Contents

1 Introduction ... 1
 1.1 State of the art .. 4
 1.2 Objectives ... 12
 1.3 Thesis structure 14

2 Full-wave characterization of bi-dimensional cavities 17
 2.1 Mode spectrum and expansion of electromagnetic fields 18
 2.1.1 Electric field expansion 21
 2.1.2 Magnetic field expansion 22
 2.1.3 Application to bi-dimensional cavities 23
 2.1.4 Convergence of the direct representation: Rectangular cavity 32
 2.2 Hybrid field representation 35
 2.2.1 Fields under LSE excitation 38
 2.2.2 Fields under LSM excitation 48
 2.2.3 Convergence of the hybrid representation: Rectangular cavity 56
 2.3 GAM characterization 57
 2.3.1 General Admittance Matrix for LSE modes 59
 2.3.2 General Admittance Matrix for LSM modes 60

3 Analysis, design and RF breakdown prediction ... 63
 3.1 Analysis and design of waveguide components 64
 3.1.1 Inductive filter with rounded corners 64
 3.1.2 Triplexer for PIM measurement setups 67
 3.1.3 Narrowband taper/branching OMT 69
 3.1.4 Wideband turnstile-junction OMT 71
 3.1.5 Dual-band OMT .. 73
 3.2 High-power RF breakdown prediction .. 76
 3.2.1 Lowpass filter .. 77
 3.2.2 H-plane diplexer .. 80
4 Novel quasi-elliptic filter implementations 83

4.1 Hybrid-folded rectangular waveguide filters 85

4.1.1 Coupling mechanisms in HFRW filters 88

4.1.2 Wideband modeling of HFRW trisections 95

4.1.3 Design procedure for HFRW filters 99

4.1.4 Physical implementation of HFRW filters 106

4.1.5 Example: design of a five-pole four-TZ filter 115

4.2 Practical implementation of capacitive irises with TZs 120

4.2.1 Practical design examples 124

5 Design of wideband manifold-coupled multiplexers 131

5.1 Wideband and narrowband multiplexer comparison 132

5.2 Design methodology for wideband multiplexers 136

5.2.1 First cycle 138

5.2.2 Additional design cycles 144

5.2.3 Example: design of a Ka-band triplexer 145

5.3 Design of a quadruplexer for PIM measurement 151

5.3.1 Channel filters 152

5.3.2 Final design 156

6 Conclusions and future work 161

A Transformation between LSE/LSM and TE/TM modes 167

A.1 Coupling between LSE and TE modes 169

A.2 Coupling between LSE and TM modes 169

A.3 Coupling between LSM and TE modes 170

A.4 Coupling between LSM and TM modes 170

B Derivation of the IE for the scalar potential 171

B.1 General Integral Equation 171

B.2 Integral Equation for points on the contour 173

C Singular Integrals 177

C.1 Fields under LSE excitation 177

C.1.1 Singularity of M^F 177

C.1.2 Singularity of G^F 181

C.1.3 Singularity of N^F 184

C.1.4 Singularity of T^F 186

C.2 Fields under LSM excitation 186

C.2.1 Singularity of M^A 186

C.2.2 Singularity of G^A 189

C.2.3 Singularity of N^A 189

C.2.4 Singularity of T^A 189
Contents

D Relationship between potentials and BI-RME modal currents
- D.1 TE modes
- D.2 TM modes

E Publications
- E.1 Journal publications
- E.2 Conference publications

Bibliography