2Fs + k2Fs = 0. (2.84)

This implies that the scalar potential ϕF
s must satisfy:

{
∇2

T +

[
k2 −

(
lπ

h

)2
]}

ϕF
s (k, r) = 0 (2.85)

In addition, potential ϕF
s must fulfill the boundary condition (named ΘF

lm) set by
the metallic walls and the LSEz

lm mode of excitation:

ΘF
lm = n̂ · ∇Tϕ

F
s

∣∣∣∣
∂S

=





ε es · t̂p
sin
(
lπz
h

) = εAlm cos

(
mπ tp
dp

)
for points on port p

0 otherwise.
(2.86)

From (2.85), it is apparent that we can find the solution for a certain value
of l (for example, l = 1), and then obtain the solution for any other value of l
by means of a simple transformation in the k variable [134]. For instance, given
ϕF
s1(k

′, r), which is the solution of

{
∇2

T +

[
k′2 −

(π
h

)2]}
ϕF
s1(k

′, r) = 0, (2.87)

and applying the frequency transformation

k′ =

√

k2 −
(
lπ

h

)2

+
(π
h

)2
, (2.88)

we obtain a function that fulfills

{
∇2

T +

[
k2 −

(
lπ

h

)2
]}

ϕF
s1



√

k2 −
(
lπ

h

)2

+
(π
h

)2
, r


 = 0 (2.89)

along with the boundary condition ΘF
1m. Comparing (2.89) with (2.85), and noting

that the boundary conditions ΘF
1m and ΘF

lm are equal (since A1m = Alm), we
conclude that the objective potential ϕF

s can be directly expressed in terms of ϕF
s1

as:

ϕF
s (k, r) = ϕF

s1

(√
k2 − k2l , r

)
(2.90)
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with kl =

√
(lπ/h)

2 − (π/h)
2
. This particular potential ϕF

s1 is the one used to
derive the electromagnetic fields in a purely E-plane problem.

Substituting (2.90) into (2.83) and expressing the E-plane potential and its
transverse derivatives in terms of the corresponding E-plane field components (in
the transformed domain), the full-wave electromagnetic field is expressed as:

HF
s (k) · û1 =

l
√
k2 − k2l

k

HF
s1

(√
k2 − k2l

)
· û1

cos
(πz
h

) cos

(
lπz

h

)
(2.91a)

HF
s (k) · û2 =

l
√
k2 − k2l

k

HF
s1

(√
k2 − k2l

)
· û2

cos
(πz
h

) cos

(
lπz

h

)
(2.91b)

HF
s (k) · ẑ =

√
k2 − k2l

k

HF
s1

(√
k2 − k2l

)
· ẑ

sin
(πz
h

) sin

(
lπz

h

)
(2.91c)

EF
s (k) · û1 =

EF
s1

(√
k2 − k2l

)
· û1

sin
(πz
h

) sin

(
lπz

h

)
(2.91d)

EF
s (k) · û2 =

EF
s1

(√
k2 − k2l

)
· û2

sin
(πz
h

) sin

(
lπz

h

)
(2.91e)

EF
s (k) · ẑ = 0 (2.91f)

where EF
s1 and HF

s1 are the electric and magnetic fields within the cavity excited
by the LSEz

1m mode.
By using this transformation in the variable k, the size of the problem has been

reduced. Instead of computing the field for all excitation modes, only those with
l = 1 are initially considered. Then, the field for all the other modes is immediately
obtained through the proposed frequency transformation. A systematic procedure
to numerically compute the electromagnetic fields in bi-dimensional cavities with
arbitrary shape, under excitation of the LSEz

1m mode, is explained in the following
section.

2.2.1.1 Field solution in E-plane cavities

The proposed methodology to solve the electromagnetic fields within a bi-dimen-
sional cavity excited by LSEz

1m modes involves two steps. First, the potential ϕF
s1
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and its normal derivative (∂ϕF
s1/∂n) are found on the contour ∂S of the cross-

section of the cavity (see Fig. 2.5 and Fig. 2.7) at any wavenumber k in a very
efficient manner. This allows the computation of the electric and magnetic fields
on the walls of the cavity through the application of (2.83). Second, the integral
equation

ϕF
s1(k, r) =

∮

∂S

[
G(k0, R)

∂ϕF
s1(k, r

′)

∂n
− ϕF

s1(k, r
′)
∂G(k0, R)

∂n

]
dr′ (2.92)

and its transverse gradient

∇Tϕ
F
s1(k, r) =

∮

∂S

{
∇TG(k0, R)

∂ϕF
s1(k, r

′)

∂n
− ϕF

s1(k, r
′)∇T

[
∂G(k0, R)

∂n

]}
dr′

(2.93)
are numerically solved in order to compute the potential ϕF

s1 and ∇Tϕ
F
s1 at points

r within S. Details on the derivation of (2.92) can be found in Appendix B.
r′ = r(r′) denotes a source point on the contour ∂S. R is the distance between r
and r′ (see Fig. 2.7). k0 =

√
k2 − (π/h)2 is, according to (2.87), the eigenvalue

associated with ϕF
s1. Note that, throughout this section, k refers to variable k′ in

(2.87). G(k0, R) is the two-dimensional Green’s function

G(k0, R) = C0J0(k0R)−
1

4
Y0(k0R) (2.94)

where J0 is the zero-order Bessel function of the first kind, Y0 is the zero-order
Bessel function of the second kind. C0 is a complex constant that can be arbitrarily
chosen. Appendix B contains more information on this particular form of the two-
dimensional Green’s function, first proposed in [135]. The choice C0 = −j/4
reduces (2.94) to the classical two-dimensional free space Green’s function:

G(k0, R) =
H

(2)
0 (k0R)

4j
(2.95)

where H
(2)
0 is the zero-order Hankel function of the second kind. Finally, from

ϕF
s1, the electric and magnetic fields at r are immediately obtained via (2.83).
As shown, the problem has now been reduced to the computation of ϕF

s1 and
its normal derivative ∂ϕF

s1/∂n on the contour ∂S. On the one hand, we have seen
that the normal derivative of the scalar potential on the contour differs from zero
only at the ports:

∂ϕF
s1

∂n

∣∣∣∣
∂S

=





ε es1 · t̂p
sin
(
πz
h

) = εA1m cos

(
mπ tp
dp

)
for points on port p

0 otherwise.

(2.96)
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Figure 2.7: Geometry variables and vectors considered during the computation
of potential ϕF

s1.

On the other hand, the potential ϕs1 can be related to the z-directed magnetic
field according to (2.83):

ϕF
s1(k, r) =

jkηε[
k2 −

(
π
h

)2]
HF

s1 · ẑ
sin
(
πz
h

) . (2.97)

Kurokawa’s field expansion can be used to determine the z-directed magnetic
field. Only magnetic irrotational and solenoidal TE modes are coupled to the
LSEz

1m excitation. Starting from (2.10b), the low-frequency limit is extracted
from the modal series involving solenoidal modes [133]. The z-directed component
can then be written as:

HF
s1 · ẑ =

1

jkη

∞∑

i=1

[∫

Sp

(ẑg × es1) ·gi1 dS

]
gi1 · ẑ

+
jk

η

∞∑

i=1

1

κ2i1

[∫

Sp

(ẑg × es1) ·HTE
i1 dS

]
H

TE
i1 · ẑ

+
jk3

η

∞∑

i=1

1

(κ2i1 − k2)κ2i1

[∫

Sp

(ẑg × es1) ·HTE
i1 dS

]
H

TE
i1 · ẑ

(2.98)

where κi1 =

√(
χTE
i

)2
+ (π/h)2, as defined in (2.39) for l = 1. Note that the

relationship n̂ = −ẑg has been used. Isolating the rapidly converging series of
solenoidal modes, as it is done in (2.98), is key to increase the efficiency of the
analysis method. It was shown in section 2.1.4 that Kurokawa’s field expansion
requires a large number of modes to solve (2.98) accurately. However, the majority
of modes are necessary to reach convergence in its first two series. They decrease
the efficiency of Kurokawa’s field expansion and deem its application impractical.
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In contrast, the third series (associated with k3) converges very rapidly, and thus
only requires a small amount of modes. For that reason, the proposed formula-
tion does not intend to solve Kurokawa’s field expansion directly. Instead, two
techniques are combined in order to increase the efficiency of the analysis. On the
one hand, the integral equation formulation of [58] is employed to compute the
first two terms of the expansion without actually solving any series. Then, the
BI-RME method is applied to obtain the reduced number of modes in the cross
section of the cavity required to evaluate the rapidly convergent series of (2.98).

From (2.98), the z-component of the magnetic field can be expressed in the
form:

HF
s1 · ẑ =

AF
s1

jηk
+
jk

η
BF
s1 +

jk3

η

∞∑

i=1

[∫
Sp

(ẑg × es1) ·HTE
i1 dS

]
H

TE
i1 · ẑ

(κ2i1 − k2)κ2i1
. (2.99)

Introducing (2.99) in (2.97), and after some algebraical manipulations, the scalar
potential ϕF

s1 can be represented in terms of k as:

ϕF
s1(k, r) =

[
αF
s1(r) + k2βF

s1(r) +
k4

k2 −
(
π
h

)2 γ
F
s1(k, r)

]
ε (2.100)

where
(π
h

)2
αF
s1(r) =

−AF
s1

sin
(
πz
h

) (2.101a)

(π
h

)2
βF
s1(r)− αF

s1(r) =
BF
s1

sin
(
πz
h

) (2.101b)

βF
s1(r) + γFs1(k, r) = −

∞∑

i=1

[∫
Sp

(ẑg × es1) ·HTE
i1 dS

]

(κ2i1 − k2)κ2i1

H
TE
i1 · ẑ

sin
(
πz
h

) .

(2.101c)

It is clear that, in order to perfectly determine the scalar potential ϕF
s1 on the

contour ∂S, three functions have to be obtained: αF
s1, β

F
s1 and γFs1. The first two,

αF
s1 and βF

s1 (which do not depend on k), will be evaluated via an integral equation
technique. Afterwards, the series in (2.101c) involving the solenoidal modes will be
computed through the application of the BI-RME method [136], and γFs1 obtained.

2.2.1.2 Computation of αF
s1 and βF

s1

From Green’s first identity, the potential ϕF
s1 at points r laying on the contour ∂S

satisfies (see section B.2):

ϕF
s1(k, r) = 2

∮

∂S

[
G(k0, R)

∂ϕF
s1(k, r

′)

∂ n
− ϕF

s1(k, r
′)
∂G(k0, R)

∂n

]
dr′. (2.102)
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The classical two-dimensional Green’s function (i.e. C0 = −j/4 in (2.94)) is chosen
in this particular case. This function and its normal derivative on the contour are:

G(k0, R) =
H

(2)
0 (k0R)

4j
(2.103a)

∂G(k0, R)

∂n
=

∂G(k0, R)

∂R

∂R

∂n
=
j

4
k0H

(2)
1 (k0R) cos θ. (2.103b)

For the purposes of this work, both functions can be approximated by their first-
order expansion on k:

G(k0, R) ≈ G̃ =
1

2π
K0

(π
h
R
)
+ k2

h

π

R

4π
K1

(π
h
R
)

(2.104a)

∂G(k0, R)

∂n
≈ ∂G̃

∂n
=
∂G̃

∂R
cos θ =

[−1

2h
K1

(π
h
R
)
− k2

R

4π
K0

(π
h
R
)]

cos θ

(2.104b)

where K0 and K1 are, respectively, the zero- and first-order modified Bessel func-
tions of the second kind.

Substituting (2.96), (2.100) and (2.104) into (2.102), and then grouping the
terms with the same power of k, we obtain the following system of integral equa-
tions:

k0 ⇒ αF
s1(r)

2
=

A1m

2π

∫ dp

0

K0

(
πRp

h

)
cos

(
mπ

dp
t′p

)
dt′p

+
1

2h

∮

∂S

cos θK1

(
πR

h

)
αF
s1(r

′)dr′ (2.105a)

k2 ⇒ βF
s1(r)

2
=

A1m h

4π2

∫ dp

0

RpK1

(π
h
Rp

)
cos

(
mπ

dp
t′p

)
dt′p

+
1

4π

∮

∂S

cos θ RK0

(
πR

h

)
αF
s1(r

′)dr′

+
1

2h

∮

∂S

cos θK1

(
πR

h

)
βF
s1(r

′)dr′. (2.105b)

where Rp represents the distance between r and the point where the differential
dt′p is taken (namely r′p = r(t′p)).

The method of moments (MoM) in its Galerkin version [19] can be applied to
solve this system of integral equations. In order to do so, the unknowns αF

s1 and
βF
s1 (on the contour ∂S) are discretized and expanded in a finite series of K basis
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functions:

αF
s1(r) =

K∑

κ=1

wF
s1κ fκ(r) (2.106a)

βF
s1(r) =

K∑

κ=1

vFs1κ fκ(r). (2.106b)

The basis functions fκ are piece-wise parabolic splines. More information about
the basis functions employed can be found in chapter 5 of [133].

After simple mathematical manipulations, the system of integral equations is
transformed into a matrix system in the form:

(
LF +MF

)
·wF = GF (2.107a)

(
LF +MF

)
·vF = NF ·wF +TF (2.107b)

where wF = [wF
s11, . . . , w

F
s1K]

T and vF = [vFs11, . . . , v
F
s1K]

T are vectors with the
unknown K expansion coefficients, and the remaining matrices and vectors of the
problem are defined as:

LF
ij =

1

2

∮

∂S

fi(r) fj(r) dr (2.108a)

MF
ij =

−1

2h

∮

∂S

∮

∂S

cos θ K1

(
π R

h

)
fi(r) fj(r

′) dr dr′ (2.108b)

GF
i =

A1m

2π

∮

∂S

∫ dp

0

cos

(
mπ

dp
t′p

)
K0

(
π Rp

h

)
fi(r) dr dt

′

p (2.108c)

NF
ij =

1

4π

∮

∂S

∮

∂S

RK0

(
π R

h

)
cos θ fi(r) fj(r

′) dr dr′ (2.108d)

TF
i =

A1mh

4π2

∮

∂S

∫ dp

0

cos

(
mπ

dp
t′p

)
RpK1

(
π Rp

h

)
fi(r) drdt

′
p (2.108e)

where i, j = 1, . . . , K. Matrices LF , MF and NF are independent of the excitation
modes, thus they only need to be computed once, regardless of the total number of
modes. The other vectors have to be computed for all the different LSEz

1m modes.
However, they can be stored in a matrix form in order to use matrix algebra to
solve the system simultaneously, with all the excitations present.

Regarding the construction of these matrices and vectors, it can be seen that
most of the integrals involve singular integrands, therefore further work has to
be done to permit their numerical solution by classical quadrature techniques.
Appendix C contains a description of how the integrals in each matrix are treated.
In the original formulation of [58], only straight segments were considered. In this
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thesis, the singular integrals associated with circular and elliptical arcs are also
solved for the first time. By doing so, the accuracy in the analysis of structures
including this type of contours is significantly increased. Finally, by solving (2.107)
the coefficients of the expansions for αF

s1 and βF
s1 are obtained.

2.2.1.3 Computation of γFs1

Once βF
s1 has been determined, it is necessary to compute the different terms that

form the series in (2.101c) to obtain γFs1. The objective, now, is the computation
of

γFs1(k, r) = −βF
s1(r)−

∞∑

i=1

CF
s1i

κi1 (κ2i1 − k2)

H
TE
i1 · ẑ

sin
(
πz
h

) (2.109)

where the coefficients CF
s1i are:

CF
s1i =

1

κi1

∫

Sp

(ẑg × es1) ·HTE
i1 dS. (2.110)

Making use of the modal expressions of LSE modes (2.79), these coefficients
can be expressed as:

CF
s1i =

−A1m

κi1

∫ dp

0

∫ h

0

cos

(
mπ

dp
t′p

)
sin
(π
h
z
)
H

TE
i1 · ẑ dzdt′p. (2.111)

To solve the integrals and compute these coefficients, we only need to obtain the z-
directed component of the solenoidal TE modes of the closed cavity. As described
in (2.44), these modes can be derived from the TE potential ϕTE

i of a waveguide
with cross-section S as:

H
TE
i1 · ẑ =

−χTE
i

√
2/h

κi1
ϕTE
i (r) sin

(πz
h

)
(2.112)

with κi1 =

√(
χTE
i

)2
+ (π/h)

2
, as previously determined. At this point, the BI-

RME method [136] will be applied to compute the potential ϕTE
i for a finite

number of TE modes in an equivalent waveguide with cross-section S. This method
provides both the wavenumbers χTE

i of the TE modes and the modal current
density tangential to the contour of the waveguide Jσi · t̂. This current is also
expanded as a series of basis functions. These basis functions are actually the
same parabolic splines used to expand αF

s1 and βF
s1. As explained in Appendix D,

the potential ϕTE
i is related to the tangential current density in the walls of the

equivalent waveguide as:

ϕTE
i

∣∣∣∣
∂S

= −Jσi · t̂ = −
K∑

κ=1

BTE
κi fκ(r) (2.113)
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where BTE
κi are expansion coefficients provided by the BI-RME method and fκ the

aforementioned parabolic spline basis functions of the current density expansion.
K is the total number of basis functions defined in the contour ∂S.

Substituting (2.112) and (2.113) into (2.111), the coefficients CF
s1i are:

CF
s1i =

−χTE
i

√
ǫm/dp

κ2i1

pf∑

κ=p0

BTE
κi

∫

δk

cos

(
mπ

dp
t′p

)
fκ(r

′

p) dt
′

p (2.114)

where it is assumed that port p contains the basis functions from p0 to pf , each
having a length of δk. We can define a variable IFκm that contains the remaining
integral:

IFκm = −
√
ǫm
dp

∫

δκ

fκ(r
′
p) cos

(
mπ

dp
t′p

)
dt′p. (2.115)

To simplify the integration over all the segments, the basis functions are normalized
according to a parameter u ∈ [−0.5, 0.5]. With this parametrization,

fκ(r
′

p) = c1κ u
2 + c2κ u+ c3κ (2.116a)

t′p = t0κ + δκ(u+ 0.5) (2.116b)

dt′p = δκdu (2.116c)

where t0κ is the initial point of segment κ along the t̂-direction at port p, and
c1κ, c2κ and c3κ are real coefficients. Using this parametrization, the integral in
(2.115) is solved. The solution for IFκm is:

IFκm = −
√

2

dp
δκ

{
sin (0.5ακ + βκ)

[
c1κ

(
0.25

ακ

− 2

α3
κ

)
+

0.5c2κ + c3κ
ακ

]

+ sin (−0.5ακ + βκ)

[
−c1κ

(
0.25

ακ

− 2

α3
κ

)
+

0.5c2κ − c3κ
ακ

]

+ cos (0.5ακ + βκ)

[
c1κ + c2κ

α2
κ

]
+ cos (−0.5ακ + βκ)

[
c1κ − c2κ

α2
κ

]}

(2.117)

where

ακ =
mπδκ
dp

(2.118a)

βκ =
mπ

dp
(t0κ + 0.5δκ) (2.118b)

In the particular case of m = 0, this integral becomes:

IFκ0 =
−1√
dp
δκ

[
0.25c1κ

3
+ c3κ

]
. (2.119)
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Finally, the coefficients CF
s1i can be expressed as:

CF
s1i =

χTE
i

κ2i1

pf∑

κ=p0

BTE
κi I

F
κm. (2.120)

Substituting these CF
s1i coefficients, the basis function expansion of βF

s1 and
H

TE
i1 · ẑ into (2.109), the function γFs1 is obtained:

γFs1(k, r) = −
K∑

κ=1

fκ(r)

[
vFs1κ +

√
2

h

∞∑

i=1

χTE
i

κ2i1 (κ
2
i1 − k2)

BTE
κi CF

s1i

]
. (2.121)

Finally, the scalar potential ϕF
s1 used to derive the electromagnetic fields excited

by the LSE1m mode can be computed, on the contour ∂S, according to (2.100):

ϕF
s1(k, r) = ε

K∑

κ=1

fκ(r)

[
wF

s1κ − (π/h)2 k2 vFs1κ

k2 −
(
π
h

)2

− k4
√
2/h

k2 −
(
π
h

)2
∞∑

i=1

χTE
i

κ2i1 (κ
2
i1 − k2)

BTE
κi CF

s1i

]
. (2.122)

This potential on the contour, along with its normal derivative defined in (2.96),
are then substituted into (2.92) and (2.93) to obtain the potential at any point
within the cavity. From the potential, the fields under LSEz

1m excitation can be
computed by application of (2.83). Finally, the field excited by any LSEz

lm mode
is obtained via the frequency transformation of (2.91).

2.2.2 Fields under LSM excitation

Under excitation of the s-th mode, LSMz
lm, at port p (i.e. es = eLSMlm ), the

electromagnetic field within a bi-dimensional cavity (EA
s and HA

s ) can be derived
from a magnetic vector potential As as:

EA
s =

−j
kηε

(
k2As +∇∇·As

)

HA
s =

1

µ
∇×As





As(r, z) = ϕA
s (k, r) cos

(
lπz

h

)
ẑ (2.123)

where ϕA
s is a scalar potential defined in the surface S. This field exists for values

of l ≥ 0. Developing the vector operators, according to the coordinate system of
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Fig. 2.5, the different field components are obtained:

HA
s · û1 =

1

µ

∂ϕA
s (k, r)

∂u2
cos

(
lπz

h

)
EA

s · û1 =
j

kηε

lπ

h

∂ϕA
s (k, r)

∂u1
sin

(
lπz

h

)

HA
s · û2 =

−1

µ

∂ϕA
s (k, r)

∂u1
cos

(
lπz

h

)
EA

s · û2 =
j

kηε

lπ

h

∂ϕA
s (k, r)

∂u2
sin

(
lπz

h

)

(2.124)

HA
s · ẑ =0 EA

s · ẑ =
−j
[
k2 −

(
lπ
h

)2]

kηε
ϕA
s (k, r) cos

(
lπz

h

)
.

Following a similar procedure to the one described in the previous section, it
can be seen that the vector potential As must satisfy the wave equation:

∇2As + k2As = 0. (2.125)

This implies that the scalar potential ϕA
s must fulfill the Helmholtz equation:

{
∇2

T +

[
k2 −

(
lπ

h

)2
]}

ϕA
s (k, r) = 0 (2.126)

along with the boundary condition (ΘA
lm) set by the lateral metallic walls and

LSMz
lm excitation (see (2.80)):

ΘA
lm(k) = ϕA

s

∣∣∣∣
∂S

=





jkηε[
k2 −

(
lπ
h

)2]
es · ẑ

cos
(
lπz
h

) =
jkηεAlm sin

[
mπ
dp
tp

]

[
k2 −

(
lπ
h

)2] on port p

0 otherwise.
(2.127)

As can be seen, in this case the boundary condition actually depends on the
parameter l. If the solution for a certain l is derived from the solution for a
different value of l, a certain correction factor has to be applied to account for the
different impedance level of both excitations.

Similarly, given the solution of (2.126) for a certain value of l (for example,
l = 0), the solution for any other value can be computed by a simple frequency
transformation. In particular, given ϕA

s0, which is the solution of

{
∇2

T + k′2
}
ϕA
s0(k

′, r) = 0 (2.128)
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along with the boundary condition ΘA
0m, the field for any other LSM excitation

can be computed by applying the frequency transformation

k′ =
√
k2 − k2l with kl =

lπ

h
. (2.129)

As previously mentioned, the frequency transformation is not enough, by itself,

to provide the adequate solution in this case. ϕA
s0

(√
k2 − k2l , r

)
and ϕA

s (k, r) do

not fulfill the same boundary condition and a correction factor has to be applied
to obtain the desired solution. This factor can be obtained by dividing the objec-
tive boundary condition ΘA

lm(k) by ΘA
0m evaluated at the transformed frequency√

k2 − k2l . Finally, we can express ϕA
s as:

ϕA
s (k, r) =

ΘA
lm(k)

ΘA
0m

(√
k2 − k2l

) ϕA
s0

(√
k2 − k2l , r

)
=

k
√
ǫl√

k2 − k2l
ϕA
s0

(√
k2 − k2l , r

)

(2.130)
where the relationship Alm/A0m =

√
ǫl from (2.81) has also been used. The par-

ticular solution ϕA
s0 corresponds to the scalar potential associated with a constant-

height cavity subject to excitation by an H-plane (i.e. LSMz
0m) mode .

The electric and magnetic fields of the full-wave problem can be related to
those in the H-plane problem by:

HA
s (k) · û1 =

k
√
ǫl√

k2 − k2l
HA

s0

(√
k2 − k2l

)
· û1 cos

(
lπz

h

)
(2.131a)

HA
s (k) · û2 =

k
√
ǫl√

k2 − k2l
HA

s0

(√
k2 − k2l

)
· û2 cos

(
lπz

h

)
(2.131b)

HA
s (k) · ẑ = 0 (2.131c)

EA
s (k) · û1 =

−jη lπ√ǫl
h
√
k2 − k2l

HA
s0

(√
k2 − k2l

)
· û2 sin

(
lπz

h

)
(2.131d)

EA
s (k) · û2 =

jη lπ
√
ǫl

h
√
k2 − k2l

HA
s0

(√
k2 − k2l

)
· û1 sin

(
lπz

h

)
(2.131e)

EA
s (k) · ẑ =

√
ǫl E

A
s0

(√
k2 − k2l

)
· ẑ cos

(
lπz

h

)
(2.131f)

where EA
s0 and HA

s0 are the electric and magnetic fields under excitation of the
LSMz

0m mode. Note that some electric field components are related to magnetic
field components of the l = 0 problem, since their electric field counterparts are
non-existent in the l = 0 problem. Finally, the electromagnetic field for the H-
plane problem can be solved by using the technique explained in the following
section.
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2.2.2.1 Field solution in H-plane cavities

The procedure to obtain the electromagnetic fields in an H-plane cavity is equiv-
alent to the one shown in section 2.2.1.1. The scalar potential ϕA

s0 satisfies (2.92)
and (2.93) with k0 = k (i.e. the eigenvalue of (2.128)). Therefore, the problem
of determining the fields in H-plane cavities is reduced to computing the scalar
potential ϕA

s0 and its normal derivative on the contour ∂S. Note that, throughout
this section, k equals variable k′ in (2.128).

On the one hand, the scalar potential on the contour is null on the lateral walls,
except for the port of excitation, as demonstrated in (2.127). On that port it is
coincident with the z-directed electric field of excitation:

ϕA
s0

∣∣∣∣
∂S

=
jηε

k
EA

s0 · ẑ =





jηεA0m

k
sin

[
mπ

dq
tp

]
on port p

0 otherwise.

(2.132)

On the other hand, it is clear from (2.124) with û1 = n̂ and û2 = t̂ (see
Fig. 2.7) that the normal derivative of the scalar potential is related to the tan-
gential magnetic field as:

∂ϕA
s0(k, r)

∂n
= −µHA

s0 · t̂. (2.133)

Magnetic irrotational, harmonic (in N -times connected cavities) and solenoidal
TM modes must be considered in the field expansion (2.10)-(2.11), thus obtaining
the following expression for the tangential magnetic field:

HA
s0 · t̂ =

1

jkη

{
∞∑

i=1

[∫

Sp

(ẑg × es0) ·gi0 dS

]
gi0 · t̂

+

N−1∑

i=1

[∫

Sp

(ẑg × es0) ·H0
i dS

]
H

0
i · t̂
}

+
jk

η

∞∑

i=1

1

κ2i0

[∫

Sp

(ẑg × es0) ·HTM
i0 dS

]
H

TM
i0 · t̂

+
jk3

η

∞∑

i=1

1

(κ2i0 − k2)κ2i0

[∫

Sp

(ẑg × es0) ·HTM
i0 dS

]
H

TM
i0 · t̂.

(2.134)

In this case, the relevant eigenvalues of the closed cavity are κi0 = χTM
i , according

to (2.50) with l = 0.
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As shown in (2.133), the tangential magnetic field is proportional to the normal
derivative of the scalar potential ϕA

s0. Given the field expansion in (2.134), we can
express the normal derivative of the scalar potential as:

∂ϕA
s0(k, r)

∂n
= −µ

[
αA
s0(r)

jkη
+
jk

η
βA
s0(r) +

jk3

η
γAs0(k, r)

]
(2.135)

where

αA
s0(r) =

∞∑

i=1

[∫

Sp

(ẑg × es0) ·gi0 dS

]
gi0 · t̂+

N−1∑

i=1

[∫

Sp

(ẑg × es0) ·H0
i dS

]
H

0
i · t̂

(2.136a)

βA
s0(r) =

∞∑

i=1

1

κ2i0

[∫

Sp

(ẑg × es0) ·HTM
i0 dS

]
H

TM
i0 · t̂ (2.136b)

γAs0(k, r) =
∞∑

i=1

1

(κ2i0 − k2)κ2i0

[∫

Sp

(ẑg × es0) ·HTM
i0 dS

]
H

TM
i0 · t̂. (2.136c)

In order to develop an efficient procedure to obtain the electromagnetic field, the
series in (2.136a) and (2.136b) will not be computed due to their poor convergence
rate. Instead, the integral equation formulation of [59] (which leads to a linear
system of equations) will be used. However, the computation of γAs0 will be done
via the rapidly convergent series of (2.136c).

2.2.2.2 Computation of αA
s0 and βA

s0

Since ϕA
s0 already fulfills the homogeneous Helmholtz equation, it is subject to the

integral equation seen in the analysis of E-plane cavities:

ϕA
s0(k, r) = 2

∮

∂S

[
G(k,R)

∂ϕA
s0(k, r

′)

∂ n
− ϕA

s0(k, r
′)
∂G(k,R)

∂n

]
dr′ (2.137)

where G is the general two-dimensional Green’s function of (2.94). This function
is approximated by the first terms of its series expansion on k as:

G(k,R) ≈ G̃ = C0 −
1

2π

[
ln
k

2
+ lnR+ γ

]

+ k2
R2

4

[
−C0 +

1

2π

(
ln
k

2
+ lnR+ γ − 1

)]
(2.138a)

∂G(k,R)

∂n
=

∂G

∂R

∂R

∂n
= cos θ

∂G

∂R
≈ cos θ

∂G̃

∂R
(2.138b)

∂G̃

∂R
=

−1

2πR
+ k2

R

4

[
−2C0 +

1

π

(
ln
k

2
+ lnR+ γ − 1

)
+

1

2π

]

(2.138c)
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As explained in Appendix B, constant C0 can take any arbitrary value. A wise
choice of this value can aid in simplifying the expansion expressions. In particular,
if the Green’s function is chosen as:

G(k,R) =
1

2π

(
ln
k

2
+ γ

)
J0(kR)−

1

4
Y0(kR) (2.139)

the expansion in terms of k becomes:

G̃ =
−1

2π
lnR+ k2

R2

8π
(lnR− 1) (2.140a)

∂G̃

∂n
= cos θ

[ −1

2πR
+ k2

1

8π
R (2 lnR− 1)

]
(2.140b)

Introducing (2.132), (2.135), and then (2.140) into (2.137) and grouping the
terms with the same power of k, the following system of integral equations is
obtained:

k0 ⇒
∮

∂S

αA
s0(r

′) lnR dr′=−πEA
s0(r) · ẑ+

∫ dp

0

A0m sin

(
mπ

dq
t′p

)
cos θ

Rp

dt′p (2.141a)

k2 ⇒
∮

∂S

βA
s0(r

′) lnR dr′=−
∫ dp

0

A0m sin

(
mπ

dq
t′p

)
cos θ

4
Rp (1− 2 lnRp) dt

′

p

+

∮

∂S

R2

4
αA
s0(r

′) (1− lnR) dr′. (2.141b)

The MoM, in its Galerkin version, is applied to transform this system of integral
equations into a matrix form. The unknown functions αA

s0 and βA
s0 are expanded

in finite series of basis functions fκ (piece-wise parabolic splines) on the contour
∂S of the cross-section of the cavity.

αA
s0(r) =

K∑

κ=1

wA
s0κ fκ(r) (2.142a)

βA
s0(r) =

K∑

κ=1

vAs0κ fκ(r). (2.142b)

Then, the inner product between each basis function in the expansion and the two
equations of the system is performed. This leads to the following matrix system

MA ·wA = (LA +GA) (2.143)

MA ·vA = NA ·wA +TA (2.144)

where wA = [wA
s01, . . . , w

A
s0K]

T and vA = [vAs01, . . . , v
A
s0K]

T are column vectors with
the unknown K expansion coefficients, and the remaining matrices and vectors of
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the problem are defined as:

MA
ij =

∮

∂S

∮

∂S

fi(r) fj(r
′) lnR drdr′ (2.145a)

LA
i = −π

√
2

h dp

∫ dp

0

sin

(
mπ

dp
t′p

)
fi(r

′

p) dt
′

p (2.145b)

GA
i =

√
2

h dp

∮

∂S

∫ dp

0

sin

(
mπ

dp
t′p

)
cos θ

Rp

fi(r) dr dt
′

p (2.145c)

NA
ij =

∮

∂S

∮

∂S

R2

4
(1− lnR) fi(r) fj(r

′) dr dr′ (2.145d)

TA
i =

−1

4

√
2

h dp

∮

∂S

∫ dp

0

sin

(
mπ

dp
t′p

)
cos θRp (1− 2 lnRp) fi(r) dt

′

pdr

(2.145e)

with i, j = 1, . . . , K. As can be seen, matrices MA and NA are independent of the
excitation modes, thus they only need to be computed once regardless of the total
number of modes. The other vectors must be computed for all the different LSMz

0m

modes, but they can be stored in a matrix form in order to use matrix algebra
algorithms to solve the overall system simultaneously. As it was the case for the
problem related to the LSE excitation, some of the integrals in this case also involve
singular integrands. Appendix C contains further details on how to overcome this
problem for contours containing straight, circular or elliptical segments.

2.2.2.3 Computation of γAs0

In order to compute γAs0, the series involving solenoidal TM modes of the closed
cavity must be calculated:

γAs0(k, r) =

∞∑

i=1

CA
s0i

(κ2i0 − k2)κi0
H

TM
i0 · t̂ (2.146)

where

CA
s0i =

1

κi0

[∫

Sp

(ẑg × es0) ·HTM
i0 dS

]
. (2.147)

Since ẑg×es0 = (ẑ · es0) · t̂, and given the expression of the modal electric field
for LSMz

0m modes, the coefficients CA
s0i can be written as:

CA
s0i =

A0mh

κi0

∫ dp

0

sin

(
mπ

dp
t′p

)
H

TM
i0 · t̂ dt′p. (2.148)
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As shown in section 2.1, the solenoidal TM modes in a closed bi-dimensional
cavity can be related to the TM scalar potential ϕTM of an equivalent waveguide
with cross-section ∂S as (see expression (2.55b) particularized for l = 0):

H
TM
i0 · t̂ =

−1

χTM
i

√
h

[
ẑ×∇Tϕ

TM
i (r)

]
· t̂ = −1

χTM
i

√
h
n̂ · ∇Tϕ

TM
i (r)

=
−1

χTM
i

√
h

∂ϕTM
i (r)

∂n
. (2.149)

The TM scalar potential can be computed via application of the BI-RME
method [136]. As shown in Appendix D, the normal derivative of the scalar po-
tential on the contour is related to the z-directed current as:

∂ ϕTM
i (r)

∂n
= −χTM

i Jz(r) = −χTM
i

K∑

κ=1

BTM
κi fκ(r) (2.150)

where BTM
κi are the expansion coefficients that the application of the BI-RME

method provides, and K the total number of basis functions fκ defined on the
contour.

Combining (2.150) and (2.149) with (2.148), and knowing that κi0 = χTM
i in

the H-plane case where l = 0, coefficients CA
s0i simply become:

CA
s0i =

√
2/dp

χTM
i

pf∑

κ=p0

BTM
κi

∫

δκ

fκ(r
′
p) sin

(
mπ

dp
t′p

)
dt′p. (2.151)

Similarly, a series of coefficients IAκm can be defined:

IAκm =

√
2

dp

∫

δκ

fκ(r
′

p) sin

(
mπ

dp
t′p

)
dt′p. (2.152)

With the parametrization of the basis functions defined in (2.116), the integrals
are solved and these coefficients become:

IAκm =

√
2

dp
δκ

{
cos (0.5ακ + βκ)

[
c1κ

(
2

α3
κ

− 0.25

ακ

)
− 0.5c2κ + c3κ

ακ

]

− cos (−0.5ακ + βκ)

[
c1κ

(
2

α3
κ

− 0.25

ακ

)
+

0.5c2κ − c3κ
ακ

]

+ sin (0.5ακ + βκ)

[
c1κ + c2κ

α2
κ

]
+ sin (−0.5ακ + βκ)

[
c1κ − c2κ

α2
κ

]}
(2.153)
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where

ακ =
mπδκ
dp

(2.154a)

βκ =
mπ

dp
(t0κ + 0.5δκ) . (2.154b)

Coefficients CA
s0i are then computed as:

CA
s0i =

1

χTM
i

pf∑

κ=p0

BTM
κi IAκm. (2.155)

Introducing (2.155) into (2.146), γAs0 is obtained. Finally, substituting the
basis-function expansions of αA

s0, β
A
s0 and γAs0 into (2.135), the normal derivative

of the scalar potential ϕA
s0 can be expressed as:

∂ϕA
s0(k, r)

∂n
=
jµ

kη

K∑

κ=1

fκ(r)

[
wA

s0κ − k2vAs0κ − k4√
h

∞∑

i=1

CA
s0iB

TM
κi

(κ2i0 − k2)κi0

]
. (2.156)

Given ϕA
s0 and its normal derivative on the contour, the integral equations of

(2.92) and (2.93) are solved (exchanging ϕF
s1 for ϕA

s0) , and the auxiliary potential
at any point r within S is obtained. The electromagnetic field under excitation of
the LSMz

0m is computed from the auxiliary potential according to (2.124). Then,
the frequency transformation described in (2.131) is applied to derive the fields
under any LSMz

lm mode excitation.

2.2.3 Convergence of the hybrid representation: Rectangu-
lar cavity

The hybrid field representation explained in this section can be applied to the
rectangular waveguide analysis of section 2.1.4. By doing so, the convergence of
results, as a function of the number of modes used in the field expansion series,
can be studied. Since the example represents a purely H-plane cavity, and the
term that involves irrotational modes has been evaluated following the procedure
described in section 2.2.2.1, only a series involving solenoidal modes (with an
improved convergence rate) must be computed in the expansion.

Comparing the results of Table 2.1 with Table 2.2, it is clear that the conver-
gence of the only series in the hybrid field representation is much faster than the
convergence of Kurokawa’s field expansion series. With the proposed formulation,
it is no longer necessary to compute thousands of modes in the cross-section of the
cavity to have an accurate field characterization. For very simple geometries, a few
dozen modes suffice. More complex structures may require up to a few hundred.



Full-wave characterization of bi-dimensional cavities 57

No. TM Error (%) Error (%)

Modes Mag. E Mag. H

3 0.588 0.291

4 0.259 0.110

6 0.187 0.105

9 0.052 0.025

27 0.023 0.008

74 0.018 0.005

Table 2.2: Error in the computation of the normalized magnitude of the electric
and magnetic fields using the hybrid field representation.

Nevertheless, these are manageable numbers for advanced numerical techniques,
such as the BI-RME method, and can be handled very efficiently.

The importance of the frequency transformations (2.88) and (2.129) in reduc-
ing the size of the full-wave problem must also be noted. This example involves
only a single-mode excitation (LSMz

01 mode). However, the matrices obtained in
this example are enough to compute the field under excitation of any other LSMz

n1

mode, thanks to the frequency transformation of (2.129). If it was not applied,
each index n would require to solve a new problem, which would be computation-
ally very intensive. The same reasoning applies to LSE modes. As demonstrated,
the proposed frequency transformations are also largely responsible for the high
efficiency of the full-wave formulation.

2.3 General Admittance Matrix characterization

The General Admittance Matrix (GAM) of a bi-dimensional cavity can be ef-
ficiently computed as a by-product of the procedure just developed for the EM
fields solution. This characterization in circuit terms provides a unique interface to
interconnect building blocks. Therefore, each block may be analyzed with a differ-
ent numerical method. Consequently, the frequency response of complex devices
can be computed very efficiently by dividing the problem into smaller parts that
are solved using the more suitable modal-based analysis technique [133]. Then,
the resulting matrix system is solved by properly combining all of the blocks.

The position (r, s) of the admittance matrix (Yrs) provides the relationship
between the modal current Ir induced over mode r (located in an arbitrary port
q) when the structure under analysis is excited by a modal voltage Vs associated
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with mode s (located in port p), with all other modes short-circuited:

Yrs =
Ir
Vs

∀Vi = 0 with i 6= s. (2.157)

This definition is independent of the family of modes considered as excitation.
The typical GAM for these structures would consider the classical TE/TM modes
in the rectangular waveguide ports. As we have shown in the previous section, the
EM analysis of these bi-dimensional cavities is much more efficient if LSEz/LSMz

modes are used as excitations. Consequently, the GAM provided in this section will
consider the latter family of modes. Then, this matrix can be easily transformed
into an equivalent matrix involving TE/TM modes by the simple transformations
shown in Appendix A. To compact the notation, it will be assumed that the modal
indices of mode r are (l′,m′) and for mode s they are (l,m) (as in section 2.2).

The procedure to compute the GAM is straightforward. The structure is ex-
cited by mode s in port p with Vs = 1, and the total magnetic field induced Hs

is computed. Then, the magnetic field Hs on the surface of port q is projected
into the modal vectors of the corresponding rectangular waveguide attached to
this port:

Hs

∣∣
Port q

=

∞∑

i=1

Ii hi (2.158)

where hi is the modal magnetic field of the i-th mode at port q. The specific
expressions for the LSE/LSM modal fields can be found in (2.79) and (2.80). Mul-
tiplying both sides of (2.158) by (ẑg×er), integrating over port q and applying the
orthogonality properties of LSE/LSM modes shown in (2.78), the modal current
for mode r is obtained as:

∫

Sq

(ẑg × er) ·Hs dS =

∞∑

i=1

Ii

∫

Sq

(ẑg × er) ·hi dS =⇒ Ir =

∫

Sq

(ẑg × er) ·Hs dS.

(2.159)
Substituting (2.159) and Vs = 1 into (2.157), the general expression of the GAM
becomes:

Yrs =

∫

Sq

(ẑg × er) ·Hs dS. (2.160)

From the study of bi-dimensional cavities performed in this chapter, we can
conclude that the field generated by an LSE mode in a cavity is not coupled with
any LSM modal vector at any port, and vice versa. Therefore, if r and s do not
belong to the same family of modes then Yrs = 0. Consequently, the GAM can
be separated into two submatrices: one, YLSE, involving only LSE modes and the
other, YLSM, involving only LSM modes.
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2.3.1 General Admittance Matrix for LSE modes

Using the modal field expressions for LSE modes of (2.79), the GAM in this case
is expressed as:

Y LSE
rs =

∫ h

0

∫ dq

0

(
ẑg × eLSEr

)
·HF

s dtq dz =

∫ h

0

∫ dq

0

(
−eLSEr · t̂q

)
HF

s · ẑ dtq dz

= −Al′m′

∫ h

0

∫ dq

0

cos

(
m′π

dq
tq

)
sin

(
l′π

h
z

)
HF

s · ẑ dtq dz. (2.161)

Applying the transformation in the k variable (2.91), the relationship of the
E-plane magnetic field with the scalar potential ϕF

s1 of (2.97), and the expansion
of the latter in terms of k (2.122), the z-directed component of this field can be
expressed as:

HF
s · ẑ

∣∣
Port q

= sin

(
lπz

h

) qf∑

κ=q0

fκ(rq)

·





−1

jkη

(π
h

)2
wF

s1κ +
j
[
k2 −

(
lπ
h

)2
+
(
π
h

)2]

ηk

[(π
h

)2
vFs1κ − wF

s1κ

]

+
j
[
k2 −

(
lπ
h

)2
+
(
π
h

)2]2

ηk

√
2

h

M∑

i=1

χTE
i BTE

κi CF
s1i[(

χTE
i

)2 − k2 +
(
lπ
h

)2]
κ2i1





(2.162)

where it is assumed that port q contains the basis functions with indices between q0
and qf . M is the number of TE modes computed in cross-section S of the cavity by

the BI-RME method. Likewise, rq = r(tq). Furthermore, χTE
i =

√
κ2i1 − (π/h)

2
.

Substituting (2.162) into (2.161) and solving the integral on the variable z, the
LSE-mode GAM becomes:

Y LSE
rs =

−Al′m′ h

2
δll′

qf∑

κ=q0

[∫

δk

cos

(
m′π

dq
tq

)
fκ(rq) dtq

]

·





−1

jkη

(π
h

)2
wF

s1κ +
j
[
k2 −

(
lπ
h

)2
+
(
π
h

)2]

ηk

[(π
h

)2
vFs1κ − wF

s1κ

]

+
j
[
k2 −

(
lπ
h

)2
+
(
π
h

)2]2

ηk

√
2

h

M∑

i=1

χTE
i BTE

κi CF
s1i[(

χTE
i

)2 − k2 +
(
lπ
h

)2]
κ2i1




.

(2.163)
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The integral in this equation is the same involved in the computation of IFκm
defined in (2.115). Introducing these coefficients in the GAM, we finally have:

Y LSE
rs = δll′

j

kη

{
√
h/2

(π
h

)2 qf∑

κ=q0

wF
s1κ I

F
κm′

+
√
h/2

[
k2 −

(
lπ

h

)2

+
(π
h

)2
]

qf∑

κ=q0

IFκm′

[(π
h

)2
vFs1κ − wF

s1κ

]

+

[
k2 −

(
lπ

h

)2

+
(π
h

)2
]2 M∑

i=1

CF
r1i CF

s1i[(
χTE
i

)2 − k2 +
(
lπ
h

)2]



 . (2.164)

The coefficients of the rapidly converging series of the magnetic field under exci-
tation of mode r with l′ = 1 are:

CF
r1i =

χTE
i

κ2i1

qf∑

κ=q0

BTE
κi I

F
κm′ . (2.165)

2.3.2 General Admittance Matrix for LSM modes

Similarly, and taking into account that under excitation of an LSM mode, the mag-
netic field within a bi-dimensional cavity does not have a z-directed contribution,
the GAM in this case is defined as:

Y LSM
rs =

∫ h

0

∫ dq

0

(
ẑg × eLSMr

)
·HA

s dtq dz =

∫ h

0

∫ dq

0

(
eLSMr · ẑ

)
HA

s · t̂q dtq dz

= Al′m′

∫ h

0

∫ dq

0

sin

(
m′π

dq
tq

)
cos

(
l′π

h
z

)
HA

s · t̂q dtq dz. (2.166)

Employing the transformation in the k variable (2.131), the relationship of the
H-plane magnetic field with the normal derivative scalar potential ϕA

s0 of (2.133)
and the expansion of the latter in terms of k (2.156), the tangential component of
the magnetic field can be expressed as:

HA
s · t̂q

∣∣
Port q

=
√
ǫl cos

(
lπz

h

) qf∑

κ=q0

fκ(rq) ·





1

jη

k[
k2 −

(
lπ
h

)2] w
A
s0κ +

jk

η
vAs0κ

+
jk
[
k2 −

(
lπ
h

)2]

η

1√
h

M
′∑

i=1

BTM
κi CA

s0i[(
χTM
i

)2 − k2 +
(
lπ
h

)2]
χTM
i



 . (2.167)

M′ is the number of TM modes computed in the cross-section S of the cavity by
the BI-RME method.
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Substituting (2.167) in (2.166), the GAM results in:

Y LSM
rs =

√
2h

dq
δll′

qf∑

κ=q0

[∫

δκ

sin

(
m′π

dq
tq

)
fκ(rq) dtq

]

·





1

jη

k[
k2 −

(
lπ
h

)2] w
A
s0κ +

jk

η
vAs0κ

+
jk
[
k2 −

(
lπ
h

)2]

η

1√
h

M
′∑

i=1

BTM
κi CA

s0i[(
χTM
i

)2 − k2 +
(
lπ
h

)2]
χTM
i



 . (2.168)

Making use of the integral IAκm defined in (2.152), the GAM can be finally
expressed as:

Y LSM
rs = δll′

jk

η





√
h[(

lπ
h

)2 − k2
]

qf∑

κ=q0

wA
s0κ I

A
κm′ +

√
h

qf∑

κ=q0

vAs0κ I
A
κm′

+

[
k2 −

(
lπ

h

)2
]
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′∑

i=1

CA
r0i CA

s0i[(
χTM
i

)2 − k2 +
(
lπ
h

)2]



 (2.169)

where

CA
r0i =

1

χTM
i

qf∑

κ=q0

BTM
κi IAκm′ . (2.170)

This chapter has presented a numerical formulation to perform full-wave anal-
ysis of bi-dimensional cavities. Due to the ample range of possibilities that this
technique offers, it has been deemed convenient to dedicated a specific chapter of
this thesis to validate it. In chapter 3, multiple practical passive components will
be considered with this objective.





Chapter 3

Application to the analysis,
design and RF breakdown
prediction of passive
waveguide components

The EM formulation for bi-dimensional cavities developed in chapter 2 has a lim-
ited scope of application as a stand-alone module. To reach its full potential, it
needs to be integrated within a Computer-Aided Engineering (CAE) environment
that enables the interconnection of different building blocks. Hence, this mod-
ule can be combined with other efficient methods tailored to different geometrical
structures, also included in practical components. Then, the analysis and design
of complex passive microwave components can be efficiently carried out.

In the framework of this thesis, the analysis module for bi-dimensional cavi-
ties has been integrated into the CAE tool FEST3D (Full-wave Electromagnetic
Simulation Tool 3D) [37]. FEST3D is based on a multimode equivalent network
representation of the different parts that form the structure. The device under
analysis is seen as a circuit network composed of multiple building blocks, such
as waveguides, cavities and planar junctions. Each block is characterized in terms
of its GAM (or the analogous Generalized Impedance Matrix, GIM), which is
computed by the most suitable analysis method available. Once all the building
blocks are properly modeled, the cascade interconnection of the different GAMs
provides a matrix system representing the complete circuit. After the excitation
conditions are imposed, the scattering parameters of the overall component are
computed by solving a banded matrix linear system. This last step is repeated
for all frequency points in the band of interest. During the computation of the
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S-parameters, FEST3D also provides the modal voltage amplitudes - vs in (2.76)
- at the interfaces between the different blocks, enabling the computation of the
electromagnetic fields within the device.

FEST3D splits the GAM computation into two parts: a frequency-independent
(static) part and a frequency-dependent (dynamic) one. The bulk of the compu-
tation time is dedicated to the solution of the static part. By doing so, a high-
resolution frequency response can be provided without incurring a large penalty
in terms of CPU time. The time required by the static analysis simply becomes
a constant overhead regardless of the number of frequency points in the response.
The formulation developed in chapter 2 is fully compatible with this feature, since
the core of the analysis (i.e. the computation of α, β and coefficients C for LSE
and LSM modes) can be performed independently of frequency. Likewise, the
frequency-dependent operations are very simple and fast.

At the same time, the integration of this module into FEST3D enables the pre-
diction of high-power radio-frequency (RF) breakdown (particularly, multipactor
and corona discharge) in components containing bi-dimensional cavities. In recent
years, there has been a renewed interest in this topic, as high-power issues are be-
coming a critical factor in the performance of telecommunication systems, fostering
the development of more precise models for the characterization of these physical
phenomena. Nowadays, breakdown prediction modules, like the one included in
FEST3D, make use of the electromagnetic fields computed within the component,
in order to estimate the maximum power that can be handled. Multipactor is
accurately modeled by the use of an electron tracking algorithm, together with a
proper secondary electron yield model. Corona discharge is analyzed through the
solution of a free electron density continuity equation by means of the FEM.

The first part of this chapter presents a series of components with practical
interest in the space sector. They have been analyzed, and in some instances de-
signed, using a version of FEST3D that includes the formulation for bi-dimensional
cavities developed in this thesis. An inductive filter with rounded corners, a
triplexer used in PIM measurement set-ups, and three orthomode transducers will
be studied. The second section is focused on the prediction of multipactor and
corona discharge in two practical components: a lowpass filter and an H-plane
diplexer. The reported results, successfully compared with measured and simu-
lated data, validate the developed tool. CPU times are included for the different
examples, providing insight into the numerical efficiency of the developed tool.

3.1 Analysis and design of waveguide components

3.1.1 Inductive filter with rounded corners

The first component under consideration is an inductive sixth-order bandpass filter
centered at 38 GHz with a bandwidth of 3 GHz (see Fig. 3.1a). The manufactur-
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ing of this filter with low-cost machining techniques, and its clam-shell assembly,
introduce rounded corners. This is indeed one of the most common manufactur-
ing effects in microwave components [137], and should be rigorously considered
to obtain an accurate design of the final structure. The inductive windows (that
would otherwise occupy the complete height of the cavity) are now reduced to
leave space for the rounded corners, as shown in Fig. 3.1b. Given that the filter is
implemented in the WR-28 rectangular waveguide (dimensions 7.112×3.556 mm),
and the rounded corners have a radius of 0.5 mm, the height of the inductive win-
dows becomes 2.556 mm. The thickness of these windows is set at 0.35 mm. The
remaining dimensions can be found in Table 3.1.

(a) (b)

Figure 3.1: (a) Structure of the inductive filter with rounded corners. One of the
rounded corner sections analyzed by the EM analysis tool for bi-dimensional
cavities is highlighted in red. (b) Inductive iris with reduced height.

Resonator lengths Iris widths

l1 = l6 l2 = l5 l3 = l4 w01 = w67 w12 = w56 w23 = w45 w34

3.701 4.235 4.342 3.515 2.515 2.239 2.192

Table 3.1: Dimensions, in mm, of the inductive filter with rounded corners.

The structure can be split into rectangular waveguides, bi-dimensional cavities
and planar junctions. The bi-dimensional cavities are used to model the rounded
corner sections of the filter, as depicted in Fig. 3.1a. It was mentioned in the
previous chapter that the implemented formulation only permits the connection
of the cavity to rectangular waveguides that have the same constant dimension
(in this case, the same width). On one side, the rounded corner sections are
connected with a rectangular waveguide that forms the resonator. This waveguide
does have the same width as the cavity. However, the other end is connected to the
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rectangular inductive iris, which has a different width. To overcome this problem,
a virtual rectangular waveguide with zero thickness (and the same width as the
resonator) is positioned between the bi-dimensional cavity and the iris. By doing
so, the implemented formulation can be directly applied, and then, the connection
between the iris and the virtual waveguide (i.e. the planar junction) can be solved
via the integral equation technique presented in [138].
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Figure 3.2: Response of the inductive filter with rounded corners compared with
ANSYS HFSS.

The analysis of the filter is performed using 50 accessible modes in the rectan-
gular irises (in particular, the modes TE2m+1,2n and TM2m+1,2n are considered,
given the vertical and horizontal symmetry of the structure). Waveguides imple-
menting the resonators and input/output ports consider 21 modes. Approximately
100 TE and TM modes are computed in the 2D section of each bi-dimensional cav-
ity. Since all bi-dimensional cavities have the same cross-section, only one GAM is
computed and stored. The other cavities can access this GAM, and use it when-
ever necessary. The analysis of this structure in 100 frequency points takes 25 s
(5 s for the static analysis and 0.2 s per frequency point), in an AMD FX-8320
Eight-core Processor at 3.5 GHz with 32 GB RAM. All CPU times in this thesis
have been obtained with this computer. To validate the results, they are com-
pared with simulations from the well-known electromagnetic solver ANSYS HFSS
(from now on simply referred to as HFSS), based on the Finite Element Method
(FEM). Figure 3.2 shows that both simulators provide an equivalent response. In
contrast, the simulation with HFSS requires 35 min to provide the depicted conver-
gent results (with a discrete frequency sweep). Horizontal and vertical symmetries
are employed. However, the majority of the mesh is dedicated to properly model
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the curved contour of the rounded corner irises, which leads to large computation
times. If these elements are not properly modeled, the filter is shifted in frequency,
thus the large mesh size is justified. An interpolated frequency sweep can also be
employed and, in this case, the HFSS simulation takes 10 min. Applying this tech-
nique (which is not dependent on the type of EM solver employed) to the analysis
method presented in this work, results are obtained in only 10 s.

3.1.2 Triplexer for PIM measurement setups

Next, the analysis of the manifold-coupled triplexer shown in Fig. 3.3 is consid-
ered. This component is employed in a setup for passive intermodulation (PIM)
measurement operating in the K-band. The specifications for the transmission
(Tx) and reception (Rx) channels are as follows:

• Frequency bands:

– Tx1 band: 11.15 GHz to 11.75 GHz

– Tx2 band: 12.45 GHz to 12.75 GHz

– Rx (PIM) band: 13.70 GHz to 14.55 GHz

• Common port return losses (CPRL) in band: 20 dB

• Rejection of Tx1 & Tx2 over Rx band: 80 dB

• Rejection of Rx over Tx1 & Tx2 band: 150 dB

As shown in Fig. 3.3, the triplexer is composed of two bandpass filters (BPFs),
serving the Tx1 and Tx2 bands, and a high-pass filter (HPF) serving the Rx
band. The former filters are implemented in the hybrid folded rectangular waveg-
uide (HFRW) configuration (more details about this family of filters can be found
in chapter 4). The coupling between adjacent resonators in these filters is imple-
mented via capacitive windows in the top/bottom walls of each cavity. Inductive
windows provide the necessary cross-coupling to implement transmission zeros in
the PIM reception band. They are required to fulfill the rejection specifications.
The Rx high-pass filter is implemented by means of a reduced-width rectangular
waveguide with a considerable length, which is connected inline with the manifold
through a stepped waveguide transformer.

This example illustrates the importance of using a good modeling technique in
the design process. T-junctions are employed throughout the structure to repre-
sent the direct couplings in the HFRW filters and their connection to the manifold
(see Fig. 3.3). These constant-width elements are located very close to inductive
windows (that are constant in height). Therefore, there is a strong interaction be-
tween the LSE and LSM modes in the structure. During the design of the triplexer,
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Port 1
(CP)

Port 2
(Tx1)

Port 3
(Tx2)

Port 4
(Rx)

BPF Tx1

BPF Tx2

HPF Rx

Figure 3.3: Triplexer for high-power applications. T-junctions are used to model
the capacitive couplings of the HFRW filters. Some of them are located
close to inductive steps, therefore requiring a full-wave representation. Areas
highlighted in red in the detail of the figure indicate the T-junction blocks
for the Tx1 filter.

the modal technique presented in [139] was used to model the T-junctions. How-
ever, the simulations performed during this process had, inadvertently, not reached
convergence. Consequently, the measured and designed responses differed. The
deviations in the measured response occurred mainly in the edges of the pass-
bands. Fortunately, design margins had been added to the bandpass transmission
filters in order to cope with manufacturing deviations. Due to the small degrada-
tions within the actual specified passbands, the component was accepted for the
intended application.

Afterwards, the formulation for bi-dimensional cavities presented in this thesis
was applied. It was seen that, for this particular structure, the present formulation
provided more accurate results than the technique in [139], given an equivalent
amount of CPU time. Therefore, convergence was reached much faster. Figure
3.4 shows the simulated response obtained with both techniques, compared with
measurements from a manufactured prototype. As can be seen, both methods
yield equivalent results. The response on the left, obtained after application of the
formulation presented in this work, is obtained in 164 s (14 s in the static part and
0.5 s per frequency point) for a response with 300 frequency points. The response
on the right, where T-junctions have been modeled by the method in [139], is
obtained in 918 s (10 s in the static part and 3 s per frequency point) for quite
accurate results, although full convergence is still not reached. As it becomes
clear, the reduction in CPU time due to the proposed full-wave formulation is
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Figure 3.4: Comparison between simulations and measurements from a man-
ufactured prototype of the triplexer in Fig. 3.3. (a) Simulation with the
analysis technique presented in this thesis. (b) Simulation with the analysis
technique in [139].

considerable even over other modal techniques. Besides, the accurate analysis of
this triplexer by general-purpose meshing algorithms (such as those used in HFSS,
CST Microwave Studio or other commercial tools), if at all possible, will certainly
take several hours of computation time.

3.1.3 Narrowband taper/branching OMT

Orthomode Transducers (OMTs) are key building blocks within antenna feed sys-
tems. They are typically connected to dual-polarized antennas. These elements
are tasked with the separation of two orthogonal polarizations, each carrying a
different signal in the same frequency band. The presence of multiple relevant
propagating modes within the main body of the OMT makes it an ideal candidate
to validate the electromagnetic formulation developed in chapter 2.

The first OMT structure studied in this chapter is the narrowband taper-
branching configuration shown in Fig. 3.5a. It consists of a square waveguide
(Port 1) that receives both polarizations, and a smooth-profile tapered waveguide
that acts as a transformer for the vertical (V) polarization. Therefore, this po-
larization is transferred from Port 1 to Port 3. At the same time, the horizontal
(H) polarization becomes evanescent in the tapered region and is reflected and
side-coupled to the branching arm (Port 2). A rectangular opening in the top wall
of the OMT controls the coupling of this polarization to the branching arm.

The design of these components starts with the tapered waveguide section. In
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Figure 3.5: Structure and response of the taper/branching narrowband OMT.
Port 1 (25.6 × 25.6 mm square waveguide) receives both the horizontal
(H) and vertical (V) polarizations. The OMT routes the horizontal po-
larization to Port 2 (25.6 × 15.799 mm) and the vertical one to Port 3
(25.6× 15.799 mm).

this case, a Chebyshev taper with 20 sections and return losses of 26 dB between
6.725 and 7.025 GHz is used. The profile is continuous instead of the classical
stepped implementation. In order to determine the height and separation between
the different sections in the taper, formulas from [140] have been used. Once the
taper is completely determined, the position and size of the side-coupled aperture
are adjusted until both polarizations are properly transferred to the corresponding
port in the band of interest. The dimensions of the resulting structure are shown
in Fig. 3.6. In the band of interest, the common port return losses (CPRL) are
better than 17.5 dB (see Fig. 3.5b).

To achieve convergent results in the analysis of this component, especially for
the horizontal polarization, it is necessary to compute 1300 modes in the cross-
section of the tapered waveguide. The bulk of the computation is dedicated to
solving the connection from the main body of the structure (tapered waveguide) to
the branching arm. Approximately 300 accessible modes are employed in solving
this connection. To increase the efficiency of the analysis, the main body is split
in three parts, connected by zero-length rectangular waveguides. By doing so, the
section connected to the upper iris can be solved very accurately, while relaxing
the accuracy in the input and output sections. With this technique, the static
part of the analysis is solved in 11 s. In contrast, the frequency-dependent part
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Figure 3.6: Dimensions (in mm) of the taper/branching narrowband OMT. The
lower wall is composed of 18 straight segments, each with a length, in the
propagation direction, of 2.567 mm. Port heights are 25.6 mm (Port 1) and
15.799 mm (Ports 2 and 3).

takes 1.25 s per frequency point. Results obtained with the new formulation are
equivalent to those provided by the mesh-based simulator HFSS, as depicted in
Fig. 3.5b.

3.1.4 Wideband turnstile-junction OMT

The second OMT structure, taken from the literature [141], is depicted in Fig.
3.7. It is based on a five-port turnstile-junction with a tuning post that separates
both orthogonal polarizations. The signal associated with each polarization is split
between two of the four arms of the turnstile, and then combined using a curved
Y-junction. Once combined, the signal is guided to the output port through an
E-plane bend and a linear taper.

In order to analyze the structure with FEST3D, it may be split into rectangular
waveguides, bi-dimensional cavities and a turnstile-junction. This last element is
not a bi-dimensional cavity, since it contains a partial-height square inset. To
model this junction, the 3D version of the BI-RME method [65] is applied. Then,
the arms are split into simpler building blocks to speed up the analysis. Even
though each arm maintains its width constant, the analysis of the arm as a whole
is not practical. To begin with, the efficiency of the BI-RME method is associated
with the electrical dimensions of the cross-section under analysis, decreasing for
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larger geometries. A key factor in the performance of this method is the ratio
between the surface of the arbitrary contour and the surface of the canonical
resonator (rectangular or circular) used in the resonant mode expansion. As this
ratio increases, the results become more accurate and the analysis more efficient.
Consequently, the best strategy is to split the arms into compact sections that fit a
rectangle or a circle as tightly as possible. Furthermore, the parts of the arbitrary
contour that coincide with the resonator do not need to be segmented (thanks to
the use of an adequate Green’s function that sets the boundary condition in the
walls of the resonator), decreasing the size of the matrices involved in the solution.
For that reason, the Y-junction combiner is split into sections that represent a
rectangular cavity with two rounded corners. Other considerations that influence
how proceed with the segmentation of the structure are related to the capabilities
of FEST3D. As explained in section 3.1.1, FEST3D is able to identify blocks that
represent the same geometry to avoid repeating simulations. Taking this into
account, the 180◦ bends are split into two identical halves. FEST3D solves one of
them using the formulation presented in this thesis, and then copies the resulting
GAM into the other. At the same time, each arm has two identical 180◦ bends,
which means that one half is analyzed and then used for the other three halves.
The same applies to the tapers and the 90◦ bends.

Port 1 (H/V)

Port 2 (H)Port 3 (V)

Turnstile
Junction

Y-Junction
Combiner

Taper

Bend

Figure 3.7: Turnstile-junction OMT.

After application of the aforementioned segmentation strategy, the OMT is
solved. In Fig. 3.8, the results are compared with simulations obtained with the
software tool CST Microwave Studio (based on the finite integration technique)
and measurements reported in [141]. Both software tools provide an equivalent
response, consistent with measurements. Metal losses have not been considered
in the simulated results. The simulation with the method of this thesis takes 0.5
s per frequency point to provide the convergent results depicted, although it has
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Figure 3.8: Comparison between the measured and simulated responses (with
FEST3D and CST Microwave Studio) of the turnstile-junction OMT shown
in Fig. 3.7.

an overhead of 2,200 s mainly due to the analysis of the turnstile junction (which
requires 88% of this static time). In contrast, CST Microwave Studio requires
more than 200,000 tetrahedra and takes six hours to solve the complete structure.

3.1.5 Dual-band OMT

The last example of this section involves the design of a dual-band OMT. This
component must combine signals associated to two orthogonal polarizations in two
different frequency bands (reception, Rx, from 4.45 to 4.8 GHz and transmission,
Tx, from 6.725 to 7.025 GHz). The objective of this component is to discriminate
by frequency and by polarization. Therefore, this component is a hybrid between a
diplexer (which discriminates by frequency) and an orthomode transducer (which
discriminates by polarization).

A schematic view of the different parts that form this OMT can be seen in
Fig. 3.9. At the input port, four signals (corresponding to the two polarizations
and two frequency bands) are present. The first block must be as transparent as
possible for the vertical polarization, while simultaneously discriminating between
the lower and upper frequency bands of the horizontally-polarized signal. The
lower frequency band must be derived to the branching arm, while the upper band
must pass through this block with minimal attenuation. The combination of a
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OMT
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Figure 3.9: Schematic of the building blocks that form the dual-band OMT.

high-pass filter in the inline branch and a lowpass filter in the side branch is used for
this purpose. The following block is identical, but derives to the branching arm the
signal associated with the vertical polarization in the lower (Rx) frequency band.
Finally, the last block is a narrowband OMT that separates the two polarizations
in the upper frequency band.

Port 1
(RxH, RxV,
TxH, TxV)

Port 2
(RxH)

Port 3
(RxV)

Port 4
(TxH)

Port 5
(TxV)

Figure 3.10: Structure of the dual-band OMT. Highlighted in red are the blocks
analyzed with the formulation of this work.

This schematic is transformed into the physical structure shown in Fig. 3.10.
Low-pass filters are implemented by corrugated structures, whereas the high-pass
filters are simple stepped waveguide transformers. Therefore, the main body of
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Figure 3.11: Comparison between simulated responses of the dual-band OMT
of Fig. 3.10 obtained with HFSS and the formulation of this work.

the OMT consists of a cascade of transformers that alternate a reduction in height
with a reduction in width. If these transformers are well designed, one polarization
is reflected, while the other is transmitted. The branching arms are connected to
the main body through rectangular apertures. Other elements, such as bends and
tapers, are included to facilitate the proper orientation of the output ports. The
complete structure is composed of bi-dimensional elements, but only a subset is
analyzed by the technique developed in this work. These particular elements are
highlighted in Fig. 3.10. The T-junctions are key building blocks and are certainly
selected. Likewise, the tapers cannot be analyzed as a simple interconnection of
rectangular waveguides, thus are also selected. The rest of the structure can be
split into simple rectangular waveguides and the corresponding planar junctions
that interconnect them. The analysis of these elements is simpler and faster with
classical modal methods [133]. Therefore, they are not analyzed with the technique
presented in this thesis in order to increase the efficiency of the design.

This dual-band OMT is designed using FEST3D. The response is then success-
fully compared with the one provided by HFSS after a much bigger computational
effort. Figure 3.11 depicts this comparison and shows a high degree of correlation
between the two simulations. Regarding the CPU time of this analysis, the con-
vergent simulation shown in the figure requires 377 s to compute 301 frequency
points (76 s for the frequency-independent computations and 1 s per point).
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3.2 High-power RF breakdown prediction

Over the last decade, there has been a renewed interest in studying the physical
phenomena that limit the power-handling capability of communication system at
microwave frequencies. In order to satisfy the demand for higher data rates, it has
been necessary to increase the transmitted power of such systems. However, once
the power in a passive waveguide component exceeds a certain threshold, it can
trigger two undesired effects: multipactor [142] and corona discharge [72]. The
unintended consequences associated with these effects range from a temperature
increase in the component to its complete destruction. Therefore, it is critical to
predict this threshold level as accurately as possible [74].

The multipactor effect (or multipaction) occurs under vacuum (or near-vac-
uum) condition. Free electrons are accelerated by the electric field and collide
with the walls of the device. If these collisions have enough energy, secondary
electrons are released from the metallic surfaces. Since the electric field is time-
varying, the orientation of the electric field may have reversed by the time these
secondary electrons are released. In this case, both the primary and the secondary
electrons will be accelerated towards the opposite wall, generating even more free
electrons. Eventually, this leads to an electron avalanche that can destroy the
device. As can be inferred, this effect is highly dependent upon the geometry of
the device (in particular, the distance between walls, or gap), as well as the am-
plitude, frequency and phase of the time-varying electric field. For this reason,
an accurate representation of the EM fields within the device is fundamental to
obtain accurate breakdown predictions.

In contrast, the corona discharge effect occurs in devices filled with gas, under
certain pressure and power conditions. It consists in the formation of an electron
plasma that is generated by the ionization of a gas in the presence of high electric
fields. Once the input power exceeds a certain threshold, an electron avalanche
can be produced, ultimately destroying the component. Since this effect depends
on the type of gas and pressure condition, it mainly affects components for terres-
trial applications. Likewise, components working during the launching stage of a
satellite (like the Telemetry, Tracking and Control - TT&C - system), and during
the reentry stage of a space vehicle, are also susceptible to experiencing corona
discharge.

The widespread use of commercial EM solvers in the microwave industry has
motivated the development of more accurate breakdown prediction models. Nowa-
days, most of these models take advantage of the precise field solution provided by
the EM solvers. However, there are still very few commercial software tools avail-
able, nowadays, with adequate capabilities to predict high-power RF breakdown.
Amongst them, FEST3D, with its dedicated high-power module, and particularly
SPARK3D [128] are widely known for their accurate predictions, backed by mea-
surements. Therefore, the integration of the electromagnetic formulation presented
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in chapter 2 with FEST3D, opens up the possibility of applying it to the analysis
of key industrial components, that can be potentially subject to high-power RF
breakdown. Since high-power issues will be a relevant limiting factor in the final
performance of future communication systems, it is likely that these two areas (EM
field analysis and high-power RF breakdown prediction) will be deeply integrated
in a future generation of CAD tools.

3.2.1 Lowpass filter

Corrugated lowpass filters, like the one shown in Fig. 3.12, are classical examples
of structures that are sensitive to RF breakdown.
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Figure 3.12: (a) Physical structure of the lowpass filter. The area highlighted
in red identifies the section where the corona and multipactor analysis is
performed. The specific dimensions of the structure considered in this section
are summarized in Table 3.2. (b) S-parameter response.

As opposed to filters composed of coupled resonators, lowpass filters tend to
concentrate high electric fields in their low impedance sections, this is, those with
a smaller height (see Fig. 3.13). At the same time, these sections have a certain
length in the direction of propagation and, therefore, the fringing field effect does
not aid in dispersing the free electrons that are generated, especially by multi-
paction. Consequently, the study of these types of filters is a logical first step in
the prediction of high-power breakdown phenomena. Measured data from a man-
ufactured prototype [143, 144], albeit not including rounded corners, will be used
to validate the results. In order to perform an adequate comparison, the corners
of the critical parts (i.e., the low impedance sections) are not rounded, as shown
in Fig. 3.12a.
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Section length

l1 = l9 l2 = l8 l3 = l7 l4 = l6 l5

9.513 3.0 3.230 4.420 2.840

Section height

h1 = h9 h2 = h8 h3 = h7 h4 = h6 h5

7.237 6.500 3.070 6.280 2.170

Table 3.2: Dimensions, in mm, of the lowpass filter. Ports are standard WR-
90 waveguides. Corners in the high-impedance sections are rounded with a
1 mm radius.
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Figure 3.13: Magnitude of the electric field at 9.5 GHz.

As far as corona discharge is concerned, the regions more susceptible to ex-
perience this effect are those where the electric field is more intense. As previ-
ously mentioned, the low-impedance sections of the filter are prime candidates
to experience corona discharge. Once the EM fields are computed in these sec-
tions, the continuity equation that governs the evolution of the electron density
is solved, using the Finite Element Method (nitrogen has been considered as the
filling gas) [144]. From this solution, the breakdown power level for different pres-
sure conditions is predicted. Figure 3.14 depicts the predicted breakdown levels
compared with the measured breakdown level (known as Paschen curve) for the
manufactured prototype reported in [144]. As can be seen, the simulation agrees
perfectly with measurements. The minimum power level for this component is
240 W at the critical pressure of 9 mbar.

A second high-power analysis has been performed on the lowpass filter. Given
the EM field, the objective in this second case is to predict the multipactor break-
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Figure 3.14: Evolution of the breakdown threshold due to corona discharge for
different pressure values in the lowpass filter of Fig. 3.12.
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Figure 3.15: Multipactor breakdown results for the lowpass filter in Fig. 3.12.
The electron evolution is shown as a function of time, along with the pre-
dicted and measured breakdown levels.

down level through the use of an electron tracker algorithm and a proper secondary
emission yield (SEY) model. These two elements are integrated in FEST3D, which
makes the prediction of this undesired high-power phenomena completely straight-
forward. Before running the simulation, the user must define the sections where
multipactor may occur. In this case, the presence of an intense electric field along
with the reduced gap that is present in the central section of the filter, makes
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this area especially vulnerable to multipactor breakdown. Figure 3.15 depicts the
electron evolution over time within this central section. Using the high-power anal-
ysis capabilities of FEST3D, the breakdown level for multipactor is predicted at
8437 W. This is an extremely accurate prediction, considering that the measured
breakdown level reported in the literature was 8360 W [143].

3.2.2 H-plane diplexer

The second component considered in this section is a Ku-band H-plane diplexer
for the TT&C system of a satellite. The structure of this diplexer and its S-
parameter response are shown in Fig. 3.16a and Fig. 3.16b, respectively. The
specific dimensions for the diplexer are defined in Fig. 3.16c. Figure 3.17 depicts
the magnitude of the electric field computed with the hybrid formulation for bi-
dimensional cavities developed in this thesis at 12.25 GHz. Results are successfully
compared with HFSS. As can be seen, the electric field is concentrated in the center
of the cavities that compose the lower-frequency band filter. Since the distance
between the walls is not significantly small in that location, it is unlikely that
multipactor breakdown will occur. In contrast, depending on the pressure and the
input power levels, it is possible that corona discharge will occur. Consequently,
this study will be focused on the corona effect.

During the first stage of the analysis, the complete channel filter is analyzed.
However, the field is computed in a reduced number of spatial points to speed up
the analysis. The EM fields are introduced into the corona prediction algorithm,
which reveals the cavity that has a lower breakdown threshold (highlighted in
red in Fig. 3.16). Since the field is computed with a weak spatial resolution,
the breakdown level is simply a broad estimate, and not very accurate. Then, a
second analysis is performed. This time, the field is computed only within this
cavity, but in a large number of spatial points, thus increasing the accuracy in
the prediction. The corona analysis algorithm provides the results shown in Fig.
3.18, where it can be seen that the critical pressure is 10 mbar and the threshold
power level is 54 W. The Paschen curve obtained with HFSS is highly coincident
with the results obtained using the proposed field formulation. As far as the CPU
time is concerned, the EM field is computed in an array of 70,000 spatial points
at one frequency point (12.25 GHz) in 85 s, a fraction of the 25 minutes dedicated
by HFSS to achieve the convergent results shown in Fig. 3.17 with an equivalent
mesh size.
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Figure 3.16: (a) Physical structure of the H-plane diplexer. The area high-
lighted in red identifies the cavity where the gas discharge prediction will be
performed. (b) S-parameter response. (c) Dimensions in mm of the H-plane
diplexer (height is 9.525 mm).
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Figure 3.17: Magnitude of the electric field at 12.25 GHz, the center frequency
of the lower frequency band of the diplexer. The top image represents re-
sults obtained with the formulation of this work, whereas HFSS results are
depicted in the bottom. It can be seen how the electric field is concentrated
in the center of the cavities, not posing a realistic threat of multipactor
breakdown.
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Figure 3.18: Corona breakdown power vs. pressure results for the H-plane
diplexer. The inset figure shows a detail around the critical pressure.



Chapter 4

Novel quasi-elliptic filter
implementations

Nowadays, a wide variety of communication systems must coexist within the lim-
ited electromagnetic spectrum allocated for commercial applications at microwave
frequencies. In this crowded environment, the interference of a system into neigh-
boring frequency bands becomes a critical issue, especially as capacity is increas-
ingly demanded. In order to strengthen the isolation in a specific band, elliptic or
quasi-elliptic filters have been the subject of intense study over the last decade.
These structures are able to provide steep out-of-band rejection with a minimum
number of resonators, minimizing the signal interference in adjacent channels and
reducing the volume and mass of the component. Flexibility to define the number
and prescribe the location of the transmission zeros (TZs) are important features
for this kind of filter. They often determine whether a certain filter implementa-
tion is suitable for a particular application or not. As an example, the S-parameter
response of an interference elimination quasi-elliptic filter is depicted in Fig. 4.1.
This filter is employed in satellite television equipment to isolate the reception
channel from external sources of interference, such as WiMAX and RADAR sig-
nals. In order to provide the required isolation, this filter introduces two TZs in
the upper stopband.

In general, there are two approaches that can be employed to implement TZs:
bandstop elements and the multipath effect.

The first approach is based on the use of bandstop elements, such as cavi-
ties or stubs, to interrupt the transmission of the signal at certain frequencies.
This approach allows great control over the location of the TZs. For bandpass
structures, a systematic design procedure that makes use of this approach is the
extracted pole-technique [114]. Combined with non-resonating nodes [116–118],
this design methodology becomes highly modular, although it still requires an
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Figure 4.1: S-parameter response of an interference elimination filter operating
in the standard and extended C-band (reception). Hatched areas indicate
the out-of-band isolation requirements.

important optimization effort to obtain the structure physical dimensions. Cor-
rugated lowpass and bandstop filters often employ stubs as their high-impedance
sections, which can also be used to realize TZs [110, 145]. Each stub provides the
adequate impedance level required by the filter in the passband. Simultaneously,
the stubs become bandstop elements in the stopband, thus realizing TZs at cer-
tain finite frequencies. With this strategy, a corrugated lowpass filter composed
of N waveguide sections is able to generate up to N/2 independent TZs (one per
high-impedance section).

For waveguide bandpass filters, it is frequent to implement solutions that in-
clude cross-couplings between resonators [115]. By doing so, multiple paths are
created, and the relative phase shift of the signal traveling through all of them
produces a cancellation (destructive interference) at certain frequencies [146]. The
TZs can be realized at specific frequencies in the complex plane (s = σ + jω)
by adequately adjusting the coupling elements in the different signal paths. To
improve selectivity, the TZs must be placed in the frequency axis (s = jω). TZs
not located on this imaginary axis can be used to equalize the in-band group-delay
response of the filter. In this thesis, though, the term transmission zeros will refer
to those located in the imaginary axis. The frequency range (above and/or be-
low the passband) where these TZs can be found is dependent upon the nature
(electric of magnetic) of the different couplings involved in the structure. Certain
coupling combinations are only able to place TZs below or above the passband.
Others are flexible enough to realize TZs both in the upper and lower stopbands.
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Regardless of the stopband location, coupling schemes that are relatively simple,
such as singlets [119], triplets and quadruplets [120, 121], are the preferred solu-
tions in most applications. They are amenable to a modular design, tend to be
more robust to manufacturing tolerances, and are easier to tune after fabrication.
Therefore, they are easier to design and manufacture than more complex schemes
with multiple cross-couplings, even if the resulting physical structures are not as
highly compact.

This chapter studies two novel implementation of quasi-elliptic filters. In the
first part, the hybrid-folded rectangular waveguide filter topology [147] is consid-
ered. This topology makes use of the multipath effect to generate TZs that can be
controlled in a wide frequency range. Several configurations will be proposed, giv-
ing the designer great flexibility to choose the one that better fits a particular set
of specifications. In the second part of the chapter, a novel iris concept will be pre-
sented. This iris is formed by the interconnection of E-plane stubs and a capacitive
window. The overall structure acts as a coupling element while, simultaneously,
generating finite attenuation poles thanks to the bandstop stubs. Consequently,
the number of TZs in a rectangular waveguide filter can be increased at will in a
very simple and convenient way. All of the structures presented in this chapter
are suitable to be analyzed by the full-wave EM technique already described in
chapter 2.

4.1 Hybrid-folded rectangular waveguide filters

Hybrid-folded rectangular waveguide (HFRW) structures [122] are a family of fil-
ters that have been recently proposed as a powerful alternative to implement com-
pact tuning-less quasi-elliptic filters. These structures are formed by rectangular
waveguide cavities arranged in a way that enables the implementation of couplings
between adjacent and non-adjacent resonators along the RF path. Figure 4.2 de-
picts a basic three-resonator HFRW filter. As can be seen, two adjacent resonators
(for instance, resonators 1 and 2) are vertically stacked with a certain overlap be-
tween them. This overlapping allows the interconnection through apertures in the
top and bottom walls of both resonators. The shape and size of these apertures
control the amount of coupling between the two resonators, as well as its type
(i.e. whether it is predominantly electric or magnetic coupling). Simultaneously,
non-adjacent resonators (resonators 1 and 3 in the figure) are coupled via another
aperture, implementing the cross-coupling. Effectively, two signal paths are cre-
ated: one path goes through resonators 1, 2 and 3, and the other goes straight
from resonator 1 to resonator 3 via the cross-coupling aperture. Consequently,
at a certain finite frequency the signals traveling through both paths cancel each
other, thus generating a transmission zero.

One of the major strengths of this filter topology is its modularity. Starting
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Figure 4.2: Three-pole HFRW filter, also known as a trisection. Lateral wall has
been removed to permit visualization of the interior.

from the basic trisection shown in Fig. 4.2, the designer is able to include as
many resonators as desired, just by stacking them above or below the preceding
resonator. Each additional resonator is simply coupled to the last cavity in the
structure through an opening located on its top or bottom wall. At the same
time, this new resonator may be coupled to the second-to-last one, realizing a
cross-coupling. Responses with multiple TZs can be obtained by simply cascading
as many trisections as required, so that each trisection realizes a TZ.

In addition to selecting the number of TZs, the HFRW configuration also offers
flexibility in the cavity arrangement. Filter designers that strive to achieve the
most efficient use of physical space available can realize highly compact structures.
Alternatively, HFRW filters can be adapted to a variety of layouts and fulfill
different port-placement requirements (key in multiplexer design). For example,
the classical five-resonator structure shown in Fig. 4.3a can be folded into a
staircase configuration (see Fig. 4.3b) in case a purely inline port arrangement is
not a viable option. Likewise, a 90◦ rotation of the resonators can be applied in
order to place the input and output ports in the same plane, as shown in Fig. 4.3c.

The symmetry in width of the overall structure is another important charac-
teristic of this topology. It facilitates the fabrication of the filter with a clam-shell
assembly that does not interrupt current lines, and therefore reduces the insertion
losses due to manufacturing effects. In addition, this manufacturing technology
limits the chance of passive intermodulation, an undesired effect in high-power
applications. The lack of tuning elements also aids in reducing these high-power
effects. Unfortunately, this also eliminates the possibility of compensating man-
ufacturing deviations. As a consequence, tuning-less structures are restricted to
filters with relative moderate bandwidths, greater than 1-2% in Ku band. There-
fore, tuning-less HFRW filters are ideally suited for the output stages of satellite
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(a) (b) (c)

Figure 4.3: Five-pole HFRW filter structures. (a) Classical interconnection of
cavities following a zig-zag arrangement. (b) Alternative stair-case configu-
ration. (c) Configuration with rotated resonators.

communication payloads and ground-station equipment, where the filtered bands
are wide and the signal intensity is considerable. In contrast, these structures find
limited application in narrowband scenarios, where more compact structures, such
as dual-mode filters, are preferred.

The study of HFRW filters performed in the framework of this thesis is focused
on the physical realization of trisections. These elements are the basic building
block to realize higher order filters. Multiple coupling combinations are available
to implement trisections with the TZ located on either side of the passband. Figure
4.4 summarizes the possible coupling combinations, organized by the side of the
passband where the TZ is located.

1 Resonator
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Inductive Coupling
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Figure 4.4: Coupling combinations in a triplet that provide TZs above or below
the passband.

In the following section, certain physical apertures will be proposed to imple-
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ment the inductive and capacitive elements of Fig. 4.4. The resonant nature of
some of these apertures will have a strong influence on how HFRW trisections are
modeled. In particular, a modification of the classical triplet coupling scheme will
be proposed, to account for the resonant nature of the direct-coupling apertures.
This modification proves that HFRW trisections are able to realize more than one
TZ, and a design methodology to prescribe their location will be proposed. Then,
practical aspects relative to the physical implementation of HFRW trisections will
be discussed. Finally, a five-order filter example will be presented to validate the
theoretical and practical features of this novel configuration.

4.1.1 Coupling mechanisms in HFRW filters

This section considers different physical implementations for the direct and cross-
couplings elements of HFRW filters. Even though multiple coupling combinations
are able to provide the same frequency response, it is important to have flexibility
to look for the physical structure that is best suited to fulfill certain electrical and
geometrical specifications. For that reason, different alternatives are proposed to
implement the coupling elements of these filters.

4.1.1.1 Direct coupling implementations

For the most common cavity arrangement of HFRW filters (see Fig. 4.3a), direct
coupling windows connect the top and bottom walls of adjacent resonators via
rectangular apertures of size d×w. The coupling apertures have a finite thickness
t, and are separated from the short-circuited end of each cavity by a length c (see
Fig. 4.5). To simplify the study of these couplings, the c dimension is assumed
to be equal in the top and bottom cavities. However, since this parameter has
an important influence in the coupling level provided by the structure, a filter
designer can also make use of asymmetrical irises to fulfill geometrical constraints.

Figure 4.5 depicts the two apertures proposed to implement inductive and ca-
pacitive direct couplings. The two structures differ only on the size of the aperture
width w. Capacitive direct couplings make use of apertures with the same width
w as the cavities that are being connected, whereas inductive direct couplings
contain reduced-width apertures. Both structures are resonant irises that can be
modeled by the equivalent circuit proposed in [148] and shown in Fig. 4.6. Being
resonant structures implies that, below the resonance, the stored magnetic energy
is greater than the electric one, thus the iris behaves inductively. In contrast, the
iris behaves capacitively above the resonance [149]. The width of the aperture w is
mainly used to control the location of the resonance, whereas d controls the amount
of coupling (in addition to influencing the resonant condition). For apertures that
span the total width of the cavities (see Fig. 4.5b), the resonance condition occurs
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Figure 4.5: Direct coupling apertures.(a) Physical implementation of an in-
ductive direct coupling. (b) Physical implementation of a capacitive direct
coupling.

at the cut-off frequency of the port waveguides. Consequently, the iris behaves
capacitively in the passband of the filter (which must be located above the cut-off
of the waveguides used as resonators). As the aperture width w decreases, the
resonance moves towards higher frequencies. As long as the resonance is located
above the filter passband, the iris behaves inductively.

It is worth noting that the structure in Fig. 4.5a can be used to implement
both capacitive and inductive irises, simply by adjusting the width w. However,
it is more convenient to use an aperture that spans the width of the cavity to
implement capacitive couplings. On the one hand, this discontinuity is simpler
to analyze and manufacture. On the other hand, it increases the spurious-free
range of the filter below the passband, since the resonance is located at or near
the cut-off. Given the advantages of this second structure, in this thesis capacitive
direct-couplings are assumed to be implemented by the structure depicted in Fig.
4.5b, unless otherwise noted.

Full-wave EM simulations can be employed to study the performance of a
coupling structure as a function of its geometrical dimensions. From the S11

scattering parameter, the normalized impedance parameter K associated with the
coupling structure under analysis can be computed as:

K =

√
1− |S11|
1 + |S11|

(4.1)
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Figure 4.6: Wideband equivalent circuit proposed in [148] for the direct coupling
apertures. L and C are computed from EM-simulations. Zg is the power-
voltage-defined waveguide impedance [140] of the short-circuited stubs. c+
d/2 is the length of the transmission line, representing the distance between
the short-circuit and the aperture center.

This parameter represents the inverter constant of an ideal impedance inverter
with the same reflection coefficient as the physical structure under study. For
filter design, this is an important parameter to transform the synthesized circuit
model into a physical structure.

Fixing the aperture width w, the amount of coupling that a certain direct-
coupling element provides is controlled by three dimensions: the aperture size
d, its thickness t and the distance between this aperture and the short-circuit c.
Figures 4.7 and 4.8 depict the normalized impedance parameter K as it relates to
these three parameters. Figure 4.7 considers capacitive direct-coupling structures
(w equals the resonator width), whereas Fig. 4.8 considers inductive couplings
(w is set to 10 mm to locate the aperture resonance clearly above 10 GHz). As
can be seen, the aperture size d provides the best adjustment range of the three
physical parameters. As the aperture size d increases, so does the amount of
coupling. However, when the aperture is large, there are high-order resonances
that limit the maximum coupling level provided, and can interfere with the out-
of-band response of the filter. For that reason, it is convenient to limit the size of
the aperture and adjust other geometrical parameters to obtain very large coupling
levels.

For instance, the location of the aperture along the cavity also has a significant
effect in the coupling value. Moving away from the short-circuit, the capacitive
aperture starts increasing the coupling it provides, until it reaches a maximum
level. Minimum coupling is then obtained when the center of the aperture is
located at, approximately, a quarter-wavelength from the short circuit. As it
is well known, a quarter-wavelength short-circuited transmission line produces a
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Figure 4.7: Normalized inverter parameter K as it relates to the geometrical
dimensions of the capacitive direct-coupling structure. The results are ob-
tained at 10 GHz using WR-75 waveguides. (a) K as a function of the
position of the aperture (c+ d/2) with respect to the short circuit for differ-
ent aperture sizes d and t = 1 mm. (b) K as a function of the thickness t
for d = 4 mm and c = 2 mm.

destructive interference (or transmission zero) at the frequency where its electrical
length becomes 90◦. Since the structure contains two stubs (one in the upper cavity
and another in the lower cavity), there is a double TZ. This can be observed in
Fig. 4.7a, where the two positions of K = 0 between 0.2λg and 0.3λg correspond
to simulations where the TZ is located at the frequency of analysis. Ideally, the
double TZ should appear at exactly 0.25λg, but the mutual interaction between
the two TZs moves them in opposite directions: one is slightly above 0.25λg and
the other is slightly below this value. As the aperture size increases, the interaction
is stronger and the shift in opposite directions is more clearly distinguished. This
effect has been employed to realize all-capacitive filters with TZs that do not
include cross-couplings [150, 151]. However, the resulting filters become larger
in the direction of propagation, thus causing resonators to operate in the TE102

mode (or even higher orders) in order to implement the filter. For that reason,
it is recommended to use cross-coupled HFRW structures with short stubs and
TE101 resonators in applications that require compact structures (for instance, at
low frequencies).

Finally, the thickness t of the aperture may also be employed to adjust the cou-
pling level. However, the adjustment range is limited unless t becomes extremely
short. This is evidenced by the relatively small coupling variation seen in Fig. 4.7b
and 4.8b, especially compared with the coupling variation provided by dimensions
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Figure 4.8: Normalized inverter parameter K as it relates to the geometrical
dimensions of the inductive direct-coupling structure. Results are obtained
at 10 GHz using WR-75 waveguides. (a) K as a function of the position
of the aperture (c + d/2) with respect to the short circuit in an inductive
structure with w = 10 mm and t = 1 mm. (b) K as a function of the iris
thickness t for d = 4 mm and c = 2 mm.

d and c. Therefore, this variable is normally fixed according to manufacturing and
volume requirements.

4.1.1.2 Cross-coupling implementations

The main mission of the cross-coupling in a trisection is to realize a TZ and control
its location. For that reason it is interesting to consider different cross-coupling
implementations and classify them by the amount of coupling they tend to provide.
In turn, this allows to visualize the frequency range (close or far from the passband)
where each implementation realizes its TZ.

Three basic structures are first considered to implement the cross-coupling: a
capacitive window, an inductive window and a resonant slot. These three struc-
tures are depicted in Fig. 4.9 along with the geometrical dimensions that adjust
the amount of coupling provided. Note that cross-coupling structures occupy the
physical space between non-adjacent resonators. Therefore the length of the cross-
coupling iris is given by the resonator located above or below, and cannot be used
to adjust the coupling value.

Figure 4.10 depicts the normalized inverter parameter K as a function of each
aperture size. As can be inferred from the data, the capacitive window provides
a strong coupling, especially compared with its inductive counterpart. The main
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Figure 4.9: Cross-coupling implementations.
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Figure 4.10: Normalized inverter parameter K as a function of the geometrical
dimensions for the three cross-coupling implementations. Aperture dimen-
sions are normalized by the corresponding dimensions of the adjacent WR-75
rectangular waveguides (a = 19.05 mm, b = 9.525 mm). The three cross-
coupling irises are 5 mm long in the direction of propagation. Results are
obtained at 10 GHz.

reason is that the inductive window is below cut-off in the passband, thus the
coupling is provided via evanescent instead of propagating modes. Strong cou-
plings are required to locate TZs close to the passband. In those cases, structures
with capacitive cross-couplings are the preferred solution. In contrast, inductive
windows are able to provide small coupling values with moderate-size apertures.
Combined with the fact that the structure is not very sensitive to small changes
in the aperture size (i.e. the structure is robust to manufacturing tolerances), it
is clear that this solution is ideal to implement filters with TZs located far from
the passband.

A third solution is to combine capacitive and inductive windows in a resonant
slot, as shown in Fig. 4.9c. Being a resonant structure, this solution is able to
control the coupling by adjusting the resonant frequency of the LC tandem, in
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addition to its size. As depicted in Fig. 4.10, this means that similar coupling
levels can be obtained with much smaller dimensions of the aperture, compared
to the purely capacitive and inductive window solutions.

In some instances, the opposite effect is desired: achieving a certain coupling
level with apertures of considerable size. This is the case of all-capacitive filters
that require low cross-coupling levels. Since capacitive windows generate such
strong couplings, the size of the windows may be too small to manufacture if the
TZs are to be placed far from the passband. In those cases, an alternative structure
is proposed. It is also based on the combination of a capacitive and an inductive
window, but instead of forming a slot, these two windows are separated by a small
section of rectangular waveguide (see Fig. 4.11a). This hybrid structure can also
be seen as a resonant coupling structure. Depending on the location of its resonant
frequency with respect to the filter passband, it is able to provide either inductive
or capacitive coupling. Three physical dimensions are employed to adjust the
amount and sign of the coupling: height of the capacitive window d, width of the
inductive window w and distance between windows l. As the inductive window
closes, the total coupling is reduced. This loss of coupling can be compensated
by increasing the size of the capacitive window, which is the ultimate objective of
this structure. However, attention has to be paid to the change in the resonant
condition to make sure that it is kept below the passband of the filter (to guarantee
the capacitive nature of the coupling).

As was previously mentioned, the total length of the cross-coupling structure
cannot be altered. Therefore, the substitution of a capacitive window by this
resonant structure is not trivial. It is known that a reduction in the capacitive
section length increases the total coupling. First, the inductive window has to
compensate this increase in coupling, and then, the capacitive window can start
increasing its height. Therefore there is a clear tradeoff between these two factors.
Figure 4.11b compares the coupling value provided by a small capacitive window of
length 5 mm (labeled “Ref. Capacitive”) with the coupling value provided by this
hybrid structure (the capacitive window in the second case has a length of 4 mm).
As shown, the structure is able to provide smaller coupling values with larger
apertures than the stand-alone capacitive window in a certain range of coupling
values.

At the same time, the length l can be used to enhance this effect. As the two
windows move away from each another, the strength of its resonant effect fades,
which aids in reducing the total coupling provided. Therefore, the height of the
capacitive coupling can be further increased. However, there is a limit, since the
total length must remain constant. As depicted in Fig. 4.11c, when length l is
relatively small, an increase in its value yields lower couplings. However, at some
point the coupling lost by increasing this length is smaller than the coupling gained
because the capacitive window reduces its length. Therefore, for large values of l
the coupling increases with this dimension.
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Figure 4.11: Alternative implementation of the mixed cross-coupling. (a) Struc-
ture and geometrical parameters. (b) Normalized inverter parameter as a
function of the normalized height d for different widths w of the inductive
window. The capacitive and inductive windows are 4 mm and 0.5 mm long,
respectively. The distance between them is set at 0.5 mm. (c) Normalized
inverter parameter as a function of the normalized length between windows
l. The circled data point corresponds to the same data point as in (b) (i.e.
d = 0.04b, w = 0.2a). As the length l increases, the length of the capacitive
window has to be decreased, since the total length must not be altered.

4.1.2 Wideband modeling of HFRW trisections

HFRW filters are implemented by a cascade of trisections that generate the re-
flection and transmission zeros required to fulfill the requirements. Therefore, the
basic building block for these filters is the trisection, composed of three resonators
and three couplings (two direct-coupling windows and one cross-coupling element),
in addition to the input/output couplings (see Fig. 4.2). The coupling scheme of
a trisection is commonly known as a triplet, and is depicted in Fig. 4.12a. De-
pending on the particular combination of couplings, the triplet is able to generate
TZs above or below the passband, as summarized in Fig. 4.4.



96 4.1. Hybrid-folded rectangular waveguide filters

S 1

2

3 L
MS1

M12 M23

M13 M3L

M22

M11 M33

(a) Triplet coupling scheme

S 1

2

3

4 5

L1

2

3

4 5

MS1

M14 M35

M24 M25

M13 M3L

M22

M11 M33

M44 M55

(b) Modified HFRW coupling scheme

Figure 4.12: Coupling schemes related to the basic building block of HFRW
filters.

In the basic triplet coupling scheme, the direct-coupling apertures are repre-
sented by inductive or capacitive lumped elements that provide a certain amount
of coupling between resonators. In Fig. 4.12a this corresponds to elements M12

and M23. However, it was shown in section 4.1.1 that the direct coupling windows
employed in HFRW filters are actually resonant elements (even if they resonate
outside the passband). Therefore, it is convenient to include these resonators in
the coupling matrix model in order to represent the behavior of HFRW trisec-
tions in a wider frequency band. The resulting coupling scheme is depicted in Fig.
4.12b. Capacitive cross-coupling windows can also be regarded as resonant ele-
ments. Consequently, an additional resonator could be placed between resonators
1 and 3 in Fig. 4.12b to account for their behavior. However, this change slightly
increases the complexity of the model without providing any significant advantage.
For that reason, the simpler model with 5 resonators is preferred.

The first consequence of this modification, is that the scheme in Fig. 4.12b
accounts for more TZs than the scheme in Fig. 4.12a. According to the minimum
path rule [152], the maximum number of TZs nTZ that can be realized by a
network with N resonators depends on the number of resonators nmin located in
the shortest route between the source and load terminations. The relationship
between these parameters is:

nTZ = N − nmin (4.2)

The basic triplet of Fig. 4.12a realizes one TZ, since the total number of resonators
is N = 3 and the number of resonators in the shortest path is nmin = 2. When
accounting for the resonant behavior of the direct-coupling apertures (Fig. 4.12b),
the resulting structure is capable of realizing 3 TZs (since it increases by two the
total number of resonators outside the shortest path).

When dealing with resonant cross-coupling windows like the ones shown in
Fig. 4.11, it is convenient to introduce an additional resonator between elements
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1 and 3. Even though it does not account for any additional TZ (since the extra
resonator is located in the shortest path) it can certainly influence their location.
In contrast with its capacitive counterpart, the resonant cross-coupling windows
is able to adjust its resonance. As it will be shown in section 4.1.4.3, if this
resonance is located just above the resonances of two capacitive direct-coupling
windows, the resulting trisection is able to place the 3 TZs in the desired stopband.
That clearly justifies the use of a slightly more complex model when employing
this type of cross-coupling window, that is not present in the purely capacitive
case.

In order to illustrate the superior modeling capacity of the modified coupling
matrix for HFRW trisections, an example is considered. The coupling matrix
(CM) of a triplet centered at 12.6 GHz with a bandwidth of 400 MHz and a TZ
at 10.6 GHz is:

M =




0 1.221 0 0 0
1.221 −0.038 −1.214 0.136 0

0 −1.214 0.121 1.214 0
0 0.136 1.214 −0.038 1.221
0 0 0 1.221 0




(4.3)

If this triplet is implemented in the HFRW topology, the capacitive and inductive
direct couplings will become additional resonators that have to be included in the
coupling scheme. A possible N+2 coupling matrix with an equivalent in-band
frequency response and location of the triplet TZ is:

Mmod =




0 1.306 0 0 0 0 0
1.306 1.233 0 0.126 −5.882 0 0

0 0 0.180 0 −5.882 3.422 0
0 0.126 0 −1.15 0 3.422 1.306
0 −5.882 −5.882 0 24.469 0 0
0 0 3.422 3.422 0 −7.756 0
0 0 0 1.306 0 0 0




(4.4)

The diagonal elements of the coupling matrix associated with resonators 4 and 5
are large, reflecting a considerable frequency shift with respect to the filter center
frequency. As expected, these elements represent the out-of-band resonances of
the direct-coupling apertures.

The scattering parameter response of both coupling matrices is depicted in
Fig. 4.13. The direct-coupling resonances can be easily identified (resonators 4 and
5). As expected, the coupling matrix of (4.4) provides two additional TZs, when
compared with the response of (4.3). The TZ located the closest to the passband is
associated with resonator 2, shared by both coupling schemes. In contrast, the two
additional TZs are associated with the direct-coupling resonators of the modified
coupling scheme. This association between specific TZs and specific resonators in
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Figure 4.13: Comparison of the response of the coupling matrices in (4.3) and
(4.4) for a filter centered at 12.6 GHz with 400 MHz of bandwidth.
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Figure 4.14: FEST3D full-wave simulation of the trisection centered at 12.6 GHz
with 400 MHz bandwidth and a TZ at 10.6 GHz.

the coupling scheme can be verified by de-tuning any of them: as the resonance
shifts, the TZ moves accordingly.

To ensure that the modified coupling scheme is coherent with the physical im-
plementation of this trisection, a prototype has been constructed and simulated in
FEST3D. The full-wave simulation is shown in Fig. 4.14, confirming the presence
of the three TZs. In fact, the structure realizes a fourth TZ associated with the
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higher order mode TM110 of the central resonator. Since the coupling matrix is a
single-mode representation, these higher order modes are not properly considered.
However, it is clear that the modified coupling scheme is a superior representation
of the physical HFRW structure in a wide frequency band. Nonetheless, the ac-
curacy of the coupling matrix representation decreases away from the passband.
For that reason, the location of the additional TZs is not perfectly matched with
the simulation. Therefore, the modified coupling matrix is a useful tool to under-
stand the behavior of a particular structure, but not as useful to base the complete
design process on it.

Even though it has been confirmed that the HFRW trisection is able to realize
at least 3 TZs, not all of them are located in the desired stopband of the filter.
Depending on the specific coupling combination, the number of TZs in the desired
stopband varies. For example, the filter of Fig. 4.14 only has two TZs in the
prescribed stopband (below the passband). The third TZ is above the resonance
of the direct-coupling aperture, thus it is of very little use. Section 4.1.4 contains
a discussion on the practical aspects associated with the physical implementation
of HFRW filters. Several implementations will be proposed and, in each case, the
amount of TZs in the stopband will be specified. As will be shown, only one of
the additional TZs (associated with direct-coupling apertures) can be located in
the same side of the passband as the TZ realized by the triplet, unless a resonant
cross-coupling window is employed. Regarding the control over the location of
this additional TZ, a simple method to adjust it independently of the triplet TZ
is proposed in section 4.1.3.

4.1.3 Design procedure for HFRW filters

As previously discussed, the modified coupling scheme of section 4.1.2 is an inter-
esting model to understand the wideband behavior of HFRW trisections. However,
this coupling scheme has some limitations to represent the structure away from
the passband, thus not being an accurate tool to prescribe the exact location of
the additional TZs. In this section, an alternative design procedure is proposed. It
makes use of the triplet coupling-matrix representation to perform an initial design
of the different filter trisections. This initial design generates the passband of the
filter and realizes the triplet TZs. From this initial design, a physical structure
is extracted. Then, a simple methodology is applied to adjust the location of the
additional TZs to the prescribed locations.

4.1.3.1 Initial design

From the triplet coupling matrix, the trisection distributed circuit shown in Fig. 4.15
can be constructed. It contains half-wavelength dispersive transmission lines and
inverters. This model takes into account the specific dispersion introduced by
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Figure 4.15: Distributed equivalent circuit representation of a triplet.

the rectangular waveguides that implement the resonators. As shown in [150],
the initial values for elements in the distributed model can be extracted from the
synthesized coupling matrix as:

KS1 =MS1

√
π

2
Wλ1 K23 =M23

π

2

√
Wλ2 Wλ3 K13 =M13

π

2

√
Wλ1 Wλ3

K12 =M12
π

2

√
Wλ1 Wλ2 K3L =M3L

√
π

2
Wλ3

(4.5)
where Mij are the non-diagonal elements of the coupling matrix, and Wλi is the
filter factional bandwidth expressed in terms of wavelength ratios associated with
resonator i. This last variable is computed as

Wλi = 2
λg1i − λg2i
λg1i + λg2i

(4.6)

where λg1i and λg2i are, respectively, the guide wavelengths at the lower (f1) and
upper (f2) passband edges of the filter. The waveguide employed to implement
resonator i is used to compute λg1i and λg2i.

The diagonal components of the coupling matrix Mii represent frequency-
independent susceptances in the lowpass domain. Once these susceptances are
transformed into the bandpass domain, the resonant condition for each resonator
in the filter can be determined. The guide wavelength of each resonator is obtained
as

λgri =
1

2

[
MiiWλiλg0i +

√
(MiiWλiλg0i)

2
+ 4 (λg0i)

2

]
(4.7)

where λg0i is guide wavelength at the filter center frequency, for resonator i, com-
puted as:

λg0i = 2
λg1iλg2i
λg1i + λg2i

. (4.8)

From λgri, the resonant frequency fri of each cavity can be obtained:

fri = c

√(
1

λgri

)2

+

(
kci
2π

)2

(4.9)
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where kci is the cut-off wavenumber of the fundamental mode of the waveguide
employed to implement resonator i, and c is the speed of light in the waveguide
medium. In addition, the waveguide lengths in the distributed model are directly
computed as li = λgri/2.

From the distributed model, the physical dimensions of the filter can be ex-
tracted by using a classical EM-based procedure [153,154]. Some dimensions in the
filter must be set beforehand: the vertical distance between adjacent resonators
t and the length of the stubs c (see Fig. 4.16). To simplify the design, all stub
lengths can be set to the same value in the initial design. The first elements to
extract are the input/output and direct couplings. In both cases, the dimension
of the window that implements each coupling is adjusted until it behaves like the
corresponding impedance inverter at the filter center frequency. For the direct
couplings, the shaded section of Fig. 4.16a is used to compare its behavior with
the inverter.
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Figure 4.16: E-plane cut of filter sections. (a) Topology employed to tune the
resonance of the central cavity. The hatched area below this cavity indicates
the space that can be used to implement the cross-coupling. Prior to the
resonance tuning, the beige-shaded area has been adjusted until it has the
same behavior as the corresponding direct coupling impedance inverter at
the filter center frequency. (b) Topology employed to tune the resonance of
a cavity with multiple cross-coupling irises and two direct-coupling irises.

Having determined the dimensions of the direct couplings, the next step is to
adjust the resonance of the cavities with cross-couplings above or below them.
The reason is that, once the dimension of these cavities is determined, the space
left to implement the cross-coupling above or below them will be known. This
is illustrated in Fig. 4.16a, where the hatched area represents the space left to
implement the cross-coupling after determination of lr. To adjust the resonance,
the distance lr is shifted until the peak of the reflection coefficient is centered at
the appropriate frequency defined by (4.9).
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After tuning lr, the length of the cross-coupling window above or below this
resonator is known. Then, the iris shape is adjusted to provide the same response
as the corresponding impedance inverter at the filter center frequency. Once all
the cross-coupling windows are found, the remaining cavities can be adjusted. The
structure employed to adjust the length of cavities having cross-coupling windows
attached to them is shown in Fig. 4.16b. All irises are attached to the cavity,
to compensate for their loading effect. To avoid reflections, cross-couplings are
matched at their output ports.

A response very close to the desired one is obtained after the application of
this systematic design procedure. Then, a final adjustment of the dimensions of
the filter is performed to compensate for the mutual interactions neglected by the
previous procedure. Finally, a response highly coincident with the one predicted
by the coupling matrix is obtained.

As an example, this initial design procedure is applied to a simple all-capacitive
triplet in WR-75 waveguide centered at 12.6 GHz with 400 MHz bandwidth, and
two TZs located at 10.5 GHz and 11.6 GHz. The synthesized coupling matrix,
considering only the TZ at 11.6 GHz, is:

M =




0 1.2214 0 0 0
1.2214 −0.0791 −1.1951 −0.2879 0

0 −1.1951 0.2550 −1.1951 0
0 −0.2879 −1.1951 −0.0791 1.2214
0 0 0 1.2214 0




(4.10)

According to (4.5) and (4.9), the inverter values and resonant frequencies are:

KS1 = K3L = 0.3492 K13 = −0.0235

K12 = K23 = −0.09769

fr1 = fr3 = 12.616 GHz fr2 = 12.549 GHz.

(4.11)

Following the design procedure, the circuit model is transformed into a physical
structure. The response of this initial implementation can be seen in Fig. 4.17
with the label Direct Design. This is, indeed, an excellent starting point. Later
on, the dimensions are slightly adjusted to fulfill the passband specifications. This
response (labeled Adjusted Design in Fig. 4.17) is equivalent to the one provided
by the coupling matrix from the passband up to the first TZ. Unfortunately, the
location of the second TZ, at 8.9 GHz, is far from the prescribed frequency of
10.5 GHz. In the following subsection, a method to adjust the location of this
additional TZ will be proposed.
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Figure 4.17: Response of example trisection after application of the initial design
procedure. The triplet is centered at 12.6 GHz with 400 MHz bandwidth.
The coupling matrix response is compared with the response obtained after
direct application of the design procedure and, also, with the final response
after optimization.

4.1.3.2 Control over the location of the additional TZ

To adjust the location of the additional TZ, the phase shift introduced by the path
that crosses the direct-coupling apertures must change with respect to the path
that goes through the cross-coupling window. The most direct way to do so is by
modifying the cross-coupling window. This changes the location of the additional
TZ but, unfortunately, it also alters the location of the triplet TZ. When the cross-
coupling is reduced, the additional TZ moves towards higher frequencies whereas
the triplet TZ moves towards lower frequencies, effectively approaching each other.
As with any pair of TZs, when they coincide at the same finite frequency (providing
a double TZ), their mutual interaction moves them away from the imaginary axis
(s = jω) to paraconjugated complex frequencies. This effect is shown in Fig. 4.18a.
Taking as an example the triplet whose response is depicted in Fig. 4.17, the size
of the capacitive cross-coupling is changed between the original size d and half
this value (the other dimensions are kept unaltered). As illustrated, both TZs
approach each other until they are no longer visible in the S-parameter response.

As has been made clear, this technique is not adequate to control the location of
the additional TZ independently of the location of the TZ introduced by the triplet.
An alternative is to change the resonant frequency of the direct-coupling aperture,
which, in turn, moves the additional TZ associated with the aperture in the same
direction. This alternative is adequate for inductive direct-coupling apertures (see
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Figure 4.18: (a) Using as reference the adjusted design depicted in Fig. 4.17,
the height d of the capacitive cross-coupling window is reduced. As this
parameter decreases, the TZ introduced by the triplet moves towards lower
frequencies, whereas the additional TZ moves towards higher frequencies.
(b) Starting from the design example shown in Fig. 4.17, the length t that
separates vertically the adjacent cavities is reduced. As this length decreases,
the additional TZ moves towards higher frequencies (after adjustment of the
couplings).

Fig. 4.5a), since they have multiple degrees of freedom to realize a certain coupling
level as well as resonate at a certain frequency. However, capacitive windows
that span the total width of the cavity do not have as many degrees of freedom.
For these structures, a third solution is proposed. It is based on adjusting the
length of the path that crosses the central resonator. In order to do so, the
length of the direct coupling windows can be increased or decreased (thickness t
in Fig. 4.16). Unfortunately, a change in the length of such window also affects,
to some extent, the direct coupling level (as was shown in Fig. 4.7b and 4.8b). As
t decreases, the direct coupling level slightly increases, thus introducing a small
shift on the triplet TZ towards lower frequencies. At the same time, the additional
TZ moves definitely towards higher frequencies. In this situation, the designer can
readjust the direct-coupling window to recover the original coupling level. It will be
immediately apparent how the additional TZ is now located at a higher frequency
than initially, since the total phase shift has decreased. In some instances where a
strong interaction between direct and cross-coupling windows occurs, it may also
be necessary to slightly adjust the cross-coupling window to place the triplet TZ
exactly at the original frequency.

The resulting effect after application of this procedure is depicted in Fig. 4.18b.
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Starting from the designed triplet (see Fig. 4.17) the thickness t of the two direct-
coupling windows is reduced. Then the structure is adjusted to recover the original
location of the triplet TZ. As can be seen, the additional TZ has effectively moved
towards higher frequencies.

For trisections with capacitive direct couplings, the change in their thickness t
can be easily computed. If the additional TZ must be shifted between the original
frequency fTZ and the objective frequency fobj, the total length increase for the
complete direct-coupling path can be computed as:

∆t =
π

β(fobj)
− π

β(fTZ)
(4.12)

where β(f) is the phase constant for the fundamental mode in the direct-coupling
iris at frequency f . Since the length of both couplings must be equal, the increment
∆t must be equally split between the two irises. In the case of triplets with one
inductive and one capacitive direct-coupling window, this equation can be just
used as a starting reference to adjust the length of the capacitive one. Additional
fine tuning is required in those cases.
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Figure 4.19: Final adjustments to the design example in order to move the
additional TZ from 8.9 GHz to 10.5 GHz.

This simple method is applied to the designed filter of section 4.1.3.1 to adjust
the location of the TZ from 8.9 GHz to the prescribed 10.5 GHz. Equation (4.12)
is employed to estimate the length decrease of the direct coupling. Resonators
and coupling windows are adjusted to recover the passband response and also the
original location of the triplet TZ. The response obtained after this procedure is
shown in Fig. 4.19 (labeled Design ∆t). The additional TZ is not located exactly
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at 10.5 GHz but very close to this value, at 10.57 GHz. In order to place it at
exactly 10.5 GHz, the triplet is re-optimized, adjusting also the length t. The final
response, having both TZs located at their prescribed frequencies, can be also seen
in Fig. 4.19, labeled as Final Design.

4.1.4 Physical implementation of HFRW filters

When implementing HFRW filters in waveguide technology, there are certain as-
pects that have to be considered when selecting the most appropriate configura-
tion to fulfill a set of requirements. The first aspect is the distribution of the TZs
amongst the different trisections that form the filter. Depending on the side of the
passband where the TZs are located, each trisection can be implemented by three
different coupling combinations, as summarized in Fig. 4.4. At the circuit level,
there is no clear benefit from using a certain coupling combination over another
one. However, at the physical level, the proper choice of the coupling combina-
tion is critical. Each configuration has certain advantages and limitations and a
different scope of application. Some implementations are ideally suited to realize
TZs close to the passband, while others are more appropriate solutions to realize
them far from the passband. Likewise, the amount of TZs that each implementa-
tion is able to generate in the stopband is another criteria for choosing the most
appropriate implementation.

Other practical aspects that influence this decision are associated with design
simplicity and efficiency. Given several configurations capable of fulfilling a certain
set of electrical requirements, filter designers usually favor those that are simpler
and faster to design. Modern filters are subject to intensive optimization to fulfill
stringent requirements. Consequently, an adequate selection of the physical struc-
ture can dramatically decrease the design time. For instance, physically symmet-
rical structures are considerably simpler and faster to design than asymmetrical
configurations. The reason is that only half the dimensions need to be adjusted
(i.e. the input and output irises are equal, the first and last resonators have the
same dimensions, etc). At the same time, designers must take into account the
EM simulation tools employed to drive the optimization when selecting a physical
implementation. Pairing a physical geometry with the right EM simulation tool
goes a long way towards accelerating the design process. From this perspective,
constant-width implementations are very interesting options. Since these are, in
essence, 2D structures, commercial EM solvers take advantage of their electromag-
netic symmetry to provide accurate results with very fast simulations. Therefore,
the design of these components tends to have shorter design cycles. Unfortunately,
these structures have a limited scope of application, thus designers often have to
resort to slightly more complex 3D geometries (even if they are still formed by the
connection of 2D blocks). In this context, it is increasingly important to employ
efficient simulation tools like the one presented in chapter 2 of this PhD thesis to
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succeed.
This section presents an in-depth study of multiple trisection implementations

from a very practical perspective. Number and location of the TZs, ease of man-
ufacture and simplicity in the design are all aspects considered and discussed for
each topology. The objective is to offer designers a series of guidelines that help
in selecting the most appropriate implementation for any given application.

4.1.4.1 Trisection with capacitive cross-coupling window providing TZs
in the lower stopband

The first structure considered, shown in Fig. 4.20, is a trisection with a capacitive
cross-coupling window. As previously mentioned, the location of the TZ in a tri-
section is strongly dependent on the value of the cross-coupling element. As a TZ
moves closer to the passband, the cross-coupling value in the triplet increases. Sec-
tion 4.1.1.2 showed that capacitive windows introduce strong couplings. Therefore,
they are an ideal solution to place TZs close to the passband. This type of window
guarantees that enough cross-coupling is provided, even if the physical distance
between the non-adjacent resonators is large. In contrast, inductive apertures tend
to provide lower coupling levels for similar window dimensions.

(a) (b)

Figure 4.20: Implementations of the trisection with capacitive cross-coupling.
(a) Configuration with capacitive direct-couplings. (b) Configuration with
inductive direct-couplings.

This cross-coupling window can be combined with both capacitive (Fig. 4.20a)
and inductive (Fig. 4.20b) direct-coupling apertures. Generally, the trisection with
all capacitive couplings in its core (this is, direct and cross-coupling windows have
the same width) is easier to manufacture and design. If the input and output cou-
plings are implemented by capacitive windows, the overall trisection is a purely
bi-dimensional structure. As previously mentioned, the analysis of these struc-
tures is the fastest amongst all the possible HFRW trisections. Therefore, they
are a highly desirable solution. However, being purely capacitive implies that
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Figure 4.21: Normalized inverter parameter of the direct and cross-couplings in
a trisection, as the TZ approaches the passband. Results are particularized
for a WR-75 waveguide filter centered at 12.6 GHz with 400 MHz bandwidth

these implementations realize a potentially undesired passband around the cut-
off frequency of the structure. This can be largely mitigated by simply changing
these input and output couplings to inductive windows (as it has been done in
Fig. 4.20a) in the last stage of their design.

The next factor to consider is the position of the TZ, as it affects the direct
coupling value. Figure 4.21 depicts the inverter parameter K associated with the
direct and cross coupling elements of a trisection for different positions of the TZ.
As can be seen, when the TZ is not adjacent to the passband, the direct-coupling
K12 is mostly flat, thus barely affected by the position of the TZ. In this case,
the all-capacitive solution in Fig. 4.20a is preferred, as long as its design and
implementation are feasible. However, as a TZ moves towards the passband, the
direct coupling tends to zero rapidly. Implementing a small direct-coupling level
with a capacitive iris can be problematic, since the size of the iris may be too
small to be physically realizable. In addition, given that the electric field in these
irises tends to be high, there is a considerable risk of high-power issues (such as
multipactor breakdown) for very small irises.

In those situations where the required direct coupling level is too small, the
best option is to use the solution depicted in Fig. 4.20b. Compared with the
all-capacitive solution, the direct-coupling elements in this case are rectangular
slots that behave as inductive irises in the passband. These irises are able to
yield the same direct-coupling value as the all-capacitive case, but with a much
bigger aperture. As a result, the inductive solution avoids the aforementioned
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mechanical and power-handling issues for filters with TZs extremely close to the
passband. Since this is, in nature, a resonant iris, it produces a resonance above
the passband. Although it cannot be avoided, its position can be controlled by
adjusting the cross-section of the iris. As an example, Fig. 4.22 shows the response
of the triplet depicted in Fig. 4.20b. This triplet provides a TZ separated from
the passband by 55 MHz. The passband is centered at 12.6 GHz with a 400 MHz
bandwidth. In the final design, all dimensions are greater than 1 mm, which should
guarantee a successful manufacture by milling.
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Figure 4.22: Response of the triplet with capacitive cross-coupling and inductive
direct coupling of Fig. 4.20b. This triplet introduces a TZ at 12.345 GHz for
a filter response centered at 12.6 GHz with a 400 MHz bandwidth. The reso-
nant behavior of the inductive direct-coupling irises generates the undesired
resonance at 16 GHz.

The last factor to consider is the amount of TZs that each option is able to
provide in the lower stopband. Making use of the modified coupling scheme of Fig.
4.12, it can be proved that the solution with inductive direct-coupling apertures
is only able to provide one TZ in the lower stopband. The other two TZs are
located between the two direct-coupling resonances and thus cannot be used to in-
crease the isolation in the stopband. In contrast, the all-capacitive implementation
(Fig. 4.20a) is able to realize one additional TZ in the lower passband for a total
of two (the second additional TZ is located below the direct-coupling resonances),
as can be seen in Fig. 4.23. The location of the additional TZ can be controlled
by the thickness of the direct-coupling window, as explained in section 4.1.3.2.
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Figure 4.23: Response of the all-capacitive trisection of Fig. 4.20a. Two TZs
can be easily identified below the passband.

4.1.4.2 Trisection with inductive cross-coupling window providing TZs
in the lower stopband

The capacitive cross-coupling window used in section 4.1.4.1 is able to provide
high coupling values with relatively small dimensions of the window. This is
advantageous when a TZ is to be placed close to the passband, but becomes a
burden when the TZ must be located further away. In those cases, the size of the
capacitive window may be too small to be manufactured accurately, or to avoid
high-power issues. There are several ways to slightly increase this size. The first
one is to increase the length of the cross-coupling window, which comes at the cost
of increasing the total length of the filter, and may not be feasible. In addition,
it is obvious that there is a strict geometrical limitation on how much this length
can be increased, since it depends on the resonator above or below the cross-
coupling element. In general, this is not practical. Alternatively, the capacitive
cross-coupling window can be vertically off-centered towards the central resonator
in order to decrease the coupling (effectively allowing an increase in the size of
the iris). The increase that can be achieved with this technique is not very large,
typically 50% for very small windows.

A more powerful solution to realize TZs far from the passband is based on
the scheme depicted in the bottom-left side of Fig 4.4. The cross-coupling iris is
substituted by a classical inductive window. To generate a TZ below the passband,
one direct coupling is a capacitive aperture whereas the other is a resonant aperture
that behaves inductively in the passband. The resulting structure is shown in
Fig. 4.24a. This structure is able to provide low cross-coupling levels with moderate
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Figure 4.24: (a) Trisection with inductive cross-coupling. A capacitive window
implements one direct coupling whereas an inductive aperture implements
the other direct coupling. (b) Response of this trisection. Two TZs can
be identified below the passband. In addition, the inductive direct coupling
generates a resonance above the passband, at 14.85 GHz.

dimensions of the inductive cross-coupling iris. Therefore, it is much more robust
to manufacturing deviations than its capacitively cross-coupled counterpart (for
TZs located far from the passband). As in the all-capacitive case, this particular
implementation of a trisection is also able to provide two TZs below the passband
(the second additional TZ is realized above the inductive resonance, as shown in
Fig. 4.14). Figure 4.24b depicts the response of this trisection, where the two
TZs can be identified. The higher-frequency TZ is the one associated with the
triplet, whereas the lower-frequency TZ is the additional TZ associated with the
capacitive direct-coupling aperture. The presence of an undesired resonance in
the upper stopband (due to the inductive direct-coupling aperture) is the main
drawback of this configuration.

4.1.4.3 Trisection with resonant cross-coupling window providing TZs
in the lower stopband

For some applications, the presence of undesired resonances in the upper stop-
band is unacceptable. In those situations, HFRW filters must avoid inductive
direct-coupling windows. If the specifications require the implementation of TZs
far from the filter passband, the use of the resonant coupling structure presented
in Fig. 4.11 is recommended. This alternative implementation provides additional
degrees of freedom to generate a specific coupling, while keeping the dimensions
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Figure 4.25: (a) Trisection with resonant cross-coupling. A combination of
inductive and capacitive windows implements the resonant cross-coupling.
(b) Response of this trisection. Three TZs can be identified in the stopband.

of the structure above a certain threshold. In addition, when this resonant struc-
ture is used in combination with capacitive direct-coupling irises (as the structure
shown in Fig. 4.25a), the trisection is able to provide up to three TZs in the lower
stopband.

Figure 4.25b contains the S-parameter response of this structure. The three
TZs can be easily identified. The higher-frequency TZ corresponds to the triplet
TZ, whereas the other two are the additional TZs associated with the direct-
coupling apertures. By properly adjusting the resonance of the capacitive cross-
coupling window, the phase shift between the cross-coupled path and the direct-
coupled path is altered, and the third TZ can be located in the lower stopband.
Therefore, the simplest way to control the location of this TZ is to shift the res-
onance of the iris without altering the cross-coupling level. Also, the distance
between the two windows that form the cross-coupling (dimension l in Fig. 4.11)
can be used to make slight adjustments to the location of this third TZ. To rep-
resent this trisection, the modified coupling scheme of Fig. 4.12 must include an
additional resonator in the shortest path between resonators 1 and 3. The result-
ing circuit is also able to generate 3 TZs, which is consistent with the minimum
path rule.
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4.1.4.4 Trisection with inductive cross-coupling window providing TZs
in the upper stopband

To implement trisections with TZs above the passband, any one of the coupling
combinations shown in the right column of Fig. 4.4 can be employed. The first
two implementations contain inductive cross-coupling irises combined with two
capacitive or inductive direct-coupling windows, as shown in Fig. 4.26. As men-
tioned before, this type of cross-coupling window allows the implementation of
small couplings with relatively big apertures, thus it is a perfect solution to place
TZs far from the passband.

(a) (b)

Figure 4.26: Implementations of the trisection with inductive cross-coupling
that provides TZs above the passband. (a) Configuration with capacitive
direct-coupling. (b) Configuration with inductive direct coupling.

The implementation containing capacitive direct couplings (see Fig. 4.26a)
has a resonance-free stopband until the first higher order mode in the central
resonator (the TM110 mode) is excited. The two additional TZs expected from
this structure are located at lower frequencies, below the resonances of the direct-
coupling apertures. However, the stopband still has two TZs that can be used
to increase the isolation, as shown in Fig. 4.27a. In addition to the triplet TZ,
there is another TZ associated with the TM110 mode of the central resonator.
The location of this second TZ can be controlled by adjusting the height of the
central resonator. As the height increases, the resonant condition for the TM110

decreases, shifting the location of the second TZs towards lower frequencies. Since
the triplet TZ is associated with the fundamental resonant mode TE101, which has
no dependence with the height of the resonator, altering this height has no effect
on the location of the triplet TZ. Thus, this simple methodology can be used to
prescribe the location of both TZs.

In contrast, the all-inductive implementation (see Fig. 4.26b) has a resonance-
free lower stopband and an upper stopband with multiple resonances, as depicted
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Figure 4.27: S-parameter responses of the triplet configuration with inductive
cross-coupling that provides TZs in the upper stopband. (a) Response of
the configuration with capacitive direct-couplings. (b) Response of the con-
figuration with inductive direct couplings.

in Fig. 4.27b). Nevertheless, this structure is able to realize two TZs between
the passband and the first resonance in the upper stopband. The additional TZ
can be simply controlled by adjusting the resonance of the direct-coupling win-
dows. However, as this resonance moves towards higher frequencies, the amount
of coupling available is smaller, since the cross-section of the aperture decreases.
Therefore, it is much more difficult to realize both TZs far from the passband with
this implementation.

4.1.4.5 Trisection with capacitive cross-coupling window providing TZs
in the upper stopband

Trisections with TZs very close to the passband ideally contain capacitive cross-
coupling irises. When these TZs are above the passband, the trisection must
combine a capacitive and an inductive direct-coupling aperture. The resulting
structure is shown in Fig. 4.28. This configuration is able to realize one additional
TZ in the stopband, associated with the inductive direct-coupling aperture. The
second additional TZ is located at low frequencies, below the resonance of the ca-
pacitive direct-coupling aperture, thus it has no practical application. The triplet
TZ may not be located as close to the passband as the structure of Fig. 4.20b
since the capacitive direct-coupling aperture may be too small to manufacture.
However, there is limited practical application to placing the TZ so close to the
passband, thus this implementation is an adequate solution for filters with TZs



Novel quasi-elliptic filter implementations 115

relatively close to the passband.

(a)

10 11 12 13 14 15 16 17 18
Frequency (GHz)

−120

−100

−80

−60

−40

−20

0

T
ra
n
sm

is
si
on
/R

efl
ec
ti
on

(d
B
)

Triplet TZ

Additional TZ

TM110 TZ

(b)

Figure 4.28: (a) Trisection with capacitive cross-coupling and TZs above the
passband. (b) S-parameter response.

4.1.5 Example: design of a five-pole four-TZ filter

In this last section, the theory of HFRW filters previously presented is applied to
the design of a five-pole tuning-less filter centered at 12.6 GHz with a bandwidth
of 400 MHz and return losses of 25 dB. The in-band specifications are the same as
the upper-band Tx filter presented in [147]. In contrast, the filter included here
must introduce 35 dB of attenuation in an adjacent channel separated 130 MHz
from the lower passband edge, and at least 100 dB between 8.7 and 11 GHz. These

MS1 = 1.153 M48 = −4.731 M11 = 0.806 M77 = 30.769

M16 = −5.231 M49 = 3.542 M22 = 2.072 M88 = 30.769

M26 = −5.231 M59 = 3.542 M33 = 1.141 M99 = −11.750

M27 = −4.288 M5L = 1.153 M44 = −0.252

M37 = −4.288 M13 = −0.495 M55 = −0.934

M38 = −4.731 M35 = 0.064 M66 = 30.769

Table 4.1: Coupling matrix elements of the optimized initial coupling matrix.
These values are associated with the coupling scheme of Fig. 4.29.
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Figure 4.29: (a) Coupling scheme of the initial optimized coupling matrix. The
different coupling values are contained in Table 4.1. (b) Response of the
optimized coupling matrix along with the stopband mask.

electrical specifications require the introduction of TZs both close to the passband
and far from it. They can be satisfied by the cascade connection of two trisections
providing 2 TZs each. To deal with the attenuation on the adjacent channel, an
all-capacitive trisection is used. In addition, the extra TZ provided by this triplet
can be used as an aid in providing the out-of-band rejection. A second triplet
is cascaded with the all-capacitive one. It implements the coupling configuration
presented in section 4.1.4.2. The objective of this triplet is to create the rejection
band away from the passband. This configuration has been preferred to the one
employing a resonant cross-coupling due of its simplicity and robustness.

To begin with the filter design, the cascade of two modified coupling matrices
is considered. They contain resonant nodes that model the direct-coupling ele-
ments. The coupling scheme is depicted in Fig. 4.29a. This matrix is optimized
until specifications are fulfilled, as shown in Fig. 4.29b. The optimized coupling
elements are summarized in Table 4.1.

From this initial coupling matrix, the approximate location of the triplet TZs
is extracted. They must be located around 10.93 GHz and 12.26 GHz. Given these
two TZs, along with the passband and return loss requirement, a new coupling
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matrix (in this case, composed of two cascaded triplets) is synthesized:

M =




0 1.1196 0 0 0 0 0
1.1196 −0.0403 0.9697 −0.0737 0 0 0

0 0.9697 0.0464 0.6795 0 0 0
0 −0.0737 0.6795 −0.1231 0.5847 −0.4287 0
0 0 0 0.5847 0.5330 0.8729 0
0 0 0 −0.4287 0.8729 −0.0403 1.1196
0 0 0 0 0 1.1196 0




(4.13)

Starting from this coupling matrix, the design procedure explained in section
4.1.3.1 is applied. Then, the additional TZs are adjusted as explained in section
4.1.3.2. Optimization of the overall structure is also required. Thanks to the high
degree of symmetry of this structure, it can be analyzed rigorously and efficiently
with modal methods. The analysis technique for bi-dimensional cavities presented
in chapter 2 is employed to model the T-junctions that form the direct-coupling
windows. As was shown in section 3.1.2, convergence in the analysis of HFRW
filters is achieved faster with this technique than with previously considered modal
methods. Consequently, the complete design process is significantly accelerated.

A prototype of this filter has been fabricated in aluminum (alloy 6082) using a
tuning-less clam-shell assembly. The physical structure of the optimized filter can
be seen in Fig. 4.30 and its dimensions are summarized in Tab. 4.2. A photograph
of the manufactured prototype is included in Fig. 4.31.

Resonators (a = 19.05, b = 9.525) Cross-couplings

l1 l2 l3 l4 l5 t7 h7 t8 w8

13.555 16.081 15.324 14.976 12.553 4.631 8.934 4.141 5.105

Direct-couplings

t1 w1 d2 cu2 cd2 d3 cu3 cd3 t23

1.000 9.249 0.837 2.606 2.130 0.501 3.246 2.130 2.000

d4 cu4 cd4 d5 cu5 cd5 w5 t45 t6

0.500 2.835 1.500 3.000 1.500 1.500 8.463 2.000 1.000

w6

8.657

Table 4.2: Dimensions, in mm, of the HFRW filter of Fig. 4.30.
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Figure 4.30: (a) Geometry of the designed five-pole four-TZ HFRW filter (side
wall removed). Two trisections are cascaded: one includes all-capacitive
couplings and the other has two inductive couplings and one capacitive. (b)
Side and bottom view of the designed filter. Corresponding dimensions can
be found in Table 4.2.

The measured response of this prototype, without any sort of tuning, is success-
fully compared, in Fig. 4.32, with simulations provided by FEST3D. The measured
return losses are better than 20.8 dB in the passband, and the insertion losses bet-
ter than 0.4 dB. A reduced frequency shift, smaller than 10 MHz, exists between
the simulated and measured responses in the passband. Likewise, three of the four
TZs show the same slight shift. The remaining TZ, located at 9.8 GHz in the
original design, has just moved 90 MHz in the manufactured prototype. Finally,
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it is also worth pointing out that the inductive iris is expected to introduce an un-
wanted resonance at about 15.6 GHz, beyond the recommended operation range
of the filter waveguides.

Figure 4.31: Photograph of the designed five-pole filter with four TZs.
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Figure 4.32: Response of the designed five-pole filter with four TZs.
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4.2 Practical implementation of capacitive irises
to realize additional TZs

The previous section has demonstrated that HFRW filters are an excellent solution
to realize quasi-elliptic filters with multiple TZs. However, some applications re-
quire very high rejection levels in the stopband. This forces the designer to increase
the number of trisections and resonators to fulfill the specifications. Consequently,
the structure becomes bulkier and more sensitive to manufacturing deviations. As
an alternative, certain filters (such as high-pass or low-pass filters) can be cascaded
to increase the isolation. This solution allows great control over the total isolation
realized, but also leads to larger component footprints. In addition, the interac-
tions between filters must be conveniently controlled. To avoid these problems,
the present section proposes the use of a new and simple 2D obstacle that can
be employed to implement the input and output couplings of HFRW filters, as
well as any coupling between inline adjacent resonators in rectangular waveguide
structures. It is composed of a capacitive window attached to one (or more) stubs
(see Fig. 4.33). This combination is able to provide a prescribed coupling level,
while at the same time realizing one TZ per stub. Multiple stubs can be combined.
Typically, each coupling structure will have two stubs, one attached on each side
of a capacitive window. Therefore, the number of TZs can be largely increased
while keeping the overall structure very compact.

d

h

li

ls
b

Figure 4.33: Proposed iris structure that combines a capacitive window with
stubs to implement additional TZs. In the depicted structure, only one stub
is considered.

Stubs have been previously proposed in the literature to implement quasi-
elliptic bandpass filters without cross-couplings [123,155,156]. In these filters, the
stubs only implement strong couplings, since no element is added to increase the
degrees of freedom to control the coupling level. For that reason, these filters only
have stubs in the input and output stages. In contrast, the structure proposed in
this section can be used to implement both strong and weak couplings, hence they
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can implement both the input/output couplings as well as intermediate couplings
between adjacent resonators. In addition, the proposed coupling element is able to
combine multiple stubs, thus generating more than one TZ per coupling element.
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Figure 4.34: Equivalent circuit model of the stub-iris combination.

An equivalent network for the basic coupling structure depicted in Fig. 4.33
can be obtained from classical circuit models. It combines the capacitive window
model from [3] (susceptances Bi

a, B
i
b) with the model of a T-junction (susceptances

BT
a , B

T
b , B

T
c , B

T
d ) from the same reference and a short-circuited transmission line

that represents the stub. The resulting equivalent circuit is show in Fig. 4.34. As
a result, the normalized characteristic admittance of the stub transmission line is
Y s
0 = b/ls and its electrical length is βh. The stub admittance has the following

expression:
Y s = −jY s

0 cot (βh) (4.14)

Any change in the electrical length of the stub changes the admittance seen
from the branch arm of the T-junction. Combining the lumped elements of this
branch with the stub, the resulting admittance becomes:

Y TZ = −j
(
BT

b +BT
c

BT
d − Y s

0 cot (βh)

BT
d −BT

c − Y s
0 cot (βh)

)
(4.15)

When Y TZ is zero, an open circuit exists between the input and the output ter-
minals of the circuit, thus eliminating the signal transmission between them. A TZ
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has been effectively realized. For Y TZ to become zero, the following relationship
must hold:

βh = nπ + tan−1

[
b

ls

(
BT

b +BT
c

BT
c B

T
d +BT

b B
T
d −BT

c B
T
b

)]
n = 0, 1, . . . (4.16)

Note that multiple solutions can be chosen for length h, each with a different
value of the free parameter n. They are separated by half the stub wavelength
(i.e. λg/2) and realize a TZ at the same frequency.

In addition to providing a TZ, the proposed structure must also behave like
a certain impedance inverter at the filter center frequency. To compute the nor-
malized impedance inverter parameter that this circuit represents, we start by
computing its input admittance. It can be written as:

Yin = j

{
Bi

a −
Bi

b Caux

Caux −Bi
b [1 + j (BT

a +BTZ)]

}
(4.17)

where BTZ is the imaginary part of Y TZ and Caux is a complex term given by:

Caux =
(
1 + jBT

a

) (
Bi

a +BT
a +BTZ

)
+ jBTZ

(
Bi

a +BT
a

)
. (4.18)

From Yin, the S11 parameter can be computed as:

S11 =
1− Yin
1 + Yin

(4.19)

and applying (4.1), the normalized impedance inverter parameter of this circuit is
obtained.

The circuit model suggest that the location of the TZ is only influenced by
the stub and T-junction parameters, and is independent of the capacitive window.
Thus, the length of the stub must be the first parameter selected to yield the proper
location of the TZ. Then, the height d of the capacitive window may be adjusted
to realize the desired normalized inverter value. This is confirmed, to a certain
extent, by EM-simulations of the basic iris-stub structure of Fig. 4.33 performed
with FEST3D. Figure 4.35a depicts the location of the TZ as a function of the stub
length for different capacitive window sizes. As can be seen, the influence of the
capacitive window size is limited. In contrast, Fig. 4.35b represents the variation
of the normalized impedance inverter parameter with the height of the capacitive
window. For each curve, the stub is slightly adjusted to keep the TZ at the same
frequency. As expected, the normalized inverter value K can be controlled by
adjusting the height of the capacitive window. However, for different locations of
the TZ, the required window height differs.

As the TZ approaches the filter center frequency, the maximum normalized
inverter value that can be achieved decreases. In Fig. 4.35b, the normalized
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Figure 4.35: Performance analysis of the stub-iris combination. (a) TZ fre-
quency as a function of the stub length h for different values of d. In these
simulations the stub and iris lengths (li and ls are set to 2 mm). (b) Normal-
ized impedance inverter parameter as a function the iris height. Simulations
are performed at f = 12.6 GHz. For each curve, the length of the stub h is
slightly adjusted to keep the TZ at the same frequency.

inverter is computed at 12.6 GHz. As can be seen, the curve associated with a TZ
at 12 GHz has much smaller values than the other two curves, associated with TZs
that are farther from the frequency of simulation. Certain scenarios may call for
TZs close to the passband while simultaneously requiring large coupling levels for
the aperture that is implemented by the proposed structure. For instance, a filter
with relative moderate bandwidth and TZs close to the passband where the input
coupling is implemented by the proposed iris-stub combination. In that scenario
we can take advantage of the fact that there are multiple solutions for the stub
length that yield the same TZ. Take, for instance, the S21 parameter response of
Fig. 4.36. One curve corresponds to the simulation of a stub-iris structure with
h = 7.14 mm, d = 6 mm, ls = li = 2 mm. The other curve corresponds to the
same structure except for the stub, which has increased its length by λg/2. The TZ
associated with this longer stub has a much narrower bandwidth. This means that
it can provide larger values of the S21 parameter for frequencies close to the TZ.
Consequently, the S11 parameter is smaller near the TZ, and thus the normalized
inverter K is larger. Effectively, by increasing the length of the stub by λg/2 we
can implement larger coupling elements while still realizing TZs that are close to
the passband. However, these long solutions may generate unwanted resonances
in the stopband. For that reason, they are only employed if shorter solutions are
not able to satisfy the inverter requirement.
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Figure 4.36: Two stub solutions, separated by λg/2, are able to realize the same
TZ but allow the implementation of different inverter values.

Another interesting application of these obstacles is found in filters that contain
very thin coupling windows, which may be difficult to manufacture. The introduc-
tion of a stub next to a capacitive window reduces the overall coupling provided
by the obstacle. To compensate for the loss of coupling, the size of the capaci-
tive window has to be increased. This is actually a positive consequence, since
the window is now easier to manufacture and definitely more robust to potential
manufacturing deviations.

The study of the structure carried out in this section involves only one stub.
However, the conclusions drawn here can be extended to the case where the cou-
pling structure has stubs on both sides of the capacitive window (doubling the
number of TZs that the structure realizes). Once again, the height of both stubs
are employed to prescribe the location of the TZs, while the height of the capacitive
window controls the normalized inverter parameter at the filter center frequency.
From a practical point of view, a coupling element composed of an alternate se-
quence of stubs and capacitive irises can be used, provided that enough coupling
is finally obtained. As a result, many TZs can be realized by the same coupling
structure.

4.2.1 Practical design examples

The applicability of the proposed stub-iris combination is put to the test by de-
signing two filter structures containing these elements. The first example is a
classical in-line direct-coupled resonator filter that, despite being completely con-
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stant in width, is able to realize TZs. In the second example, we combine this
proposed iris with an HFRW structure to realize a filter that generates TZs in
both stopbands.

4.2.1.1 All-capacitive quasi-elliptic filter

The first example is a five-pole all-capacitive inline filter centered at 12.6 GHz with
a bandwidth of 400 MHz and return losses better than 25 dB in the passband.
It is implemented in a WR-75 waveguide with all coupling apertures realized as
capacitive elements. Two of the six coupling windows have stubs attached to them,
realizing a total of four TZs. These TZs are employed to increase the isolation in
the lower stopband (between 11 and 12 GHz) above 75 dB. The resulting structure
is depicted in Fig. 4.37.

Figure 4.37: All-capacitive quasi-elliptic filter. The two central couplings are
implemented by stub-iris combinations.

Initially, the filter is designed without stubs, thus it becomes a simple all-pole
filter. Only the passband specifications are considered in this initial design. From
the coupling matrix, the equivalent circuit formed by inverters and transmission
lines is obtained by application of the formulas (4.5)-(4.9). Then, it is trans-
formed into a physical structure where inverters are substituted by capacitive
windows (with a fixed length of 2 mm) and transmission lines by WR-75 rectan-
gular waveguides. Once this structure fulfills the passband specifications, the stubs
are added. Any coupling window in the structure is able to include stubs. In this
example, the two central windows are selected to contain them. This choice is not
arbitrary. In a symmetrical all-pole Chebyshev filter, the weakest couplings are
located in the center of the structure. Since they are implemented by capacitive
windows, which tend to provide rather strong couplings, the resulting windows
have a very small height. As previously shown, the introduction of stubs forces
the capacitive window to increase its height to compensate the stub effect. There-
fore, we can take advantage of this fact to increase the robustness of the filter
to manufacturing deviations, by placing the stubs in the capacitive windows that
implement the smallest couplings.
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EM simulations are employed to obtain initial values for the stub lengths.
The thickness ls of all the stubs is set to 2 mm. Given this thickness and the
dimensions of the resonator waveguide, a T-junction is constructed and analyzed.
From the fundamental-mode admittance matrix values Yij , the susceptances of the
equivalent circuit model of the T-junction can be computed as:

jBT
c = Y31 (4.20a)

jBT
b = Y21 − jBT

c (4.20b)

jBT
a = Y11 + jBT

b + jBT
c (4.20c)

jBT
a = Y33 + jBT

c . (4.20d)

From these parameters, a good starting point for the stub lengths is obtained by
solving (4.16). Slight adjustments are made using EM simulations, so the four TZs
are located between 11 GHz and 12 GHz. Stubs of 7, 8, 8.3 and 9 mm are employed.
With these values, the physical structure of the two stub-iris combinations can be
constructed. Each capacitive window height d is then adjusted until it has the
same behavior (at the center frequency) as the corresponding iris in the all-pole
filter. Having determined the geometrical dimensions of all the irises, resonators
are finally tuned to recover the original resonances of the all-pole filter.
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Figure 4.38: (a) Optimized filter with the original stub lengths of h = 7, 8, 8.3,
and 9 mm. An undesired resonance can be identified within the stopband,
at 11.2 GHz. (b) Final response after optimization is successfully compared
with HFSS.

The resulting structure only requires minor adjustments to provide the response
depicted in Fig. 4.38a. The four TZs are located in the prescribed stopband,
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but the specific lengths still require certain fine-tuning to create an equiripple
response in the stopband. Furthermore, an undesired resonance appears within
this stopband at 11.2 GHz. This resonance is due to high-order modes that are
excited in the stub with the shortest length. To move this resonance outside
the stopband, the thickness ls of the corresponding stub is modified to shift this
undesired resonances to lower frequencies. An additional round of optimization is
run. This time, the length of the stubs are also adjusted to provide an equiripple
stopband. Without much computational effort, the final response depicted in Fig.
4.38b is obtained. To validate the design, this response is successfully compared
with the one provided by HFSS for the same structure. The dimensions of the
filter are summarized in Table 4.3 and Fig. 4.39.

Resonators

l1 l2 l3 l4 l5 b

17.318 22.226 20.365 18.277 17.088 9.525

Capacitive Windows

d1 d2 d3 d4 d5 d6

2.747 0.968 4.811 2.891 0.668 2.541

Stubs

h1 h2 h3 h4 ls1 ls

6.895 8.701 9.093 7.992 4.5 2

Table 4.3: Dimensions of the all-capacitive quasi-elliptic filter in mm. The width
of the complete structure is 19.05 mm.

l1 l2 l3 l4 l5
li li li li li li

ls1 ls ls ls

b d1 d2
d3

d4 d5 d6

h1 h2 h3 h4

Figure 4.39: Lateral view of the all-capacitive quasi-elliptic filter and physical
meaning of dimensions contained in Table 4.3.
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4.2.1.2 HFRW filter with TZs in both stopbands

The proposed stub-iris connection can also be employed in combination with
HFRW triplets to realize filters that have TZs both in the upper and lower stop-
bands. This second example involves a filter employed in passive intermodula-
tion measurements at Ku-band. The channel filter (with a passband that spans
400 MHz between 12.5 GHz and 12.9 GHz) must realize one TZ below the pass-
band to prevent signal leakages from an adjacent channel, between 11.4 GHz and
12.2 GHz. Simultaneously, four TZs have to be located above the passband to
isolate the frequency band where a low-level PIM signal is generated (between
13.8 GHz and 14.6 GHz). The structure selected is a four-pole HFRW filter with
two stub-iris sections. Its physical structure is depicted in Fig. 4.40a.
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Figure 4.40: Four-pole HFRW filter with five TZs. Four of them are realized
by stubs connected to capacitive windows. The TZ below the passband is
realized by the HFRW trisection.

The design procedure is equivalent to the one explained in the previous ex-
ample. First, the structure is designed without any stubs, and they are only in-
troduced once the passband and lower-stopband TZ fulfill the requirements. The
novel capacitive coupling windows are then readjusted to recover the passband
response. A final optimization cycle is also applied to obtain the response shown
in Fig. 4.40b. The successful comparison of this response with results provided
by HFSS validate the design process. The dimensions of the final structure are
summarized in Table 4.4 and Fig. 4.41.
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Figure 4.41: Lateral view of the HFRW filter with TZs above and below the
passband.
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Resonators and cross-coupling

l1 l2 l3 l4 a b lc w

18.451 15.980 12.725 15.815 19.050 9.525 1.831 7.118

HFRW direct-couplings

d2 cu2 cd2 d3 cu3 cd3 w3 t

3.449 0.972 2.328 4.241 1.717 1.442 8.317 1.700

Capacitive direct-coupling windows

d1 li1 d4 li4 d5 li5

7.626 1.500 3.733 2.000 3.223 2.000

Stubs

h1 ls1 h2 ls2 h3 ls3 h4 ls4

4.668 2.000 3.848 2.000 3.641 2.2 3.245 2.000

Table 4.4: Dimensions, in mm, of the HFRW filter with TZs above and below
the passband.



Chapter 5

Design of wideband
manifold-coupled
multiplexers

Multiplexers are multiport components widely used in communication systems at
microwave and millimeter-wave frequencies. Multiplexers can be employed either
to combine multiple frequency bands into a single one, or, alternatively, to di-
vide a common frequency band into multiple sub-bands (or channels). The most
commonly used implementations for these components are [96]:

• Hybrid-coupled filter combiner module (HCFM) multiplexers.

• Circulator-coupled multiplexers.

• Manifold-coupled multiplexers.

On the one hand, HCFM and circulator-coupled multiplexers are modular im-
plementations that can accommodate changes in the frequency plan, but tend
to be bulky. On the other hand, manifold-coupled multiplexers are the optimal
choice in terms of insertion losses, volume and mass. However, their design is much
more complex and does not allow modifications in the number of channels [102].
Depending on the application, one implementation may be favored over the oth-
ers. For example, because of their modularity, high-power channel multiplexers
in large earth stations are usually realized by means of HCFM structures. Input
multiplexers (IMUX) for satellite payloads, in contrast, are typically implemented
as circulator-coupled multiplexers due to their relatively simple design. In the
same context, satellite output multiplexers (OMUX) are implemented with the
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manifold-coupled configuration because of the low-loss requirement of these sub-
systems, combined with their capability to sustain high power levels.

Due to the complexity of their design, manifold-coupled multiplexers have been
the subject of extensive research over the last four decades [115, 157–163]. These
multiplexers employ a common transmission line, usually a rectangular waveguide,
that acts as the manifold. This transmission line is either short-circuited or has
one end connected to one of the channel filters. The remaining channel filters are
then connected along the manifold at (quasi) regular intervals.

The design of these components starts with the stand-alone channel filters.
They are designed either as singly- or doubly-terminated, independently of each
other. However, once they are connected to the manifold, the multiplexer has
to be designed as a whole, not as individual channels, in order to account for
the mutual interactions between the filters and the manifold [152]. To obtain
the final geometry, modern design procedures apply extensive optimization to the
structure. Therefore, design methodologies that provide a good starting point for
this optimization are highly valuable.

Wideband multiplexers have certain requirements that are at odds with clas-
sical narrowband design techniques. Likewise, some of these requirements have
not been properly addressed in the literature, mainly focused on conventional nar-
rowband designs. Consequently, this chapter presents a systematic methodology
for the most delicate part of a wideband multiplexer design: the connection of
filters to the manifold. Simple steps are described to connect the filters, and ad-
just a limited number of dimensions to achieve a good starting point for the final
optimization. The proposed methodology will be compared with existing design
techniques to demonstrate its superiority. Finally, it will be applied to the design
of a wideband multiplexer to be used within a passive intermodulation (PIM) mea-
surement set-up. Measurements from a manufactured prototype will be provided
to validate the design procedure.

5.1 Comparison between wideband and narrow-
band multiplexer design

Table 5.1 summarizes the main characteristics that make narrowband (fractional
bandwidth < 10%) multiplexer design significantly different from wideband mul-
tiplexer (fractional bandwidth > 20%) design.

Narrowband multiplexers typically combine a large number of narrowband
channel filters. Given the sensitivity of narrowband filters to manufacturing devi-
ations, tuning elements are usually added and manually adjusted after fabrication
to fulfill specifications. Hence, these types of multiplexers do not require an ex-
tremely accurate modeling of the different parts, since most deviations from ideal
behavior can be accounted for by the final tuning process. Channel filters can
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Narrowband Multiplexers Wideband Multiplexers

Large number of channels Reduced number of channels

Tuning required Tuning-less structures

Low-accuracy modeling High-accuracy modeling

Small impedance variation Large impedance variation
in adjacent passbands in adjacent passbands

Reduced number of spurious Large number of spurious
in-band resonances in-band resonances

Low input coupling levels High input coupling levels

Table 5.1: Main differences associated with the design of narrowband and wide-
band multiplexers.

be simply substituted by their equivalent models based on coupling matrices or
lumped elements. Furthermore, a fundamental-mode characterization of the man-
ifold and its junctions is accurate enough, in most cases, to achieve successful
results [163].

Due to the narrow bandwidth of the filters involved, there are two effects that
aid in the matching of all the filters in narrowband multiplexers. On the one
hand, the loading effect of one filter in the narrow passband of any other filter
does not exhibit an important dependence with frequency. Therefore the manifold
is able to provide a good matching for all channels. On the other hand, it is easy to
implement the first inverter of each narrowband filter attached to the manifold, due
to the low coupling level required. From the previous discussion it can be concluded
that the interconnection of narrowband filters to a manifold-coupled multiplexer
is not a severe issue. This does not mean that designing narrowband multiplexer
is a simple task, but rather that a good starting point for the optimization can
be easily found. In fact, classical design techniques [96, 102] prescribe analytical
values for the initial dimensions of the interconnection:

• Filters are connected to the manifold through half-wavelength stubs at the
channels center frequency (or an integer multiple of this value).

• The distance between the short circuit and the first stub depends on the type
of manifold. For E-plane multiplexers, the stubs must be connected where
there is a maximum of the magnetic field along the manifold. Consequently,
the initial separation from the short circuit is set at λg/2, where λg is the
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manifold wavelength. In contrast, H-plane multiplexers require the filters
to be connected where the electric field is maximum, therefore the initial
separation from the short-circuit is λg/4.

• The rest of the filters are connected to the manifold separated by λg/2 (or
an integer multiple of this value).

As it can be seen, the part of the multiplexer performing the interconnection
has many degrees of freedom. Therefore, this excess of parameters can be exploited
to obtain a good matching of the different channels with only minor adjustments
in the very first stages of each filter. To obtain such flexibility, the resulting
interconnecting network (manifold and stubs) is normally long and bulky. As an
example, Fig. 5.1 depicts an 8-channel narrowband multiplexer [164]. The initial
distribution of filters along the manifold is indicated.

≈λg1

2

≈λg1

2
(E-plane)≈λg4

2

Common
Port

Short Circuit

Channel 1Channel 3Channel 5Channel 7

Channel 2Channel 4Channel 6Channel 8

Stub

Manifold

Figure 5.1: Classical narrowband multiplexer.

Since most applications in the space sector do not handle very wide frequency
bands, design techniques for wideband multiplexers have been scarcely developed.
However, certain applications require multiplexers with a wide frequency band of
operation, such as measurement set-ups and electronic warfare equipment. A series
of issues arise during the design of these wideband components. The main one is
due to the interaction between the different filters and the manifold, which is much
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stronger than in the narrowband case. Undesired resonances are more troubling
and must be avoided in a wider frequency range. For instance, Fig. 5.2 shows the
out-of-band response of the narrowband multiplexer of Fig. 5.1. As it can be seen,
the spurious resonances due to the stubs and manifold appear around 11.7 GHz,
not very far from the passband. However, since the passband of the multiplexer
is small (3%), these resonances do not interfere with the normal operation of the
multiplexer.
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Figure 5.2: Out-of-band response of the narrowband multiplexer shown in Fig.
5.1. Undesired spikes, due to the interaction between the stubs and the
manifold can be identified around 11.7 GHz.

Another issue involves the physical implementation of the input coupling for
each filter. Wideband filters tend to have much larger input coupling levels than
their narrowband counterpart. The physical structure that implements this input
coupling must provide a high coupling level and, at the same time, compensate
for the frequency-dependent loading effect of adjacent filters. These two issues
become more troublesome as the number of channels increases. For that reason,
most publications related to the design of wideband multiplexers have been fo-
cused on diplexers [124–126]. As far as multiplexers are concerned, a manifold
based on a cascade connection of Y-junctions for wideband applications has been
proposed in [98] together with a tailored design technique. The solution requires
interconnecting stubs and a bulky and intricate manifold (that can reduce the
available coupling from the common port to the last channel filters). However, the
component designed in [98] included only moderate bandwidth filters, whereas the
frequency range covered by the entire multiplexer was not very wide. As it has
been demonstrated, there is still room for improvement in the area of wideband
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multiplexer design. The following section presents a new design procedure that
addresses most of the issues that arise when designing this family of multiplexers.

5.2 Design methodology for wideband multiplex-
ers

The design methodology presented in this thesis is tailored to manifold-coupled
multiplexers. As it is usually the case in these structures, one end of the manifold
contains either a filter or a short circuit, while the other end constitutes the com-
mon port (CP). The main benefit of connecting a filter inline with the manifold
is that the input coupling level that can be achieved is higher than in a lateral
connection. The rest of the filters are spaced along the manifold and directly con-
nected to it via H- or E-plane T-junctions. No stubs are located between the first
coupling window of each filter and the manifold. As previously mentioned, the
use of these additional stubs is widely adopted by multiplexer designers, mainly
because it offers a simple way of increasing the degrees of freedom in the structure.
Therefore, it is easier to achieve an adequate matching between filters and mani-
fold without readjusting most of the filters dimensions (typically, only the first two
resonators and couplings of each filter are modified). Compared with the classical
configuration, the proposed connection of filters considered in this work leads to
more compact designs. In addition, undesired resonances (which may interfere
with other filters in the multiplexer) can be largely mitigated by removing such
stubs, since they enhance the frequency variation of the filter input impedance
over adjacent channels.

Solutions to cope with unwanted spikes generated by the manifold have been
presented in the past, for instance [165]. They included reducing the height of the
manifold waveguide and reducing the size of the coupling slots. The configuration
proposed in this section is compatible with making use of a reduced-height man-
ifold, although additional effort must be done to design the transition from the
common port to a standard waveguide. Furthermore, as the height of the manifold
is reduced, so does the power handling capability of the multiplexer. Regarding the
reduction of size in the coupling slots, this solution is only suitable for narrowband
multiplexers. Otherwise, reducing the size of the input coupling slot is detrimental
to the implementation of the high coupling values that wideband filters require for
these particular slots. As an alternative, the authors in [166] cleverly proposed to
take advantage of the unwanted resonances and used them as additional poles of
the channel filter function. However, the extension of this technique to wideband
multiplexers is not direct. The implementation in a wide frequency band of the
input coupling and first resonator, by simply adjusting sections of transmission
line while simultaneously avoiding undesired extra resonances, is a difficult task.

In this thesis, a different approach is developed. The idea is to connect filters
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directly to the manifold, one by one, as depicted in Fig. 5.3. At each iteration, the
spacing between the filter to be attached and the previous junction is adjusted,
in order to achieve a strong coupling to the branching arm where the filter is
connected. This also contributes to a reduction in size of the input irises, limiting
unwanted interactions in the multiplexer. Once this length is set, the first coupling
iris and resonator of the connected filter are adjusted, so the overall structure
behaves (in magnitude and phase) like the first impedance inverter K01 of the
stand-alone filter. To summarize, three dimensions are adjusted in each iteration,
as illustrated in Fig. 5.3: the distance to the previous junction, the size of the first
coupling iris, and the length of the first resonator.
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Figure 5.3: Schematic view of the sequential filter connection to the manifold.

The idea of designing a junction to behave like the first inverter of a filter was
already applied in [167] to the design of compact diplexers. In that work both
filters were directly connected to a star-junction. The design of the junction was
driven by formulas based on the value of the first impedance inverter extracted
from each filter. A basic condition for the application of these formulas was that
the interaction between both filters of the diplexer must be close to zero, measured
from the first resonator. This condition was verified using narrowband filters with
passbands located far apart, but its suitability for other applications is question-
able, especially in the case of wideband filters. In addition, the technique in [167]
limits its scope to star-junction multiplexers, since it does not define a way to
separate the filters if a manifold waveguide were to be employed. In contrast,
the methodology proposed in this thesis determines the physical distance between
filters in the manifold, and does not require filters to have great mutual isolation.
Therefore, it can be applied to both contiguous and non-contiguous multiplexers.

The proposed methodology does not avoid the need for optimization of the
multiplexer. Instead, it is able to provide a good initial point for the trickiest part
of the design: the adjustment of the manifold and the first variables of each filter
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dominating the multiplexer interactions. As it will be demonstrated, for wide-
band multiplexers this starting point is better than the starting point of classical
narrowband techniques.

To sum up, the proposed design procedure for wideband manifold-coupled mul-
tiplexers can be described as:

1. Sequential connection of the filters to the manifold. For each filter, three ad-
justments (separation along the manifold, first iris and first resonant cavity)
are made. This is the First Cycle of the design, explained in section 5.2.1.

2. Once all filters are connected to the manifold, successive rounds of adjust-
ments are made. These are the Additional Cycles explained in section 5.2.2.
In those additional rounds, the separation between filters along the manifold
is not adjusted.

3. Then, a filter-by-filter optimization of the multiplexer is performed until
specifications are fulfilled. This is the classical last step in narrowband mul-
tiplexer design [96], as well.

5.2.1 First cycle

This first cycle provides the initial connection of all the filters to the manifold.
A flowchart summarizing this first cycle is depicted in Fig. 5.4. It involves the
sequential connection of the filters, starting from one end of the manifold and
then moving towards the common port. The connection of each new filter is
divided in three steps that are explained next. The objective of these three steps
is to replace the behavior of the filter first iris by the part of the multiplexer that
has already been connected. In preparation for this first cycle, the T-junctions for
the connection of the filters to the manifold are simulated at the center frequency
of each channel, and results are stored. Likewise, the reflection coefficient of the
element that terminates the manifold (either a short-circuit or Filter 0) is simulated
at the center frequency of the first filter to be connected.

Step 1: Adjustment of separation between filters

To initiate the connection of a new filter (for instance Filter n) to the manifold,
the physical length of transmission line ln that separates the T-junction of this filter
from the already-connected network Nn−1 has to be determined. Nn−1 contains
the section of the multiplexer that has already been adjusted in previous iterations
of the first cycle, namely, all filters from n− 1 to 0 and the corresponding part of
the manifold attached to them. As mentioned before, N0 may either be a filter
(connected in-line with the manifold) or a short-circuit. The physical structure
used in this first step to determine ln is depicted in Fig. 5.5. Port 2 is the arm
where filter n will be directly connected, whereas Port 1 is the common port.
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Figure 5.4: Detailed flowchart summarizing the first cycle of the design pro-
cedure. This cycle starts with all the filters independently designed and
sequentially connects them to the manifold.
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Figure 5.5: Schematic view of the structure used to adjust the spacing between
junctions for filter n. Circled numbers indicate S′ reference port numbers.

Classical multiplexer design calls for an initial separation between filters that
is a multiple of half the manifold wavelength, as explained in section 5.1. These
classical techniques assume that the locations of maximum electric/magnetic field
within the manifold are barely affected by the connection of the filters. In narrow-
band cases, where the input coupling is small, this may be an adequate assumption.
However, as the input coupling increases, the coupling windows have a stronger
effect in the field distribution along the manifold. For that reason, it is important
to use EM models in determining the optimal value of ln. Otherwise, the manifold
may not be able to couple enough energy to the corresponding filter, particularly
for a wide passband channel. The optimal value of length ln is the one that mini-
mizes the return loss at Port 2 of Fig. 5.5 at the filter center frequency fn. If the
dimensions of Port 2 are the same as those of the input/output port of the channel
filter, the minimum value of |S22| gives an indication of the maximum normalized
impedance inverter parameter K that can be achieved by adjusting the coupling
iris.

Given the fundamental-mode scattering parameters S′ of the T-junction, as
well as the reflection coefficient ρn from the previously connected network, the
return loss at Port 2 of Fig. 5.5 can be expressed as:

S22 = S′

22 +
S′2
23 ρn e

−2jβnln

1− S′
33 ρn e

−j2βnln
(5.1)

where βn is the manifold phase constant at fn. To simplify the computation it
has been assumed that the network is loss-less.

The goal is to find a solution for ln that minimizes (5.1). An analytical solution
for this length was proposed in [168], however, it assumed that |ρn| = 1. As
mentioned earlier, in wideband and contiguous multiplexers there can be a stronger
interaction between filters. For that reason, a more general case (where ρn can
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take any value) is considered here. The optimal length ln in this case is:

ln =
ϕn − ψ + 2mπ

2βn
(5.2)

where ϕn is the phase of ρn, m is an integer value and phase ψ is computed as:

ψ = 2 tan−1

(
B +

√
A2 +B2 − C2

A+ C

)
. (5.3)

Parameters A, B and C are extracted from S′ and ρn:

A = a33
(
a222 + a211 |ρn|2

)
sinφ33

+ a11 a22 (1 + a233 |ρn|2) sin (φ11 + φ22 − φs)

B = a33
(
a222 + a211 |ρn|2

)
cosφ33

− a11 a22 (1 + a233 |ρn|2) cos (φ11 + φ22 − φs)

C = 2 a11 a22 a33 |ρn| sin (φ11 + φ22 + φ33 − φs) (5.4)

where aii and φii are, respectively, the magnitude and phase of the S′
ii parameter

of the T-junction, and φs is the phase of the determinant of S′.

As (5.2) shows, multiple solutions for ln can be found, separated by half the
manifold wavelength (λgn = 2π/βn). The greater length ln is, the more trouble-
some the presence of spurious resonances becomes. In addition, the operational
bandwidth of the T-junction decreases as ln increases. Consequently, the smaller
positive value of ln that meets the physical and mechanical constraints of the mul-
tiplexer is selected. Occasionally, one of the solutions given by (5.2) may be very
close to λgn/2. In those cases, it is suggested to use a non-optimal solution to avoid
unwanted resonances. A length value closer to the minimum separation between
filters that fulfills all mechanical constraints lmin should be chosen. Certainly, this
solution can only be used as long as it is able to provide enough coupling for the
implementation of the first inverter. Otherwise, the optimal but longer solution
should be adopted. Figure 5.6 illustrates an example where the optimal ln is very
close to λgn/2, prompting the choice of a different (and less optimal) value.

In the usual case where the optimal ln solution is chosen, the value obtained
by application of (5.2) is normally a good approximation to the desired solution.
In wideband multiplexers, the filters can be placed close to each other, thus the
interaction between them typically involves the fundamental but also higher-order
modes. For that reason, it is recommended to perform a final refinement of ln
based on full-wave EM simulations. Once the EM-based solution for ln is found,
the aforementioned rule regarding solutions that are close to λgn/2 must also be
applied.
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Figure 5.6: Case example where the recommended length ln differs from the
optimal value. Magnitude of the S22 parameter is depicted as a function of
length ln, normalized by the manifold wavelength. The shaded area defines
the region where the normalized length is too small to fulfill mechanical
specifications, or the magnitude of |S22| is not low enough to implement the
first inverter (in this particular example, K01 = 0.33).

Step 2: Adjustment of the filter first coupling iris

After setting the appropriate separation between filters, the first coupling iris is
connected directly to the manifold (see Fig. 5.7). The iris is placed at the center
of what is marked as Port 2 in Fig. 5.5. The size of this iris is then adjusted until
the behavior of the structure at fn is equivalent to the first inverter of filter n.
The equivalent Kn

01 inverter value is obtained from the full-wave simulation of the
first iris of filter n as:

Kn
01 =

√
1− |ρiris(fn)|
1 + |ρiris(fn)|

(5.5)

where ρiris is the reflection coefficient of the first iris detached from the rest of
the filter. The iris size can be manually adjusted, or an automatic optimization
procedure launched, until the magnitude of S22 is:

|S22(fn)| =
1−Kn

01

2

1 +Kn
01

2 . (5.6)
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Figure 5.7: Schematic view of the structure used to adjust the size of the first
coupling element of filter n, in order to match the first inverter of the stand-
alone filter. Dotted line indicates the reference plane of the T-junction with
all ports having the same size, as shown in Fig. 5.5.

Step 3: Adjustment of the filter first cavity

Once the dimensions of the first iris are adjusted, the structure yields the same
|S22| as the first coupling element of the original filter. However, the phase of S22

(ϕ22) does not equal the phase of the first coupling element. Comparing ϕ22 with

the objective phase ϕobj
22 of the original first coupling element, a certain length of

transmission line lrn is added to the filter first resonator (see Fig. 5.8). Generally,
this length is negative, so it will be automatically absorbed by the resonator. It
can be computed as:

lrn =
ϕ22 − ϕobj

22

2β′
n

(5.7)

where β′
n is the phase constant of the waveguide that implements the first resonator

of the filter (i.e. the waveguide connected to Port 2 of Fig. 5.7) at frequency fn.

Finally, the remainder of the filter (second and subsequent resonators and
coupling elements) is attached to the structure without altering its dimensions.
This three-step procedure is repeated until all filters are connected to the manifold.
The particular arrangement of filters has an important effect in the performance of
a wideband multiplexer. With the proposed methodology, by the end of the first
cycle (when all filters are connected to the manifold) the designer is able to spot
potential problems in terms of spikes, or not enough coupling from the manifold
to one of the filters. Since this methodology is very cost-effective, the designer can
rearrange the filters in a different order and run the process once again, to see if
problems have disappeared or there are additional benefits derived from the new
arrangement.
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Figure 5.8: Schematic view of the structure used in Step 3 of the design proce-
dure.

5.2.2 Additional design cycles

Once this first cycle has ended, the response from the output port of the last filter
connected must be very similar to the return loss of the stand-alone filter at its
central frequency. During the first cycle, the loading effect of all filters up to filter
n−1 was considered when adjusting filter n. However, the opposite effect (i.e. the
loading of filter n when connecting any of the previous filters) was not taken into
account. To account for the mutual interactions both ways, at least one additional
cycle must be run.

The first cycle has already provided an adequate distribution of the filters
along the manifold and reasonably good dimensions of the first irises. Small ad-
justments to these iris dimensions are not expected to change considerably the
field distribution along the manifold. Therefore, the separation between filters is
not re-adjusted during the additional cycles.

Instead, the first coupling iris and first resonator length of each filter are se-
quentially readjusted to match the response of the corresponding first inverter of
the isolated filter. In contrast with the first cycle, during the additional cycles all
the filters (with the exception of the one that is being adjusted) are simultaneously
connected to the manifold (see Fig. 5.9). In the first cycle, though, only the filters
that had been previously adjusted were connected to the manifold. In short, the
additional cycles consists on repeating Step 2 and Step 3 of the flowchart in Fig.
5.4 until all filters are adjusted.

The number of additional design cycles depends on the particular structure.
Normally, after the second or third complete cycle, the benefits in terms of response
improvement does not justify the time spent on an additional iteration (in fact,
sometimes the results start to oscillate after each cycle, meaning that this simple
procedure has reached its limit). In general, this methodology tends to benefit
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Figure 5.9: Adjustment of filter 2 during one of the additional design cycles.

the last filter readjusted, in the sense that it mainly improves the response of the
multiplexer in this filter passband. As a result, the last cycle should not be fully
completed, instead it must end after readjusting the most poorly matched filter
(this is often filter 1 since it normally has the worst loading effect from the rest of
the multiplexer).

5.2.3 Example: design of a Ka-band triplexer

This example illustrates the proposed design procedure through the simple triplexer
shown in Fig. 5.10.

The three channel filters of order 4 are centered at 36.5 GHz, 38 GHz and
39.5 GHz, respectively, with 1 GHz bandwidth and 25 dB return losses. The rela-
tive bandwidth of the three filters is slightly above 2.5% but, overall, the relative
bandwidth of the multiplexer is 10%. Although it is not a wideband example,
but one with a moderate bandwidth, it is useful to clarify and understand the
design steps. Furthermore, its simple topology enables the comparison of this
method with existing ones proposed in the literature. The three standalone fil-
ters have been designed as doubly-terminated structures, given the separation
between bands. Singly-terminated implementations can be employed in multi-
plexers involving adjacent channels, in order to facilitate their matching once they
are connected to the manifold. In any case, the filters are directly connected to
the short-circuited manifold by their inductive irises. In addition, the presence
of rounded corners, which typically appear when components are fabricated by
milling [137], has been explicitly considered in the whole structure, including also
the short-circuit at the end of the manifold.

The connection of the filters to the manifold follows the guidelines described in
previous sections. Starting from the lower frequency filter, each one is sequentially
connected to the manifold and its first iris and resonator are conveniently adjusted.
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Figure 5.10: (a) Triplexer with rounded corners used to illustrate the design
procedure. (b) Lateral view of the designed triplexer, along with key di-

mensions. wFj
i indicates the width of the i-th inductive window of filter j.

The thickness (in the direction of propagation) of all inductive windows is t.

Figure 5.11 depicts the evolution of the reflection coefficient from the common port
during the first cycle. In each iteration, a new filter is connected and adjusted.

At the first iteration, the adjusted manifold behaves similarly to the first in-
verter of filter 1 in most of its passband. Therefore, the common port return loss
(CPRL) parameter of the multiplexer is almost equivalent to the return loss of the
stand-alone filter (see First Iteration in Fig. 5.11).

Once a second filter is added, though, the mutual loading between filter 1 and
filter 2 deteriorates the response in both passbands (see Second Iteration in Fig.
5.11). For filter 1 this implies that the first iris no longer behaves like the first
inverter of the filter, thus the matching of the structure within its passband is worse
than in the first iteration. Even if the matching is far from ideal, all four poles are
still visible. For filter 2, the response at its center frequency is recovered thanks
to the adjustment of the first iris and resonator. Within its passband, however,
the variation of the reactance of the previous filter (i.e. filter 1) is not smooth.
This affects how well filter 2 can be matched with the rest of the multiplexer.
Around the center frequency, the filter is considerably well matched, but closer
to the edges of the passband the response is significantly different from its stand-
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Figure 5.11: Magnitude of the reflection coefficient at the common port of the
triplexer in Fig. 5.10, after each filter is assembled into the manifold. In each
iteration, three dimensions are adjusted: the separation from the previous
network, the first iris size, and the first resonator length.

alone version. Nevertheless, the return losses are better than 10 dB in the whole
passband. Similarly, by the end of the third iteration (see Third Iteration in Fig.
5.11), filter 3 is considerably well matched, whereas the matching of filters 1 and
2 has been deteriorated. It is worth noting that all poles can still be identified.

After the third iteration, two additional cycles are run. Figure 5.12 shows how
the CPRL improves after the application of each additional cycle. In this example,
any additional cycle beyond the third one does not improve significantly the overall
response. Thus, it is assumed that the method has reached convergence and the
procedure finishes. The response obtained after the third cycle is considered as
starting point of the optimization procedure.

It is interesting to compare this starting point, with the one provided by clas-
sical design techniques proposed in the literature. Figure 5.13a contains this com-
parison. Three classical techniques have been considered. In the first case, labeled
Uher et al., filters are directly connected to the manifold and separated along the
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Figure 5.12: Evolution of the CPRL in the different cycles of the design process.

manifold according to the formulas in [102]. No filter dimensions are altered. This
technique is normally used for narrowband multiplexer and, as it can be seen,
does not provide a very good starting point if applied to wideband multiplexers.
In the second case, labeled Morini (adapted), the design method of [167] is applied.
Since [167] is focused on diplexers using star-junctions (rather than a manifold),
the equations included in it cannot be exactly extrapolated to this example. In-
stead, the formulas of [168] are used to separate the filters along the manifold.
Once this is done, the design criteria defined in [167] is applied to adjust the
first coupling window and resonator of each filter. In contrast with our proposed
methodology, the remaining filters are not connected to the manifold while adjust-
ing the dimensions of each input iris. Thus, mutual filter interactions from the
first and subsequent resonators are being neglected. As can be seen in Fig. 5.13a,
the two classical techniques yield similar results, whereas our proposed method-
ology considerably improves the initial multiplexer response. Finally, the third
case, labeled Cameron et al., corresponds to the classical starting point for nar-
rowband multiplexers explained in [96]. It includes half-wavelength stubs between
the filter and the manifold. The initial response with this methods seems to be
better than the aforementioned classical techniques. However, this improvement
can be misleading, since it comes mainly at the expense of introducing multiple
resonances within the operating range of the multiplexer. Once the optimization
procedure starts, it will be costly for the designer to prevent them from interfering
with the multiplexer response. In conclusion, the more adequate starting point for
this multiplexer is obtained with the methodology presented in this thesis.

In order to test the performance of the proposed method, an alternative solution
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Figure 5.13: CPRL of the triplexer with rounded corners after application of the
design method. This initial response (solid line) is compared with alternative
procedures. (a) Dashed line is obtained by connecting the filters directly to
the manifold and separating them according to the expressions of [102]. Solid
line with circular markers is obtained by spacing the filters according to [168]
and adjusting the first coupling irises to fit formulae in [167]. Solid line
with cross markers corresponds to the design procedure that includes half-
wavelength stubs between each filter and the manifold [96]. (b) The initial
response (solid line) obtained with the proposed methodology is compared
with the one (dashed line) obtained after a global optimization of the first
stages (iris and resonator).

has been considered as well. It has been obtained by optimization of the first iris
and resonator of each filter using the simplex method. The separation between
filters, though, has been fixed to the same value as our proposed initial design.
The optimization goals have been set to achieve return losses better than 25 dB
over the bandwidth of the three filters. In contrast with the proposed design
methodology, this alternative procedure actually takes into account the loading
effect of all filters at the same time. As shown in Fig. 5.13b, this solution is a
slightly better option than our proposed methodology, but the differences between
the two responses are certainly small. Furthermore, our proposed methodology
is less CPU-intensive since, in each step, only one dimension is adjusted and the
full-wave simulations are just performed at one frequency point (center frequency
of the filter being adjusted).

Starting from the proposed initial response, the conventional multiplexer design
procedure described in [96] (sequential adjustment of filters until specifications are
fulfilled) is applied. Without much effort, the final response depicted in Fig. 5.14
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is obtained. The final dimensions of the triplexer are summarized in Table 5.2.
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Figure 5.14: Magnitude of the scattering parameters after optimization of the
triplexer with rounded corners. Design results are compared with HFSS.

Filter 1

l′1 wF1
1 lF1

r1 wF1
2 lF1

r2 wF1
3 lF1

r3 wF1
4 lF1

r4 wF1
5

3.858 3.294 4.303 2.420 4.833 2.216 4.835 2.416 4.364 3.409

Filter 2

l′2 wF2
1 lF2

r1 wF2
2 lF2

r2 wF2
3 lF2

r3 wF2
4 lF2

r4 wF2
5

4.046 2.906 4.348 2.119 4.628 2.084 4.584 2.315 4.138 3.280

Filter 3

l′3 wF3
1 lF3

r1 wF3
2 lF3

r2 wF3
3 lF3

r3 wF3
4 lF3

r4 wF3
5

5.361 2.905 4.012 2.122 4.370 2.018 4.349 2.220 3.940 3.151

Additional dimensions

a b R t h

7.112 3.556 0.889 0.762 1.778

Table 5.2: Final dimensions of the designed triplexer with rounded corners in
mm. Dimension a refers to the width of the manifold and resonators.
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5.3 Design of a C-band quadruplexer for PIM
measurement set-ups

The proposed design methodology has been presented and validated through the
application to the design of a simple triplexer. Now it is applied to the design of
a much more complicated structure, this is a quadruplexer that covers practically
the entire recommended band of the WR-229 waveguide. This component is to be
employed as the key element of a PIM measurement set-up at C-band. A schematic
view of this set-up can be seen in Fig. 5.15. Up to three carriers (each in a different
frequency band) are amplified and then combined. The resulting signal is routed
to the common port, where the device under test (DUT) is connected. The third-
order passive intermodulation generated by this device is then reflected back and
redirected to the output port (Rx), where a vector network analyzer measures the
PIM level. Consequently, the role of the quadruplexer is to combine the input
signals, direct them to the common port and transfer the reflected PIM signal to
the output (Rx) port.

LNA

HPA

Carrier 1

HPA

Carrier 2

HPA

Carrier 3

Quadruplexer

DUT
CP

RxTx1

Tx2

Tx3

Figure 5.15: Scheme of a PIM measurement set-up.

The transmission (Tx) and reception (Rx) frequency bands of operation for
this multiplexer are:

• Tx1 band: 3.4 GHz to 3.61 GHz

• Tx2 band: 3.81 GHz to 3.98 GHz

• Tx3 band: 4.13 GHz to 4.26 GHz

• Rx (PIM) band: 4.5 GHz to 4.85 GHz
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The passive intermodulation generated by the DUT is very weak. The set-up
must be able to detect signals with a minimum level of -139 dBm. Considering that
the high-power amplifiers may introduce noise in the Rx band with a maximum
power level of 10 dBm, the isolation from the input ports to the Rx port in this
band must be greater that 149 dB. Since this is a critical design parameter, a
safety margin of 16 dB is added, thus the objective isolation from the three Tx
signals in the Rx band is 165 dB. In contrast, the isolation of the Rx signal in
the Tx bands is set to 160 dB (including margins). This is done to prevent input-
carrier leakages from reaching the low noise-amplifier (LNA) placed between the
quadruplexer and the spectrum analyzer. If the isolation was much lower, active
intermodulation could be generated in the LNA, which would unequivocally harm
the measurement set-up. Furthermore, the maximum insertion losses allowed for
the set-up are 1.35 dB, in order to maximize its performance, given the available
high power amplifiers (HPA), and also avoid unwanted thermal issues.

As can be seen from the stringent specifications, the complexity of this design,
in terms of bandwidth (36% overall, with filters of 3.6%, 4.9%, 6% and 8.3%
relative bandwidth, after the inclusion of design margins) and rejection levels, is
unprecedented in the technical literature for manifold-coupled multiplexers. Under
these circumstances, the use of a proper design methodology is fundamental.

First, the different filters that compose the manifold are designed. Since the
quadruplexer must be as low-PIM as possible, the tuning-less implementation of
the filters is fundamental. Low order structures are preferred, in order to minimize
the manufacturing deviations in the final response. At the same time, these filters
must be able to create high-isolation stopbands to fulfill the rejection requirements.
HFRW filters are employed for the Tx channel filters. In some instances, the
number of TZs generated by these low-order HFRW filters is not enough to fulfill
the stringent rejection requirements. Consequently, corrugated lowpass filters are
cascaded to increase the overall rejection in the PIM band. In contrast, the Rx
channel is implemented by the combination of a bandpass and a high-pass filter.
The implementation of each channel filter is considered next.

5.3.1 Channel filters

Tx1 channel

The channel filter operating in the Tx1 band is depicted in Fig. 5.16a. This
sixth-order filter is composed of two cascaded HFRW triplets, thus providing two
additional TZs. In addition, the novel iris-stub coupling structure presented in
section 4.2 is used to implement the output coupling, and simultaneously provide
2 TZs. The six cavities are implemented as stepped-impedance resonators [169],
instead of the classical rectangular cavities. This choice allows certain additional
control over the location of the spurious passband, due to higher-order resonances
of the filter cavities. Since this is the filter located the furthest from the PIM
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band, the aforementioned spikes fall closer to the critical reception band. Thus, it
is specially important to be able to shift such spurious passband towards higher
frequencies, obtaining the maximum filter rejection at the reception band. As can
be seen in the response depicted in Fig. 5.16b, the rejection requirements over the
PIM band are fulfilled. Consequently, additional low-pass filters are not required.
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Figure 5.16: (a) Physical structure of the Tx1 channel filter. Stepped-impedance
resonators are employed to implement the six cavities of the filter. Stubs are
connected to the output iris to generate two additional TZs. (b) S-parameter
response.

Tx2 and Tx3 channels

The Tx2 and Tx3 channels contain fifth-order bandpass filters implemented in
the HFRW topology. These structures can be seen at the top of Fig. 5.17a and
Fig. 5.18a. Cascading two triplets, each filter is able to provide two TZs, located
within the Rx band. The isolation generated by these structures is not enough to
fulfill the stringent requirements of the set-up. For that reason, a lowpass stub
filter capable of increasing the number of TZs (and, consequently, the rejection)
is connected to each filter. In the Tx2 case, the 11-th order corrugated structure
shown in Fig. 5.17b is used. This structure generates five TZs in the passband.
Regarding the Tx3 channel, the lowpass filter employed is a 15-th order structure
that generates seven TZs. The first two are double zeros to improve sensitivity to
manufacturing [170]. The need for additional TZs are justified by the fact that
this channel is adjacent to the PIM band and requires a much steeper rejection
slope. This structure and its S-parameter response can be seen at the bottom of
Fig. 5.18.
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Figure 5.17: (a) Physical structure of the HFRW bandpass and lowpass filter of
channel Tx2. (b) S-parameter response of both filters.
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Figure 5.18: (a) Physical structure of the HFRW bandpass and lowpass filter of
channel Tx3. (b) S-parameter response of both filters.
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Rx channel

The Rx channel must filter the signal in the frequency band where the third-
order PIM is generated, and prevent a potential harmful leakage from the Tx
carriers to reach the low-noise amplifier placed before the spectrum analyzer. The
Rx band is realized by the classical inductive bandpass filter structure shown in
Fig. 5.19. As it can be seen, the input coupling window is capacitive to facilitate
its connection to an E-plane manifold multiplexer. In addition, the last cavity
of this filter has a reduced width. This is done to adapt the output port to
a reduced-width rectangular waveguide. The bulk of the isolation is provided by
this reduced-width waveguide, equivalent to a high-pass filter. In order to generate
enough attenuation in the stopband, this waveguide has to be extremely long.
The waveguide is twisted, forming the meandering block shown in Fig. 5.19a. By
doing so, the footprint of the overall quadruplexer (this is, the area occupied by
the component when seen in projection on a mounting surface) is reduced, thus
leading to a more compact structure.
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Figure 5.19: (a) Physical structure of the bandpass and highpass filters that
compose the Rx channel. (b) S-parameter response of both filters.



156 5.3. Design of a quadruplexer for PIM measurement

5.3.2 Final design

Once the channel filters are designed, the methodology proposed in section 5.2 is
applied to connect them to the manifold. The resulting structure is depicted in
Fig. 5.20. As can be seen, the manifold is extremely short. In order to keep this el-
ement as short as possible, a non-optimal but minimal separation between the Tx2
and Tx3 channel filters has been chosen (instead of the optimal separation close
to λg/2). This choice has some undesired consequences: the physical separation
between the Tx1 and Tx3 filters is very small. Such a small gap between filters
limits the amount of heat that can be dissipated in that area of the component,
and prevents the introduction of assembling/alignment screws. To overcome this
problem, the first coupling window of both of these filters has been shifted with
respect to the center of the cavity, effectively increasing the gap between them
(note this in the detail of Fig. 5.20).

Port 1
(CP)

Port 5
(Tx1)

Port 4

(Tx2)

Port 3

(Tx3)

Port 2

(Rx)

Figure 5.20: Quadruplexer for PIM measurements at C-band. Detail of the
manifold is included.

After application of the initial design procedure, a global optimization is run,
considering only the variables of the four bandpass filters and without re-adjusting
the manifold. The final optimized response, simulated with FEST3D [37], can be
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Figure 5.21: (a) Magnitude of the scattering parameters of the designed quadru-
plexer at C-band. Results are generated with FEST3D. (b) Isolation be-
tween the transmission and reception ports. Shaded areas indicate the design
threshold for the isolation parameter.

Figure 5.22: Photograph of the manufactured quadruplexer.

seen in Fig. 5.21. As expected, the quadruplexer is able to fulfill the stringent
requirements imposed by the working conditions of this component.

The quadruplexer has been manufactured from bare aluminum (using alloy
6082) in two identical halves and assembled with clam-shell technology. Due to
the high sensitivity to manufacturing deviations of the Tx3 channel, silver coating
(typically used to reduce insertion losses) is avoided. To improve heat transfer, it
has been attached to a base plate. A photograph of this component can be seen
in Fig. 5.22.

Measured results from the manufactured quadruplexer are depicted in Fig.
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5.23. A very good agreement is found between this results and the designed re-
sponse computed with FEST3D. Due also to the efficient design technique pro-
posed in this paper, which provides a good starting point after application of the
fast algorithm for interconnecting the filters, it is possible to successfully carry out
the design of such a large tuning-less multiplexer in reasonable CPU times. Note
that no tuning has been performed on the multiplexer.
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Figure 5.23: Comparison between the designed (dashed lines) and measured
(solid lines) responses of the C-band quadruplexer.

As shown, return losses are better than 22.3 dB and insertion losses are smaller
than 0.5 dB in all passbands (see Fig. 5.24), satisfying the desired specifications by
a wide margin. These results also enable the inclusion of other elements in the PIM
measurement set-up (such as isolators, waveguide sections or directional couplers),
if necessary. The rejection level has been successfully validated up to 150 dB, which
was the limit of the measurement system due to undesired leakages between cables
and instrumentation equipment. In any case, this rejection level guarantees the
successful performance of this component for the intended application.
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Figure 5.24: Insertion losses of the measured quadruplexer (solid lines) compared
with simulations (dashed lines).





Chapter 6

Conclusions and future work

The design of a C-band quadruplexer for PIM measurements explained in sec-
tion 5.3 can be considered the pinnacle of this PhD thesis. It combines in a single
structure all the developments presented in this work, and certainly puts in per-
spective the different achievements. The particular application for which it was
conceived required the multiplexer to cover a very wide frequency band. Thus
the adoption of a consistent design methodology, specifically the one presented in
chapter 5, was critical to the success of its design. Simultaneously, the isolation
and low-PIM requirements set particular constraints on the type of channel fil-
ters that could be employed. The quasi-elliptic filter implementations studied in
chapter 4 were uniquely qualified to fulfill these constraints. Consequently, their
choice to implement the channel filters was direct. At the same time, the use of an
adequate EM simulation tool in such a complex design, involving a large amount
of optimization, is crucial. Being heavily based on a succession of bi-dimensional
blocks, the quadruplexer was an ideal candidate to benefit from the accurate and
fast modeling provided by the EM analysis tool presented in chapter 2. As a mat-
ter of fact, prior results presented in chapter 3 were encouraging. They showed
that the use of the developed software tool in a triplexer with the same intended
application had actually reduced the time for a typical EM analysis, when com-
pared with previously existing formulations. Therefore, it was decided to rely on
this tool throughout the design process. As a result, the complete design cycle
was largely accelerated and, in turn, the delivery of the final component could be
done ahead of schedule.

The C-band quadruplexer is just one example of the possibilities that this PhD
thesis offers. In fact, the scope of application of this thesis is much broader, as
reflected by the objectives described in section 1.2. After presenting the complete
body of work in chapters 2 to 5, it is time to revisit these objectives and assess
the degree of fulfillment of each one.
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The first objective of this thesis was to develop an efficient software tool for
the EM analysis of bi-dimensional cavities of arbitrary shape. To fulfill this goal,
a new formulation was developed. The EM problem was divided into two inde-
pendent sub-problems thanks to the adoption of an adequate family of modes (the
Longitudinal Section family). By applying a specific frequency transformation, it
was demonstrated in chapter 2 that the size of both sub-problems could be reduced
by an important factor. Kurokawa’s field expansion was first considered to solve
both problems, but its application was proved to be inefficient and impractical.
Instead, an alternative solution based on the combination of the Boundary Integral
- Resonant Mode Expansion method with an Integral Equation technique was im-
plemented. It reduced considerably the number of modes to solve in the arbitrary
cross-section of the cavity and accelerated the computation of the electromagnetic
field. In addition, this formulation was fully compatible with the computation of
the Generalized Admittance Matrix. Making use of certain matrices employed in
the field solution, an equivalent network representation could be obtained with
very little computational overhead. Therefore, the second objective of this thesis
was also fulfilled. A point of emphasis throughout the formulation development
was to ensure that the contour of the cavity could be described with straight, cir-
cular and elliptical segments. Thanks to the solution of certain singular integrals
performed in Appendix C, this objective was accomplished as well.

This new formulation was integrated into FEST3D, enabling the analysis and
design of a wide range of microwave components. Chapter 3 displayed simulation
results for certain structures, from filters and multiplexers to orthomode trans-
ducers, that fully validated the new EM formulation. Some of these components
were extracted from the technical literature, whereas others were designed ad hoc.
In any case, results were always compared with measured data or simulations
generated by general-purpose EM solvers, such as HFSS and CST. At the same
time, the fields provided by the new analysis tool were used in combination with
SPARK3D to study the high-power performance of two waveguide components.
Consequently, the third and fourth objectives of this thesis were also fulfilled.

The fifth objective was to apply the aforementioned formulation to HFRW
filters and perform an in-depth study of these structures. Different coupling aper-
tures were proposed in the first part of chapter 4 to implement the direct and
cross-couplings. In particular, seven different aperture combinations were studied,
highlighting the advantages and limitations of each one. By doing so, designers
were granted enough flexibility to choose the coupling combination that better fits
their requirements. At the same time, it was shown how the resonant nature of the
direct-coupling apertures of HFRW filters affects the number of TZs that can be
realized in the stopband of a given filter. As demonstrated, each triplet is able to
realize two additional TZs associated with the two resonant direct-coupling aper-
tures. However, not all of them are located in desired stopband, and thus their use
is not always practical. In any case, a specific design procedure for these types of
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filters was proposed and applied to a five-pole structure realizing four TZs. Mea-
surements from a manufactured prototype were employed to validate this study,
thus fulfilling the fifth objective.

In addition, a coupling structure formed by the connection of stubs to a ca-
pacitive window was proposed in the second part of chapter 4. It was presented
as an interesting alternative to increase the number of TZs in waveguide filters.
As demonstrated, the structure is able to realize a given coupling level as well as
generate one TZ per stub at a prescribed frequency. Therefore, any capacitive in-
line connection between rectangular resonators can be substituted by this coupling
structure and realize two TZs without implementing any cross coupling. Two ex-
amples were given to illustrate its use, comparing design results with simulations.
Consequently, the sixth objective was also accomplished.

Finally, the last objective was focused on developing an efficient methodology
to design wide-band multiplexers. The special characteristics of these components
makes their design slightly different from their narrowband counterparts. Taking
into account these differences, a step-by-step procedure was proposed in chapter
5. It is based on the adjustment of a few dimensions per filter in order to make
the rest of the multiplexer behave as the first inverter of the corresponding stand-
alone filter. Even though this procedure does not avoid a final optimization, it
certainly provides a good starting point, as evidenced in the triplexer design exam-
ple included in this chapter. To culminate this thesis, the aforementioned C-band
quadruplexer was successfully designed and results compared with measurements.

In conclusion, all the objectives initially proposed for this PhD thesis were
accomplished. As a result, this thesis has generated multiple publications in rele-
vant journals and conferences dedicated to microwave engineering, as summarized
in appendix E. Likewise, most of the advances and technology developed in the
framework of this thesis has been transferred to the European space industry. The
electromagnetic analysis technique for bi-dimensional cavities presented in chap-
ter 2 has been integrated into FEST3D, a commercial software tool developed
and commercialized by the Valencia-based company Aurorasat. Furthermore, the
C-band quadruplexer designed in chapter 5, which includes some of the filters
studied in chapter 4, was commissioned by the European Space Agency (ESA)
and is, currently, employed at the ESA-Val Space Consortium (VSC) High-Power
RF laboratory1 located in Valencia.

Nevertheless, this work has opened up new research possibilities that could be
explored in the future. The main ones are summarized next:

1. Analysis of bi-dimensional cavities with apertures both in the lateral and
top (or bottom) walls. This extension enables the analysis of magic Ts with
an arbitrary base (for example, a transformer), turnstile junctions, OMTs
with dual junctions, etc. This problem basically requires a formulation that

1Information about this facility can be found at http://www.val-space.com/highpowerlabrf/

http://www.val-space.com/highpowerlabrf/
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combines the field solution from a short circuited waveguide of arbitrary
cross-section (case where the excitation is introduced by the port in the
top/bottom wall) with the formulation presented in this thesis.

2. Extension of the analysis formulation to enable the introduction of dielectric
elements. Initially, these elements may occupy the total height or width of
the cavity. But, given the practical interest of dielectric resonators (typically
manufactured as cylindrical disks of a certain dielectric material) a notable
contribution would involve the analysis of these elements within arbitrarily-
shaped cavities. In order to do so, the full 3D version of the BI-RME method,
combining multiple dielectric and metallic elements (to represent the contour
of the cavity and additional tuning elements), should be developed.

3. Automatic synthesis and design procedure for HFRW filters. Even though
the design procedure presented in chapter 4 has been shown to be adequate
for these filters, the designer still has to adjust some dimensions to achieve
the desired response. An elaborated synthesis technique tailored to this
family of filters, which can automatize many of the adjustments, can be of
interest to facilitate and speed up the design.

4. Synthesis of coupling structures based on the iris-stub concept with more
than two stubs. In theory, it is possible to attach more than two stubs
to a given capacitive window. As more stubs are attached, the maximum
coupling provided by the overall structure decreases, but the number of TZs
increases. The distance between stubs is one parameter that has not been
considered in this thesis, but can be very important as more stubs are added.
Moreover, a synthesis of the initial dimensions of the stubs and capacitive
window would be of great help in extending the use of this novel coupling
structure.

5. Study of alternative connections between filters and manifold for wideband
multiplexers. Theoretically, the direct connection of filters to the manifold
minimizes undesired resonances. But, occasionally, the design methodology
presented in this thesis does not provide enough degrees of freedom to move
these resonances outside the passband. In these situations, two alternatives
can be studied:

• Effect of the distribution of filters along the manifold on the unde-
sired resonances. Traditionally, filters have been connected in ascend-
ing order (regarding their center frequency) from the short-circuit to
the common port. This solution tends to provide an adequate match
in adjacent bands. However, altering the distribution of filters can lead
to significant changes in the manifold length, which, in turn can shift
the undesired resonances outside of the passband.
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• Shorter manifolds can also be achieved by introducing short fixed-length
stubs between the manifold and the filters. In this case, the design pro-
cedure presented in this thesis can be directly applied while consider-
ing these stubs as belonging to the corresponding manifold T-junction.
Practical design strategies that clearly define when to consider each
option would be of great interest for multiplexer designers.

6. Systematic design of star-junction multiplexers. A design procedure, equiv-
alent to the one presented in this thesis, can be developed for star-junction
multiplexers. Furthermore, star-junctions are a typical example of bi-dimen-
sional cavities. Thus, the design of these components could also be largely
accelerated through the use of the analysis technique presented in chapter 2
to model the interconnection.

7. New multiplexer designs in forward configuration. The multiplexer designs
included in this thesis work in the reverse configuration. This means that
the PIM signal routed to the spectrum analyzer is the one that has been
reflected by the DUT. Another configuration for PIM measurements is the
forward PIM measurement, where the spectrum analyzer receives the PIM
signal that is transmitted by the DUT. The hardware involved in this second
configuration is slightly different, mainly because the routing has to be done
in two separate places: at the input (to combine the high-power carriers)
and at the output (to separate the PIM signal and deliver it to the spec-
trum analyzer). Therefore, the design of novel high-end components for the
forward measurement of PIM is a promising research topic.
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Transformation between
Longitudinal Section and
Transverse modes in
rectangular waveguides

d

h

ẑ
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Figure A.1: Rectangular waveguide and coordinate system.

Longitudinal modes (LSE and LSM) oriented with regard to z (see Fig. A.1)
can be expressed as a superposition of transverse-to-u (TE or TM) modes as:

h
LSE/LSM
lm = ATE-LSE/LSM hTE

lm +ATM-LSE/LSM hTM
lm (A.1a)

e
LSE/LSM
lm = BTE-LSE/LSM eTE

lm +BTM-LSE/LSM eTM
lm . (A.1b)
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The indices (l,m) of both sets of modes must be equal, otherwise no coupling
is possible (amplitudes A and B are null). Despite the different field orientation,
both sets of modes propagate in the u-direction and fulfill elm × hlm = û. The
specific expressions for the different field components are:
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TM modes
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where

Clm =



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for TE and TM modes.

(A.6)

ǫl/ǫm are defined in (2.53). Using these expressions, the coupling between the
different pair of modes can be computed.

A.1 Coupling between LSE and TE modes

The coupling coefficients between LSE and TE modes are:
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A.2 Coupling between LSE and TM modes

The coupling coefficients between LSE and TM modes are:
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A.3 Coupling between LSM and TE modes

The coupling coefficients between LSM and TE modes are:
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lm ·hLSM

lm dz dt =
mh√

(ld)2 + (mh)2
(A.11)

BTE-LSM =

∫ h

0

∫ d

0

eTE
lm · eLSMlm dz dt =

mhk2

[k2 − (lπ/h)2]
√

(ld)2 + (mh)2
. (A.12)

A.4 Coupling between LSM and TM modes

The coupling coefficients between LSM and TM modes are:

ATM-LSM =

∫ h

0

∫ d

0

hTM
lm ·hLSM

lm dz dt =
−l d√

(ld)2 + (mh)2
(A.13)

BTM-LSM =

∫ h

0

∫ d

0

eTM
lm · eLSMlm dz dt =

−l d
[
k2 − (lπ/h)2 − (mπ/d)2

]
√

(ld)2 + (mh)2 [k2 − (lπ/h)2]
.

(A.14)



Appendix B

Derivation of the Integral
Equation for the scalar
potential

B.1 General Integral Equation

This appendix describes the procedure followed to obtain the Integral Equation
that enables the computation of the scalar potential ϕs at points P within S and
on its contour. The procedure explained here can be found in Appendix A3.1 and
A3.2 of [171] particularized in the case of the classical two-dimensional Green’s
function (i.e. the zero-order Hankel’s function of the second kind). Instead, the
more general expression of the two-dimensional Green’s function proposed in [135]
is considered in this appendix. The final integral equations are equal in both cases.

The derivation starts with Green’s second identity particularized for the func-
tions ϕs and G:

∮

∂S

(
ϕs

∂G

∂n
−G

∂ϕs

∂n

)
dr′ =

∫

S

(
ϕs∇2G−G∇2ϕs

)
dS (B.1)

where S is a surface bounded by the contour ∂S as shown in Fig. B.1, and ϕs and
G are functions that depend on the distance R from a certain fixed point P. If ϕs

and G, along with their first and second derivatives, are continuous within S and
on ∂S, and satisfy

∇2Ω+ k20Ω = 0 (B.2)

(with Ω being either ϕs or G), then Green’s identity becomes:
∮

∂S

(
ϕs

∂G

∂n
−G

∂ϕs

∂n

)
dr′ = 0 (B.3)
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R̂

n̂
θ

∂S

P
r

C δ

R

S

r′

Figure B.1: Parameters used in the derivation of the integral equation.

provided that P and the singularities of ϕs and G lie outside of S.
The two-dimensional Green’s function associated with the zero-order Bessel’s

equation (B.2) is the well known Hankel function:

G(k0, R) =
H

(2)
0 (k0R)

4j
(B.4)

where H
(2)
0 is the zero-order Hankel function of the second kind. However, any

proper combination of Bessel functions can also provide a valid Green’s function
for the two-dimensional problem. In general, we consider the function:

G(k0, R) = C0J0(k0R) +B0Y0(k0R) (B.5)

where J0 is the Bessel function of the first kind and zero order, Y0 is the Bessel
function of the second kind and zero order. C0 and B0 are arbitrary constants.
To determine one of them, the boundary condition at R = 0 is imposed. Both
functions, (B.4) and (B.5), must have the same behavior around the origin [172].
Since the behavior of (B.4) is of the type − ln(R)/2π around R = 0, the constant
B0 is determined to be B0 = −1/4 [135]. Consequently, the Green’s function for
the problem becomes:

G(k0, R) = C0J0(k0R)−
1

4
Y0(k0R). (B.6)

The problem does not have any other boundary conditions associated withG(k0, R).
Consequently, the constant C0 may take any value. In particular, the choice
C0 = −j/4 results into the classical two-dimensional Green’s function of (B.4).

Regardless of the value of C0, it is clear that if the point P lies within S, (B.3)
will not hold since Y0(k0R) becomes singular at P and the surface integral of (B.1)
does not vanish. To avoid this problem, we apply Green’s identity (B.1) to the
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surface S bounded externally by ∂S and internally by the circle C of center P and
small radius δ:
∮

∂S

[
ϕs

∂G(k0, R)

∂n
−G(k0, R)

∂ϕs

∂n

]
dr′ =

∮

C

[
ϕs

∂G(k0, R)

∂R
−G(k0, R)

∂ϕs

∂R

]
dr′.

(B.7)
Note that, on C, vectors n̂ and R̂ have opposite directions, thus the partial deriva-
tives in the direction of both vectors have opposite signs. This explains the sign
change in the right hand side of (B.7). Using the following small-argument ap-
proximations for G and its normal derivative:

G(k0, R) ≈ C0 −
1

2π

[
γ + ln

(
k0
2

)]
− 1

2π
ln (R) (B.8a)

∂G(k0, R)

∂R
≈ −1

2πR
(B.8b)

where γ = 0.57721566490153286 . . . is the Euler-Mascheroni constant, the right-
hand side of (B.7) becomes
∮

C

[
ϕs

∂G(k0, R)

∂R
−G(k0, R)

∂ϕs

∂R

]
dr′=

∫ 2π

0

−ϕs

2π
dθ +

δ ln (δ)

2π

∫ 2π

0

∂ϕs

∂R
dθ

− δ
{
C0 −

1

2π

[
γ + ln

(
k0
2

)]}∫ 2π

0

∂ϕs

∂R
dθ.

(B.9)

Assuming that ϕs and its normal derivative do not change considerably in C,
and taking the limit δ → 0, we have

∮

C

[
ϕs

∂G(k0, R)

∂R
−G(k0, R)

∂ϕs

∂R

]
dr′ = −ϕs (B.10)

This expression is the integral equation for the potential ϕs used in the field
formulation for bi-dimensional cavities for points P within S (i.e. (2.92)):

ϕs(k, r) =

∮

∂S

[
G(k0, R)

∂ϕs(k, r
′)

∂n
− ϕs(k, r

′)
∂G(k0, R)

∂n

]
dr′ (B.11)

B.2 Integral Equation for points on the contour

Up until this point we have determined the integral equation that allows to com-
pute the value of potential ϕs for points within S. What is left to determine is
an equivalent equation valid for points P ′ located on the contour ∂S. It has been
shown that from Green’s theorem we can write:

ϕs(k, r) =

∮

∂S

[
G(k0, R)

∂ϕs(k, r
′)

∂n
− ϕs(k, r

′)
∂G(k0, R)

∂n

]
dr′ (B.12)
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where r = r(r) is the position of a certain point P within surface S located at a
small distance δ from the contour ∂S (see Fig. B.2). Given that R =

√
r′2 + δ2,

cos θ = δ/R and assuming that δ << α << k−1
0 , we approximate the Green’s

function and its normal derivative by:

G(k0, R) ≈ C0 −
γ

2π
− 1

2π
ln
k0
√
r′2 + δ2

2
(B.13a)

∂G(k0, R)

∂n
=

∂G(k0, R)

∂R
cos θ ≈ −δ

2π (r′2 + δ2)
. (B.13b)

Now, we take (B.12) and split the contour integral in two parts: one integral
in the infinitesimal region between α and −α, and another integral on the rest of
the contour Γ.

ϕs(k, r) =

∫ α

−α

{
∂ϕs(k, r

′)

∂ n

[
C0 −

γ

2π
− 1

2π
ln
k0
√
r′2 + δ2

2

]
+

ϕs(k, r
′) δ

2π (r′2 + δ2)

}
dr′

+

∫

Γ

[
G(k0, R)

∂ϕs(k, r
′)

∂ n
− ϕs(k, r

′)
∂G(k0, R)

∂n

]
dr′. (B.14)

The potential ϕs and its normal derivative are considered to be constant be-
tween α and −α. In addition, the remaining integrals are expressed as:

∫ α

−α

(
C0 −

γ

2π

)
dr′ =

(
C0 −

γ

2π

)
2α (B.15a)

1

2π

∫ α

−α

ln

(
k0
√
r′2 + δ2

2

)
dr′ =

1

π

{
α

[
ln

(
k0
√
α2 + δ2

2

)
− 1

]

− kδ

2

[
arc csc

(√
α2 + δ2

δ

)
− π

2

]}
(B.15b)

1

2π

∫ α

−α

δ

r′2 + δ2
dr′ =

1

π
arctan

(α
δ

)
. (B.15c)

Substituting (B.15) into (B.14) and making α → 0 and δ → 0 (so point P ′

coincides with P ), the terms in (B.15a) and (B.15b) vanish, whereas (B.15c) tends
to 1/2. As a result, the integral equation for points P ′ on the contour ∂S becomes:

ϕs(k, r) = 2

∮

∂S

[
G(k0, R)

∂ϕs(k, r
′)

∂ n
− ϕs(k, r

′)
∂G(k0, R)

∂n

]
dr′. (B.16)
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P
r

P ′
R̂ θ

R

r′

δ
−α α

n̂

∂S

S

Figure B.2: Parameters used in the derivation of the integral equation on the
contour.





Appendix C

Computation of singular
integrals

C.1 Fields under LSE excitation

The process that leads to obtain αF
s1 and βF

s1 requires the numerical computation
of certain integrals in order to fill the different matrices of the linear system of
equations. Some of these integrals involve modified Bessel functions K0 and K1,
which are singular for R = 0. Therefore, standard numerical integration techniques
fail to provide an accurate value for the integral. In those cases, the limit as R→ 0
of the integrand will be computed analytically. The evaluation of the function at
that point will be substituted by its limit. Depending on the type of segment
(linear, circular or elliptical) where the integral is being performed, the limit value
may change.

C.1.1 Singularity of MF

As we have shown, the expression of the position (i, j) of matrix MF is:

MF
ij =

−1

2h

∮

∂S

∮

∂S

cos θ K1

(
π R

h

)
fi(r) fj(r

′) dr dr′ (C.1)

As r → r′ (i.e. R → 0), K1 → ∞, thus rendering the integration by numerical
techniques impossible. In order to avoid this problem, the modified Bessel function
will be grouped with the cos θ term and the limit of this integrand IM

IM = cos θ K1

(
π R

h

)
(C.2)
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will be computed analytically according to the segment type.

The term cos θ can be related to R and n̂ (see Fig. 2.7) as:

cos θ =
R · n̂
R

(C.3)

Near R = 0, we can approximate the modified Bessel function by the first term
of its series expansion:

K1

(
π R

h

)
≈ h

π R
+O(R2) (C.4)

Combining (C.3) and (C.4), the limit as R→ 0 of the integrand is:

lim
R→0

IM =
h

π
lim
R→0

R · n̂
R2

(C.5)

Now, we proceed to evaluate this limit for the three type of segments that are
considered for defining the contour ∂S. In order to do that, the segments will be
parametrized according to a variable u ∈ [−1/2, 1/2] as described in (2.116).

ϑ

R̂

r ′

r

n̂

x̂

ŷ

∆l

Figure C.1: Linear segment.

Linear segments
Figure C.1 shows the variables involved in the definition of a linear segment. As

it is clear, when r and r′ belong to the same linear segment, cos θ = 0 since R⊥ n̂.
Therefore, for linear segments the limit of the integrand when R→ 0 is:

lim
R→0

IM = 0 (C.6)
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Circular arcs
The parametrization of circular arcs (see Fig. C.2) is:

x = x0 + a cosφ(u)

y = y0 + a sinφ(u) (C.7)

with

φ(u) = φ1 +∆φ (u+ 0.5)

∆φ = φ2 − φ1 (C.8)

The length differential dr in this case is:

dr = a dφ = a∆φ du (C.9)

x̂

ŷ

a

φ1

φ2

(x0,y0)

r

r ′

Figure C.2: Circular arc.

Vectors R and n̂ are:

R = r′ − r = a [(cosφ′ − cosφ) x̂+ (sinφ′ − sinφ) ŷ] (C.10)

n̂ = cosφ′ x̂+ sinφ′ ŷ (C.11)

and the dot product between them is:

R · n̂ = a [1− cos (φ− φ′)] (C.12)

where φ = φ(u) and φ′ = φ(u′). Finally, the expression for R2 is:

R2 = a2
[
(cosφ′ − cosφ)

2
+ (sinφ′ − sinφ)

2
]

(C.13)

Therefore, the limit of the integrand as R→ 0 is:

lim
R→0

IM =
h

π
lim
φ→φ′

a [1− cos (φ− φ′)]

a2
[
(cosφ− cosφ′)

2
+ (sinφ− sinφ′)

2
] =

h

2πa
(C.14)

obtained via the application of L’Hôpital’s rule.
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Elliptical arcs
The parametrization of elliptical arcs makes use of a local coordinate system

(w, v) rotated an angle α with respect to the Cartesian coordinate system (see
Fig. C.3). In this system, the elliptical arcs are described by:

w = ae cos η(u)

v = be sin η(u) (C.15)

where

η(u) = η1 +∆η(u+ 0.5)

∆η = η2 − η1 (C.16)

To compact the notation, η and η′ will be used from now on to represent η(u) and
η(u′), respectively. ae y be are the major and minor semi-axis of the ellipse. This
local coordinate system is related to the Cartesian one by:

(
x
y

)
=

(
x0
y0

)
+

(
cosα − sinα
sinα cosα

)
·
(
w
v

)
(C.17)

x̂

ŷ

r r ′
ŵ

v̂

be ae

αη1
η2

(x0,y0)

Figure C.3: Elliptical arc.

The length differential dr for these arcs is:

dr′ = ae ∆η
√

1− e2 cos2 η′ du′ (C.18)

where e is the eccentricity of the ellipse, defined as:

e =

√
1− b2e

a2e
(C.19)
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The unitary normal vector n̂ and vector R take the following expressions:

n̂ =
−ae sinα sin η′ + be cosα cos η′

ae
√

1− e2 cos2 η′
x̂+

ae cosα sin η′ + be sinα cos η′

ae
√
1− e2 cos2 η′

ŷ

(C.20)

R = [ae cosα (cos η′ − cos η)− be sinα (sin η′ − sin η)] x̂

+ [ae sinα (cos η′ − cos η) + be cosα (sin η′ − sin η)] ŷ (C.21)

and the dot product between them is

R · n̂ =
be [1− cos (η − η′)]√

1− e2 cos2 η′
(C.22)

The distance between source and field points is:

R2 = a2e (cos η
′ − cos η)

2
+ b2e (sin η

′ − sin η)
2

(C.23)

Substituting (C.22) and (C.23) into (C.5), and after applying L’Hôpital’s rule
twice, the limit of IM is finally expressed as:

lim
R→0

IM =
ae be

2π
√

1− e2 cos2 η′
(
a2e sin

2 η′ + b2e cos
2 η′
) (C.24)

C.1.2 Singularity of GF

The second integral that requires some additional manipulations to avoid singu-
larity problems is associated with the computation of GF . The expression of the
i-th position of this vector is:

GF
i =

A1m

2π

∮

∂S

∫ dp

0

cos

(
mπ

dp
t′p

)
K0

(
π Rp

h

)
fi(r) dr dt

′
p (C.25)

When the length differential dr is taken over a segment that belongs to port p, the
singularity may arise. The problem is due to the fact that

lim
Rp→0

K0

(
π Rp

h

)
= +∞ (C.26)

The procedure to overcome this problem involves separating the two line in-
tegrals. One of them (associated with dr) will be computed analytically, whereas
the other one will be numerically integrated with classical quadrature techniques.
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The modified Bessel function can be expanded in series at Rp = 0 as:

K0

(
π Rp

h

)
≈− ln

(
π Rp

h

)
− γ + ln(2) +R2

p

π2

4h2

[
− ln

(
π Rp

h

)
− γ + 1 + ln(2)

]

+R4
p

π4

128h4

[
−2 ln

(
π Rp

h

)
− 2γ + 3 + 2 ln(2)

]

+R6
p

π6

13824h6

[
−6 ln

(
π Rp

h

)
− 6γ + 11 + 6 ln(2)

]
+O

[
(πRp/h)

8
]

(C.27)

where γ = 0.57721566490153286 . . . is the Euler-Mascheroni constant. The integral
Ig intended to be solved analytically is:

Ig(t
′
p) =

∫

∆S

K0

(π
h
Rp

)
fi(r) dr =

∫ 0.5

−0.5

K0

(π
h
Rp

) (
c1 u

2 + c2 u+ c3
)
∆l du

(C.28)
where ∆S is a linear segment located on port p and c1, c2, c3 are the coefficients
of the parabolic basis function defined on ∆S. Making use of the series expansion
of K0 (and assuming that it is accurate in the segment) the integral Ig can be
separated in a regular part Irg and a singular part Isg

Ig = Irg + Isg (C.29)

where

Irg =

∫ 0.5

−0.5

{
ln(2)− γ − ln(π/h) +R2

p

π2

4h2
[1− γ + ln 2− ln(π/h)]

+R4
p

π4

128h4
[3− 2γ + 2 ln 2− ln(π/h)]

+ R6
p

π6

13824h6
[11− 6γ − 6 ln 2− ln(π/h)]

} (
c1 u

2 + c2 u+ c3
)
∆l du (C.30a)

Isg =
−1

2

∫ 0.5

−0.5

lnR2
p

(
1 +

R2
pπ

2

4h2
+

R4
pπ

4

128h4
+

R6
pπ

6

13824h6

)
(
c1 u

2 + c2 u+ c3
)
∆l du

(C.30b)

The regular part Irg can be computed numerically. Regarding the singular part,
it can be split into four different integrals and each one solved analytically:

Isg =
−∆l

2

(
Is0g + Is2g + Is4g + Is6g

)
(C.31)

Substituting Rp = ∆l2
(
t′p − u

)2
in (C.30b), the solution to Is0g can be ex-

pressed as:
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Is0g =

∫ 0.5

−0.5

ln
[
∆l2

(
t′p − u

)2] [
c1 u

2 + c2 u+ c3
]
du

=

{
1

12

[
8 c1 t

′3
p + 12 c2 t

′2
p + 24 c3 t

′
p + c1 − 3 (c2 − 4 c3)

]
ln |2tp + 1|

− 1

12

[
8 c1 t

′3
p + 12 c2 t

′2
p + 24 c3 t

′

p − c1 − 3 (c2 + 4 c3)
]
ln |2tp − 1|

+
(c1
6

+ 2 c3

)
ln

∣∣∣∣
∆l

2

∣∣∣∣−
1

18

(
12 c1 t

′2
p + 18 c2 t

′

p + c1 + 36 c3
)}

(C.32)

The second integral Is2g , involving the term R2
p, is:

Is2g =
π2∆l2

4h2

∫ 0.5

−0.5

ln
[
∆l2

(
t′p − u

)2] (
t′p − u

)2 [
c1 u

2 + c2 u+ c3
]
du

=
π2∆l2

4h2
1

1800{
(0.5− t′p)

3
[
−112.5c2 − 400c3 − 175c2 t

′

p − 36c1 − 81 c1 t
′

p − 94 c1 t
′2
p

+ 2 ln
[
∆l(0.5− t′p)

]
(90 c1 + 225c2 + 600c3 + 150c2 t

′

p + 90 c1 t
′

p + 60 c1 t
′2
p )
]

+(0.5 + t′p)
3
[
112.5c2 − 400c3 − 175c2 t

′

p − 36 c1 + 81 c1 t
′

p − 94 c1 t
′2
p

+ 2 ln
[
∆l(0.5 + t′p)

]
(90 c1 − 225c2 + 600c3 + 150c2 t

′

p − 90 c1 t
′

p + 60 c1 t
′2
p )
]}

(C.33)

Likewise, the integral involving the term R4
p is:

Is4g =
π4∆l4

128h4

∫ 0.5

−0.5

ln
[
∆l2

(
t′p − u

)2] (
t′p − u

)4 [
c1 u

2 + c2 u+ c3
]
du

=
π4∆l4

128h4
1

22050{
(0.5− t′p)

5
[
−612.5 c2 − 1764 c3 − 539 c2 t

′

p − 225 c1 − 325 c1 t
′

p

− 214 c1 t
′2
p + 2 ln

[
∆l(0.5− t′p)

]
(1837.5 c2 + 4410 c3 + 735 c2 t

′
p + 787.5 c1

+ 525 c1 t
′

p + 210 c1 t
′2
p )
]

+ (0.5 + t′p)
5
[
612.5 c2 − 1764 c3 − 539 c2 t

′
p − 225 c1 + 325 c1 t

′
p − 214 c1 t

′2
p

+ 2 ln
[
∆l(0.5 + t′p)

]
(−1837.5 c2 + 4410 c3 + 735 c2 t

′
p + 787.5 c1

− 525 c1 t
′

p + 210 c1 t
′2
p )
]}

(C.34)
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Finally, the integral involving the term R6
p is:

Is6g =
π6∆l6

13824h6

∫ 0.5

−0.5

ln
[
∆l2

(
t′p − u

)2] (
t′p − u

)6 [
c1 u

2 + c2 u+ c3
]
du

=
π6∆l6

13824h6
1

127008{
(0.5− t′p)

7
[
−1984.5 c2 − 5184 c3 − 1215 c2 t

′

p − 784 c1 − 833 c1 t
′

p − 382 c1 t
′2
p

+ 2 ln
[
∆l(0.5− t′p)

]
(7938 c2 + 18144 c3 + 2268 c2 t

′

p + 3528c1 + 1764c1 t
′

p

+ 504 c1 t
′2
p )
]

+(0.5 + t′p)
7
[
1984.5 c2 − 5184 c3 − 1215 c2 t

′

p − 784 c1 + 833 c1 t
′

p − 382 c1 t
′2
p

+2 ln
[
∆l(0.5 + t′p)

]
(−7938 c2 + 18144 c3 + 2268 c2 t

′

p + 3528c1 − 1764c1 t
′

p

+ 504 c1 t
′2
p )
]}

(C.35)

C.1.3 Singularity of NF

The third singular integral is related to the computation of NF . The (i, j) position
of this matrix is computed as:

NF
ij =

1

4π

∮

∂S

∮

∂S

RK0

(
π R

h

)
cos θ fi(r) fj(r

′) dr dr′ (C.36)

As it will be shown, the limit when R→ 0 of the integrand has a finite value for
the three types of segments. Therefore, the integral of matrix NF can be solved
numerically just by substituting the evaluation of the integrand in R = 0 by its
limit. The expression of this limit is:

IN = lim
u→u′

{
cos θ(u, u′)R(u, u′)K0

[
π R(u, u′)

h

]}
= lim

u→u′

{
R · n̂ K0

[
π R(u, u′)

h

]}

(C.37)
Substituting the first term of the expansion of the modified Bessel function

shown in (C.27), the limit IN becomes:

IN=
−1

2
lim
u→u′

R · n̂ ln
[
R2(u, u′)

]
(C.38)

Now, this limit will be computed for each segment type.

Linear segments
For linear segments, R is always perpendicular to n̂, therefore the integrand IN

is null.
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Circular arcs
As it was shown before for circular arcs while studying the singularity of matrix

MF , the dot product of R and n̂ can be written as:

R · n̂ = a [1− cos (φ− φ′)] = a {1− cos [∆φ (u− u′)]} (C.39)

Likewise, R2 can be approximated by:

R2 ≈ a2∆φ2 (u− u′)
2

(C.40)

thus, lnR2 can be written as the sum of two terms: one regular1 and the other
one singular:

lnR2 = ln

[
(x− x′)2 + (y − y′)2

∆φ2 (u− u′)
2

]
+ ln

[
∆φ2(u− u′)2

]
(C.41)

The regular term, once it is multiplied by R · n̂, becomes null. Substituting (C.39)
and the singular term of (C.41) into (C.38), the limit becomes:

IN = −a lim
u→u′

{1− cos [∆φ |u− u′|]} ln [∆φ |u− u′|] (C.42)

Since this limit takes an indeterminate form, L’Hôpital’s rule is successively
applied until the actual limit value is obtained. In this case, it is

IN
∣∣
Circ.

= −0.5 lim
u→u′

R · n̂ ln
[
R2(u, u′)

]
= 0 (C.43)

Elliptical arcs
It was shown earlier that with the parametrization of elliptical arcs, the dot

product of R and n̂ can be expressed as:

R · n̂ =
be [1− cos (η − η′)]√

1− e2 cos2 η′
=
be {1− cos [∆η (u− u′)]}√

1− e2 cos2 η′
(C.44)

As it was done for circular arcs, lnR2 can be expressed as the sum of two
terms: a regular one2 and a singular one:

lnR2 = ln

[
(x− x′)2 + (y − y′)2

∆η2 (u− u′)
2

]
+ ln

[
∆η2(u− u′)2

]
(C.45)

1As shown in [62], the limit of the regular part when r → r′ is:

lim
(x,y)→(x′,y′)

ln

[

(x− x′)2 + (y − y′)2

∆φ2 (u− u′)2

]

= ln a2

2As shown in [62], the limit of the regular part of lnR2 when r → r′ is:

lim
(x,y)→(x′,y′)

ln
(x− x′)2 + (y − y′)2

∆η2 (u− u′)2
= ln

[

a2e sin
2 η′ + b2e cos

2 η′
]
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Likewise, the limit of the regular term multiplied by the dot product of R and
n̂ becomes null. Therefore, only the singular part may contribute to the limit. It
can be rewritten as:

IN =
2be√

1− e2 cos2 η′
lim
u→u′

{1− cos [∆η (u− u′)]} ln [∆η |u− u′|] (C.46)

This expression is equivalent to (C.42), therefore, IN for elliptical arcs is also:

IN
∣∣
Ellip.

=
−1

2
lim
u→u′

R · n̂ ln
[
R2(u, u′)

]
= 0 (C.47)

C.1.4 Singularity of TF

The last problematic integral is associated with the computation of TF :

TF
i =

A1mh

4π2

∮

∂S

∫ dp

0

cos

(
mπ

dp
t′p

)
RpK1

(
π Rp

h

)
fi(r) drdt

′

p (C.48)

We can group the modified Bessel function K1(πRp/h) with Rp and compute
the limit when Rp → 0:

IT = lim
Rp→0

Rp K1

(
π Rp

h

)
(C.49)

Making use of the expansion ofK1(πRp/h) at Rp = 0 (C.4), the limit IT simply
becomes:

IT = lim
Rp→0

Rp

h

π Rp

=
h

π
(C.50)

C.2 Fields under LSM excitation

Four matrices (MA, GA, NA y TA) involved in the computation of αA
s0 and βA

s0

contain singular integrands. In this section, the singular integrands are treated,
once again, to allow the solution of the different integrals by classical quadrature
techniques.

C.2.1 Singularity of MA

The (i, j) position of matrix MA is computed as:

MA
ij =

∮

∂S

∮

∂S

fi(r) fj(r
′) lnR dr′dr (C.51)
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This double integral can be rewritten as:

MA
ij =

∮

∂S

fi(r)IM (r)dr (C.52)

where the integral involving the singularity is:

IM (r) =
1

2

∮

∂S

fj(r
′) lnR2 dr′ (C.53)

This same integral was solved in [62] for linear, circular and elliptical segments.
For completeness, only the final results are included here.

Linear segments
With the parametrization of linear segments, the integral IM becomes:

IM (u) =
1

2

∫ 0.5

−0.5

ln
[
∆l2(u− u′)2

]
(c1 u

′2 + c2 u
′ + c3)∆l du

′ (C.54)

The analytical solution of this integral is:

IrectM (u) =
∆l

2

{
1

12

[
8c1u

3 + 12c2u
2 + 24c3u+ c1 − 3 (c2 − 4c3)

]
ln |2u+ 1|

− 1

12

[
8c1u

3 + 12c2u
2 + 24c3u− c1 − 3 (c2 + 4c3)

]
ln |2u− 1|

+
(c1
6

+ 2c3

)
ln

∣∣∣∣
∆l

2

∣∣∣∣−
1

18

(
12c1u

2 + 18c2u+ c1 + 36c3
)}

(C.55)

Circular arcs
For circular arcs, the integral IM can be split into two parts:

IcircM (u) = IcircM−r + IcircM−s =
1

2

∫ 0.5

−0.5

ln

[
R2

∆ϕ2(u− u′)2

]
(c1 u

′2 + c2 u
′ + c3)a∆ϕ du′

+
1

2

∫ 0.5

−0.5

ln
[
∆ϕ2(u− u′)2

]
(c1 u

′2 + c2 u
′ + c3)a∆ϕ du′

(C.56)

where IcircM−r is regular, since

lim
u′→u

ln

[
R2

∆ϕ2(u− u′)2

]
= ln a2 (C.57)
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and IcircM−s is equivalent to (C.54), thus its solution is:

IcircM−s(u) =
a∆ϕ

2

{
1

12

[
8c2u

3 + 12c2u
2 + 24c3u+ c1 − 3 (c2 − 4c3)

]
ln |2u+ 1|

− 1

12

[
8c2u

3 + 12c2u
2 + 24c3u− c1 − 3 (c2 + 4c3)

]
ln |2u− 1|

+
(c1
6

+ 2c3

)
ln

∣∣∣∣
∆ϕ

2

∣∣∣∣−
1

18

(
12c2u

2 + 18c2u+ c1 + 36c3
)}

(C.58)

Elliptical arcs
Similarly, the integral IM is also split into two parts when computed over ellip-

tical arcs:

IellipM (u)= IellipM−r + IellipM−s

=
1

2

∫ 0.5

−0.5

ln

[
R2

∆η2(u− u′)2

]
(c1 u

′2 + c2 u
′ + c3) ae∆η

√
1− e2 cos2 η′ du′

+
1

2

∫ 0.5

−0.5

ln
[
∆η2(u− u′)2

]
(c1 u

′2 + c2 u
′ + c3) ae∆η

√
1− e2 cos2 η′ du′

(C.59)

where IellipM−r is regular, since

lim
u′→u

ln

[
R2

∆η2(u− u′)2

]
= ln

(
a2e sin

2 η + b2e cos
2 η
)

(C.60)

However, IellipM−s still requires a second subdivision:

IellipM−s(u) = IellipM−s−r + IellipM−s−s

=
ae ∆η

2

∫ 0.5

−0.5

ln
[
∆η2(u− u′)2

]
(c1 u

′2 + c2 u
′ + c3) γ(u

′)

(
1− γ(u)

γ(u′)

)
du′

+γ(u)
ae ∆η

2

∫ 0.5

−0.5

ln
[
∆η2(u− u′)2

]
(c1 u

′2 + c2 u
′ + c3) du

′

(C.61)

where IellipM−s−r is regular due to limu′→u

(
1− γ(u)

γ(u′)

)
= 0 and, even though the

logarithmic term is singular, it is also well known that limx→0 x
α lnx = 0 for any
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α > 0. Regarding IellipM−s−s, it is equivalent to (C.54), therefore:

IellipM−s−s(u)=
ae ∆η γ(u)

2

·
{

1

12

[
8c1u

3 + 12c2u
2 + 24c3u+ c1 − 3 (c2 − 4c3)

]
ln |2u+ 1|

− 1

12

[
8c1u

3 + 12c2u
2 + 24c3u− c1 − 3 (c2 + 4c3)

]
ln |2u− 1|

+
(c1
6

+ 2c3

)
ln

∣∣∣∣
∆η

2

∣∣∣∣−
1

18

(
12c1u

2 + 18c2u+ c1 + 36c3
)}

(C.62)

C.2.2 Singularity of GA

The expression for the components of GA is

GA
i =

√
2

h dp

∮

∂S

∫ dp

0

sin

[
mπ

dp
t′p

]
IG(r, r

′

p) fi(r) dr dt
′

p (C.63)

with IG(r, r
′
p) = cos θ/Rp. The singularity of the integrand occurs when dr and

dt′p are applied over the same segment of port p. Since the port is a linear segment,
cos θ = 0, thus, the integrand IG is always null over the port.

C.2.3 Singularity of NA

Matrix NA is filled according to

NA
ij =

∮

∂S

∮

∂S

IN (r, r′)fi(r) fj(r
′) dr dr′ (C.64)

where

IN (r, r′) =
R2

4
(1− lnR) (C.65)

As R→ 0, the limit of IN is:

lim
R→0

IN (r, r′) = 0 (C.66)

C.2.4 Singularity of TA

The expression of vector TA is

TA
i =

−1

4

√
2

h dp

∮

∂S

∫ dp

0

sin

[
mπ

dp
t′p

]
IT (r, r

′
p) fi(r) dt

′
pdr (C.67)
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with IT (r, r
′
p) = cos θRp (1− 2 lnRp). As it is the case with vector GA, the

singularity of the integrand is located on the port. Since cos θ = 0 for linear
segments, the integrand IT is always null over the port.



Appendix D

Relationships between scalar
potentials and current
densities in the BI-RME
method

This appendix is aimed at providing the TE and TM potentials on the lateral
walls of arbitrarily-shaped waveguides according to the solution (current densities)
generated by the BI-RME method. The electric field (not normalized) provided by
the Boundary Integral - Resonant Mode Expansion (BI-RME) method is defined
as:

E(r) = −jηk
∮

∂S

Ḡe(r, r
′) ·Jσ(r

′) dr′ (D.1)

where Ḡe is the two-dimensional dyadic Green’s function of the problem [26]. The
current density Jσ can be split into a tangential (Jt t̂) and a longitudinal (Jz ẑ)
contribution (see Fig. D.1). Depending on the family of modes (TE or TM), the
BI-RME method is able to provide one of these contributions as a series expansion
of basis functions.

D.1 TE modes

As it is well known, on a Perfect Electric Conductor (PEC) the current density
Jσ is directly related to the magnetic field H as:

Jσ = n̂×H (D.2)
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t̂

n̂

Jt

Jz

ẑ

S

S0

∂S

a

Figure D.1: Cross-section S of an arbitrarily-shaped waveguide located within
a canonical circular waveguide of radius a for application of the BI-RME
method.

where n̂ is the inward normal vector (see Fig. D.1). The magnetic field for TE
modes has two components: one axial Hz and one tangential to the contour Ht.
Therefore, the current density can be split in two parts:

Jσ = Jz + Jt (D.3a)

Jz = Jz ẑ = n̂×
(
H · t̂

)
= −Ht ẑ (D.3b)

Jt = Jtt̂ = n̂× (H · ẑ) = Hz t̂. (D.3c)

The BI-RME method is able to provide the tangential current density on the
perturbed contour for each waveguide TE mode at its resonant frequency. The
current density is expressed as a series of basis functions:

Jt(r
′) =

K∑

κ=1

BTE
κ fκ(r

′). (D.4)

where BTE
κ are coefficients obtained after application of the BI-RME method.

On the one hand, this current generates a transverse electric field given by [26]:

ET(r) = −jη
[
1

k
∇T

∮

∂S

g(r, r′)
∂Jt
∂t

dr′ + k

∮

∂S

Ḡst(r, r
′) · t̂ Jt(r′) dr′

+ k

M∑

m=1

am
k2m

em(r)

]
(D.5)

where g and Ḡst are, respectively, the scalar and dyadic two-dimensional Green’s
function of the auxiliary canonical resonator used for the resonant mode expansion.
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em is the electric modal vector for the m-th TE mode of this auxiliary resonator
with cutoff wavenumber km. am are unknown expansion coefficients obtained
after application of the method. The subindex T indicates the transverse-to-
z components. At k = χTE (the wavenumber at which the current density Jt
and modal vectors are defined) this field does not correspond directly with the
normalized electric modal vector in the S domain. The normalized electric eTE

and magnetic modal hTE vectors can be derived from the scalar TE potential ϕTE

employed in chapter 2 as [133]:

hTE =
−∇Tϕ

TE

χTE
(D.6a)

eTE =
−∇Tϕ

TE × ẑ

χTE
. (D.6b)

The scalar TE potential satisfies1

∫

S

∣∣ϕTE
∣∣2 dS = 1 (D.7)

as previously determined in (2.42). Comparing (D.5) with Ec. (1) in [173], it is
simple to determine that the normalized and unnormalized transverse components
of the electric field are related as:

ET = −jη eTE. (D.8)

On the other hand, the magnetic field can be expressed as the curl of the electric
field, from Maxwell’s equations. Therefore, the axial magnetic field is given by:

Hz =
j

kη
∇T · (ET × ẑ) . (D.9)

According to (D.3c), the axial magnetic field on the contour ∂S can be directly
identified with the tangential current density Jt = Hz. Substituting (D.6b) and

1 It is frequent to define the relationship between the magnetic modal vector and the scalar
potential as:

h = ẑ× e = −∇Tϕ
TE.

This implies that, if the modal vectors are normalized to the cross-section of the waveguide as
∫

S

(e× h) · ẑdS =

∫

S

h ·hdS =

∫

S

∣

∣

∣
∇Tϕ

TE
∣

∣

∣

2
dS =

(

χTE
)2

∫

S

∣

∣

∣
ϕTE

∣

∣

∣

2
dS = 1

the scalar potential must satisfy a normalization condition that is different from (D.7):
∫

S

∣

∣

∣
ϕTE

∣

∣

∣

2
dS =

1

(χTE)2
.
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(D.8) into (D.9) and operating, the scalar TE potential on the contour is related
to the tangential current density as:

ϕTE

∣∣∣∣
∂S

= −Jt. (D.10)

D.2 TM modes

As in the TE case, the current density can be obtained from the magnetic field on
the walls of a waveguide as:

Jσ = n̂×H = Jz −→ Jz = −Ht. (D.11)

This current density generates an axial electric field Ez in the form [26]:

Ez(r) = −jηk
[∮

∂S

g(r, r′) Jz(r
′) dr′ +

m∑

m=1

am
k2m

ψm(r)

]
. (D.12)

Comparing this expression with Ec. (3) in [173], the unnormalized electric field
component evaluated at k = χTM can be related to the scalar TM potential as:

Ez = −jη ϕTM. (D.13)

From the scalar TM potential, which fulfills the normalization condition expressed
in (2.51), the normalized modal vectors are obtained:

eTM =
−∇Tϕ

TM

χTM
(D.14a)

hTM =
ẑ×

(
−∇Tϕ

TM
)

χTM
. (D.14b)

From Maxwell’s equations, and knowing that ∇×ET = 0 (since the transverse
electric field can be expressed as the gradient of the scalar TM potential), the
tangential magnetic field can be expressed as:

− jkηHt = (∇× Ez ẑ) · t̂ =
∂Ez

∂n
(D.15)

Substituting (D.11) and (D.13) into (D.15) and evaluating at k = χTM, the re-
lationship between the normal derivative of the scalar TM potential on the contour
∂S and the axial current density is given by:

∂ ϕTM

∂n

∣∣∣∣
∂S

= −χTMJz. (D.16)
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